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Abstract—Large language models (LLMs) have significantly
transformed the landscape of artificial intelligence, demonstrat-
ing exceptional capabilities in natural language understanding
and generation. Recently, the integration of LLMs with neuro-
symbolic architectures has gained traction to enhance contextual
awareness and planning capabilities. However, this integration
faces computational challenges that hinder scalability and effi-
ciency, especially in edge computing environments. This paper
provides an in-depth analysis of these challenges and explores
state-of-the-art solutions, focusing on memory-centric comput-
ing principles at both algorithmic and hardware levels. Our
exploration is centered around the key computational elements
of the Transformer, the foundation of all LLMs, and vector-
symbolic architecture, the leading neuro-symbolic model for
edge applications. Additionally, we propose potential research
directions for further investigation. By examining these aspects,
this paper aims to bridge critical gaps in the path toward effective
artificial general intelligence at the edge.

I. INTRODUCTION

Advances in large language models (LLMs) have revo-

lutionized the field of artificial intelligence (AI) with their

powerful capabilities for understanding and generating human

language. LLMs, such as OpenAI’s GPT series [1], [2] and

Google’s BERT [3], leverage vast amounts of data and deep

Transformer architectures to achieve remarkable performance

in a wide range of tasks, from machine translation and

sentiment analysis to content generation and question answer-

ing [4], [5]. By capturing intricate patterns in text, LLMs can

emulate cognitive processes, providing responses that exhibit a

high degree of fluency and coherence. Their ability to process

and generate human-like text has opened new avenues for

AI-driven innovation in various domains, including robotics,

healthcare, and many conversational services [6]–[8].

Research into the integration of LLMs with neuro-symbolic

(NeSy) systems has gained considerable momentum in re-

cent years. NeSy models merge the adaptive learning ca-

pabilities of neural networks with the structured, rule-based

reasoning of symbolic systems [9]. A prominent example of

such a model is the vector-symbolic architecture (VSA), also

known as hyperdimensional computing. This brain-inspired

paradigm encodes and processes neuro-symbolic information

using high-dimensional vectors, enabling efficient representa-

tion and processing of complex data structures for learning

and reasoning [10], [11]. By integrating LLMs with NeSy

models like VSA, researchers aim to enhance the contextual

understanding and reasoning capabilities of LLM-powered
systems. Currently, these systems often struggle to maintain

context and exhibit depth in long interactions, leading to

responses that may be relevant yet lack strategic insight [12]–

[14]. Additionally, training an LLM like GPT-3 can con-

sume substantial amounts of energy and produce significant

carbon emissions, with estimates showing 1,287 MWh of

electricity consumption and approximately 552 metric tons of

CO2 emissions [15]. Integrating NeSy models, which utilize

sparse activation and improved contextual understanding, can

potentially reduce these costs by up to 10 times, significantly
lowering both the energy consumption and the carbon foot-
print without sacrificing accuracy. Hence, addressing these

limitations through the integration of LLMs and NeSy models

holds the promise of advancing the development of effective

and energy-efficient AI systems, particularly in the realm of

embodied cognition [16].

Despite the impressive advancements of this hybrid ap-

proach, current developments still face critical challenges that

hinder their broader adoption and effectiveness. One major

challenge is the “memory-wall” problem, which arises from

the growing disparity between processor speeds and memory-

access speeds. As processors become faster, memory access

has not kept pace, creating bottlenecks that limit overall

system performance [17]. This issue is especially pronounced

in models like LLMs and VSA, where efficient data flow is

crucial [18]. Another challenge is the diverse computational

characteristics within these models. Components within LLMs

and VSA may exhibit varying levels of some important

attributes, such as noise tolerance, intermediate caching needs,

and data sparsity [19]. Addressing these varying demands

necessitates advanced memory systems capable of optimizing

performance across various computational needs.

This paper provides an in-depth analysis of the aforemen-

tioned challenges and investigates memory-centric design and

optimization strategies at both algorithmic and hardware levels

(see Fig. 1). On the algorithmic front, we explore techniques

such as model compression, mixture of experts, federated

learning, and computation-in-superposition, evaluating their

potential to enhance computational efficiency and model per-

formance in both LLMs and NeSy systems. At the hardware

level, we address the transformative shift towards memory-

centric computing (MCC), focusing on compute-in-memory20
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Fig. 1. Overview of Research Topics. This paper aims to identify and under-
stand the system challenges, algorithm and hardware optimization solutions,
and research opportunities of LLM-powered neuro-symbolic systems.

and compute-near-memory approaches that offer significant

improvements in speed and energy efficiency. We also discuss

the efficient integration of memory systems with logic circuits

through 2.5D/3D stacked architectures. Additionally, we pro-

pose potential research directions for MCC to further explore

its benefits. We anticipate that this work will serve as a “call

to action” for interdisciplinary research aimed at enhancing

the efficiency of hybrid cognitive models and promoting their

adoption in resource-constrained AI systems.

