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Abstract—Over the past two decades, there has been a
growing interest in control systems research to transition
from model-based methods to data-driven approaches. In this
study, we aim to bridge a divide between conventional model-
based control and emerging data-driven paradigms grounded
in Willems’ “fundamental lemma”. Specifically, we study how
input/output data from two separate systems can be manip-
ulated to represent the behavior of interconnected systems,
either connected in series or through feedback. Using these
results, this paper introduces the Internal Behavior Control
(IBC), a new control strategy based on the well-known Internal
Model Control (IMC) but viewed under the lens of Behavioral
System Theory. Similar to IMC, the IBC is easy to tune
and results in perfect tracking and disturbance rejection but,
unlike IMC, does not require a parametric model of the
dynamics. We present two approaches for IBC implementation:
a component-by-component one and a unified one. We compare
the two approaches in terms of filter design, computations, and
memory requirements.

Index Terms—Data-driven Control, Fundamental Lemma,
Data-driven System Interconnections, Internal Model Control

I. INTRODUCTION

Recently, there has been a growing interest in data-driven

control methods, mainly due to a surge in available large

datasets. These methods potentially offer seamless end-to-

end and flexible design, particularly for systems that are

difficult to model precisely. Following the trend towards

data-driven control, the work by Willems and coauthors

on behavioral system theory (BST) stands out [1]. They

demonstrated that a sufficiently exciting trajectory of a

Linear Time-Invariant (LTI) system can be used to represent

all its potential trajectories. This concept termed as the

“fundamental lemma”, highlights the power of using data

for learning and control.

In this study, we aim to bridge a divide between con-

ventional model-based control and emerging data-driven

paradigms grounded in Willems’ fundamental lemma.

Specifically, we present how noise-free1 input/output data
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1Handling noisy offline data within the context of BST is an active area
of research and is a topic for future work.

from multiple systems can be used to represent the dynamics

of an interconnected system in the BST framework. The

existing literature (e.g., [2]–[4]) has also studied the inter-

connection problem in the context of BST, but not from

an algorithmic standpoint, rather from a purely theoretical

standpoint as constraints on trajectories or latent variables,

or through parametric (i.e., state-space) representations of

the dynamics. Applications of [2]–[4] in controls have been

reported in [5]–[8]. Building on these foundations, the first

contribution of this paper is an algorithmic approach to con-

vert individual system trajectories collected in isolation into

a data-driven representation of the interconnected system,

either in series or in feedback.

Using these data-driven interconnections, we propose a

new control framework called the Internal Behavior Control

(IBC), which can be viewed as a data-driven version of the

classical Internal Model Control (IMC). The IMC uses a

model of the plant, as well as a causal approximate inverse,

inside the controller [9]. Here, we replace the model and

the inverse with data-enabled predictors. As we show, IBC

inherits the desirable properties of the model-based IMC:

integral control, ease of tuning, and ability to naturally han-

dle Hammerstein-Weiner systems (e.g., actuator saturation).

We offer two approaches for implementing the proposed

IBC. The first implementation is component-by-component,

where separate data-enabled predictors are leveraged for the

forward and inverse models. The second implementation

combines the data-driven forward and inverse predictors

using the system interconnection ideas discussed earlier.

This effectively results in a single data-enabled controller,

which is more compact and more memory efficient than

the first implementation. The focus of this paper will be on

single-input single-output (SISO), stable, minimum-phase

systems, though extension to the multi-input multi-output

case is not difficult.

Note that other model-based control strategies have also

been recently viewed under the lens of BST. Successful

examples include the DeePC algorithm [10], which stands

parallel to the Model Predictive Control (MPC), and the

design of optimal Linear Quadratic Gaussian controllers di-

rectly from the subspace matrices in [11]. These controllers

may lack interpretability and may be hard to tune. The

proposed IBC does not suffer from these challenges.

In summary, this work mainly offers two contributions:

i) methods and algorithms for data-driven system inter-
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connections through the generation of consistent data from

mismatched datasets; and ii) the IBC, which is a data-driven

control framework inspired by the classical IMC. To the

best of our knowledge, with the exception of the work [12]

that studies a similar problem for control of second-order

Volterra systems, this is the first study of the IMC controller

in the context of BST.

This paper is organized as follows. Sec. II provides an

overview of BST and IMC. Data-driven interconnections and

the IBC are presented in Sections III and IV, respectively.

