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A B S T R A C T

Structure-informed materials informatics is a rapidly evolving discipline of materials science relying on the
featurization of atomic structures or configurations to construct vector, voxel, graph, graphlet, and other
representations useful for machine learning prediction of properties, fingerprinting, and generative design.
This work discusses how current featurizers typically perform redundant calculations and how their efficiency
could be improved by considering (1) fundamentals of crystallographic (orbits) equivalency to optimize ordered
structures and (2) representation-dependent equivalency to optimize dilute, doped, and defect structures with
broken symmetry. It also discusses and contrasts ways of (3) approximating random solid solutions occupying
arbitrary lattices under such representations.

Efficiency improvements discussed in this work were implemented within pySIPFENN or python toolset
for Structure-Informed Property and Feature Engineering with Neural Networks developed by authors since 2019
and shown to increase performance from 2 to 10 times for typical inputs. Throughout this work, the authors
explicitly discuss how these advances can be applied to different kinds of similar tools in the community.

1. Introduction

SIPFENN or Structure-Informed Prediction of Formation Energy using
Neural Networks software, first introduced by the authors in 2020 [1,2],
is one of several open-source tools available in the literature [338,8,9]
which train machine learning (ML) models on the data from large
Density Functional Theory (DFT) based datasets like OQMD [10312],
AFLOW [13,14], Materials Project [15], NIST-JARVIS[16], Alexan-
dria [17], or GNoME [18] to predict formation energies of arbitrary
atomic structures, with accuracy high enough to act as a low-cost
surrogate in the prediction of thermodynamic stability of ground and
non-ground state configurations at 0K temperature. The low runtime
cost allows such models to efficiently screen through millions of differ-
ent atomic structures of interest on a personal machine in a reasonable
time.

In addition to high-accuracy neural network models trained on
OQMD [10312], SIPFENN included a number of features not found in
competing tools available at the time, such as the ability to quickly
readjust models to a new chemical system based on just a few DFT data
points through transfer learning and a selection of models optimized
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for different objectives like extrapolation to new materials instead of

overfitting to high-data-density regions or low memory footprint [1].

SIPFENN’s usefulness has been demonstrated, for instance, in

the cases where the structure of an experimentally observed com-

pound could not be identified in industry-relevant Nd3Bi [19] and

Al3Fe [20] systems and had to be predicted. This was accomplished by

(1) high-throughput generation of hundreds of thousands of possible

candidates with the exact stoichiometry based on elemental substi-

tutions into structures from both open DFT-based databases [10318]

and experimentally observed ones from Crystallography Open Database

(COD) [21323], followed by (2) selection of thousands of low-energy

candidates, (3) down-selection of tens of unique candidates based on

clustering in the SIPFENN’s feature space, and (4) final validation with

DFT and experiments. It has also been deployed in several thermo-

dynamic modeling studies, e.g. of Nb3Ni system [24], in conjunction

with DFT and experimental data processed through ESPEI [25] to

automatically fit parameters of CALPHAD [26] models deployed in

pycalphad [27].
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2. General structure featurization improvements

2.1. pySIPFENN overview and core advantages

Being able to predict the thermodynamic stability of arbitrary
atomic structures and their modifications (e.g., formed by introduction
of defects, strain, or selective displacements) is one of the most critical
steps in establishing whether hypothetical candidates can be made in
real life [28]; however, it is certainly not the only task of interest
to the community. For instance, ML modeling of perovskites also
covers properties like formability, bandgap, Curie temperature, Neel
temperature, maximum magnetic entropy change, dielectric breakdown
strength, and several other properties [29], while ML modeling of bat-
tery materials also covers properties such as redox potential, band gap,
and dielectric breakdown [30]. These diverse needs, combined with
increasing interest in multi-property modeling, have shifted the focus
of SIPFENN tool from model training [1] toward the development of
reliable, easy-to-use, and efficient general-purpose featurizers existing
in a framework, which can be used by researchers and companies to
quickly develop and deploy property-specific models, or use features
directly in exploring similarity and trends in materials.

Thus, while the acronym has been retained, the name of the soft-
ware has been changed to python toolset for Structure-Informed Prop-
erty and Feature Engineering with Neural Networks or pySIPFENN, and
the software component has been carefully re-implemented in its en-
tirety to make it as general as possible and enable the following core
advantages:

1. Reliable featurization, which can be immediately transferred
to other tools thanks to standalone submodule implementations
based only on two common libraries (NumPy [31] and py-
matgen [32]). These include completely re-written Ward2017
Java-based featurizer [3] (see Section 2.2) and 3 new ones,
described in Sections 3, 4, and 5.

