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Recording Cilia Activity in Ctenophores 

Tigran P. Norekian and Leonid L. Moroz 

Abstract 

Pelagic ctenophores swim in the water with the help of eight rows of long fused cilia. Their entire behavioral 
repertoire is dependent to a large degree on coordinated cilia activity. Therefore, recording cilia beating is 
paramount to understanding and registering the behavioral responses and investigating its neural and 
hormonal control. Here, we present a simple protocol to monitor and quantify cilia activity in semi-intact 
ctenophore preparations (using Pleurobrachia and Bolinopsis as models), which includes a standard electro-
physiological setup for intracellular recording. 
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1 Introduction 

Ctenophores evolved unique locomotory and integrative systems 
[1–6], reaching a tissue and organ complexity comparable to bila-
terian animals [7]. The evolutionary scenario includes independent 
origins of neurons [8, 9], synapses [10, 11], and alternative inte-
grative systems [12], where ciliated structures (not muscles) diver-
sified as the primary effectors. 

The role of cilia in ctenophores is overwhelmingly rich and 
essential for virtually all functions and behaviors [6, 13, 14]. One 
primary example is the use of cilia for complex locomotion—cte-
nophores move in the water column with the help of eight rows of 
ctenes, which consist of the large mechanically fused swim cilia 
[14]. The entire coordination of multiple behaviors in ctenophores 
is also primarily controlled by variations in the activity of swim cilia, 
and these mechanisms were under intensive investigation [6, 13, 
15–22]. 

Although cilia are the major effectors in ctenophores, with 
presumed neuronal control, little is known about synaptic regula-
tion and neurotransmitters controlling cilia movement. Therefore,
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recording cilia activity in ctenophores is essential for their behav-
ioral and functional analyses. Here, we describe a simple protocol 
that was successfully used to record and quantify cilia beating in 
ctenophores during our investigation of the physiological roles of 
different transmitters [23] and their evolution [24–26].
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2 Materials 

1. High Mg2+ seawater—333 mM magnesium chloride (MgCl2) 
is added to filtered seawater at 1:1 ratio. 

2. Sylgard-coated Petri dishes (World Precision Instruments, Syl-
gard Silicone Elastomer, SYLG184). 

3. Small steel insect pins. 

4. Glass microelectrodes—borosilicate glass micropipettes for 
intracellular recording (World Precision Instruments, standard 
glass capillaries, 2 mm OD with a thin filament, 1B200F-4). 

5. Potassium acetate—3 M solution. 

2.1 Equipment 1. Nikon stereoscopic microscope SMZ-10A. 

2. Micromanipulators (Warner Instruments, Standard Manual 
Control Micromanipulators, MM-33). 

3. Micropipette puller (Sutter Instruments, Flaming/Brown 
Micropipette Puller P-97). 

4. Intracellular amplifiers (A-M Systems Neuroprobe 1600 
Amplifiers). 

5. Chart recorder (Gould WindoGraf 940 4 Channel Recorder). 

3 Methods 

1. Freshly collected animals were incubated in high Mg2+ seawa-
ter for about 1 h to prevent muscle contractions. We used large, 
1–2 cm, Pleurobrachia bachei and medium-sized, 3–4 cm, Boli-
nopsis microptera for these experiments. 

2. The animals were then tightly pinned to a Sylgard-coated Petri 
dish with small steel needles to prevent body movements other 
than cilia beating (see Note 1). Relatively small animals (1 cm 
Pleurobrachia) were used whole without dissection; larger ani-
mals (2 cm and above) were dissected, and parts of a body wall 
with 2–3 cilia rows were pinned the same way to the Petri dish. 

3. The high Mg2+ solution was washed out by fresh seawater 
several times during 30-min intervals to restore the normal 
chemical balance.
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4. The Petri dish was placed in a standard electrophysiological rig 
on a recording platform and connected to the Ag/AgCl refer-
ence electrode. 

5. We used glass microelectrodes filled with 3 M potassium ace-
tate to record cilia beating. The sharp microelectrodes were 
pulled using Sutter Electrode Puller. 

6. The original resistance of sharp microelectrodes (made for 
intracellular recordings) was 20–40 MΩ. A narrow strip of 
thin paper was used to carefully touch the tip of the electrode 
to break off the fragile sharp end. The resulting electrode was 
more stable to further mechanical contact and had a resistance 
of about 10 MΩ. Electrodes with very low resistances below 
2 MΩ were unsuitable. 