The remainder of the paper is organized as follows: Sec-

tion II provides the necessary background information. Sec-

tion III addresses the key challenges encountered by the hybrid

cognitive approach. Memory-centric solutions are detailed in

Sections IV and V, with Section IV focusing on algorith-

mic optimizations and Section V covering advancements in

hardware. Section VI outlines research directions for future

exploration, while Section VII offers the concluding remarks.

II. BACKGROUND

A. Transformer Architecture

The success of LLMs and foundation models in general

can be largely attributed to the Transformer architecture,

introduced by Vaswani et al. in 2017 [5]. This architecture has

gained popularity due to its self-attention mechanism, which

enables capturing long-range dependencies in input features

without the need for complicated recurrent layers. A typical

Transformer architecture is composed of a layered encoder-

decoder structure, shown in Fig. 2(a). Each layer comprises a

multi-head attention (MHA) mechanism followed by a feed-

forward neural network (FFN), with residual connections and

Fig. 2. Transformer Background. (a) The encoder-decoder structure [5]. (b)
The operators of MHA and FFN. (c) Example parameter configurations.

layer normalization applied to each sub-layer. The decoder

has an additional cross-attention mechanism to attend to the

encoder’s output. The input to the Transformer is first embed-

ded into a continuous vector space and then augmented with

positional encodings to preserve the order of the sequence.

LLMs are usually pre-trained with input sequence lengths of

around 500 to 2,000 tokens.

The computational workload of the Transformer is known

to be dominated by the operators in the MHA and FFN blocks.

The operators of these blocks are illustrated in Fig. 2(b).

MHA consists of six linear operators, four of which are

identical weight-to-activation matrix multiplications (labeled

as Linear), and the remaining two of which are activation-

to-activation matrix multiplications (labeled as MatMul). FFN

consists of two Linear matrix operations with a non-linear

layer (e.g., GELU) placed between them. LLMs may adopt

various configurations of these operators, leading to differ-

ences in model capabilities and performance. Fig. 2(c) shows

the configurations of these operators in commonly used LLMs.

B. Benefits of Combining NeSy Models with LLMs

There are several forms of NeSy models, each with unique

approaches, as detailed in state-of-the-art taxonomies [20].

Combining NeSy models with LLMs offers significant ben-

efits. First, hybrid models reduce computational resources and

data (or label) storage needs; for instance, [21] shows that such

hybrid models handle learning and reasoning tasks efficiently

with significantly less data labeling and processing. Second,

they create more effective AI for adversarial conditions, as de-

scribed in [22]. An integrated NeSy-LLM model enables com-

plex task-solving through unambiguous intent specification,
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task decomposition into subtasks solvable by individual LLMs,

program synthesis for composing LLMs, and NeSy inference

for scheduling and combining the results of different LLMs.

Third, integrating NeSy models with LLMs enhances planning

and scheduling; [23] demonstrates that NeSy models overcome

LLMs’ limitations by providing structured and context-aware

planning capabilities. These advantages, and several others,

motivate further investigation into the benefits and challenges

of such a hybrid approach.

C. Vector-Symbolic Architecture (VSA)

For brevity, we use VSA as the example NeSy model

throughout this paper. VSA is a computational framework

designed to represent, manipulate, and reason about informa-

tion using high-dimensional vectors [11]. The computations of

VSA, shown in Fig. 3(a), include encoding, where information

is transformed into high-dimensional data using an embedding

matrix. This matrix can consist of either randomly generated

vectors, often referred to as item vectors, or engineered vectors

derived from neural networks [24]. Using generated vectors,

VSA also employs an algebraic program, which builds data

structures and algorithms through operations like binding,

bundling, and permutation [10]. These operations enable the

combination and aggregation of information in meaningful

ways. Finally, associative memory search, shown in Fig. 3(b),

is used to find the nearest vector to a query, facilitating efficient

retrieval of symbolic information [25].

A key example of a VSA program for reasoning is the

resonator network, which aims to factorize a compound vector

representation into its atomic constituents [26]. This process,

shown in Fig. 3(c), involves iteratively adjusting candidate

vectors to minimize the difference between their combined

representation and the target compound vector. By leveraging

unbinding and dot-product operations, the resonator network

efficiently decomposes complex data structures, revealing

the underlying components. This approach demonstrates how

VSA can manage intricate geometric relationships within data,

offering robust solutions for tasks like visual reasoning [27].

