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A reduced basis warm-start iterative solver for the
parameterized linear systems
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This paper proposes and tests the first-ever reduced basis warm-
start iterative method for the parametrized linear systems, exem-
plified by systems obtained by discretizing the parametric partial
differential equations. Traditional iterative methods are usually
used to obtain the high-fidelity solutions of these linear systems.
However, they typically come with a significant computational
cost which becomes challenging if not entirely untenable when the
parametrized systems need to be solved a large number of times
(e.g. corresponding to different parameter values or time steps).
Classical techniques for mitigating this cost mainly include accel-
eration approaches such as preconditioning. This paper advocates
for the generation of an initial prediction with controllable fidelity
as an alternative approach to achieve the same goal. The proposed
reduced basis warm-start iterative method leverages the mathe-
matically rigorous and efficient reduced basis method to generate
a high-quality initial guess thereby decreasing the number of iter-
ative steps. Via comparison with the iterative method initialized
with a zero solution and the RBM preconditioned and initialized
iterative method tested on two 3D steady-state diffusion equations,
we establish the efficacy of the proposed reduced basis warm-start
approach.
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1. Introduction

In this work, we consider the parametrized linear systems that take the
general form of

Ah(µ)uh(µ) = fh(µ), (1)

where Ah(µ) denotes a parameter-dependent matrix of dimension N × N ,
un(µ), fh(µ) ∈ RN are N -dimensional vectors, and µ ∈ D ⊂ Rp is a p-
dimensional parameter vector. They often stem from the discretization of
parametric partial differential equations (pPDEs) whose real-time solution
is widely in demand for many applications such as optimization, uncertainty
quantification, and inverse problems. These systems can usually be solved
with high precision by various iterative methods [20], especially when the
system is large. Several classical iterative methods, such as Jacobi, Richard-
son, and Gauss-Seidel methods, etc, are the simplest options. They are not
only used as standalone solvers but also as preconditioners for accelerating
other methods. Similarly, multigrid methods (MG) have been widely de-
veloped as both iterative methods [3, 15] and preconditioners [28]. There
is another class of mainstream methods, Krylov subspace methods, which
includes CG [16], BiCGSTAB [29], GMRES [27], etc.

However, all these high-fidelity iterative methods depend on the full-
order model (FOM) that has a large number of freedom (DoFs). Some of
these systems need to be solved toward machine precision (e.g. long-time
simulations in astrophysics) which means that it will take a large number
of iterative steps. Both factors contribute to an extremely time-consuming
process. What exacerbates the situation is that repeatedly solving such prob-
lems for different parameter instances is often necessary. It is thus impera-
tive to design efficient and reliable solvers for such problems that converge
to machine precision.

In recent decades, the reduced basis method (RBM), as a class of reduced
order modeling techniques, has been developed and widely used to obtain
the fast solution of pPDEs [25, 17, 14]. The RBM achieves high efficiency
via an offline-online decomposition strategy and a mathematically rigorous
procedure to build a surrogate solution space. In the offline phase, a reduced
basis (RB) space, WN , of dimension N � N , the number of FOM DoFs, is
successfully built by the greedy algorithm [26, 2] or the proper orthogonal
decomposition (POD) [18, 21]. With this surrogate approximate space, a
reduced-order model (ROM) can be derived that enforces the PDE at the
reduced level making the ROM physics-informed as opposed to purely data-
driven. Subsequently, for different values of parameters, we only need to
solve the ROM with a much lower computational cost in the online phase.
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In this work, we propose and test the first-ever Reduced Basis Warm-
Start (RBWS) iterative method leveraging the mature RBM framework to
address the cost challenge of using the traditional iterative methods to re-
peatedly solve parametrized linear systems. The specific RBM we employ
is a highly efficient variant, the so-called L1-based reduced over-collocation
(L1ROC) method [8]. After a learning stage with a bare-minimum overhead
cost thanks to a cost-free L1-norm based error indicator [9], it is capable
of providing a highly accurate initial prediction for the iterative methods.
In essence, we are developing a data-driven warm-start approach based on
the state-of-the-art physics-informed model order reduction strategies for
the traditional iterative solvers for linear systems. Furthermore, we study
the acceleration functionality of the RBM as a preconditioner. Via a formal
analysis, we show that the approximation accuracy of the RB space of a
fixed dimension, due to the need of preserving the computational efficiency,
will deteriorate as the iteration goes on thus having a gradually more limited
acceleration effect. In the numerical experiments, we implement the multi-
grid preconditioned conjugate gradient (MGCG) method [28] and the multi-
space reduced basis preconditioned conjugate gradient (MSRBCG) method
[11] initialized with the RB initial value. The numerical results demonstrate
that the MGCG method with our proposed warm-start approach has the
best performance on both convergence and efficiency.