2. Effortless plug-and-play deployment of neural network and
other ML models, for any property, utilizing any of the defined
feature vectors, enabled by the use of Open Neural Network Ex-
change (ONNX) open-source format [33] which can be exported
from nearly every modern ML framework and is then loaded into
pySIPFENN’s PyTorch backend [34] through onnx2torch
[35]. Furthermore, implementing custom predictors, beyond
those supported by PyTorch, is made easy by design.

3. Dedicated ModelExporters submodule makes it easy to ex-
port trained models for publication or deployment on a
different device while also enabling weight quantization and
model graph optimizations to reduce memory requirements.

4. The ability to acquire or parse relevant data and adjust or
completely retrain model weights through automated Mode-
lAdjusters submodule, enabling several transfer learning
schemes. (a) Fine-tuning of models based on additional lo-
cal data to facilitate transfer learning ML schemes of the do-
main adaptation kind [36], where a model can be adjusted to
new chemistry and specific calculation settings, introduced by
SIPFENN back in 2020 [1], which is also being adopted by
other toolsets like ALIGNN [37]. Such an approach can also be
used iteratively in active learning schemes where new data is
obtained and added. (b) Tuning or retraining of the models
based on community atomistic databases, or their subsets,
accessed through OPTIMADE API queried by optimade-
python-tools library [38340]. This allows for adjusting the
model to a different domain, which in the context of DFT
datasets could mean adjusting the model to predict properties
with DFT settings used by that database or focusing its attention
to specific chemistry like, for instance, all compounds of Sn
and all perovskites. Critically, this functionality, in the default
case (GGA+U formation energy from Materials Project [15]),

only requires the user to provide a standard human-readable
OPTIMADE query like the one below, while custom cases can
be accomplished, bound mostly by the current limitations of
OPTIMADE itself, as discussed in Appendix A.

’elements HAS "Hf"AND elements HAS "Mo"

AND NOT elements HAS ANY "O","C","F","Cl","S"’

The provenance of model tuning data can be always tracked
by the data names list retained in the OPTIMADEAdjuster
object, which are formed by reduced chemical and provider’s
data ID (e.g. ’HfTaTiB4MoC4-mp-1232383’ or ’HfZrNb2
Mo-agm001451656’), which can be used to look up complete
data on providers website. For certain OPTIMADE providers,
such as Alexandria [17], provenance is additionally exposed
more directly in the form of references list of lists, which
typically consist of related DOIs user can cite. (c) Knowledge
transfer learning [41] to adjust models to entirely new, often
less available properties while harvesting the existing pattern
recognition.

The resulting pySIPFENN computational framework is composed
of several components, as depicted in Fig. 1 serving as the schematic of
both organization and data flow in a typical task. In a typical workflow,
user interacts with the core.Calculator class, which acts as a
container for ML models, orchestrates the tasks, and stores the results.

pySIPFENN is available through several means described in ,
alongside high-quality documentation and use tutorials. As depicted
in Fig. 1, the individual sub-modules are designed to be relatively
compartmentalized, allowing advanced users to quickly go beyond de-
fault workflow and implement custom solutions or utilize pySIPFENN
components, such as structure featurizers, within another tool.

2.2. Ward2017 reimplementation

In their 2017 work Ward et al. [3] introduced a novel atomic
structure featurization concept based on establishing and weighting
neighbor interactions by faces from 3D Voronoi tessellation to describe
local chemical environments (LCEs) of atomic sites and then performing
statistics over them to obtain a global feature vector. The original
SIPFENN models [2] built on top of this while utilizing an improved,
carefully designed deep neural network models to obtain up to 2.5
times lower prediction error on the same dataset [1]. A detailed de-
scription of the descriptor can be found in Section 2.1 of Krajewski et al.
[1]. In general, the calculation of the Ward2017 descriptor covers
three types of attributes:

• Based upon global averages over the components of the structure.

• Based upon local neighborhood averages for each site in the
structure.
• More complex ones based upon averages over paths in the struc-

ture.

Ward et al. [3] implemented the above calculations in Java, which
was popular at the time; while most of the current machine-learning
packages use almost exclusively Python (e.g., scikit-learn [42]
and PyTorch [34]), making it cumbersome to use Java. Even more
critically, the original Java implementation was not computationally
efficient (as explored in Sections 3, 4, and 5), and enabling tools were
not supported in Java.