While VSA excels at manipulating and reasoning with

symbolic information, it typically assumes that the input

data is intrinsically structured and symbolic in nature. This

limitation prevents VSA from capturing the rich semantics and

contextual nuances of unstructured data, such as sensory data.

Unlike VSA, LLMs are designed to learn and extract meaning

from vast amounts of unstructured text. Therefore, integrating

VSA and LLMs can leverage the strengths of both approaches,

leading to more robust and versatile AI systems.

D. Memory Technologies

Memory-centric platforms are developed using various

memory technologies, including both volatile and nonvolatile

devices. In this paper, we explore three examples of widely

used random-access memory (RAM) technologies, namely

static RAM (SRAM), dynamic RAM (DRAM), and resistive

RAM (RRAM). Readers can refer to the following papers for

a comprehensive treatment of memory technologies [28], [29].

Y
Z

X

Q

Fig. 3. VSA Background. (a) A flow diagram describing computations in
VSA. (b) Associative search finds the nearest vector to a query. (c) A VSA-
based reasoning program for factoring an object’s vector [26].

SRAM. It refers to a memory technology that employs bistable

latching circuitry to store each bit. An SRAM cell typically

consists of six transistors (6T), arranged as a pair of cross-

coupled inverters to hold a single bit of data. Although the

6T cell configuration occupies a considerable area and is

limited to read and write operations, it offers advantages due

to its relatively low write energy and high endurance [30].

These characteristics make SRAM an excellent choice for

caching and storing intermediate activations that are frequently

updated during operation. Moreover, advancements in SRAM

platforms can further extend their function, aiming to enable

logic computations within the cells or at the periphery [31].

DRAM. The DRAM technology stores information using

capacitors. A typical DRAM cell consists of a capacitor and

an access transistor, arranged in a one-transistor-one-capacitor

(1T1C) configuration. DRAM cells are organized into arrays,

which are further grouped into memory banks. Each bank

operates independently, enabling parallel access and efficient

data management, thereby enhancing overall memory through-

put. This hierarchical structure of cells, arrays, and banks

maximizes both density and performance, making DRAM a

suitable choice for main system memory where large amounts

of data need to be stored. Advancements in DRAM, such as

higher bandwidth interfaces, reduced latency, and integration

with processing elements, can significantly boost its potential

for DRAM-based acceleration in various high-performance

computing applications [32].

RRAM. It is a non-volatile memory technology that stores

data by altering the resistance across a dielectric solid-state

material. A RRAM cell is composed of a metal-insulator-

metal structure, where the insulator is typically a thin film of

a metal oxide or other resistive switching material. The cell

operates by modulating the resistance state of the insulator,

storing binary data as high resistance (binary 0) and low

resistance (binary 1). RRAM cells are organized in a crossbar

architecture, which maps the elements of a weight matrix into

its resistive cells. For in-RRAM vector-matrix multiplication,
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TABLE I
COMPARISON OF MEMORY TECHNOLOGIES. DATA OBTAINED

FROM [29], [30]. ENDURANCE UNIT: # VALID WRITE/ERASE CYCLES

BEFORE FAILURE.

Metric Memory Technology
SRAM DRAM RRAM

Cell Structure 6T 1T1C 1T1R

Volatility Yes Yes No

Write Voltage <1 V <1 V <3 V

Write Energy ∼ fJ ∼ 10 fJ ∼ 1 pJ

Write Speed ∼ ns ∼ 10 ns ∼ 10 ns

Read Speed ∼ ns ∼ 3 ns ∼ 10 ns

Endurance 1016 1016 >107

an input vector is encoded as voltages applied to the word lines

(rows) of the crossbar. This configuration generates the output

vector as currents along the bit lines (columns), which can be

processed efficiently for various computational tasks [33].

Overall, different memory technologies, each with its unique

properties, play crucial roles in advancing LLMs and NeSy

systems. A comparison between the above technologies in

terms of volatility, speed, energy, and endurance is provided

in Table I. This table highlights the trade-offs between these

technologies, helping to inform optimal memory choices and

architectural organization for cognitive applications.

III. KEY COMPUTATIONAL CHALLENGES OF

LLM-POWERED HYBRID MODELS

Integrating LLMs with NeSy models like VSA offers

promising advancements in AI by combining the strengths of

both approaches. However, this paradigm introduces several

computational challenges that must be addressed to realize its

full potential. This section describes two key challenges: the

memory-wall problem (Section III-A), which hampers scala-

bility and efficiency, and the diverse computational characteris-

tics inherent in LLMs and VSA (Section III-B). Understanding

and overcoming these challenges is essential for developing

robust and efficient hybrid models.