We remark that this is by far not the first attempt to hybridize a sur-
rogate model with a full order iterative solver. There has been a class of
hybrid methods, in which the data-driven models have been employed to
improve the traditional iterative methods for saving computational effort
or accelerating convergence. In [30], the authors proposed a neural network
warm-start approach for solving the high-frequency inverse acoustic obstacle
problem. A combination of deep feedforward neural networks and convolu-
tional autoencoders is used to establish an approximate mapping from the
parameter space to the solution space that serves as a means to obtain very
accurate initial predictions in [24]. In [19], the non-intrusive reduced-order
model was used to improve the computational efficiency of the high-fidelity
nonlinear solver. In [11, 12, 23, 24], the authors proposed a multi-space
reduced basis preconditioner by combining an iteration-dependent RB com-
ponent that is derived from an RB solver and a fine preconditioner. Different
preconditioned iterative methods such as the Richardson method and the
Krylov subspace methods with this precondition have been studied. How-
ever, it’s worth pointing out that these methods were not tested till machine
accuracy which is the regime that a purely data-driven approach (such as
the non-physics-informed neural network) or the RBM preconditioning may
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encounter challenges. In contrast, our proposed RBWS method does not

face these challenges, and we formally analyze the limitations of the RBM

preconditioning techniques.

The structure of this paper is as follows. Firstly, two iterative methods

are reviewed in Section 2. In Section 3, we present the new RBWS method

and analyze the limitations of the RBM preconditioning techniques. The

numerical results are shown in Section 4 to demonstrate the convergence

and the efficiency of the proposed method. Finally, concluding remarks are

drawn in Section 5.

2. Background

This section is devoted to the review of two efficient preconditioned iterative

methods for solving the linear system (1), namely, the multigrid precondi-

tioned conjugate gradient (MGCG) method [28] and the multispace reduced

basis preconditioned conjugate gradient (MSRBCG) method [11]. To start,

we briefly outline the conjugate gradient method and its preconditioned ver-

sion since both MGCG and MSRBCG are specific cases of the preconditioned

conjugate gradient (PCG) method.

2.1. Preconditioned conjugate gradient method

The conjugate gradient (CG) method [16] was designed for solving the sym-

metric positive-defined linear systems. The idea is to solve the equivalent

optimization problem aiming to minimize the following quadratic function

Q(uh(µ)) =
1

2
uTh (µ)Ah(µ)uh(µ)− fTh (µ)uh(µ).

The CG algorithm recursively solves for the kth iteration u
(k)
h (µ) in the kth

Krylov subspaces Kk,

u
(k)
h (µ) = arg min

uh(µ)∈Kk
Q(uh(µ)).

The PCG method is an enhanced CG method through preconditioning. Ap-

plying a linear transformation to the original system (1) with the matrix

T (µ), called the preconditioner, results in the following system

T−1(µ)Ah(µ)uh(µ) = T−1(µ)fh(µ), (2)
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which, with an appropriately designed T (µ), features a smaller condition
number than that of (1). Invoking the CG method to solve the precondi-
tioned system (2) leads to the PCG method for (1) as presented in Algorithm
1. We denote the application of the kth PCG iteration to obtain the kth so-

lution u
(k)
h (µ) with respect to the (k − 1)th solution u

(k−1)
h (µ) by

u
(k)
h (µ) = PCG(Ah(µ), fh(µ), u

(k−1)
h (µ);P(·)). (3)

To describe a generic framework including the MGCG and MSRBCG algo-
rithms presented below, we denote the preconditioner by P(·). The vanilla
version above is nothing but PCG with P(·) defined as matrix multiplication
(linear solve) with T−1(µ).