In the present work, authors have reimplemented Ward et al.
[3] approach from scratch in Python as a standalone submodule for
pySIPFENN, which calculates all 271 features within numerical preci-
sion, except for three based on a random walk on the structure(adjacent
cells). The original implementation from Ward et al. [3] used a non-
backtracking random walk, while this implementation switched to a
backtracking random walk. Despite the exact reproduction of feature
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Fig. 1. Main schematic of pySIPFENN framework detailing the interplay of internal components described in Section 2.1. The user interface provides a high-level API to process
structural data within core.Calculator, pass it to featurization submodules in descriptorDefinitions to obtain vector representation, then passed to models defined in
models.json and (typically) run automatically through all available models. All internal data of core.Calculator is accessible directly, enabling rapid customization. An
auxiliary high-level API enables advanced users to operate and retrain the models.

values being desired, such an approach has been preferred due to more
straightforward implementation and output stability against different
seeds. The resulting difference in values of random walk features has
been small enough to be ignored for practical purposes, being at most
10% compared to the reference values from Ward et al. [3], allowing
ML models for formation energy to be deployed with the difference in
predictions being, typically, 234 orders of magnitude lower than the
reported model error. The Voronoi tessellation has been implemented
with Voro++ [43345] and all numerical operations were written using
NumPy [31] arrays to greatly speed up the calculations and make the
efficient utilization of different computing resources, such as GPUs,
easy to implement.

2.3. KS2022 feature optimization

Typically, during feature engineering, researchers first attempt to
collect all features expected to enable good inference and then remove
some based on the interplay of several factors:

1. Low impact on the performance, since having more features
increases the representation memory requirements and possibly
increases the risk of overfitting to both systematic and random

trends. The latter is very significant as it can lead to capturing
noise instead of true patterns, excessive sensitivity to small
input changes not expressed in the training domain, and poor
generalization to new data/domains.

2. High computational cost, which limits the throughput of the
method deployment.

3. Unphysical features or feature representations which can
improve model performance against well-behaving benchmarks
covering a small subset of the problem domain but compromise
model interpretability and extrapolation ability in unpredictable
ways.

The KS2022 feature set, added in pySIPFENN v0.10 in Novem-
ber 2022, is a significant modification of the Ward2017 [3], which fo-
cuses on points 2 and 3 above while enabling optimizations described in
Sections 3 through 5 and delegating the removal of low-impact features
to modeling efforts and keeping featurization as problem-independent
as possible.

First, all 11 features relying on representation of crystal symmetry
space groups with space group number floats rather than classes
(e.g. using one-hot vectors) have been removed. This has been done
based on the unphysical nature of such representation leading to, for
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instance, BCC (229) being much closer to FCC (225) than to just slightly
uniaxially distorted BCC (139), which itself would be very close to
trigonal structures.

Next, featurization code has been thoroughly profiled in regard
to time spent on the execution of feature-specific subroutines and
analyzed in the context of feature importance identified in the past
work [1]. This led to the removal of the 1 CanFormIonic feature, which
relied on combinatorically expensive guessing of oxidation states, and
3 features based on Warren3Cowley (WC) parameters [46], which
were relatively very expensive without significantly contributing to
the performance due to scarcity of disordered structures they aim to
quantify in most atomistic datasets. However, in the future, the authors
intend to include such disorder quantifying features in application-
specific sets, leveraging a recently released high-performance library
by Gehringer et al. [47].

Together, 15 features were removed, bringing the total number of
the KS2022 features to 256 while disproportionately improving the
featurization speed. For instance, in the case of featurization of 30 sites
in a disordered (no symmetry) structure, KS2022 is 2.3 times faster
than Ward2017 (430 ms vs. 990 ms single-threaded on Apple M2 Max).

3. Optimizations for ordered structures

Modeling of disordered materials is a critical area of research [50];
however, the vast majority of atomistic ab initio datasets used for
ML studies focus on highly symmetric ordered structures because of
their high availability and ability to model complex phenomena in
a holistic fashion if local ergodicity can be established [51,52]. One
evidence of the focus on such data is the fact that out of 4.5 million
atomic structures in MPDD [53], which includes both DFT-based [103
16,18] and experimental [21323] data, only 54,660 or 1.25% lack any
symmetry. It is also worth noting that this number used to be much

lower before the recent publication of the GNoME dataset by Google
DeepMind [18], which accounts for around 3

4
of them.

