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Abstract—Over the past two decades, there has been a
growing interest in control systems research to transition
from model-based methods to data-driven approaches. In this
study, we aim to bridge a divide between conventional model-
based control and emerging data-driven paradigms grounded
in Willems’ “fundamental lemma”. Specifically, we study how
input/output data from two separate systems can be manip-
ulated to represent the behavior of interconnected systems,
either connected in series or through feedback. Using these
results, this paper introduces the Internal Behavior Control
(IBC), a new control strategy based on the well-known Internal
Model Control (IMC) but viewed under the lens of Behavioral
System Theory. Similar to IMC, the IBC is easy to tune
and results in perfect tracking and disturbance rejection but,
unlike IMC, does not require a parametric model of the
dynamics. We present two approaches for IBC implementation:
a component-by-component one and a unified one. We compare
the two approaches in terms of filter design, computations, and
memory requirements.

Index Terms—Data-driven Control, Fundamental Lemma,
Data-driven System Interconnections, Internal Model Control

I. INTRODUCTION

Recently, there has been a growing interest in data-driven
control methods, mainly due to a surge in available large
datasets. These methods potentially offer seamless end-to-
end and flexible design, particularly for systems that are
difficult to model precisely. Following the trend towards
data-driven control, the work by Willems and coauthors
on behavioral system theory (BST) stands out [1]. They
demonstrated that a sufficiently exciting trajectory of a
Linear Time-Invariant (LTI) system can be used to represent
all its potential trajectories. This concept termed as the
“fundamental lemma”, highlights the power of using data
for learning and control.

In this study, we aim to bridge a divide between con-
ventional model-based control and emerging data-driven
paradigms grounded in Willems’ fundamental lemma.
Specifically, we present how noise-free! input/output data
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from multiple systems can be used to represent the dynamics
of an interconnected system in the BST framework. The
existing literature (e.g., [2]-[4]) has also studied the inter-
connection problem in the context of BST, but not from
an algorithmic standpoint, rather from a purely theoretical
standpoint as constraints on trajectories or latent variables,
or through parametric (i.e., state-space) representations of
the dynamics. Applications of [2]-[4] in controls have been
reported in [5]-[8]. Building on these foundations, the first
contribution of this paper is an algorithmic approach to con-
vert individual system trajectories collected in isolation into
a data-driven representation of the interconnected system,
either in series or in feedback.

Using these data-driven interconnections, we propose a
new control framework called the Internal Behavior Control
(IBC), which can be viewed as a data-driven version of the
classical Internal Model Control (IMC). The IMC uses a
model of the plant, as well as a causal approximate inverse,
inside the controller [9]. Here, we replace the model and
the inverse with data-enabled predictors. As we show, IBC
inherits the desirable properties of the model-based IMC:
integral control, ease of tuning, and ability to naturally han-
dle Hammerstein-Weiner systems (e.g., actuator saturation).
We offer two approaches for implementing the proposed
IBC. The first implementation is component-by-component,
where separate data-enabled predictors are leveraged for the
forward and inverse models. The second implementation
combines the data-driven forward and inverse predictors
using the system interconnection ideas discussed earlier.
This effectively results in a single data-enabled controller,
which is more compact and more memory efficient than
the first implementation. The focus of this paper will be on
single-input single-output (SISO), stable, minimum-phase
systems, though extension to the multi-input multi-output
case is not difficult.

Note that other model-based control strategies have also
been recently viewed under the lens of BST. Successful
examples include the DeePC algorithm [10], which stands
parallel to the Model Predictive Control (MPC), and the
design of optimal Linear Quadratic Gaussian controllers di-
rectly from the subspace matrices in [11]. These controllers
may lack interpretability and may be hard to tune. The
proposed IBC does not suffer from these challenges.

In summary, this work mainly offers two contributions:
i) methods and algorithms for data-driven system inter-
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connections through the generation of consistent data from
mismatched datasets; and ii) the IBC, which is a data-driven
control framework inspired by the classical IMC. To the
best of our knowledge, with the exception of the work [12]
that studies a similar problem for control of second-order
Volterra systems, this is the first study of the IMC controller
in the context of BST.

