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Abstract—Software testing is essential for the reliable and
robust development of complex software systems. This is par-
ticularly critical for cyber-physical systems (CPS), which require
rigorous testing prior to deployment. The complexity of these
systems limits the use of formal verification methods. Further-
more, testing and fault localization can be very costly. To mitigate
this cost, we outline in this work a holistic machine-learning-
guided test case design and fault localization (MaLT) framework,
which leverages recent probabilistic machine learning methods
to accelerate the testing of complex software systems. MaLT
consists of three steps: (i) the construction of a suite of test cases
using a covering array for initial testing, (ii) the investigation of
posterior root cause probabilities via a Bayesian fault localization
procedure, then (iii) the use of such Bayesian analysis to guide se-
lection of subsequent test cases via active learning. The proposed
MaLT framework can thus facilitate efficient identification and
subsequent diagnosis of software faults with limited test runs.
This framework has potential for integration with an assertion-
based test oracle approach, which may prove to be an efficient
and cost-effective way of integrating light-weight formal methods
with testing.

Index Terms—Active learning, Bayesian modeling, Combina-
torial testing, Fault localization, Probabilistic machine learning.

I. INTRODUCTION

Software testing – the process of executing a program with

the intent of finding errors [1] – is an essential step in the

reliable and robust development of complex software systems.

Such testing aims to reveal and fix as many bugs as possible

prior to the release of a software application, thus greatly

reducing the risk of failures for the end-user. This is critical as

nearly all facets of daily life involve human interaction with

software applications. In particular, cyber-physical systems

(CPS) require rigorous testing prior to deployment. However,

the complexity of such systems introduces two critical chal-

lenges: (i) each test run can be costly to perform [2], and

(ii) there may be many inputs and thus exponentially many

input combinations to explore. The comprehensive testing of

complex systems can therefore be highly time- and resource-

intensive. We outline below a holistic machine-learning-guided

test case design and fault localization (MaLT) framework,

which leverages recent machine learning methods for acceler-

ating software testing in practical turnaround times.

Given challenges (i) and (ii), a key bottleneck is that the

testing of all input combinations is typically infeasible for

complex software systems. One solution is to carefully design

a small initial set of test cases, geared towards detecting as

many faults as possible. In our experiments, we find a covering

array [3] provides an appealing design for initial testing. Such

a design ensures coverage of all combinations up to a certain

level of interaction; more on this later in the MaLT pipeline.

Next, after initial tests are performed and failures observed,

such data needs to be used for fault localization [4], i.e.,

to pinpoint potential root causes of the observed failures.

Such a fault localization problem is also highly challenging

given challenges (i) and (ii), as one needs to consider a large

number of potential root cause scenarios given limited test

run data. For example, consider a system with 10 inputs each

with 2 levels, which yields a total of
∑10

i=1

(

10
i

)

2i = 59048
different input combinations. Assuming each input combina-

tion is either a root cause or not, this then results in an

astounding 259048 different scenarios to consider for fault

localization! Furthermore, much of the existing literature on

tackling fault localization are deterministic, and thus shed

little insight on the probability of a combination being a

root cause. Such probabilities are important for reliable fault

localization; they provide a principled statistical approach for

assessing root cause risks, and thus a principled measure of

confidence that an identified suspicious combination is (or
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Fig. 1. Workflow for the proposed MaLT framework.

is not) a root cause. In what follows, we introduce within

MaLT the Bayesian fault localization procedure in [5], which

leverages recent probabilistic machine learning (ML) modeling

and optimization techniques for estimating such probabilities.

Finally, with this Bayesian analysis in hand, we can lever-

age such analysis to select a subsequent case (or a set of

cases) for further testing. In ML, this strategy of “actively”

using learned information for subsequent data collection is

known as active learning; see [6], [7]. For active learning, a

desirable ingredient is a probabilistic quantification of model

uncertainty [8], [9], to help guide the selection of subsequent

data to reduce model uncertainty and maximize learning. We

introduce later within MaLT a novel risk-based active learning

method, which leverages the aforementioned Bayesian fault

localization analysis for sequential test run design.

MaLT can be considered as a “pseudo-exhaustive” testing

approach [10], which leverages carefully designed test cases

to obtain empirical observations of the software system for ef-

ficient and effective location of software faults. As a machine-

learning-guided approach, it has potential to be integrated

with an assertion-based test oracle approach and can thus be

regarded as a “light-weight formal method” [11].