A. The Memory-Wall Problem

The memory-wall problem, a term coined by Wulf and

McKee in [17], refers to the bottleneck created by the growing

disparity between processor speed and memory-access speed,

depicted in Fig. 4. Over the past 20 years, the peak per-

formance of server hardware has been scaling at a rate of

3.0× every 2 years, while DRAM and interconnect bandwidth

have only scaled at 1.6 and 1.4 times every 2 years, respec-

tively [18]. This disparity has shifted the main performance

bottleneck from compute to memory bandwidth, particularly

in AI applications involving LLMs. This increasing pressure

on memory bandwidth also applies to major vector-symbolic

algorithms, which rely heavily on rapid memory access to

efficiently process and search through a database of high-

dimensional data [34]. Therefore, reducing the impact of this

memory wall—primarily by minimizing memory latency and

reducing data transfer—is crucial for the sustainable advance-

ment of AI technologies.

Fig. 4. The Memory-Wall Problem. The scaling of the memory and
interconnect bandwidth, as well as peak processor FLOPS (floating-point
operations per second). As can be seen, there is growing disparity between
processor speed and memory/interconnect bandwith. Data collected from [18].

B. Diverse Computational Demands

Another notable challenge is the diverse computational

characteristics within LLMs and VSA. This diversity is evident

in attributes such as noise tolerance, intermediate caching

needs, and data sparsity. For instance, certain LLM operations,

like MatMul in MHA (Fig. 2(b)), require high precision and

caching to maintain context accuracy [35], [36]. In contrast,

tasks like associative search (Fig. 3(b)) can tolerate lower

precision, allowing for faster processing with reduced memory

overhead [25]. Similarly, VSA involves both sparse and dense

computations: sparse operations manage high-dimensional

data efficiently with minimal active elements, while dense

computations require substantial resources to process fully

populated matrices [37]. These varying demands necessitate

adaptable design and memory systems that optimize perfor-

mance across different computational tasks, balancing preci-

sion, caching requirements, and data sparsity.

IV. MEMORY-CENTRIC ALGORITHMIC OPTIMIZATIONS

This section discusses four algorithmic optimizations for

LLMs and NeSy systems, namely model compression (Sec-

tion IV-A), mixture of experts (Section IV-B), federated

learning (Section IV-C), and computation in superposition

(Section IV-D). Each method addresses critical aspects of

memory and computational efficiency, aiming to alleviate the

challenges posed earlier. By reducing model size, improving

resource allocation, and superposing computations, these op-

timizations contribute to more scalable and efficient systems.

A. Model Compression

Considerable research efforts have been devoted to devel-

oping effective compression techniques, aiming to reduce the

substantial memory footprint and computational demands of

the Transformer model [38]. The primary focus has been on

post-training quantization (PTQ), which involves reducing the

precision of the weights in MHA and FFN from 32-bit or 16-

bit floating-point to lower bit-width representations (e.g., 8-
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bit integers), performed post the LLM’s training phase1 [40].

However, weight-only PTQ often leads to large accuracy

degradation and may become ineffective, especially as the

length of the input sequence is significantly increased [41].

To overcome such limitations, quantizing both weights and

dynamic activations (e.g., MatMuls) has become a promis-

ing approach. The core idea of this approach is to provide

special treatment to salient weights using insights from their

respective activation channels [42]. Evaluations based on

Llama 2-70B show that activation-aware PTQ can reduce the

memory requirements by up to 4-8× and inference latency by

2-4× compared to full-precision models, providing opportu-

nities for efficient implementation of LLMs on the edge [43].

Quantization in NeSy systems serves a distinct purpose

compared to its role in LLMs, especially as symbolic architec-

tures typically work with explicitly defined discrete quantities

such as rules and attributes. Perhaps the most common form

of quantization in these systems is concept quantization [44].

In VSA, this involves discretizing the neural network’s output

by mapping it to the nearest neighbor from a set of pre-defined

values or symbols [24]. In essence, quantization in NeSy

systems can be understood as a function whose performance

is influenced by parameters in the symbolic space, such as the

length and number of vector-symbolic representations.

B. Mixture of Experts (MoE)

MoE is a neural network architecture that aims to increase

computational efficiency by effectively decoupling the parame-

ter count of the learning model and the computation’s floating-

point operations required for training and inference [45].