Algorithm 1 PCG algorithm with a generic preconditioner P(·)
1: Input: Ah(µ) ∈ RN×N , fh(µ) ∈ RN , preconditioner P(·), the residual toler-

ance δ, the maximum number of iterations Lmax and an initial value u
(0)
h (µ)

2: Compute initial residual r
(0)
h (µ) = fh(µ)−Ah(µ)u

(0)
h (µ) and set k = 0

3: s0(µ) = P(r
(0)
h (µ))

4: p0(µ) = s0(µ)

5: while ‖r(k)
h (µ)‖/‖fh(µ)‖ < δ & k < Lmax do

6: αk(µ) =
(r

(k)
h (µ))T sk(µ)

pTk (µ)Ah(µ)pk(µ)

7: u
(k+1)
h (µ) = u

(k)
h (µ) + αk(µ)pk(µ)

8: r
(k+1)
h (µ) = r

(k)
h (µ)− αk(µ)Ah(µ)pk(µ)

9: sk+1(µ) = P(r
(k+1)
h (µ))

10: βk(µ) =
(r

(k+1)
h (µ))T sk+1(µ)

(r
(k)
h (µ))T sk(µ)

11: pk+1(µ) = sk+1(µ) + βk(µ)pk(µ)
12: k = k + 1
13: end while

2.2. Multigrid preconditioner

The multigrid (MG) method [3, 15] exploits the coarse-grid correction to
overcome the limitation of the classical iterative approaches that tend to
efficiently eliminate the high-frequency error, but not the low-frequency one.
We consider an MG method with J + 1 (J ≥ 1) levels. Let Pi(µ) denotes
the prolongation operator from level i to level i + 1 with 0 ≤ i ≤ J . With
the finest coefficient matrix AJh(µ) = Ah(µ), then the coefficient matrix
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Aih(µ) at ith level grid can be computed by Aih(µ) = P Ti (µ)Ai+1
h (µ)Pi(µ)

for 0 ≤ i ≤ J − 1. Considering a general equation Au = b, we denote

u2 = S(u1, A, b, ν) (4)

a smoothing step performing a smoother (Jacobi or Gauss-Seidel) ν times

on u1 to obtain u2. For the equation Aih(µ)uih(µ) = b(µ), one iteration of

the V-cycle MG method at level i is presented in Algorithm 2, denoted by

u(µ) = MG(b(µ), Aih(µ), i). Using the MG method as a preconditioner of

the PCG method, i.e., replacing the Step 9 of Algorithm 1 by sk+1(µ) =

MG(r
(k+1)
h (µ), Ah(µ), J), we obtain the MGCG method.

MGCG(Ah(µ), fh(µ), u
(k−1)
h (µ)) := PCG(Ah(µ), fh(µ), u

(k−1)
h (µ);MG(·, Ah(µ), J)).

Algorithm 2 MG V-cycle at level i: u(µ) = MG(b(µ), Aih(µ), i)

1: Input: {Ai
h(µ)}Ji=0, {pi(µ)}J−1

i=0 , b(µ), the number of pre-smoothing steps ν,
and level i

2: Implement the pre-smoothing process ũ(µ) = S(0, Ai
h(µ), b(µ), ν)

3: Compute residual ri(µ) = b(µ)−Ai
h(µ)ũ(µ)

4: Restrict residual ri−1(µ) = pTi−1(µ)ri(µ)
5: Correct the error on the coarse grid:

if i = 1, e0(µ) = (A0
h(µ))−1r0(µ)

else ei−1(µ) = MG(ri−1(µ), Ai−1
h (µ), i− 1)