7. The electrodes were then connected to the micromanipulators 
and the intracellular amplifiers (Neuroprobe 1600, A-M 
Systems). 

8. With the help of micromanipulators and under visual control 
via a dissecting microscope, the tip of the electrode was care-
fully placed next to the cilia combs so that during cilia beating, 
cilia were touching the tip of the electrode (Fig. 1). This 
physical contact created a brief electrical signal picked up by 
amplifiers and recorded on paper and in digital form using 
Gould Recorder (WindoGraf 980). Thus, each cilia beat was 
translated into a fast electrical spike, which allowed a digital 
recording of cilia beat frequency, but not the amplitude and 
power of beating (see Note 2). 

9. To understand whether the cilia activity pattern was modulated 
by polysynaptic inputs or inherent to cilia, chemical isolation 
was used by bathing the preparation in high Mg2+ saline for 
5–15 min (333 mM MgCl2 was added to filtered seawater at 1: 
1 ratio). High Mg2+ solution was applied into the recording 
dish using a graduated pipette attached to a long small-
diameter tube. Elevated magnesium chloride solution sup-
presses synaptic chemical transmission and is widely used in 
comparative neurobiology [19, 20]. 

3.1 Illustrated 

Examples 

The proposed protocol allows reliable registering and quantifying 
locomotory cilia activity in ctenophores. We experimented primar-
ily with Pleurobrachia bachei and Bolinopsis microptera, although 
other ctenophore species, including larval and juvenile, can be used 
for that purpose. 

Patterns of cilia beating in Pleurobrachia were always very 
variable, frequently with powerful bursts and inhibitory episodes 
(Fig. 2a; see also [23]). Such activity might represent intact behav-
ior in a free-moving Pleurobrachia as an ambush predator 
[6]. Sometimes, however, the cilia beating in Pleurobrachia showed



a constant active beating for a prolonged period (Fig. ). In
contrast, Bolinopsis had more regular cilia beating with fewer activ-
ity patterns and lower frequency (Fig. , ). Notably, the complex
patterns of cilia activity were eliminated in the presence of a high

b3a

2b
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Fig. 1 Schematic diagram showing the position of the recording glass micro-
electrode next to the ctenes of swim cilia in Pleurobrachia 

Fig. 2 Cilia beating in Pleurobrachia bachei is very variable and complex, similar 
to intact behaviors in free-moving animals. (a) Episodes of high-frequency 
bursting with periods of inhibition between them. (b) Tonic continuous cilia 
beating with possible brief episodes of acceleration. The numbers above the 
traces show the time of recordings



concentration of Mg2+ (Fig. 4; see [23]), known to suppress syn-
aptic inputs [27, 28]. These findings indicate the presence of mul-
tifaceted chemical inputs (e.g., peptides [9, 29, 30] or nitric oxide 
[31]) and likely direct synaptic control of cilia, which is also con-
firmed by ultrastructural data with a remarkable diversity of 
synapses [5, 14, 32].
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Fig. 3 Cilia beating in Bolinopsis microptera is less patterned and more regular than in Pleurobrachia. 
However, it demonstrates periods of higher-frequency beating (a) and slower activity (b) 

Fig. 4 High Mg2+ seawater blocked complex patterns of cilia beating (a)  in  Pleurobrachia, suggesting that 
synaptic inputs initiated episodes of high-frequency bursting and inhibition. (From [23]). The regular unvarying 
cilia beating was sustained during high Mg2+ solution exposure (b). The complete recovery was achieved 
within several minutes following washing in normal seawater, which fully restored episodes of bursting and 
inhibition (c). Numbers under the traces show the time of recordings
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4 Notes 

1. It was crucial for stable recording to have the ctenophore body 
wall tightly pinned to the Sylgard-coated Petri dish, with abso-
lutely no movements in it, except cilia beating. If body wall 
muscles contracted and moved ctene row even a couple of mm 
away from the electrode, the electrode would stop picking up 
the signal, and recording continuity would be prevented. 

2. It is important to note that this technique does not allow 
quantification of cilia beating amplitude and forces—only the 
frequency. The electrodes register mechanical contact with the 
cilia. 
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