In the case of remaining 98.75% structures, a 3-dimensional crys-
tallographic spacegroup is defined for each of them along with cor-
responding Wyckoff positions, designated by letters, which are popu-
lated with either zero (empty), one (when symmetry-fixed), or up to
infinitely many (typically up to a few) atoms forming a set of symmetry-
equivalent sites called crystallographic orbits [54]. When these crystal-
lographic orbits are collapsed into atoms occupying a unit cell, each is
repeated based on the multiplicity associated with the Wyckoff position
it occupies. These multiplicities can range from 1 up to 192 (e.g., posi-
tion l in Fm-3m/225), with values 1, 2, 3, 4, 6, 8, 16, 24, 32, 48, and
96 being typical [55]. This often holds true even in compositionally
simple materials like one of the experimentally observed allotropes of
pure silicon with atoms at the 8a, 32e, and 96g positions [56]. For
certain crystal lattice types, the multiplicity can be somewhat reduced
by redefining their spatial periodicity with so-called primitive unit cells,
like in the case of the aforementioned Si allotrope, in which primitive
unit cell has 4 times fewer (34) sites but still over 10 times more than
the 3 unique crystallographic orbits.

This presents an immediate and previously untapped opportunity
for multiplying the computational performance of most atomistic fea-
turizers (e.g., Matminer [57]) and ML models [1,339,58,59], which
nearly always process all atoms given in the input structure occasion-
ally converting to primitive unit cell in certain routines (CHGNet [7]),
unless they operate on different occupancies of the same structure [60].
This allows for a proportional decrease in both CPU/GPU time and
memory footprint. The general-purpose KS2022 in pySIPFENN uses
high-performance symmetry analysis library spglib [48] to automat-
ically take advantage of this whenever possible, as depicted in the
schematic in Fig. 2. It shows an interesting example of a topologically
close-packed ÿ phase, which is critical to model in a wide range of
metallic alloys [61] but challenging in terms of combinatorics because

Fig. 2. Schematic of the general-purpose KS2022 featurization routine with built-in optimization for ordered structures. First, the atomic structure (in pymatgen Structure
object format [32]) is loaded, and sites in it are annotated with their crystallographic orbits using spglib [48], denoted in the figure as unique colors. Then, one site is selected
from each orbit to form a set of unique sites, for which Wigner3Seitz cells (depicted as colored polyhedra) are calculated with Voro++ [43345] and featurized to get site-specific
local chemical environment (LCE) descriptors. The complete site ensemble is then reconstructed based on multiplicities of Wyckoff positions corresponding to the sites. A non-trivial
example of ÿ-phase with 30 atoms belonging to 5 crystallographic orbits with interesting Wigner3Seitz cells (relative to usually shown FCC/BCC ones [49]) has been depicted.
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of 5 unique sites that can be occupied by many elements [62,63]
making it a very active area of ML modeling efforts [60,64] in the
thermodynamics community.

In the case of KS2022 featurizer, running the same 30-atom test as
in Section 2.3 but on ÿ phase takes on average 84 ms or is 5.1 times
faster thanks to processing 6 times less sites. Similar results should be
(a) quickly achievable with any other featurizer processing individual
sites, including most graph representations embedding local environ-
ments (e.g., MEGNet [5]) or deconstructing graphs into graphlets
(e.g., minervachem molecule featurizer [65]), and (b) possible with
convolution-based models operating on graphs (e.g., ALIGNN [6]) or
voxels [8] through custom adjustments to the specific convolution
implementation. In the case of voxel representations and any other
memory-intense ones, it may also be beneficial to utilize this approach
to compress them when transferring between devices like CPU and GPU
or across an HPC network.

4. Optimizations for dilute, defect, and doped structures

The optimization strategy in Section 3 ensures that only the sites
that are guaranteed to be crystallographically unique are processed
through featurization or graph convolution and is directly applica-
ble to the vast majority of both data points and literature methods.
However, in the case of methods relying on describing the imme-
diate neighbors, whether through Wigner3Seitz cell (see Fig. 2) or
subgraph (see, e.g., [5]), one can achieve further efficiency improve-
ments by considering which sites are guaranteed to be unique under the
representation.

There are several classes of atomic structures where the distinction
above makes a difference, but the room to improve is exceptionally
high when one site or small subset, in an otherwise highly symmetric
structure is modified, leading to a structure that, depending on the
context, will be typically called dilute when discussing alloys [66],
doped when discussing electronic materials [67], or said to have defect
in a more general sense [68]. Throughout pySIPFENN’s codebase and
the rest of this work, the single term dilute is used to refer to all of such
structures due to authors’ research focus on Ni-based superalloys at the
time when optimizations below were open-sourced in February 2023.