This paper is organized as follows. Sec. II provides an
overview of BST and IMC. Data-driven interconnections and
the IBC are presented in Sections III and IV, respectively.
The conclusions and future work are provided in Section V.

The notation in this work is as follows. Given a system G,
the integers n(G) and L(G) denote the order and L-delay
(i.e., the relative degree in the SISO case), respectively. For
a scalar signal v(t) € R, the vector of values from time ¢; to
ty is denoted by vy, 4, = [v(t1),...,v(t2)]". When there
is no risk of confusion, we omit the subscript and denote
the vector by boldface letters, i.e., v. Given two vectors, X
and y, we define col(x,y) = [XT yT]T. For the vector
Vi, ,t,]» the Hankel matrix of order T is defined as

v(t1) vty + 1) vt =T +1)
U(tl + 1) ’U(tl + 2) ’U(t2 — T)
%T(v[tl,tg]) = : : :
ot +T = 1) v(ti +T) v(t2)

II. OVERVIEW OF BST AND IMC
A. Overview of BST and Data-enabled predictions

This section provides a review of BST, for details see
[13]. Consider a SISO LTI system G with input u € R
and output y € R. For any positive integer 7', we define
the “restricted behavior” of G, denoted by %|r(G), as the
set of all T-long trajectories w = col(u,y) € R?”, where
y € R7T is the output trajectory corresponding to u € R”
from some initial condition.

Consider an offline-collected single T;-long trajectory,
wé = col(u?,y?) € R?T4 of system G. Let T}, be a positive
integer to be later selected. We construct the “data matrix”,
H, as

H _ |:,H’u,:| c RQ(TP+1)X(TL¢—TP) (l)

Hy
where

U Y,
Mo = stiawt) = 2] o= a0 = |32

with the partitioning Up,, Y, € RT»*(Ta=Tp) and U Yy €
R (Ta=To) If T,, > n(G) and H satisfies the “low-rank
condition”?

rank(H) = T, + 1 + n(G), (2)

then, any (T}, + 1)-long trajectory of the system will belong
to the column space of H. This condition allows us to use the

2This result has become known as the “Generalized Persistency of
Excitation Condition”, see [14, Corollary 21]. The condition formally
involves the “lag” of the system, which in the SISO case is equal to the
order, n.

data matrix for the purpose of output prediction. Specifically,
given the recent 7, samples of the input/output trajectory
(Wini € R”? and yin; € R77), and a “future” input upyeq €
R, the unique future output, yped € R, can be predicted by
solving:
Uini
Upred

3
Yini ( )
Ypred

Hg =

for the unknowns g and ypeq. The solution for vector g is
generally not unique. Often, the minimum-norm solution is
employed:

U, f Uini
g =| Uy Upred 4)
er Yini
and so
Ypred = Yyg". (5)

Remark 1. Two assumptions in this review are not always
necessary: First, the data matrix does not require a single
long trajectory; it can be formed from independent tra-
Jjectories; for details see [13]. Second, our predictors are
single-step predictors (i.e., Upred, Yprea € R). However, longer
prediction horizons may be used provided the data matrix
satisfies the low-rank condition.

Remark 2. Because of the use of a single step prediction
(i.e., Ypreda € R), the solution to (4) and (5) is equivalent
to the prediction obtained from a certainty-equivalent ARX
model identified from the offline data. For details, please see
[15].

B. Data-Enabled prediction of System Inverse

This section provides a review of data-enabled predictions
for the system inverse, as required for the IBC approach;
for details see [16]-[19]. This problem is also referred to as
the output matching problem in the literature [20]. Given an
output trajectory, the goal is to compute the associated input
using the offline data. The ideas are similar to the previous
section, except that we predict the input instead of the output
and H, is now of a different order. More specifically, the
data matrix for the inverse system is modified to

Hu
Hy,inv

where H,, is as in (1) and H,, i, is defined as:

Hinv _ |: :| c R(?T;,-&-Q-&-L(G))X(Td—'fp) (6)