The conclusions and future work are provided in Section V.

The notation in this work is as follows. Given a system G,

the integers n(G) and L(G) denote the order and L-delay

(i.e., the relative degree in the SISO case), respectively. For

a scalar signal v(t) ∈ R, the vector of values from time t1 to

t2 is denoted by v[t1,t2] = [v(t1), . . . , v(t2)]
⊤. When there

is no risk of confusion, we omit the subscript and denote

the vector by boldface letters, i.e., v. Given two vectors, x

and y, we define col(x,y) =
[

x
T

y
T
]T

. For the vector

v[t1,t2], the Hankel matrix of order T is defined as

HT (v[t1,t2]) =











v(t1) v(t1 + 1) . . . v(t2 − T + 1)
v(t1 + 1) v(t1 + 2) . . . v(t2 − T )

.

.

.
.
.
.

. . .
.
.
.

v(t1 + T − 1) v(t1 + T ) . . . v(t2)











.

II. OVERVIEW OF BST AND IMC

A. Overview of BST and Data-enabled predictions

This section provides a review of BST, for details see

[13]. Consider a SISO LTI system G with input u ∈ R

and output y ∈ R. For any positive integer T , we define

the “restricted behavior” of G, denoted by B|T (G), as the

set of all T -long trajectories w = col(u, y) ∈ R
2T , where

y ∈ R
T is the output trajectory corresponding to u ∈ R

T

from some initial condition.

Consider an offline-collected single Td-long trajectory,

wd = col(ud, yd) ∈ R
2Td of system G. Let Tp be a positive

integer to be later selected. We construct the “data matrix”,

H, as

H =

[

Hu

Hy

]

∈ R
2(Tp+1)×(Td−Tp) (1)

where

Hu = HTp+1(u
d) =

[

Up

Uf

]

, Hy = HTp+1(y
d) =

[

Yp

Yf

]

,

with the partitioning Up, Yp ∈ R
Tp×(Td−Tp) and Uf , Yf ∈

R
1×(Td−Tp). If Tp ≥ n(G) and H satisfies the “low-rank

condition”2

rank(H) = Tp + 1 + n(G), (2)

then, any (Tp+1)-long trajectory of the system will belong

to the column space of H. This condition allows us to use the

2This result has become known as the “Generalized Persistency of
Excitation Condition”, see [14, Corollary 21]. The condition formally
involves the “lag” of the system, which in the SISO case is equal to the
order, n.

data matrix for the purpose of output prediction. Specifically,

given the recent Tp samples of the input/output trajectory

(uini ∈ R
Tp and yini ∈ R

Tp ), and a “future” input upred ∈
R, the unique future output, ypred ∈ R, can be predicted by

solving:

Hg =







uini

upred

yini

ypred






(3)

for the unknowns g and ypred. The solution for vector g is

generally not unique. Often, the minimum-norm solution is

employed:

g
∗ =





Up

Uf

Yp





† 



uini

upred

yini



 (4)

and so

ypred = Yfg
∗. (5)

Remark 1. Two assumptions in this review are not always

necessary: First, the data matrix does not require a single

long trajectory; it can be formed from independent tra-

jectories; for details see [13]. Second, our predictors are

single-step predictors (i.e., upred, ypred ∈ R). However, longer

prediction horizons may be used provided the data matrix

satisfies the low-rank condition.

Remark 2. Because of the use of a single step prediction

(i.e., ypred ∈ R), the solution to (4) and (5) is equivalent

to the prediction obtained from a certainty-equivalent ARX

model identified from the offline data. For details, please see

[15].

B. Data-Enabled prediction of System Inverse

This section provides a review of data-enabled predictions

for the system inverse, as required for the IBC approach;

for details see [16]–[19]. This problem is also referred to as

the output matching problem in the literature [20]. Given an

output trajectory, the goal is to compute the associated input

using the offline data. The ideas are similar to the previous

section, except that we predict the input instead of the output

and Hy is now of a different order. More specifically, the

data matrix for the inverse system is modified to

Hinv =

[

Hu

Hy,inv

]

∈ R
(2Tp+2+L(G))×(Td−Tp) (6)

where Hu is as in (1) and Hy,inv is defined as:

Hy,inv = HTp+L(G)+1(y
d) =

[

Yp

YfL

]