To visualize the concept, one can consider, for instance, a 3 × 3 × 3
body-centered cubic (BCC) conventional supercell (54 sites) and call

it base structure. If it only contains a single specie, then KS2022 from
Section 3 will recognize that there is only one crystallographic orbit
and only process that one. However, if a substitution is made at any of
the 54 equivalent sites, the space group will change from Im-3 m (229)
to Pm-3 m (221), with 8 crystallographic orbits on 7 Wyckoff positions;
thus, the default KS2022 featurizer will process 8 sites.

At the same time, several of these crystallographic orbits will be
differentiated only by the orientation and distance to the dilute (substi-
tution) site, which does affect ab initio calculation results (e.g., vacancy
formation energy vs. supercell size [69]), but is guaranteed to have no
effect on the model’s representation because of the exact same neighbor-
hood configuration, including angles and bond lengths, if conditions
given earlier are met. Thus, it only requires adjustments to the site mul-
tiplicities or convolution implementation (simplified through, e.g., a
Markov chain). In the particular dilute-BCC example at hand, depicted
in Fig. 3, there are 4 such representation-unique crystallographic orbits.
The first one, depicted in red, contains the dilute atom. The second
and third, neighbor the dilute atom sharing either large hexagonal face
(1st nearest neighbor shell), depicted in blue, or small square face (2nd
nearest neighbor shell), depicted in orange. The fourth orbit, depicted
in purple, is not affected by the dilute atom and is equivalent to the
remaining 4 orbits. Thus, the total number of sites that need to be
considered is reduced by a factor of 2.

The KS2022_dilute featurization routine, schematically
depicted in Fig. 3, conveniently automates the above process. It does
that for both simple cases, like the aforementioned substitution in
pure element, and for complex cases, like introducing a dilute atom
at the 2a/2b orbit in ÿ-phase (green cell in Fig. 2). First, the rou-
tine performs an independent identification of crystallographic orbits
in the dilute structure and base structure, then identifies of the di-
lute site and its configuration to establish orbit equivalency under
pySIPFENN’s KS2022 representation, and finally reconstructs the
complete ensemble of sites in the dilute structure.

In the case of KS2022_dilute implementation run on the dilute
BCC supercell shown in Fig. 3, the efficiency is improved nearly propor-
tionally to the reduction in the number of considered sites, averaging
51 ms vs. 98 ms KS2022, signifying 1.9 computational cost reduction
relative to calculating all crystallographically unique sites. Or around
10-fold computational cost reduction relative to the standard [1,339]
approach of processing all sites (494 ms), while producing precisely the
same results (within the numerical precision).

Fig. 3. Core schematic of the KS2022_dilute featurizer. The dilute structure is compared to either the explicit or implicit base structure to identify the dilute site, which is then
featurized alongside all crystallographically unique sites in the base structure. Information extracted from dilute structure featurization is then used to identify previously-equivalent
sites affected by it, which go through the second round of featurization. Lastly, the complete ensemble is reconstructed, and KS2022 are obtained. BCC supercell is used as an
example.
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It is also worth mentioning the active interest of the commu-
nity in this class of atomic structures, as evidenced by the dedicated
ADAQ Database (defects.anyterial.se) [70] and dedicated ML modeling
efforts [71] being published at the time of writing of this work.

5. Optimizations for random solid solutions

Sections 3 and 4 have demonstrated how recognition of symmetry in
ordered structures can guarantee equivalency of sites and how under-
standing the character of featurization can further extend that notion of
equivalency so that the ML representations of all sites can be obtained
efficiently up to an order of magnitude faster. Random solid solutions
are the conceptually opposite class of atomic structures, where the lack
of symmetry or site equivalency is guaranteed, yet featurizing them
requires one to solve the same problem of efficiently obtaining the ML
representations of all sites present, which also happen to be infinite.

Typically, in the ab initio community, random solid solutions are
represented using Special Quasirandom Structures (SQS) introduced in
landmark 1990 work by Zunger et al. [72], which are the best structures
to match neighborhood correlations in a purely random state given
component ratios and number of atoms to use, hence the name special.
For many years, finding SQS structures required exponentially complex
enumeration of all choices and was limited to simple cases until another
critical work by van de Walle et al. [73], which used simulated an-
nealing Monte Carlo implemented through ATAT software to find these
special cases much faster, exemplified through the relatively complex ÿ-
phase and enabling the creation of SQS libraries used in thermodynamic
modeling [74].