Y.
J— dy _ P
Hy,mv = jsﬂTp-i-L(G)-i-l (y ) - |:YfL:| )

with the partitioning Y, € RT»*(Ta=Tp) and Yy €
RA+L(G)*(Ta~Tp)  Here, we have considered different
lengths for the offline data: T,; for u? and Ty + L(G) for
y®. The low-rank condition for the inverse case remains the
same as (2). If this condition is satisfied, H;,y can be used
to compute the input. To see this, at every timestep ¢, given
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Fig. 1. Block diagram of the IMC structure

the recent T), + 1 + L(G) samples of the output and the
same samples of the input without the last L(G) elements,
we can uniquely compute the input L(G) timesteps in the
past. Mathematically, given

inv __
Ui = Ut—T,—L(G),t—L(G)—1]>

Yini = YT~ L(@)-L(@)-1]s  Ypred = Yii—L(@),1]>

ulwy = u(t — L(G)) € R can be obtained by solving:

Up uiﬁ;’
Uf ginv _ ulpTéd (7)
Yp Yini
Yir Y pred

for the unknowns g™v € R(Ta=T») and ug;‘éd. As in the case

of forward prediction, the minimum-norm solution to g
is often employed, which leads to:

inv

T inv
UP u:mi

uprea = Us | Yy i |- (8)
YL Ypred

C. Overview of IMC

A block diagram of the IMC structure is shown in Fig. 1,
where G represents the system, G is a model of the system,
G~! is the ideal inverse of the model (to be revisited),
and F is a filter to be defined. The goal is to select F' to
achieve a certain performance objective, e.g., to minimize
the Hy-norm of the tracking error for step setpoints. For
open-loop-stable minimum-phase systems, this Hy-norm is
theoretically minimized by setting F' = 1. In practice, Gt
is improper and cannot be implemented. Moreover, even if
it could be implemented, it would render the feedback loop
sensitive to uncertainties. This requires the augmentation of
G~ with a low-pass filter whose order is at least the relative
degree of G.Ifa description of G’s uncertainties is available,
the time constant of the filter is selected to ensure robust
performance and stability [21], [22]. Otherwise, the time
constant is treated as a tuning parameter to directly trade-off
performance and robustness, rendering tuning an easy task.
Note that input or output nonlinearities (i.e., Hammerstein-
Wiener models [23]) can be naturally compensated for by
including them in the model path. In our study, we aim
to substitute (G and G~! with a data-enabled predictor
while preserving IMC’s key features, namely perfect steady-
state tracking and disturbance rejection, ease of tuning, and
minimization of Hs norm for step commands.

III. DATA-DRIVEN SYSTEM INTERCONNECTIONS

In this section, we present how to create a data-driven
representation of the interconnection of two system -
whether they are in series or in feedback — using available
input/output data from each individual system. As we show
in the next section, this allows us to view traditional model-
based control techniques, which frequently depend on sys-
tem block interconnections, under the lens of data-driven
predictors.

As discussed in [8], in order to interconnect two systems,
the output of one system must match the input of the other.
However, in general, the offline input-output data may be
collected in isolation, leading to mismatches. To tackle this
issue, we introduce the following function, the specific form
of which will be defined later:

y* = Z(u*, u?, y?) : RT x RTe x RTa - RT.

In words, given an input sequence u*, this function predicts
the output sequence, y*, of the system starting from zero
initial conditions, while ensuring that col(u*,y*) is an ad-
missible trajectory, i.e., compatible with w? = col(u?, y?).
To this end, we introduce a new input trajectory u™°¢, which
is identical to u* except it is padded with T}, zeros at the
beginning:

umod (t) _ {0

if0<t<T,

w(t—T,) ifT,<t<T+T,

We then define Z recursively, where y* is computed element
by element. Specifically, using (4) and (5), y*(t) is given by:

yr(t) =yt + Tp), 9)

where y™4(t) is computed recursively as

0 if0<t<T),
T d
ymod(t) _ UP u?z()_Tpat—l]
vy | Uy wmod(¢) T, <t<T+Tp

mod
Y[t—Tp,t—1]

Here, the Hankel matrices U,, Uy, Y}, and Y} are con-
structed using u and y<, see (1). Note that Z is only defined
when the data matrix of w? has rank T}, + 1 + n(G) for a
selected T, > n(G).