Figure 1 visualizes the workflow of the proposed MaLT

framework; each part will be elaborated on. Section II outlines

the covering array approach for initial test case design. Section

III describes the Bayesian fault localization procedure in [5]

using this data. Section IV outlines an active learning proce-

dure for designing subsequent test runs using such Bayesian

analysis. Section V concludes the paper.

II. MALT: INITIAL TEST CASES VIA COVERING ARRAYS

Consider first the problem of designing initial test cases

for fault localization. As mentioned earlier, the sheer number

of possible input combinations renders the testing of every

input combination to be infeasible in practical systems. Thus,

a carefully-designed initial test set is needed for efficient and

effective fault localization. The goal is to design test sets to

cover as many combinations as possible.

One promising design strategy is the covering array (CA;

[3]). A covering array is a M×I array designed such that every

column combination of order k ≤ I appears at least once in

the M rows. Here, k is known as the strength of the CA. The

columns of the CA can be thought of as factors (or inputs), in

which case the rows can be thought of as runs. Table I shows

a strength-2 CA design, using I = 4 input factors with J = 2
levels. The levels here refer to distinct values of each factor.

Input Factors A B C D

Run 1 1 1 1 1
Run 2 2 2 2 1
Run 3 2 2 1 2
Run 4 2 1 2 2
Run 5 1 2 2 2

TABLE I
A STRENGTH-2 CA FOR INITIAL TESTING OF A SYSTEM WITH FOUR INPUT

FACTORS, EACH WITH TWO LEVELS.

We see that, with only M = 5 runs, every possible two-factor

combination appears in at least one test run. Thus, assuming

all bugs arise from an input combination of at most order

k, a strength-k CA test set would “cover” every bug in the

system resulting in one or more failed test cases. Comparing

to the robust testing approach using orthogonal arrays [12],

which forces each combination to appear “equally often”,

CAs provide a more economical design since the “equal-run”

requirement is relaxed [13]. We thus make use of CAs as

initial designs in MaLT: its reduced run size allows for efficient

testing and effective fault localization with limited (expensive)

test runs, and the additional runs saved can then be used for

sequential test runs via active learning (see Section IV).

There is a rich body of literature and software on efficient

CA construction [13]. [14] provides a comprehensive review

of construction algorithms for CAs, including direct [15],

recursive [16], optimization [17], genetic [18], and backtrack-

ing [19] algorithms. [20] reviews a list of useful tools for

constructing CAs; in particular, the Advanced Combinatorial

Testing System (ACTS, [21]) is widely used in practice [13].

III. MALT: BAYESIAN FAULT LOCALIZATION

With initial test cases performed, consider next the problem

of fault localization, which aims to pinpoint potential root

causes that triggered the observed failures. As mentioned

earlier, such fault localization should preferably shed light

on the probability of each combination being a root cause.

One way to achieve this is via a Bayesian learning approach,

where prior root cause probabilities are assigned on each

input combination, then updated by conditioning on the ob-

served test results. Such a Bayesian framework offers two

key advantages over the current deterministic approaches: it

provides a flexible framework for integrating prior structural

information on expected root cause behavior, and permits the

incorporation of prior domain knowledge from test engineers

[22] for accelerating fault localization. We summarize below

the Bayesian fault localization (BayesFLo) learning model in

[5], which achieves this goal. Figure 2 presents the workflow

of the BayesFLo model, which takes in test cases with

outcomes and computes the posterior root cause probability

of each suspicious input combination.

We first introduce some notation. Consider a software sys-

tem with I categorical factors, with factor i having Ji distinct

levels. Let (i, j)K denote an input combination of K factors

i = (i1, · · · , iK), with corresponding levels j = (j1, · · · , jK).
For example, ((1, 2), (1, 1)) denotes an input combination with

both inputs 1 and 2 at level 1. For single-factor inputs (i.e.,

K = 1), this notation can be simplified to (i, j). In practice,
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Fig. 2. Workflow of MaLT: Bayesian Fault Localization.

we recommend setting the largest K to t + 1 where t is the

strength of the covering array, unless it leads to excessive

computational cost. This is to allow for some flexibility in

root cause exploration.