However, the direct use of an SQS may not be the optimal choice for
structure-informed random solid solution featurization due to several
reasons. Firstly, as discussed by van de Walle et al. [73], SQS can be
expected to perform well on purely fundamental grounds for certain
properties like total energy calculations, but one has to treat them
with caution because different properties will depend differently on the
correlation and selecting the SQS may be suboptimal. Building up on

that, one could, for instance, imagine a property that depends strongly
on the existence of low-frequency, high-correlation regions catalyzing
a surface reaction or enabling nucleation of a dislocation. In terms
of ML modeling, this notion is taken to the extreme, with calculated
features being both very diverse and numerous while being expected
to be universal surrogates for such mechanistically complex properties.
Appendix B further explores this concept, discussing use of variability
data in different applications.

Secondly, SQSs that can be generated in a reasonable time are lim-
ited in terms of the number of atoms considered, causing quantization
of the composition. This is not an issue if a common grid of results
is needed, e.g., to fit CALPHAD model parameters [74] or to train a
single-purpose ML model [75], but it becomes a critical issue if one
needs to accept an arbitrary composition as the ML model and SQS
would have to be obtained every time. This issue is further amplified by
the rapidly growing field of compositionally complex materials (CCMs),
which exist in vast many-component compositional spaces prohibiting
SQS reuse even at coarse quantizations [76] while being a popular
deployment target for both forward and inverse artificial intelligence
methods [77379] due to their inherent complexity.

Based on the above, it becomes clear that costly computing of an
SQS structure would have to be done for every ML model, and it would
not be consistent between chemistries and complexities. At the same
time, the primary motivation for limiting the number of sites for ab
initio calculations is gone since KS2022 can featurize over 1000 sites
per second on a laptop (Apple M2 Max, run in parallel).

Thus, the objective of optimization is shifted towards consistency
in convergence to feature vector values at infinity. To accomplish that,
pySIPFENN goes back to random sampling but at a large scale and
individually monitoring the convergence of every feature during the expan-
sion procedure, implemented through KS2022_randomSolutions
and depicted in Fig. 4, to ensure individual convergence.

Such a representation-centered approach can also efficiently ac-
count for (1) the dissimilarity of any set of chemical elements and (2)
the neighbor weight during featurization, where some may be much

Fig. 4. Core schematic of the KS2022_randomSolutions featurizer. (A) The target structure given explicitly or implicitly is expanded to form a (lattice) (i.e. template) supercell.
It is then iteratively populated with target composition (slightly adjusted each time) and divided into individual sites. (B) These are featurized, like in KS2022, and added to the
global ensemble. The process repeats until (1) the composition is converged, (2) all species have had a chance to occur Ċ times, and (3/C) every individual feature has converged
to stable value over 3 consecutive iterations. Lastly, the global KS2022 feature vector and metadata are returned. FCC supercell is used as an example in the figure.
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more important than others (see highly-anisotropic ÿ-phase Wigner3
Seitz cells in Fig. 2). It is also flexible in accepting any target struc-
ture, even a distorted one since no assumptions are made about the
neighborhood geometry.

At the same time, it is important to note that such an approach is
not a replacement for SQS in a general sense. It is, instead, a comple-
mentary method, as it does not result in a defined approximation of
random structure but its representation for machine learning.

6. Summary and conclusions

• pySIPFENN or python toolset for Structure-Informed Property and
Feature Engineering with Neural Networks is a free open-source soft-
ware (FOSS) modular framework extending authors’ past
work [1] described in Section 1 by including many key improve-
ments in the structure-informed featurization, machine learning
model deployment, different types of transfer learning (con-
nected to OPTIMADE API [39]), rewrite of key literature tools
(e.g., Ward2017 Java-based featurizer [3]) into Python+
NumPy [31], and optimizations of past feature set as described
in Sections 2.1, 2.2, and 2.3.
• pySIPFENN framework is uniquely built from tightly integrated

yet highly independent modules to allow easy use of essential
functions without limiting advanced researchers from taking spe-
cific components they need, like a specific featurizer, and sim-
ply copying it into their software, reducing dependencies to the
minimum (including pySIPFENN itself).
• Section 3 discusses how featurization of atomic structures (or

configurations) to construct vector, voxel, graph, graphlet, and
other representations is typically performed inefficiently because
of redundant calculations and how their efficiency could be im-
proved by considering fundamentals of crystallographic (orbits)
equivalency to increase throughout of literature machine learning
model, typically between 2 to 10 times (e.g., 5 times for ÿ-
phase). Critically, this optimization applies to 98.75% of 4.5
million stored in MPDD [53], which includes both DFT-based [103
16,18] and experimental [21323] data, showing massive impact
if deployed. KS2022 featurizer implements these advances in
pySIPFENN using spglib [48] and Voro++ [43345], while
retaining ability to process arbitrary structures.
• Section 4 explores how symmetry is broken in dilute, doped, and