6: Prolongate coarse grid correction u(µ) = ũ(µ) + pi−1(µ)ei−1(µ)
7: Implement the post-smoothing process u(µ) = S(u(µ), Ai

h(µ), b(µ), ν)

2.3. Multispace reduced basis preconditioner

Multispace reduced basis (MSRB) preconditioner [11] combines a fine grid

preconditioner, such as Jacobi and Gauss-Seidel preconditioner with a coarse

preconditioner induced from a reduced basis solver. We consider the equa-

tion Ah(µ)uh(µ) = b(µ). With ns snapshots {uh(µi)}nsi=1 (that are the high-

fidelity solutions computed for the training parameters Ξtrain = {µi}nsi=1), the

proper orthogonal decomposition (POD) is used to build the RB space of di-

mensionN , represented by the column space of a matrix WN = [w1, . . . wN ] ∈
RN×N . Then we can obtain an RB approximation urbh (µ) = WNuN (µ) by

solving the following reduced linear system

AN (µ)uN (µ) = bN (µ). (5)
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where AN (µ) ∈ RN×N and bN (µ) ∈ RN are obtained by projecting Ah(µ)
and b(µ) to the RB space

AN (µ) = W T
NAh(µ)WN , bN (µ) = W T

Nb(µ).

Thus the RB solution can be expressed as

urbh (µ) = WNA
−1
N (µ)bN (µ).

Let the application of the above POD-based RBM with the RB dimension
N be denoted by

urbh (µ) = RBMPOD(Ah(µ), b(µ), N). (6)

Combining a fine smoother denoted as (4) with the RB preconditioner (6),
the MSRB preconditioner is presented in Algorithm 3, denoted by u(µ) =
MSRB(b(µ), Ah(µ), N). Replacing the Step 9 of Algorithm 1 by sk+1(µ) =

MSRB(r
(k+1)
h (µ), Ah(µ), N (k)) gives the MSRBCG method:

MSRBCG(Ah(µ), fh(µ), u
(k−1)
h (µ)) := PCG(Ah(µ), fh(µ), u

(k−1)
h (µ);MSRB(·, Ah(µ), N

(k))).

Here the kth RB space WN (k) of dimension N (k) needs to be specifically

built based on the error snapshots {e(k)
h (µi)}nsi=1 that are the high-fidelity

solutions of the kth error equation Ah(µ)e
(k)
h (µ) = r

(k)
h (µ).

Algorithm 3 MSRB preconditioner with WN : u(µ) =
MSRB(b(µ), Ah(µ), N)

1: Input: Ah(µ) ∈ RN×N , b(µ) ∈ RN , and the RB dimension N
2: Implement the fine-smoothing process ũ(µ) = S(0, Ah(µ), b(µ), 1)
3: Compute residual r(µ) = b(µ)−Ah(µ)ũ(µ)
4: compute urbh (µ) = RBMPOD(Ah(µ), r(µ), N)
5: Update u(µ) = ũ(µ) + urbh (µ)

3. Reduced basis warm-start iterative solvers

In this section, we present the reduced basis warm-start iterative method.
The method relies on the L1-based reduced over-collocation (L1ROC) method
[7, 8], a highly efficient variant of the reduced basis method, to provide a
controllable high-quality initial prediction. The PCG method presented in
Algorithm 1 is then used for refining the RB initialization. To provide some
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theoretical and intuitive footing of the new method’s superior performance

over the MSRBCG algorithm, we provide a formal analysis of the MSRB

preconditioner presented in Algorithm 3.

3.1. L1-based reduced over-collocation method

The L1ROC method is a greedy-based reduced basis method, where a greedy

algorithm adaptively chooses snapshots by finding the parameter location at

which the error estimate is maximum. This sequential sampling framework

and its avoidance of truncation after POD-type pervasive sampling make

the algorithm highly efficient and much less data-intensive.

Two key points further ensure the high efficiency of the L1ROC method.