The above ideas can be used to “remove” the effect of
initial conditions from the offline output y?, as shown in the
theorem below. The proof is straightforward and omitted.

Theorem 1. Consider a SISO LTI system G and let T}, >
n(QG). Suppose a Ty-long trajectory w? = col(u?,y?) of
G, whose data matrix has rank T, + 1 + n(G), is given.
The trajectory wo = col(u?, Z(u?, u?, y?)) is a trajectory
of G starting from zero initial conditions. Furthermore, if

w? is collected starting from zero initial conditions, then

Wo = Wd.

We now use Z to study the data-driven interconnection
of two systems in series (see Fig. 2), where their corre-
sponding offline data may be of different lengths and may
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Fig. 2. Series interconnection given data from individual systems. In

general, since y1 # ugz, the interconnection is not achievable. In the figure,
the successful interconnection is shown with G2 taking y; as input and
generating y s as output.

be collected in isolation. The following Theorem provides
a mechanism to construct an admissible trajectory of the
series interconnection directly from the offline data of the
individual systems. Such trajectory can then be used for
data-driven prediction of the series interconnection using the
previously described methods.

Theorem 2. Consider wi = col(uy,y1) € %Bln(G1)
and wy = col(ug,y2) € B|1,(G2) as Ty and Ty long
trajectories of SISO LTI systems Gy and Gs, respectively. If
the data matrix of trajectory wo has rank T, + 1 + n(G2)
for T, > n(G2), then the trajectory define by

u
Wy = { 1} , ¥s = Z2(y1,u2, y2)
Ys

satisfies ws € B|r,(Gs), where G denotes the LTI system
that results from connecting systems G1 and Gy in series.

Proof. To interconnect G; and G, in series, GG1’s output
must match G5’s input. However, the two trajectories, Wy
and wo generally do not satisfy this condition as they may
have been collected in isolation. To force the output of G
to be equal to the input of G5, we use Z to generate Go’s
output, ys, given G1’s output, y1, as input. The trajectory
col(uy,ys) would then represent a valid trajectory of the
two systems in series, where the second system starts from
zero initial conditions. An illustration of the proof is given
in Fig. 2. O

We now study a similar result for the feedback intercon-
nection of two systems (see Fig. 3).

Theorem 3. Consider wy = col(uy,y1) €
B, (G1) and wy = col(ua,y2) € Bln,(Ga) as Th
and Ty long trajectories of SISO LTI systems G, and
Go, respectively. If the data matrix of wo has rank
T, + 14+ n(Gs) for T, > n(G2), then the trajectory defined
by

wy =col(u; —y2, y1), ¥2=Z2(y1,u2,y2)

satisfies wy € B|r,(Gy), where Gy denotes the intercon-
nected LTI system that results from connecting systems G1
and Gy through positive feedback (shown in Fig. 3).

Proof. In a positive feedback configuration, the output of G
becomes the input of G'5. Concurrently, GG1’s input is derived
by subtracting G5’s output from the reference. However, the
two trajectories, wi and woy generally do not satisfy these

Fig. 3. Positive feedback interconnection given data from individual
systems. In general, y; # ug, so the interconnection is not achievable.
In the figure, the successful interconnection is shown with Gg taking yi
as input and generating y2 as output. The interconnected feedback system
takes the signal from the subtraction u; — y2 as its input and produces y1
as its output.

conditions as they may have been collected in isolation.
To set the output of G; equal the Gy’s input, we will
feed y; into G to generate yo = Z(y1,us2,y2). Next, by
subtracting yo from u;, we derive the input to the feedback
system, while the output is represented by y;. The trajectory
col(u; — y2, y1) would then represent a valid trajectory of
the two systems in positive feedback interconnection. An
illustration of the proof is given in Fig. 3. O

Note that both Theorems 2 and 3 involve regenerating
the output of G2, which requires wy to satisfy the low-
rank condition. Alternatively, the input and/or output of
G1 can be regenerated, in which case w; needs to satisfy
the low-rank condition instead. Also, note that Theorems
2 and 3 can also be easily extended to negative feedback,
parallel configurations, and more complicated structures. In
the following section, we will use these results to develop
a data-driven parallel to IMC, called IBC.