,

with the partitioning Yp ∈ R
Tp×(Td−Tp) and YfL ∈

R
(1+L(G))×(Td−Tp). Here, we have considered different

lengths for the offline data: Td for u
d and Td + L(G) for

y
d. The low-rank condition for the inverse case remains the

same as (2). If this condition is satisfied, Hinv can be used

to compute the input. To see this, at every timestep t, given
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Fig. 1. Block diagram of the IMC structure

the recent Tp + 1 + L(G) samples of the output and the

same samples of the input without the last L(G) elements,

we can uniquely compute the input L(G) timesteps in the

past. Mathematically, given

u
inv
ini = u[t−Tp−L(G),t−L(G)−1],

y
inv
ini = y[t−Tp−L(G),t−L(G)−1], y

inv
pred = y[t−L(G),t],

uinv
pred = u(t− L(G)) ∈ R can be obtained by solving:









Up

Uf

Yp

YfL









g
inv =









u
inv
ini

uinv
pred

y
inv
ini

y
inv
pred









(7)

for the unknowns ginv ∈ R
(Td−Tp) and uinv

pred. As in the case

of forward prediction, the minimum-norm solution to g
inv

is often employed, which leads to:

uinv
pred = Uf





Up

Yp

YfL





† 



u
inv
ini

y
inv
ini

y
inv
pred



 . (8)

C. Overview of IMC

A block diagram of the IMC structure is shown in Fig. 1,

where G represents the system, Ĝ is a model of the system,

Ĝ−1 is the ideal inverse of the model (to be revisited),

and F is a filter to be defined. The goal is to select F to

achieve a certain performance objective, e.g., to minimize

the H2-norm of the tracking error for step setpoints. For

open-loop-stable minimum-phase systems, this H2-norm is

theoretically minimized by setting F = 1. In practice, Ĝ−1

is improper and cannot be implemented. Moreover, even if

it could be implemented, it would render the feedback loop

sensitive to uncertainties. This requires the augmentation of

Ĝ−1 with a low-pass filter whose order is at least the relative

degree of Ĝ. If a description of Ĝ’s uncertainties is available,

the time constant of the filter is selected to ensure robust

performance and stability [21], [22]. Otherwise, the time

constant is treated as a tuning parameter to directly trade-off

performance and robustness, rendering tuning an easy task.

Note that input or output nonlinearities (i.e., Hammerstein-

Wiener models [23]) can be naturally compensated for by

including them in the model path. In our study, we aim

to substitute Ĝ and Ĝ−1 with a data-enabled predictor

while preserving IMC’s key features, namely perfect steady-

state tracking and disturbance rejection, ease of tuning, and

minimization of H2 norm for step commands.

III. DATA-DRIVEN SYSTEM INTERCONNECTIONS

In this section, we present how to create a data-driven

representation of the interconnection of two system –

whether they are in series or in feedback – using available

input/output data from each individual system. As we show

in the next section, this allows us to view traditional model-

based control techniques, which frequently depend on sys-

tem block interconnections, under the lens of data-driven

predictors.

As discussed in [8], in order to interconnect two systems,

the output of one system must match the input of the other.

However, in general, the offline input-output data may be

collected in isolation, leading to mismatches. To tackle this

issue, we introduce the following function, the specific form

of which will be defined later:

y
∗ := Z(u∗, ud, yd) : RT × R

Td × R
Td → R

T .

In words, given an input sequence u
∗, this function predicts

the output sequence, y∗, of the system starting from zero

initial conditions, while ensuring that col(u∗,y∗) is an ad-

missible trajectory, i.e., compatible with w
d = col(ud,yd).

To this end, we introduce a new input trajectory u
mod, which

is identical to u
∗ except it is padded with Tp zeros at the

beginning:

umod(t) =

{

0 if 0 ≤ t < Tp,

u∗(t− Tp) if Tp ≤ t ≤ T + Tp.

We then define Z recursively, where y∗ is computed element

by element. Specifically, using (4) and (5), y∗(t) is given by:

y∗(t) = ymod(t+ Tp), (9)

where ymod(t) is computed recursively as

ymod(t) =



















0 if 0 ≤ t < Tp,

Yf







Up

Uf

Yp







† 





u
mod
[t−Tp,t−1]

umod(t)

y
mod
[t−Tp,t−1]






if Tp ≤ t ≤ T + Tp.