Unlike traditional dense models where all parameters are

used for every input, MoE models use a gating function to

dynamically select the most relevant “experts” (sub-networks)

based on the input data. Fig. 5(a) shows the embedding of MoE

layers, which typically replace FFN layers in a Transformer

model. During operation, the gating network determines which

experts are activated for a given input, ensuring that only a

fraction of the total parameters are utilized at any time. This

selective activation helps in reducing the computational load

per inference step, despite the drastic increase in the total

number of parameters [46].

Large MoE models have been shown to improve perfor-

mance on various tasks, often surpassing traditional dense

LLMs. For instance, large MoE models like ST-MoE and

Mixtral have demonstrated superior performance while using

significantly fewer operations compared to dense counterparts.

Specifically, ST-MoE, using 20× and 40× fewer operations

in training and inference, surpasses PaLM 540B in perfor-

mance [47]. Mixtral 8x7B, while only actively using 13B pa-

rameters during inference, performs on par with Llama 2-70B

models across various evaluation benchmarks [48].

Besides, MoE models excel in NeSy reasoning problems

by efficiently managing complex symbolic structures such

1Quantization can also be applied during the training phase, i.e.,
quantization-aware training (QAT) [39]. However, QAT becomes impractical
for models with billions of parameters due to excessive training costs.

Fig. 5. Illustration of Algorithmic Optimizations. (a) Mixture of Experts:
During inference, a router aims to choose concise and proficient expert
networks that depending on the input [41]. (b) Computation in Superposition:
Input samples are bound with high-dimensional keys to project the samples
into quasi-orthogonal subspaces. The results of the individual samples are
retrieved at the end of the network by unbinding with corresponding keys [52].

as trees and graphs. For instance, the integration of MoE

with advanced NeSy models like the Differentiable Tree

Machine [49], which learns tree operations using a combina-

tion of Transformers and distributed symbolic representations,

demonstrates its ability to handle intricate tree operations

while employing a reduced number of computations [50].

Overall, advancements offered by MoE not only reduce

computational costs but also enhance the model’s reasoning

capabilities by allowing for more specialized and efficient

processing of complex symbolic information.

Note that reducing the computation load per inference by

using MoE comes at a significant cost. MoE models are

known to have ineffective utilization of on-chip memory, as a

significant portion of the model’s parameters remain dormant

during inference. This problem is exacerbated by the large

memory demands of LLMs, which have far outpaced the

memory capacity of contemporary AI hardware [51]. These

challenges are a motivation to the research community to build

new memory-centric hardware architectures targeting sparse

data-intensive workloads (discussed later in Section V-A).

C. Federated Learning (FL)

FL is a collaborative machine learning technique that en-

ables multiple decentralized devices to train a shared model

without exchanging their local data. Instead of sending raw

data to a central server, each participant (or a client) trains

the model locally using their own data and only shares

the updated model parameters or gradients. These updates

are then aggregated centrally, often using averaging methods

such as FedAvg [53], to improve the global model. FL is

especially advantageous in edge computing environments, as

it ensures data privacy and addresses the challenges of limited

computational resources [54].

With the rise of pre-trained LLMs, the application of FL

has taken a new dimension, aiming to provide decentralized

methods that efficiently fine-tune these models. Fine-tuning,

required to adapt LLMs to perform specific tasks or improve

their performance in real-world scenarios, relies heavily on

massive data generated through user interactions with both the

environment and the large model [55], [56]. Adopting FL in

this context seems intuitive but remains challenging, as clients

have restricted access to LLM parameters and they are often
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ill-equipped to support the computational and storage demands

of these large models.

To tackle the above challenges, federated black-box prompt

tuning is increasingly used, allowing clients to treat the LLM

as a black-box and focus on optimizing prompts locally

using proxy data distributions and gradient-free optimization

methods [57], [58]. This approach is highly effective since

clients are not required to store or access the LLM param-

eters, and only inference of the model is conducted during

local optimization. When used to fine-tune Llama 2-7B, this

federated approach reduces the number of trainable parameters

to only 500, and hence the communication cost in one round

is also reduced to only 4KB [57].

As NeSy models have grown sophisticated and capable,

integrating them with FL strategies has emerged as an im-

portant research subject. In this context, the application of FL

aims to handle client heterogeneities symbolically, enabling

data-driven clients to develop personalized symbolic reasoning

capabilities [59]. This approach allows each client to adapt

the shared model while concurrently creating unique symbolic

rules or logical properties that reflect the client’s demands

or characteristics [60], [61]. Communication efficiency in

this federated scheme is notably enhanced by the ability to

compress complex rule patterns into latent variables, sig-

nificantly reducing the amount of data exchanged between

clients and the central server. This is particularly achieved by

adopting compact symbolic representations like VSA, which

is well-suited for robust communication and efficient storage

of symbolic information [62].