IV. INTERNAL BEHAVIOR CONTROL (IBC)

Referring back to Fig. 1, this section introduces the IBC,
a data-driven parallel to IMC. We present two IBC ap-
proaches: the first is referred to as component-by-component
(CBC), where we replace each block in Fig. 1 with a data-
driven predictor. The second is referred to as the unified
approach, where we use the results in Section III to combine
the data-driven predictors into a single one.

A. Component-by-Component (CBC) Approach

In the CBC approach, our objective is to replace the
model-based blocks in the IMC structure, specifically Gt
and G‘ with data-driven predictors. For this, we leverage
the data-driven forward and inverse predictors, presented in
Section II-A and II-B, respectively.

1) CBC-IBC Forward Model: Given a T,-long trajectory
wq = col(ug,yq) of G, whose data matrix has rank T, +
1+n(G) for T,, > n(G), we can replace the forward model
of IMC, i.e., G, with the data-enabled predictor given in (4)
and (5).

2) CBC-IBC Inverse Model: In the original IMC setup,
an inverse model of the system, G_l, is also required to
“cancel out” the system dynamics, effectively making the
controlled system (without plant/model mismatch) behave
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like an identity map from r to y. In the CBC-IBC setup, we
leverage the inverse predictor reviewed in Section II-B to
replace G~ with its data-driven counterpart. The inverse
predictor uses the same offline data as the forward pre-
dictor. While the length of the offline input data remains
unchanged, the inverse predictor requires that the output
sequence be L(G) steps longer. In contrast to the model-
based IMC, the inverse predictor in IBC is already causal
and implementable because of the delay of L(G) included
in the prediction, see Eq. (8), where uipnrzd =u(t — L(G)).

3) CBC-IBC Filter: In the traditional IMC framework,
a low-pass filter with unity DC gain is often employed. A
choice is’:

1

(Fzt (0= F)F
where L and T, denote the L-delay of system G and the
sampling period, respectively. This choice of order for the
filter ensures that the series interconnection of the filter with
the system inverse becomes causal and thus implementable.
The scalar 7 € (0, 1) is a free parameter, which can be used
to trade-off performance and robustness. Smaller 7 values
yield faster but less stable responses, while larger values
make the response more robust but slower. Similar to model-
based IMC, the choice of 7 directly assigns the closed-loop
bandwidth and can be tuned to trade-off robustness with
speed of response of the closed-loop system.

In the CBC-IBC setup, the filter design differs from that
in IMC and the unified approach, discussed in the next
subsection. This is because a delay of L(G) has already been
incorporated into the inverse system, as discussed above, and
so the data-driven inverse is already implementable.

Algorithm 1 describes the controller operation in the
CBC-IBC at each timestep of the control loop. For details
on the signal names, please refer to Fig. 1. The properties
of CBC-IBC are discussed in the following theorem.

F(z)=

(10)

Theorem 4. Suppose G is an open-loop-stable minimum-
phase SISO LTI system. The CBC-IBC controller using
filter 2P F(z) performs identically to the classical IMC
controller using filter F'(z). Furthermore, the IBC controller
results in perfect setpoint tracking despite any disturbances,
and minimizes the Hs norm of the tracking error for step
commands.

Proof. We know that the model-based forward predictions
in IMC are identical to their data-driven counterparts in IBC.
For the inverse prediction, the two differ by L(G) delays as
discussed earlier. The statement of the theorem thus follows.
Finally, the tracking and disturbance rejection properties and
H, optimality are directly inherited from the model-based
IMC. O

B. Unified Approach

It is known that the IMC controller can be represented as a
single LTI controller, C, as shown in Fig. 4. This controller

3The variable z denotes the argument of the Z-Transform.