Here, the Hankel matrices Up, Uf , Yp, and Yf are con-

structed using u
d and y

d, see (1). Note that Z is only defined

when the data matrix of w
d has rank Tp + 1 + n(G) for a

selected Tp ≥ n(G).
The above ideas can be used to “remove” the effect of

initial conditions from the offline output yd, as shown in the

theorem below. The proof is straightforward and omitted.

Theorem 1. Consider a SISO LTI system G and let Tp ≥
n(G). Suppose a Td-long trajectory w

d = col(ud,yd) of

G, whose data matrix has rank Tp + 1 + n(G), is given.

The trajectory w0 = col(ud,Z(ud, ud, yd)) is a trajectory

of G starting from zero initial conditions. Furthermore, if

w
d is collected starting from zero initial conditions, then

w0 = w
d.

We now use Z to study the data-driven interconnection

of two systems in series (see Fig. 2), where their corre-

sponding offline data may be of different lengths and may
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G1 G2

y1u1 ys
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Fig. 2. Series interconnection given data from individual systems. In
general, since y1 ̸= u2, the interconnection is not achievable. In the figure,
the successful interconnection is shown with G2 taking y1 as input and
generating ys as output.

be collected in isolation. The following Theorem provides

a mechanism to construct an admissible trajectory of the

series interconnection directly from the offline data of the

individual systems. Such trajectory can then be used for

data-driven prediction of the series interconnection using the

previously described methods.

Theorem 2. Consider w1 = col(u1,y1) ∈ B|T1
(G1)

and w2 = col(u2,y2) ∈ B|T2
(G2) as T1 and T2 long

trajectories of SISO LTI systems G1 and G2, respectively. If

the data matrix of trajectory w2 has rank Tp + 1 + n(G2)
for Tp ≥ n(G2), then the trajectory define by

ws =

[

u1

ys

]

, ys = Z(y1,u2, y2)

satisfies ws ∈ B|T1
(Gs), where Gs denotes the LTI system

that results from connecting systems G1 and G2 in series.

Proof. To interconnect G1 and G2 in series, G1’s output

must match G2’s input. However, the two trajectories, w1

and w2 generally do not satisfy this condition as they may

have been collected in isolation. To force the output of G1

to be equal to the input of G2, we use Z to generate G2’s

output, ys, given G1’s output, y1, as input. The trajectory

col(u1,ys) would then represent a valid trajectory of the

two systems in series, where the second system starts from

zero initial conditions. An illustration of the proof is given

in Fig. 2.

We now study a similar result for the feedback intercon-

nection of two systems (see Fig. 3).

Theorem 3. Consider w1 = col(u1,y1) ∈
B|T1

(G1) and w2 = col(u2,y2) ∈ B|T2
(G2) as T1

and T2 long trajectories of SISO LTI systems G1 and

G2, respectively. If the data matrix of w2 has rank

Tp+1+n(G2) for Tp ≥ n(G2), then the trajectory defined

by

wf = col(u1 − y̌2, y1), y̌2 = Z(y1,u2,y2)

satisfies wf ∈ B|T1
(Gf ), where Gf denotes the intercon-

nected LTI system that results from connecting systems G1

and G2 through positive feedback (shown in Fig. 3).

Proof. In a positive feedback configuration, the output of G1

becomes the input of G2. Concurrently, G1’s input is derived

by subtracting G2’s output from the reference. However, the

two trajectories, w1 and w2 generally do not satisfy these

G1

G2

y̌2

u1u1 − y̌2 y1

Gf

+

Fig. 3. Positive feedback interconnection given data from individual
systems. In general, y1 ̸= u2, so the interconnection is not achievable.
In the figure, the successful interconnection is shown with G2 taking y1

as input and generating y̌2 as output. The interconnected feedback system
takes the signal from the subtraction u1− y̌2 as its input and produces y1

as its output.

conditions as they may have been collected in isolation.

To set the output of G1 equal the G2’s input, we will

feed y1 into G2 to generate y̌2 = Z(y1,u2,y2). Next, by

subtracting y̌2 from u1, we derive the input to the feedback

system, while the output is represented by y1. The trajectory

col(u1 − y̌2, y1) would then represent a valid trajectory of

the two systems in positive feedback interconnection. An

illustration of the proof is given in Fig. 3.