D. Computation in Superposition (CIS)

CIS has emerged as a promising paradigm that significantly

enhances the efficiency of LLM systems. This paradigm is in-

spired by the principle of superposition from quantum comput-

ing, allowing multiple computational pathways to be explored

simultaneously [63]. This capability offers substantial speedup

benefits, particularly for LLM frameworks that require con-

current computation over extensive long-form prompts. One

of such frameworks is retrieval-augmented generation (RAG),

which seeks to augment an LLM with access to a dynamic, cu-

rated knowledge base to improve its output [64]. RAG involves

a process that retrieves information from this knowledge base

and combines it with the existing knowledge of the LLM.

Prompting for RAG is often optimized such that tokens can be

processed semi-independently, thereby providing an excellent

opportunity for acceleration by superposition [65]. By enabling

CIS within LLM’s self-attention, it is possible to significantly

reduce the time and resources needed for model inference.

Advances in this context essentially focus on developing

and analyzing suitable mathematical representations that facil-

itate superposition, rather than modifying the underlying self-

attention mechanism [66]. It is no surprise that the algebraic

nature of VSA presents an opportunity to realize CIS by

bundling multiple computational channels [52]. Specifically,

VSA offers algebraic methods for the encoding and binding

of multiple attention tokens and activation operations, as

illustrated in Fig. 5(b). VSAs can also represent data structures

like directed graphs, which are typically used to model de-

pendencies among tokens [10], [65]. Using distributed vector

representations is highly effective in reducing distortion caused

by inter-channel interferences, especially as the length of

vectors is significantly increased.

The superposition capability of VSA not only speeds up in-

ference computations by processing multiple inputs in parallel

but also enhances the efficiency and dynamics of search in

NeSy systems. This is particularly evident in rule-based sys-

tems used for factorization, described earlier in Section II-C.

This system relies on superposition to efficiently search

through the combinatoric solution space without directly

enumerating all possible factorizations [26]. This approach

reduces computational overhead, enabling rapid convergence

to accurate solutions. Moreover, the inherent robustness of

this approach allows the system to tolerate noise and partial

information, making it adaptable to real-world scenarios where

data is often incomplete or ambiguous [67].

V. MEMORY-CENTRIC HARDWARE DEVELOPMENTS

The integration of Transformers with NeSy models aligns

closely with the principles of MCC. The central role of

memory in computation can be further enhanced to improve

efficiency and adaptability. This section discusses hardware

developments in this direction, covering methodologies of

MCC (Section V-A), new trends in building hybrid memory

systems (Section V-B), and logic-memory integration through

2.5D/3D stacked architectures (Section V-C).

A. Memory-Centric Computing (MCC)

MCC is a promising paradigm that addresses the memory-

wall problem in AI hardware accelerators. With MCC, key

operations in LLMs and NeSy methods, such as MatMul and

associative memory search, could be performed in the mixed-

signal domain within memory sub-arrays (compute-in-memory

“CIM”), or in the outer digital domain directly connected

to memory banks (compute-near-memory “CNM”), or via

content addressable memories (“CAM”), leading to significant

advances in energy efficiency and throughput [34], [68], [69].

Fig. 6 illustrates the difference between CIM and CNM.

The boundary between CIM and CNM is drawn based on a

combination of factors, including memory technology, compu-

tational characteristics of dataflows, and target performance—

necessary for addressing the diverse computational demands

of AI workloads (refer to Section III-B).

CIM is particularly suitable for accelerating weight-

stationary dataflows, designed to hold pre-computed parame-

ters in memory cells while arbitrary input vectors are brought

into these cells for parallel computation. For instance, the

Linear blocks shown in Fig. 2(b) can be mapped to an

in-memory matrix-vector multiplication, which is commonly

implemented in RRAM [70], [71]. In VSA, RRAM is also

employed to improve the efficiency of memory search, where

RRAM devices are configured to output the closest match to

an input vector, i.e., implement content-addressable memory
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Fig. 6. Memory-Centric Computing Approaches.

operations [72]. RRAM is a nonvolatile memory technology

and thereby can memorize and store parameters without ex-

ternal power supply.

Despite its low-power consumption, RRAM suffers from

intrinsic problems, particularly process variations and life-

time [73], [74]. Therefore, RRAM is impractical to use for

high-precision computations and is not ideal for dynamic

dataflows whose inputs and parameters are generated at run-

time, such as MatMul blocks in Fig. 2(b). The low endurance

of RRAM reduces its lifetime, especially when read-write

operations become more frequent (Table I). This challenge has

led to the development of SRAM-based CIM solutions, which

offer higher endurance and better support for dynamic pro-

cessing needs, despite being less favorable in terms of energy

efficiency and memory density [68]. To enable CIM, SRAM

is typically modified from the conventional 6T bit cell, thus

enabling in-place memory updates and logic operations [75].