Algorithm 1: CBC-IBC controller implementation

Setup: Choose T}, > n(G). Make Hankel matrices
Up,Uy,Y,, Yy, and Yy through (1) and (7)
ensuring that both the forward and inverse data
matrices have rank 7, + 1 4+ n(G). Choose 7 for
the filter F'.

External Inputs: r(¢)

Inputs from the previous loop:

Up—1,,t—1]> }A’[thp,tﬂ]»
S1,[t—Tp,—L(G),t—1]>  S2,[t—T,—L(G),t—L(G)—1]
Outputs: Control command wu(t)
1 Compute e(t) = y(t) — g(t — 1).
2 Compute s1(t) = r(t) — e(t).
3 Data-enabled prediction of System Inverse:

Y, f S1,[t—T,—L(G),t—L(G)—1]
s2(t) = Us | Up | |S2,1t-T,~L(@),t~L(G) 1]
Yir S1,[t—L(G),1]
4 Compute, u(t), by filtering so(¢) through F.
5 Compute the data-enabled prediction (for the next loop):
Up f Ujt—1,,t—1]

) =Yr | Yo | | Yi-1pi-1)
Uy u(t)

Fig. 4. Simplified block diagram of the IMC structure

is given by C(s) = (i:,f, which has the same order as

G, i.e., n(C) = n(G). In this section, we apply the tools
developed in section III to create a unified IBC approach
that uses a single data-driven predictor to replace C, thus
eliminating the necessity of separate data-enabled predictors
for the forward and inverse systems, as was required in the
CBC approach. The unified approach thus yields a more
compact controller compared to CBC-IBC.

We now apply the results of Section III to create a data-
driven representation of C, which we achieve by finding an
admissible trajectory for C' from the input-output data of G.
The results are summarized in the following theorem.

Theorem 5. Given

o Ty-long input-output data u® and y? from the plant,
G, where the data matrix has rank T, + 1+ n(G) for
T, > n(G),

o and filter F in (10),

then the trajectory defined by

al = fxu?,

We = COl(yd - yda ﬁd)v yd = f * yd7
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satisfies w. € B|r,(C), where f is the impulse response of
the filter F', and “*’ denotes the convolution operator.

Proof. The proof directly stems from Theorems 2 and 3
with the input-output sequences for the inverse system set
to y? and u?. O

Now, if the data matrix of w, has rank T, + 1 + n(C)
for T, > n(C'), then this data matrix can be used in the
IBC unified approach to make data-enabled predictions of
C'. Note that n(C) = n(G). Specifically, the data matrix of
w, is defined as,

He = |:HC,u:| c R2(Tp+1)><(Td7Tp) (11)

HC,y

where
_ E _ F,
Hew = %Terl(yd_yd) = |:E;:| , Hew = jﬁ“p+l(ud) = |:F;:| s

with the partitioning E,, F}, € RT»>*(Te=T) and Ey, Fy €
R'*(Ta=Tp) - Data-enabled predictions based on H ¢ will be
used directly in the unified IBC approach. Theorem 4 also
applies to the unified approach, guaranteeing an identical
performance to the classical IMC controller using the same
filter. To conclude this section, Algorithm 2 presents the
unified IBC controller at each timestep of the control loop.
For details of the signal names, please see Fig. 4.

Algorithm 2: Unified-IBC controller implementa-
tion

External Inputs: r(t)

Inputs from the previous loop:

Wit—T,,t—1]> S3,[t—Tp,t—1]

Outputs: Control command u(t)

Setup: Set T, > n(G). Filter the input-output
sequence u? and y? through F to obtain t4 and
¥4, respectively. Then, using the difference y? —y
as input and 1y as output, generate the Hankel
matrices E,, Ey, F},, and Fy through Eq. (11),
ensuring that the resulting data matrix has rank
T, + 1+ n(G).