Note that both Theorems 2 and 3 involve regenerating

the output of G2, which requires w2 to satisfy the low-

rank condition. Alternatively, the input and/or output of

G1 can be regenerated, in which case w1 needs to satisfy

the low-rank condition instead. Also, note that Theorems

2 and 3 can also be easily extended to negative feedback,

parallel configurations, and more complicated structures. In

the following section, we will use these results to develop

a data-driven parallel to IMC, called IBC.

IV. INTERNAL BEHAVIOR CONTROL (IBC)

Referring back to Fig. 1, this section introduces the IBC,

a data-driven parallel to IMC. We present two IBC ap-

proaches: the first is referred to as component-by-component

(CBC), where we replace each block in Fig. 1 with a data-

driven predictor. The second is referred to as the unified

approach, where we use the results in Section III to combine

the data-driven predictors into a single one.

A. Component-by-Component (CBC) Approach

In the CBC approach, our objective is to replace the

model-based blocks in the IMC structure, specifically Ĝ−1

and Ĝ, with data-driven predictors. For this, we leverage

the data-driven forward and inverse predictors, presented in

Section II-A and II-B, respectively.

1) CBC-IBC Forward Model: Given a Td-long trajectory

wd = col(ud,yd) of Ĝ, whose data matrix has rank Tp +
1+n(G) for Tp ≥ n(G), we can replace the forward model

of IMC, i.e., Ĝ, with the data-enabled predictor given in (4)

and (5).

2) CBC-IBC Inverse Model: In the original IMC setup,

an inverse model of the system, Ĝ−1, is also required to

“cancel out” the system dynamics, effectively making the

controlled system (without plant/model mismatch) behave
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like an identity map from r to y. In the CBC-IBC setup, we

leverage the inverse predictor reviewed in Section II-B to

replace Ĝ−1 with its data-driven counterpart. The inverse

predictor uses the same offline data as the forward pre-

dictor. While the length of the offline input data remains

unchanged, the inverse predictor requires that the output

sequence be L(G) steps longer. In contrast to the model-

based IMC, the inverse predictor in IBC is already causal

and implementable because of the delay of L(G) included

in the prediction, see Eq. (8), where uinv
pred = u(t− L(G)).

3) CBC-IBC Filter: In the traditional IMC framework,

a low-pass filter with unity DC gain is often employed. A

choice is3:

F (z) =
1

( τ
Ts
z + (1− τ

Ts
))L

, (10)

where L and Ts denote the L-delay of system G and the

sampling period, respectively. This choice of order for the

filter ensures that the series interconnection of the filter with

the system inverse becomes causal and thus implementable.

The scalar τ ∈ (0, 1) is a free parameter, which can be used

to trade-off performance and robustness. Smaller τ values

yield faster but less stable responses, while larger values

make the response more robust but slower. Similar to model-

based IMC, the choice of τ directly assigns the closed-loop

bandwidth and can be tuned to trade-off robustness with

speed of response of the closed-loop system.

In the CBC-IBC setup, the filter design differs from that

in IMC and the unified approach, discussed in the next

subsection. This is because a delay of L(G) has already been

incorporated into the inverse system, as discussed above, and

so the data-driven inverse is already implementable.

Algorithm 1 describes the controller operation in the

CBC-IBC at each timestep of the control loop. For details

on the signal names, please refer to Fig. 1. The properties

of CBC-IBC are discussed in the following theorem.

Theorem 4. Suppose G is an open-loop-stable minimum-

phase SISO LTI system. The CBC-IBC controller using

filter zLF (z) performs identically to the classical IMC

controller using filter F (z). Furthermore, the IBC controller

results in perfect setpoint tracking despite any disturbances,

and minimizes the H2 norm of the tracking error for step

commands.

Proof. We know that the model-based forward predictions

in IMC are identical to their data-driven counterparts in IBC.

For the inverse prediction, the two differ by L(G) delays as

discussed earlier. The statement of the theorem thus follows.

Finally, the tracking and disturbance rejection properties and

H2 optimality are directly inherited from the model-based

IMC.

B. Unified Approach

It is known that the IMC controller can be represented as a

single LTI controller, C, as shown in Fig. 4. This controller

3The variable z denotes the argument of the Z-Transform.

Algorithm 1: CBC-IBC controller implementation

Setup: Choose Tp ≥ n(G). Make Hankel matrices

Up, Uf , Yp, Yf , and YfL through (1) and (7)

ensuring that both the forward and inverse data

matrices have rank Tp + 1 + n(G). Choose τ for

the filter F .