First is the direct adoption as the online solver of the discrete empirical in-

terpolation method (DEIM) [5, 1]. Assume we have built a RB matrix WN =

[w1, . . . wN ] ∈ RN×N , and a set of collocations points XM = {x1, . . . , xM}
(M = 2N − 1). We denote by χ = [χ1, . . . , χM ] the subset of the entries

corresponding to the points XM . For simplicity of notation, we introduce a

sub-sampling matrix as

P = [eeeχ1
, . . . , eeeχM ]T ∈ RM×N ,

where eeeχi = [0, . . . , 0, 1, 0, . . . , 0]T ∈ RN denotes the unit vector whose χi-th

component equals 1. Then the RB approximation urbh (µ) = WNuN (µ) is

given by solving the minimum square error estimate of the following sub-

sampled system

PAh(µ)WNuN (µ) ≈ Pb(µ), (7)

namely,

uN (µ) = arg max
c∈RN

‖P (b(µ)−Ah(µ)WNc)‖RM .

The other point is the proposal of an efficient error indicator that relies on

the L1 norm of the RB coefficient with respect to the chosen snapshots [9].

Assume we have selected n parameters {µli}
n
i=1 from the training parameter

set Ξtrain = {µi}nsi=1 and obtained the snapshots {uh(µli)}
ns
i=1 (that are un-

orthogonalized RB vectors). With the RB matrix Un = [uh(µl1), . . . , uh(µln)],

the RB approximation urbh (µ) can be represented as urbh (µ) = Uncn(µ). The

L1-based error indicator is presented as follows

∆L1
n (µ) = ‖cn(µ)‖l1 .
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Based on this, the RB space WN and the collocation points XM are built
by a greedy algorithm efficiently, which is presented in Algorithm 4. Note
that

(un, x
n
? ) = DEIM(Wn−1, uh(µln))

in Step 7 denotes the application of the DEIM process on a new snapshot
uh(µln) with respect to the previous RB space Wn−1. The return result
un is the orthonormal (under point evaluation) RB vector and xn? is the
corresponding interpolation point. We denote the application of the L1ROC
method including the offline and online process by

urbh (µ) = RBML1ROC(Ah(µ), b(µ), N). (8)

Algorithm 4 Offline algorithm for L1ROC
1: Input: The training parameter set Ξtrain and the dimension of the RB space
N

2: Initialize W0 = R0 = X0
s = X0

r = ∅
3: Choose µl1 randomly in Ξtrain and obtain uh(µl1) by Algorithm 1. Find

(u1, x
1
?) = DEIM(W0, uh(µl1)). Then let n = 1, m = 1, Xn

s = {x1
?},

Xm = Xn
s ∪Xn−1

r and W1 = [u1].
4: for n = 2, · · · , N do
5: Solve un−1(µ) by the system (7) with Wn−1, X

m and calculate ∆L1
n−1 for

every µ ∈ Ξtrain.
6: Find µln = arg maxµ∈Ξtrain

∆L1
n−1(µ).

7: Solve uh(µln) by Algorithm 1. Find (un, x
n
? ) = DEIM(Wn−1, uh(µln)) and

let Xn
s = Xn−1

s ∪ {xn?}.
8: Compute rn−1(µln) = b(µln)−Ah(µln)Wn−1un−1(µln). Find (rn−1, x

n−1
?? ) =

DEIM(Rn−2, rn−1(µln)) and let Xn−1
r = Xn−2

r ∪ {xn−1
?? }.

9: Update Wn = [Wn−1, un], m = m+ 2, Xm = Xn
s ∪Xn−1

r .
10: end for

3.2. Main algorithm

Inspired by the neural network warm-start approaches [30, 24] and afforded
by the highly efficient online solver of the L1ROC method, we introduce the
Reduced Basis Warm-Start (RBWS) iterative method. It features an offline
training process which adds minimum overhead cost thanks to the adoption
of the highly efficient L1ROC method. After this training stage, RBWS
employs the L1ROC online solver to generate an accurate RB solution for
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each new system as the initial value. Then the PCG method presented in
Algorithm 1 is applied to refine the initial value towards the exact solution.