defect structures, to then discuss site equivalency under different
representations and how this notion can be used to improve
efficiency by skipping redundant calculations of sites which are
not guaranteed to be equivalent based on crystallographic sym-
metry alone but need to be contrasted with defect-free represen-
tation. KS2022_dilute featurizer implements these advances
in pySIPFENN. The typical speed increase users can expect is
1.5 to 3 times relative to KS2022. For instance, a 54-atom BCC
supercell with a dilute atom, discussed in detail in Section 4,
requires 2 times less site calculations relative to KS2022 and 13.5
times less than the traditional approach of calculating all sites.
• Section 5 discusses featurization of perfectly random configu-

ration of atoms occupying an arbitrary atomic structure and,
for the first time, considers fundamental challenges with us-
ing SQS approach in the context of forward and inverse ma-
chine learning model deployment by extending past discussion
on SQS limitations given by van de Walle et al. [73], which
do not typically appear in ab initio and thermodynamic studies.
KS2022_randomSolutions featurizer has been developed to
efficiently featurize solid solutions of any compositional com-
plexity by expanding the local chemical environments (LCEs)
ensemble until standardized convergence criteria are met.
• As described in Section Software Availability and Accessibility,

software introduced in this work is continuously tested, well
documented, regularly maintained, and

• Throughout this work, the authors explicitly discuss how ad-
vances in featurization efficiency described in this work can be
applied to different kinds of similar tools in the community,
including those using voxel, graph, or graphlet representations.

Software availability and accessibility

pySIPFENN or python toolset for Structure-Informed Property and
Feature Engineering with Neural Networks is an easily extensible free,
open-source software (FOSS) under OSI-approved LGPL-3.0 license,
available as (1) source code hosted in a GitHub repository (git.
pysipfenn.org), (2) a python package through PyPI index, and (3) a
conda package hosted through conda-forge channel.

It is very well-documented through (1) API reference, (2) detailed
changelog, (3) install instructions, (4) tutorials and task-specific notes,
and (5) FAQ, compiled for development (pysipfenn.org/en/latest), sta-
ble (pysipfenn.org/en/stable), and past (e.g., pysipfenn.org/en/v0.12.
0) versions.

pySIPFENN has been built from the ground up to be a reli-
able user tool. It is automatically tested across a range of platforms
(Linux/Windows / Mac (Intel) / Mac (M1)) and Python versions on
every change, as well as on a weekly schedule.

It has been actively disseminated to its target audience through two
large workshops organized with support from the Materials Genome
Foundation (MGF / materialsgenomefoundation.org). The first one,
covering v0.10.3 and held online on March 2nd 2023, had over
300 users registered and over 100 following all exercises. It has been
recorded and published on MGF’s YouTube channel [80]. The second
one, using v0.12.1, was held in-person on June 25th 2023 at the
CALPHAD 2023 conference in Boston, as a part of Materials Genome
Toolkit Workshops, covering its integration with ESPEI [25] and
pycalphad [27]. In November 2023, it was also employed in a pair of
workshop-style graduate-level guest lectures introducing materials in-
formatics (amkrajewski.github.io/MatSE580GuestLectures), which can
be used as an advanced tutorial.
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Appendix A. OPTIMADE property data fetching, limitations, and
examples

The OPTIMADE-based ML-model adjuster from the ModelAd-
justers submodule of pySIPFENN, introduced in Section 2.1, in-
herits the limitations of the current state of OPTIMADE [39], which
include limited degree of standardization of what is served, beyond core
specification (e.g., formulas and atomic structure definitions). Thus,
users typically have to rely on the provider specific fields to extract
data of interest, such as DFT results.

Within the current implementation of pySIPFENN, as explained in
the corresponding documentation at pysipfenn.org, users are expected
to (1) select a provider from the list at optimade.org, (2) consult
the provider website or manual to establish which field values (scalar
or array) they want to fetch for their specific use case, and (3) spec-
ify the targetPath to the said field. Both provider string and
targetPath tuple can then be passed to OPTIMADEAdjuster at
initialization. The provider-specific field structure can be changed at
any time; thus, it should be verified each time.