External Inputs: r(t)
Inputs from the previous loop:

u[t−Tp,t−1], ŷ[t−Tp,t−1],

s1,[t−Tp−L(G),t−1], s2,[t−Tp−L(G),t−L(G)−1]

Outputs: Control command u(t)
1 Compute e(t) = y(t)− ŷ(t− 1).
2 Compute s1(t) = r(t)− e(t).
3 Data-enabled prediction of System Inverse:

s2(t) = Uf





Yp

Up

YfL





† 



s1,[t−Tp−L(G),t−L(G)−1]

s2,[t−Tp−L(G),t−L(G)−1]

s1,[t−L(G),t]



.

4 Compute, u(t), by filtering s2(t) through F .

5 Compute the data-enabled prediction (for the next loop):

ŷ(t) = Yf





Up

Yp

Uf





† 



u[t−Tp,t−1]

ŷ[t−Tp,t−1]

u(t)



.

Ĝ−1 F G

Ĝ

r ys3 u

C

+-

Fig. 4. Simplified block diagram of the IMC structure

is given by C(s) = Ĝ−1F
1−F

, which has the same order as

G, i.e., n(C) = n(G). In this section, we apply the tools

developed in section III to create a unified IBC approach

that uses a single data-driven predictor to replace C, thus

eliminating the necessity of separate data-enabled predictors

for the forward and inverse systems, as was required in the

CBC approach. The unified approach thus yields a more

compact controller compared to CBC-IBC.

We now apply the results of Section III to create a data-

driven representation of C, which we achieve by finding an

admissible trajectory for C from the input-output data of G.

The results are summarized in the following theorem.

Theorem 5. Given

• Td-long input-output data u
d and y

d from the plant,

G, where the data matrix has rank Tp + 1 + n(G) for

Tp ≥ n(G),
• and filter F in (10),

then the trajectory defined by

wc = col(yd − ȳ
d, ūd), ȳ

d = f ∗ yd, ū
d = f ∗ ud,
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satisfies wc ∈ B|Td
(C), where f is the impulse response of

the filter F , and ‘*’ denotes the convolution operator.

Proof. The proof directly stems from Theorems 2 and 3

with the input-output sequences for the inverse system set

to y
d and u

d.

Now, if the data matrix of wc has rank Tp + 1 + n(C)
for Tp ≥ n(C), then this data matrix can be used in the

IBC unified approach to make data-enabled predictions of

C. Note that n(C) = n(G). Specifically, the data matrix of

wc is defined as,

HC =

[

HC,u

HC,y

]

∈ R
2(Tp+1)×(Td−Tp) (11)

where

HC,u = HTp+1(y
d
−ȳ

d) =

[

Ep

Ef

]

, HC,y = HTp+1(ū
d) =

[

Fp

Ff

]

,

with the partitioning Ep, Fp ∈ R
Tp×(Td−Tp) and Ef , Ff ∈

R
1×(Td−Tp). Data-enabled predictions based on HC will be

used directly in the unified IBC approach. Theorem 4 also

applies to the unified approach, guaranteeing an identical

performance to the classical IMC controller using the same

filter. To conclude this section, Algorithm 2 presents the

unified IBC controller at each timestep of the control loop.

For details of the signal names, please see Fig. 4.

Algorithm 2: Unified-IBC controller implementa-

tion

External Inputs: r(t)
Inputs from the previous loop:

u[t−Tp,t−1], s3,[t−Tp,t−1]

Outputs: Control command u(t)
Setup: Set Tp ≥ n(G). Filter the input-output

sequence u
d and y

d through F to obtain ūd and

ȳd, respectively. Then, using the difference y
d − ȳ

d

as input and ūd as output, generate the Hankel

matrices Ep, Ef , Fp, and Ff through Eq. (11),

ensuring that the resulting data matrix has rank

Tp + 1 + n(G).
1 Compute s3(t) = r(t)− y(t).
2 Compute and return:

u(t) = Ff





Ep

Fp

Ef





† 



s3,[t−Tp,t−1]

u[t−Tp,t−1]

s3(t)



.