Furthermore, the mixed-signal nature of these systems allows

to tune precision, as SRAM sub-arrays can be designed to

support both floating-point and integer operations [76]. This

adaptability is especially crucial in LLMs, where precision

impacts both performance and energy consumption.

Emerging data-intensive workloads often involve sparse

computations that face challenges related to latency and mem-

ory capacity. Large MoE models, discussed in Section IV-B,

illustrate these complexities, where expert activation is inher-

ently sparse and executed dynamically at runtime. For such ap-

plications, DRAM-based CNM presents a compelling solution

by offering a hardware architecture capable of efficiently stor-

ing large data volumes and reducing latency through localized

processing [77]. Modern DRAM architectures are structured

hierarchically with enhanced memory banks integrated via

high-bandwidth memory (HBM) interfaces [78]. Research

focused on optimizing DRAM for CNM includes incorpo-

rating advanced row buffer management schemes, integrating

specialized units for bulk-bitwise operations like filtering and

aggregation, and deploying various low-power states for effi-

cient in-memory computations [79]. The growing interest in

implementing diverse DRAM optimizations, capitalizing on its

high density and endurance, enables integrating CNM across

a broader spectrum of applications [80].

B. Hybrid Memory Systems

Research into hybrid memory systems is advancing rapidly,

offering optimized performance, efficiency, and adaptability

by integrating diverse memory technologies on a single chip.

These innovations cater to the specific demands of AI edge

applications, which often face constraints like limited power

and high precision [81]. For example, in event-based tar-

get tracking systems, integrating RRAM and SRAM on the

same chip leverages their complementary strengths [82], [83].

RRAM provides CIM capabilities that enhance speed and

reduce power consumption, making it ideal for high-speed

tracking. Meanwhile, SRAM supports high-precision near-

memory computations, ensuring reliable target identification.

This hybrid integration balances power efficiency with the

occasional need for high-performance computations—an ap-

proach that can also be beneficial in other flows, such as LLM

inference and factorization of NeSy representations [35], [71].

C. 2.5D/3D System Integration

Compute demands and memory footprints for the envi-

sioned NeSy-LLM systems may soon exceed what today’s

2D chips could possibly offer. As two-dimensional scaling

approaches its physical and economic limits, the shift to

three-dimensional integration and heterogeneous system de-

sign becomes essential to meet diverse design targets in a

cost-effective manner [84]. Breaking the single-die limits also

brings new design opportunities with component technologies

(new memories, new logic, new interconnects) specifically

optimized for the algorithmic needs in NeSy and LLM models.

Memory-centric architectures can readily benefit from both

capacity and bandwidth advances brought by 3D integration,

with HBM being a prime example in the recent success of

LLMs. Bringing computations closer to or immersed in HBM

stacks will require new chiplet architectures where specialized

cores, DRAM die stacks, and horizontal/vertical interconnects

are co-designed based on model requirements.

With the 2.5D/3D integration becoming a vital platform

technology going forward, designers are having an increas-

ingly vast design space. For example, it becomes feasible

to map the requirements from the diverse compute kernels

seen in LLM and NeSy models to a variety of logic nodes,

memory types, and specialty devices not available in silicon

logic process. The mixture of technologies and designs, which

is then realized by the right combination of manufacturing and

assembly techniques, allows much more fine-grained system-

technology co-optimization. With co-designs, it is possible to

envision a set of NeSy-friendly and LLM-friendly nanokernels

for chip and chiplet integration, leveraging advancements

in new semiconductor device technologies [85]. Examples

include scaled oxide-semiconductor FETs, low-dimensional

semiconductor FETs, as well as various volatile and non-

volatile memories.

The hybrid nature of NeSy, LLM, and NeSy-LLM models

in terms of dataflows and model components will further

define unique requirements and drive optimizations for the

inter-connectivity in the tailored 2.5D/3D systems, which can

be quite different than that in conventional 2D systems. For

substrate interconnects in 2.5D/3D chiplets [86], the progress

in interposers and wafer-level fan-out layers will continue

to define the dataflow contraints and costs at the system
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level. In the third dimension, as micro-bumps, through-silicon

vias (TSV), hybrid bonding, and monolithic inter-layer vias

(ILV) are continuously advancing in density and reliability, the

vertical connectivity may become increasingly useful, enabling

new nanokernel designs and chiplet architectures [87].