1 Compute s3(t) = r(t) — y(t).
2 Compute and return:

d

K, S3,[t—T},t—1]
u(t) = Fy | Fy U7, t—1]
Ey s3(t)

Remark 3. We recall from [9] that IMC and constraint-
free MPC formulation are essentially identical in the sense
that for each tuning of the MPC controller, there exists
a unique IMC filter, F, that results in the same control
actions. A similar relationship exists between their data-
driven counterparts. Specifically, just as IBC serves as a
data-enabled parallel of IMC, DeePC [10] is a data-driven
parallel of MPC. Therefore, it is reasonable to infer that the
same essential equivalence exists between IBC and DeePC

when no constraints are involved and a similar performance
is to be expected from both methods in the noise-free setup.

Remark 4. The unified approach has less memory require-
ments than CBC, in terms of both online and offline data.
Regarding online data, CBC requires solving two data-
enabled predictions, one for the forward and one for the
inverse model. The forward prediction requires a minimum
memory of the past n(G) input-output samples, while the
inverse requires the past n(G) + L(G) samples. The unified
approach, on the other hand, solves for only one data-
enabled prediction in every control loop but requires mem-
ory of the past n(G) samples. Therefore, the unified requires
n(G) + L(G) fewer samples and is thus more memory
efficient in terms of online data. Regarding offline data, CBC
requires a minimum of Ty = 3n + 1+ L to satisfy the low-
rank condition, while unified requires T; = 3n + 1, so the
unified approach requires L fewer offline data samples.

V. SIMULATION RESULTS

In this section, we illustrate the proposed IBC controller
using an example. Consider the second-order plant, G(s) =
%. The dynamics are discretized using the zero-
order hold method with a sampling period of 0.01 s. The
time constant, 7, of the filter is set to 0.5 s. In the CBC
approach, the filter is advanced by a time shift of L =1 to
avoid unnecessary delays (consistent with Theorem 4). For
the IBC controller design, we collect offline data by feeding
the system a random input sequence. The collected output,
y?, as well as the filtered input and output signals used in the
unified approach, are displayed in Fig. 5. Since n(G) = 2,
T}, is chosen as 2 in both approaches. The number of offline
data samples, Ty, is chosen as the minimum: 7; = 8 for
CBC, and Ty = 7 (see Remark 4). Both algorithms achieve
perfect tracking as depicted in Fig. 6. A step disturbance
is applied to the plant input around time 13 s. Both IBC
approaches successfully recover from this disturbance. Note
that while both approaches yield identical performance, the
unified approach is more data efficient and solves a single
data-enabled prediction in each iteration, in contrast to the
CBC approach, which solves two.

VI. CONCLUSIONS AND FUTURE WORK

This paper first presented a data-driven formulation of
series and feedback interconnection of dynamical systems,
where we described how data-driven predictors can be
designed for the interconnected system using data from each
individual system. Using these ideas, we introduced the
Internal Behavior Control (IBC), a new data-driven control
strategy based on the well-known Internal Model Control
(IMC). Similar to IMC, the IBC is easy to tune and results
in perfect tracking and disturbance rejection but, unlike
IMC, does not require a parametric model. We outlined
two approaches for IBC implementation: CBC and Unified.
We compared the two approaches in terms of filter design,
computations, and memory requirements, where we showed
that unified is more memory efficient.
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Fig. 6. Tllustration of the effectiveness of IBC in both CBC and unified
approaches in reference tracking and disturbance rejection.

There are numerous avenues for future research. First,
the focus of this paper was on open-loop stable, minimum-
phase SISO LTI systems. Future work will relax these
assumptions to study unstable, non-minimum phase, MIMO,
and/or nonlinear systems in the context of IBC. Second,
we assumed here that the offline data is free of “noise”
- measurement noise, process disturbance, or nonlinearities,
all of which make the data inconsistent with an LTI structure.
Investigation of noise in the offline data and its impact on
the IBC performance is another topic of future work. Third,
in traditional IMC, the filter is tuned using the knowledge
of process uncertainties. Future work will investigate uncer-
tainty quantification of the data-driven predictors and IBC
filter tuning. Finally, we did not offer specific guidelines
on how to design the offline data to ensure that the data
matrices for the series and feedback interconnections satisfy
their respective rank conditions. Input design is another
interesting topic for future work.
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