This RBM initialized PCG (RBI-PCG) method is presented in Algo-
rithm 5, where either (6) or (8) can be adopted as RBM(Ah(µ), fh(µ), N).
Depending on what specific P(·) the algorithm takes, it leads to the RBM
initialized MGCG (RBI-MGCG) method or the RBM initialized MSRBCG
(RBI-MSRBCG) method when replacing the P(·) in Step 5 by the MG
method of Algorithm 2 or the MSRB of Algorithm 3.

Algorithm 5 RBI-PCG algorithm, generating RBI-MGCG and RBI-
MSRBCG
1: Input: Ah(µ) ∈ RN×N , fh(µ) ∈ RN , the RB dimension N , the residual toler-

ance δ, and the maximum number of iterations Lmax

2: Generate an initial value by solving the RB system: u
(0)
h (µ) =

RBM(Ah(µ), fh(µ), N)

3: Compute initial residual r
(0)
h (µ) = fh(µ)−Ah(µ)u

(0)
h (µ) and set k = 0

4: while ‖r(k)
h (µ)‖/‖fh(µ)‖ < δ & k < Lmax do

5: u
(k)
h (µ) = PCG(Ah(µ), fh(µ), u

(k−1)
h (µ);P(·))

6: r
(k)
h (µ) = fh(µ)−Ah(µ)u

(k)
h (µ)

7: k = k + 1
8: end while

3.2.1. MSRB Update: Factors toward its low efficiency.. In this
section, we aim to provide some insight into the performance of the MSRB
preconditioner described in Section 2.3 in the RBM-initialized iterative method
for the high-precision solution. For simplicity, we consider the MSRB pre-
conditioned Richardson method that is easily rewritten as

u
(0)
h (µ) = RBM(Ah(µ), fh(µ), N),

u
(k− 1

2
)

h (µ) = u
(k−1)
h (µ) + S(0, Ah(µ), r

(k−1)
h (µ), 1), k = 1, 2, . . . ,

u
(k)
h (µ) = u

(k− 1

2
)

h (µ) + RBM(Ah(µ), r
(k− 1

2
)

h (µ), N (k)), k = 1, 2, . . . .

(9)

Here r
(l)
h (µ) = fh(µ) − Ah(µ)u

(l)
h (µ) denotes the residual corresponding to

the iterative solution u
(l)
h (µ). The method relies on corrections afforded by

the resolution of the error equations where we denote the error of the kth

iterative solution by e
(k)
h (µ) = uh(µ)− u(k)

h (µ){
Ah(µ)e

(k−1)
h (µ) = r

(k−1)
h (µ) (by the smoother)

Ah(µ)e
(k− 1

2
)

h (µ) = r
(k− 1

2
)

h (µ) (by the RBM online solver).
(10)
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The first one is a full order model that is, albeit expensive, well-known

(e.g. Multigrid literature) to be effective in driving the approximation to

convergence. However, the second one, less well-understood, relies on the

low-rank approximability of the error manifold. This strategy comes with

two challenges.

1. Improving accuracy requirement on RBM as k increases. Because

this is a correction step for u
(k− 1

2
)

h (µ), its accuracy should be above the error

committed by u
(k− 1

2
)

h (µ). As shown by the next lemma, this means that the

RB dimension will have to increase with respect to the iteration index k.

Lemma 3.1. Given that the linear system is well-conditioned and the Kol-

mogorov n-width of the error manifold

W := {Ah(µ)−1(r
(k− 1

2
)

h (µ)) : µ ∈ D}

decreases at a polynomial or exponential rate uniformly with respect to k, it

follows that the dimension n of the reduced basis manifold must increase as

the iteration index k increases.