Next, let Z(i,j)K be a binary indicator for whether the

input combination (i, j)K is indeed a root cause. Following

the Bayesian paradigm, we assign the following independent

Bernoulli priors on Z(i,j)K :

Z(i,j)K

indep.
∼ Bern(p(i,j)K ), (1)

where p(i,j)K captures the engineer’s a priori probability

of (i, j)K being a root cause. The elicitation of all prior

probabilities can however be cumbersome; a simpler approach

may be to adopt the following product form:

p(i,j)K =

K
∏

k=1

p(ik,jk). (2)

Here, the user only needs to specify prior probabilities p(i,j)
on the single-factor combinations (i, j) based on their prior

domain knowledge. Such a product-form prior further embeds

important prior structural information on expected root cause

behavior, by capturing the combination hierarchy and heredity

principles in [13]. The combination hierarchy principle asserts

that combinations involving fewer inputs are more likely to

be failure-inducing than those involving more inputs; this is

captured in (2) by assigning increasingly smaller prior prob-

abilities on combinations with higher interaction order. The

combination heredity principle asserts that a combination is

more likely to be failure-inducing when some of its component

inputs are more likely to be failure-inducing; this is captured

via the product form in (2), where prior probabilities are

multiplied over each input.

With this prior specified, the desired posterior probabilities

P(Z(i,j)
K
= 1|data) can then be computed as follows. We first

categorize all input combinations into three groups:

1) Tested-and-Passed (TP): This group, denoted as CTP,

consists of combinations (i, j)K that are included in at

least one passed test case.

2) Tested-and-Failed (TF): This group, denoted as CTF,

consists of combinations (i, j)K that are included in at

least one failed test case but not included in any passed

test cases.

3) Untested (UT): This group, denoted as CUT, consists of

remaining combinations (i, j)K that are not contained in

the earlier groups.

The reason for this categorization is as follows. For a TP

combination (i, j)K , one can easily show (see [5]) that its

Fig. 3. Visualizing the bipartite graph representation and two minimal covers
for failures involving the combination (i, j)K .

posterior probability of being a root cause is 0, since such a

combination has been observed in a passed test case and thus

cannot be a root cause. For a UT combination (i, j)K , since

such a combination was untested, its posterior probability is

simply its prior probability p(i,j)K as no data was observed on

this combination (see [5] for a rigorous argument).

The remaining computation of posterior probabilities for

TF combinations is a more challenging task. As noted in

[5], the brute-force computation of this probability for a

single TF combination may be doubly-exponential in the

number of inputs I , which is prohibitively expensive. The

following reformulation of this probability can permit tractable

computation. For a TF combination (i, j)K , let M(i,j)K be the

failure cases that include (i, j)K , and M
−(i,j)K be the failure

cases that do not contain (i, j)K . One can show (see [5]) that

its desired posterior probability can be rewritten as:

P(Z(i,j)K = 1|data) = P(Z(i,j)K = 1|E(i,j)K ) =
p(i,j)K

P(E(i,j)K )
. (3)

Here, E(i,j)K is the event that all failure cases containing

(i, j)K (namely, M(i,j)K ) can be explained by a collection

of TF combinations being root causes.

To compute the probability P(E(i,j)K ) in Equation (3), [5]

makes use of an interesting link between the event E(i,j)K and

a related problem of minimal set covering on an appropriate

bipartite graph representation. Figure 3 shows an example of

this bipartite graph representation, where left nodes represent

all TF combinations and right nodes represent all failed test

cases in M(i,j)K . Here, an edge between a left node and a

right node suggests that the TF combination on the left is

included in the failed test case on the right. A minimal set

cover of this bipartite graph is then defined as an irreducible

collection of TF combinations (on the left) that covers or

explains all failed test cases (on the right). With this, one

can show (details in [5]) that the computation of P(E(i,j)K )
amounts to finding all minimal set covers of the above bipartite

graph representation, for which polynomial-time algorithms

exist [23], [24]. A promising practical approach is to formulate

this as an integer linear program (ILP; [25]), which can be

solved via state-of-the-art optimization solvers such as Gurobi

[26]; details on this can be found in [5].
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IV. MALT: SEQUENTIAL TEST CASES VIA ACTIVE

LEARNING

Finally, with the above Bayesian fault localization analysis

in hand, consider the problem of leveraging such analysis

for selecting subsequent test cases. Such an active learning

approach is particularly useful when there are many input

factors (or factor levels) or when there are many bugs in the

system; in such cases, the localization of root causes may

be difficult with an initial test set, and “actively-designed”

sequential runs can help accelerate localization after initial

testing. Much of the active learning literature in ML, however,

focuses on active learning for improving model predictive

accuracy, which is not the goal here. We thus present next

a novel risk-based active learning procedure, which leverages

the trained BayesFLo learning model to target subsequent test

runs for localization.