Remark 3. We recall from [9] that IMC and constraint-

free MPC formulation are essentially identical in the sense

that for each tuning of the MPC controller, there exists

a unique IMC filter, F , that results in the same control

actions. A similar relationship exists between their data-

driven counterparts. Specifically, just as IBC serves as a

data-enabled parallel of IMC, DeePC [10] is a data-driven

parallel of MPC. Therefore, it is reasonable to infer that the

same essential equivalence exists between IBC and DeePC

when no constraints are involved and a similar performance

is to be expected from both methods in the noise-free setup.

Remark 4. The unified approach has less memory require-

ments than CBC, in terms of both online and offline data.

Regarding online data, CBC requires solving two data-

enabled predictions, one for the forward and one for the

inverse model. The forward prediction requires a minimum

memory of the past n(G) input-output samples, while the

inverse requires the past n(G)+L(G) samples. The unified

approach, on the other hand, solves for only one data-

enabled prediction in every control loop but requires mem-

ory of the past n(G) samples. Therefore, the unified requires

n(G) + L(G) fewer samples and is thus more memory

efficient in terms of online data. Regarding offline data, CBC

requires a minimum of Td = 3n+ 1+L to satisfy the low-

rank condition, while unified requires Td = 3n + 1, so the

unified approach requires L fewer offline data samples.

V. SIMULATION RESULTS

In this section, we illustrate the proposed IBC controller

using an example. Consider the second-order plant, G(s) =
10(s+1)

(s+2)(s+4) . The dynamics are discretized using the zero-

order hold method with a sampling period of 0.01 s. The

time constant, τ , of the filter is set to 0.5 s. In the CBC

approach, the filter is advanced by a time shift of L = 1 to

avoid unnecessary delays (consistent with Theorem 4). For

the IBC controller design, we collect offline data by feeding

the system a random input sequence. The collected output,

y
d, as well as the filtered input and output signals used in the

unified approach, are displayed in Fig. 5. Since n(G) = 2,

Tp is chosen as 2 in both approaches. The number of offline

data samples, Td, is chosen as the minimum: Td = 8 for

CBC, and Td = 7 (see Remark 4). Both algorithms achieve

perfect tracking as depicted in Fig. 6. A step disturbance

is applied to the plant input around time 13 s. Both IBC

approaches successfully recover from this disturbance. Note

that while both approaches yield identical performance, the

unified approach is more data efficient and solves a single

data-enabled prediction in each iteration, in contrast to the

CBC approach, which solves two.

VI. CONCLUSIONS AND FUTURE WORK

This paper first presented a data-driven formulation of

series and feedback interconnection of dynamical systems,

where we described how data-driven predictors can be

designed for the interconnected system using data from each

individual system. Using these ideas, we introduced the

Internal Behavior Control (IBC), a new data-driven control

strategy based on the well-known Internal Model Control

(IMC). Similar to IMC, the IBC is easy to tune and results

in perfect tracking and disturbance rejection but, unlike

IMC, does not require a parametric model. We outlined

two approaches for IBC implementation: CBC and Unified.

We compared the two approaches in terms of filter design,

computations, and memory requirements, where we showed

that unified is more memory efficient.

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on July 31,2025 at 19:41:47 UTC from IEEE Xplore.  Restrictions apply. 



0 0.02 0.04 0.06 0.08

0

0.2

0.4

0.6

0.8

1

Fig. 5. Noise-free raw and filtered input/output data collected of-
fline.Because the input is random, all Hankel matrices satisfy their respec-
tive low-rank conditions.
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Fig. 6. Illustration of the effectiveness of IBC in both CBC and unified
approaches in reference tracking and disturbance rejection.

There are numerous avenues for future research. First,

the focus of this paper was on open-loop stable, minimum-

phase SISO LTI systems. Future work will relax these

assumptions to study unstable, non-minimum phase, MIMO,

and/or nonlinear systems in the context of IBC. Second,

we assumed here that the offline data is free of “noise”

- measurement noise, process disturbance, or nonlinearities,

all of which make the data inconsistent with an LTI structure.

Investigation of noise in the offline data and its impact on

the IBC performance is another topic of future work. Third,

in traditional IMC, the filter is tuned using the knowledge

of process uncertainties. Future work will investigate uncer-

tainty quantification of the data-driven predictors and IBC

filter tuning. Finally, we did not offer specific guidelines

on how to design the offline data to ensure that the data

matrices for the series and feedback interconnections satisfy

their respective rank conditions. Input design is another

interesting topic for future work.
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