Proof. It is easy to see, from (9), that

e
(k)
h (µ) = e

(k− 1

2
)

h (µ)− ẽ(k− 1

2
)

h (µ)

where ẽ
(k− 1

2
)

h (µ) represents the (n-dimensional) RBM online approximation

of e
(k− 1

2
)

h (µ) by (10). This is lower-bounded by the best approximation error

‖e(k− 1

2
)

h (µ)− PWn
e

(k− 1

2
)

h (µ)‖ ≤ σn(W) := max
w∈W
‖w − PWn

w‖

where PWn
denotes the projection into the RB space Wn. We have that,

with the RBM greedy algorithm, σn(W) inherits the same rate of decay of

the Kolmogorov n-width dn(W) as follows[2]1 :

• Polynomial decay. If dn(W) ≈Mn−α, then σn(W) ≈ CMn−α with

C := q
1

2 (4q)α and q := d2α+1γ−1e2. Here M := maxw∈W‖w‖ and γ

is the norm-equivalency constant between ‖·‖ and the error estimator

1To simplify our formal analysis, we assume that the upper bounds on the decay
rates in [2] are actually attainable, as typically confirmed numerically in the RBM
literature.
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adopted by the RBM. Given that Ah(µ) is well-conditioned, we have

M = γ−1
(

maxµ∈D‖r
(k− 1

2
)

h (µ)‖
)

and therefore

‖e(k)
h (µ)‖ ≈ Cγ−1

(
max
µ∈D
‖r(k− 1

2
)

h (µ)‖
)
n−α.

Given that C is dependent on α (which is assumed to be uniform with
k) and γ (which is determined solely by Ah(µ)), we conclude that

for ‖e(k)
h (µ)‖ to decay with respect to k, the RB dimension n should

increase as k increases (i.e. the iteration goes on).
• Exponential decay. The result follows similarly as in the case of

polynomial decay thanks to the inheritance of the decay rate of σn(W)
proved in [2].

2. Degradation of the low-rank structure. We first define the residual
manifold at step k

R(k) :=
{
r

(k− 1

2
)

h (µ) = fh(µ)−Ah(µ)u
(k− 1

2
)

h (µ) : µ ∈ D
}
.

As k increases and u
(k− 1

2
)

h (µ) gets more accurate, ‖r(k− 1

2
)

h (µ)‖ decreases.

Since we aim to have ‖r(k− 1

2
)

h (µ)‖ at the level of machine accuracy at con-

vergence, elements of r
(k− 1

2
)

h (µ) will become more and more comparable to
the round off error. This means that the Kolmogorov n-width

dkn := dn(R(k))

will likely decay slower as k increases. While this is confirmed by our numer-
ical results (see Figure 4 which also shows the decay rates for the residual
manifolds), we intend to leave the theoretical proof of this degradation to
future work.

Remark 3.1. The compounding impact of the two challenges enunciated
above is that the RB space dimension must increase significantly as the it-
eration proceeds if we were to maintain the convergence rate of the iterative
solver. However, this comes with a significant cost (see Appendix A) making
the preconditioning not cost-effective. On the other hand, if we aim to control
the computational cost (by e.g. fixing the RB dimension), the convergence
rate will deteriorate as the iterative solver proceeds. This is confirmed by our
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numerical results given in the next section - the convergence of the RBWS
does not deteriorate while the RBI-MSRBCG does.

4. Numerical tests

To test our algorithms, we set Ω = (0, 1)3 with non-intersecting boundaries
ΓD and ΓN such that ∂Ω = ΓD∪ΓN . We consider the following parametrized
diffusion equation 

−∇ · (K(µ)∇u(µ)) = f(µ), in Ω,

u(µ) = gD(µ), on ΓD,

∂u(µ)

∂n
= gN (µ), on ΓN .

(11)

Here, the diffusion tensor K(µ), the source term f(µ), and the boundary
conditions gD(µ), gN (µ) may depend on parameter µ ∈ D. Specifically, the
following two examples are given as considered in [23, 11] respectively.