We first require a criterion for selecting a subsequent test run

tM+1 given an initial test set of M runs. A natural approach

is to define a criterion that captures the tester’s risk for false

positive and false negative detection of a fault. To make this

concrete, let δ(i,j)K ∈ {0, 1} denote a binary classifier for

predicting whether a combination (i, j)K is a root cause (i.e.,

δ(i,j)K = 1) or not (i.e., δ(i,j)K = 0). Given the true root cause

indicator Z(i,j)K , a reasonable loss function might be:

L(Z(i,j)K , δ(i,j)K ) =







W, Z(i,j)K = 1, δ(i,j)K = 0,

1, Z(i,j)K = 0, δ(i,j)K = 1,

0, Z(i,j)K = δ(i,j)K ,

(4)

where W > 1 is a user-specified value. The first line in (4)

considers the case where a true root cause combination is

incorrectly classified by the learning model as a non-root-

cause, the second line is the case where a non-root-cause

combination is incorrectly classified as a root cause, and the

last line is the case of correct classification. Here, W > 1
reflects the fact that the risk of missing a root cause is typically

greater than the risk of misclassifying a non-root-cause.

From the previous Bayesian analysis with M test runs, we

have already computed the posterior root cause probabilities

p̂(i,j)K := P(Z(i,j)K = 1|data) for each combination (i, j)K .

Using this, one can show the Bayes-optimal classifier δ
opt
(i,j)K

(see [27]) under the loss function (4) takes the form:

δ
opt
(i,j)K

=

{

1, p̂(i,j)K ≥ 1
1+W

,

0, p̂(i,j)K < 1
1+W

.
(5)

Given observed data from the initial M -run test set (denoted

as DM ), the posterior Bayes risk of this classifier for (i, j)K
can then be evaluated as:

r(i,j)K (DM ) = EZ|DM

[

L(Z(i,j)K , δ(i,j)K )
]

= Wp̂(i,j)K · I

(

p̂(i,j)K <
1

1 +W

)

+ (1− p̂(i,j)K ) · I

(

p̂(i,j)K ≥
1

1 +W

)

,

(6)

where I(·) is the indicator function.

We can now define the proposed risk-based utility criterion

for active learning. Intuitively, the next test run tM+1 should

ideally maximize the reduction of Bayes risk as defined in (6).

This risk reduction can be formulated as:

∆r(i,j)K (tM+1) :=

r(i,j)K (Dn)− EyM+1|DM ,tM+1

[

r(i,j)K (DM+1)
]

.
(7)

Here, yM+1 denotes the outcome of the new test case tM+1;

as such an outcome is unknown, we can average its risk

over its posterior distribution given observed test data, i.e.,

yM+1|DM , tM+1. With this, we can then select the next test

case via the following optimization problem:

t
opt
M+1 ← argmax

tM+1

∑

(i,j)K∈CTF

∆r(i,j)K (tM+1). (8)

In other words, the selected t
opt
M+1 should maximize the total

risk reduction over all combinations (i, j) in CTF, the set of TF

combinations for which we wish to localize observed faults.

An analogous active learning formulation can be used for

designing multiple (i.e., batches) of subsequent test runs.

Finally, such an active learning procedure can be iteratively

performed to accelerate fault localization of complex systems.

After selecting a next test case (or batch of cases) from (8),

one then investigates this case and adds its outcome (pass or

failure) to the updated training data DM+1. We then refit the

BayesFLo learning model (Section III), and use its updated

posterior probabilities p̂(i,j)K to actively design further test

cases. These two steps are then iteratively repeated until either

a computational budget is exhausted, or until the analysis

shows only a few combinations have high posterior proba-

bilities (in which case a test engineer can directly investigate

such combinations).

V. CONCLUSION

We presented here a novel machine-learning-guided test

case design and fault localization framework (MaLT), with

potential for improving the efficiency and effectiveness of

testing and fault localization of expensive software systems.

MaLT consists of three main steps: a carefully-designed initial

test set via covering arrays, a scalable Bayesian learning model

for fault localization, and the use of such Bayesian analysis

for active learning. In leveraging such recent developments

in probabilistic machine learning, the proposed MaLT can

potentially greatly accelerate the identification and subsequent

diagnosis of software faults with limited test runs. Numerical

experiments and applications (see [5]) show promising per-

formance for the first two steps of MaLT (covering arrays

and Bayesian fault localization); the last step on sequential

test case design is under development. Finally, the MaLT

framework also has potential for integration with an assertion-

based test oracle approach as proposed in [11], and may prove

to be an efficient and cost-effective way of integrating formal

methods with testing.
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