Recent research literature showcases several examples of

stacked designs optimized for efficient kernel processing

in Transformer and VSA models. One notable example is

H3DAtten, a heterogeneous 3D integrated architecture specif-

ically designed for MHA kernels in Vision Transformer mod-

els [36]. Leveraging fine-pitch hybrid bonding and TSVs,

H3DAtten vertically stacks dies from different process nodes,

combining a 40nm RRAM-based analog CIM dataflow with

a 16nm SRAM-based logic. This heterogeneous integration

is also applied to optimize VSA-based factorization, thus

demonstrating the benefits of 3D stacked designs in symbolic

reasoning [88]. Other examples include a 3D stacked imple-

mentation of RRAM-based one-shot learning [89] and a 3D

integration of various transistor and memory technologies for

efficient VSA-based pattern recognition [90].

VI. FUTURE DIRECTIONS AND RESEARCH

OPPORTUNITIES

Below is a list of research topics that could further advance

the memory-centric approaches presented in this paper.

A. Variability-Aware In-Memory Fine-tuning of LLM

Recent research has explored techniques to make neural

networks more robust when implemented on RRAM devices,

which suffer from inherent non-idealities due to stochastic

process variations. Variability-aware training algorithms and

hardware/software co-design methods have been developed

to compensate for RRAM conductance variations and max-

imize neural network accuracy [91], [92]. While these are

promising approaches, their application in the fine-tuning

of LLMs remains under-explored. In-memory fine-tuning of

LLMs on RRAM devices presents unique challenges due to

the scale and sensitivity of these models to minute variations in

weight values. Addressing these challenges requires advanced

variability-aware techniques that not only mitigate hardware-

induced inaccuracies but also preserve the linguistic and con-

textual nuances captured by the LLM during its initial training.

Innovative solutions, such as adaptive weight scaling, error

correction schemes, and dynamic reconfiguration of memory

arrays, are essential to enable efficient and reliable in-memory

fine-tuning. By leveraging these techniques, it is possible

to achieve high-performance LLM deployments on energy-

efficient RRAM-based systems.

B. Dynamic Reconfiguration for Hybrid CIM-Based Systems

Runtime reconfiguration of CIM fabrics is an emerging and

promising research area, driven by the increasing demand for

hybrid cognitive computing solutions. Existing reconfiguration

techniques have largely focused on adapting single CIM-based

designs to support various neural network models [93]. These

approaches have shown success in enabling reconfigurable

weight mapping and dynamic weight reloading, optimizing

the handling of diverse input data. However, the next frontier

in this field lies in extending reconfiguration capabilities to

CIM-based systems incorporating multiple CIM fabrics and

technologies. Achieving this will require a holistic approach

combining several key strategies: developing modular mem-

ory subsystems that support multi-precision computing [94],

enabling dynamic data transfer between CIM fabrics through

adaptive network-on-chip solutions, and creating technology-

aware reconfiguration algorithms capable of seamlessly coor-

dinating operations across heterogeneous memory technolo-

gies and workloads [95]. By advancing these strategies, we

can better support hybrid cognitive models.

C. Evaluation of Hybrid CIM-Based Systems

Evaluating hybrid CIM-based systems necessitates a hi-

erarchical approach that integrates optimization and evalu-

ation characteristics across both memory fabrics and chip-

level effects. Traditional evaluation frameworks, such as

DNN+NeuroSim [96], have been effective for single CIM

fabrics but are insufficient for chips incorporating heteroge-

neous CIM fabrics. To address this, a comprehensive eval-

uation framework must be developed that accounts for the

complexities introduced by varying CIM technologies within

a single chip. This framework should include detailed assess-

ments of interconnect performance, caching strategies, and

the interaction between different CIM fabrics. Incorporating

state-of-the-art benchmarks like MLPerf [97] will be crucial

for optimizing these systems, as these benchmarks provide

standardized metrics for evaluation and comparison.

VII. CONCLUSION

In this paper, we have explored memory-centric design and

optimization strategies for cognitive systems integrating LLMs

and NeSy models. We addressed key computational chal-

lenges, including the memory wall problem and diverse com-

putational characteristics. We discussed various algorithmic

optimizations, such as model compression, mixture of experts,

federated learning, and computation in superposition. Addi-

tionally, we presented hardware developments for memory-

centric computing, including effective integration methods like

2.5D/3D-stacked design and chiplet-based approaches. Finally,

we outlined potential research directions to further enhance

efficiency and scalability. This paper represents a significant

step towards the efficient realization of advanced cognition.
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