Numerous fields can be queried, but to give a set of examples, at
the time of writing, the following queries can be made:

• provider=’mp’,targetPath=(’attributes’,’_mp_s
tability’,’gga_gga+u’,’formation_energy_per_a
tom’) to obtain the GGA+U formation energy per atom from
Materials Project [15]. If no inputs are given, this is passed as a
default value.
• provider=’alexanderia’,targetPath=(’attribute
s’,’_alexandria_scan_formation_energy_per_ato
m’) for the SCAN formation energy per atom in Alexandria
• provider=’alexanderia’,targetPath=(’attribute
s’,’_alexandria_formation_energy_per_atom’) for
the GGAsol formation energy per atom in Alexandria
• provider=’jarvis’,targetPath=(’attributes’,’_
jarvis_formation_energy_peratom’) for the
optb88vdw formation energy per atom in JARVIS
• provider=’mpdd’,targetPath=(’attributes’,’_mp
dd_formationenergy_sipfenn_krajewski2020_nove
lmaterialsmodel’) for the formation energy predicted by
the SIPFENN_Krajewski2020_NovelMaterialsModel
for every structure in MPDD.

Appendix B. Random solid solution metadata and variability con-
siderations

As mentioned in Section 5, for specific applications, one may want
to track the variability in the individual additions/expansions of the
global Local Chemical Environment (LCE) ensemble generated during
featurization with KS2022_randomSolutions submodule. Infor-
mation about these can be used within modeling efforts in different
ways. First, they can be treated as additional meta-features passed to
an ML model that may be learnt from, which can be particularly useful
when modeling properties dependent on the variability in the studied
material. Second, they may be used within uncertainty quantification
efforts in order to estimate characteristics of the distribution, such as
width or multi-modality. Third, the extreme cases or the extent of the
distribution tail that may be critical to modeling properties reliant on
some rare events, such as mechanical failure in the weakest point or
catalytic behavior of some configurations.

Within pySIPFENN’s KS2022_randomSolutions, by default,
only the final global ensemble is being returned; however, this behavior
can be easily overridden with returnMeta=True flag passed to the
main generate_descriptor function. As described in the docu-
mentation, this will cause it to return an extensive dictionary of fitting
data as the second part of the return tuple. It can then be used to easily
access data of interest in the context of variability.

First, the fitting history under result[1]["propHistory"]
enables one to (1) track the evolution of the individual features of
the growing global ensemble at different iterations, corresponding to
part C of Fig. 4 in Section 5, and (2) investigate the evolution of ML
predictions of one or more properties as the global ensemble is growing,
as depicted in Fig. 5.

As can be seen, the formulas with sets of chemically similar el-
ements in similar proportions, such as Hf6Zr8Ta3Nb3 (second from
the top), generally converge quickly and do not change much dur-
ing the convergence (comparable to the model’s mean absolute er-
ror (MAE) of 0.050). On the contrary, complex formulas, such as
Hf2.5Zr1Ti25Ta12.5Nb26.75V10Mo20Cr2C0.25 (first from the top), take
much longer to converge and can significantly change, including
iteration-to-iteration, when rare components like 1/400 carbon atom
in the alloy mentioned above occurs in the given ensemble addition.

Furthermore, the individual LCE ensembles generated by
KS2022_randomSolutions can be accessed under result[1]["
individualResults"] and investigated directly or passed through
ML models. The latter is depicted in Fig. 6 showing violin plots
corresponding to the property evolutions in Fig. 5.

As shown in Fig. 6, similar observations can be drawn as earlier
from Fig. 5, but with improved explainability. For instance, one can
observe the population of carbides in Hf2.5Zr1Ti25Ta12.5Nb26.75V10Mo20

Cr2C0.25. Furthermore, in several cases, the distribution can be observed
to be relatively wide when dissimilar metals are combined and to be
narrow when similar elements are combined, especially if the said
similarity is gauged concerning their lattice stability.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.commatsci.2024.113495.

Data availability

The source code of pySIPFENN is open under LGPL-3.0 at GitHub
(git.pysipfenn.org), PyPI, and conda-forge. Documentation
(pysipfenn.org), workshops, and tutorials were also published.
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Fig. 5. An example of the evolution of ML predictions of formation energy as a function of KS2022_randomSolutions iteration for 20 randomly selected high entropy alloys
(HEAs) from the ULTERA Database (ultera.org) [81] populating a BCC lattice.

Fig. 6. An example of the fitted distributions of ML predictions of formation energy for 20 randomly selected high entropy alloys (HEAs) from the ULTERA Database (ultera.org) [81]
populating a BCC lattice.
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