Example 1. Dirichlet boundary value problem where the specific defi-
nitions are given by

K(µ) = 1 + µ1(sin(20π(4(x− 1

2
)2 + (y − 1

2
)2 + (z − 1

2
)2))2,

f = 3π2 sin(πx) sin(πy) sin(πz)

gD(µ) = (1−µ2) cos(10π(4(x−1

2
)2+(y−1

2
)2+(z−1

2
)2))+µ2 cos(10π(x+y+z)).

The parameter domain is D = [0, 2]× [0, 1].

Example 2. Mixed boundary value problem

ΓN = {xxx = (x, y, z) ∈ Ω : x = 1}, ΓD = ∂Ω\ΓN .

The diffusion tensor is

K(µ) = K(xxx;µ) = ν(xxx;µ)diag(1, 1, 10−2),

where ν(xxx;µ) is the piecewise constant on four subregions Ω1 = (0, 1) ×
(0, 0.5)×(0, 0.5), Ω2 = (0, 1)×(0, 0.5)×(0.5, 1), Ω3 = (0, 1)×(0.5, 1)×(0, 0.5),
and Ω4 = (0, 1)× (0.5, 1)× (0.5, 1), denoted by

ν(xxx;µ) =

{
µj , xxx ∈ Ωj , j = 1, . . . , 3,

1, xxx ∈ Ω4.
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We consider the following parameter-dependent Gaussian function as the

source term

f(xxx;µ) = µ7 +
exp

(
−((x− µ4)2 + (y − µ5)2 + (z − µ6)2)/µ7

)
µ7

,

and homogeneous boundary conditions

gD(µ) = 0, gN (µ) = 0.

The 7-dimensional parameter domain is D = [0.1, 1]3×[0.4, 0.6]3×[0.25, 0.5].

4.1. Results on convergence and efficiency of RBWS

For both examples, linear finite elements as implemented in the Matlab

package iFEM [6] with DoFs N = 35, 937 are adopted as the high-fidelity

discretization. Subsequently, we employ the three methods detailed in Table

1 to solve the resulting discrete system (1). The algorithm flow charts of

these methods are presented in Figure 1. For the MGCG method and the

Table 1: Three methods tested in this paper.

Method Iterative solver Initial guess

MGCG MGCG (Section 2.2) u
(0)
h (µ) = 0

RBI-MGCG MGCG (Section 2.2) u
(0)
h (µ) = RBML1ROC(Ah(µ), fh(µ), N)

RBI-MSRBCG MSRBCG (Section 2.3) u
(0)
h (µ) = RBMPOD(Ah(µ), fh(µ), N)

RBI-MGCG method, we use an MG method with 4 levels (J = 3) as the

preconditioner. The L1ROC method is used for the initialization of the RBI-

MGCG method. The POD-based RBM is used for the initialization of the

RBI-MSRBCG method. Here we consider a fixed RB dimension N for the

MSRB preconditioners at each iteration step, i.e., N (k) = N .

For Example 1, 70 parameters are sampled by the popular Latin hyper-

cube sampling (LHS) method [22] to build the training set Ξtrain for the

L1ROC method and POD-based RBM. Then we respectively construct the

RB spaces of different dimensions N = 10, 15, 20 and test the correspond-

ing RBM initialized iterative methods. The parametrized linear system is

solved for a testing set Ξtest consisting of 500 parameters with the residual

tolerance δ = 10−16 and the maximum number of iterations Lmax = 40. To

eliminate the parametric variations, we calculate the average value of the
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Figure 1: The algorithm flow charts of three methods tested in this paper.

norms of all relative residuals

r(k)
ave =

∑
µ∈Ξtest

‖r(k)
h (µ)‖/‖fh(µ)‖

#Ξtest
,

where r
(k)
h (µ) = fh(µ) − Ah(µ)u

(k)
h (µ). And the convergence results of the

average residual r
(k)
ave as a function of the iteration k are presented in Fig-

ure 2 top left. We can see that the RBM-initialized methods starting from

more accurate initial values require fewer iterations than the method with-

out such a warm start. The MSRB preconditioner could provide a significant

acceleration for the CG method within a certain precision. However, when

the accuracy increases further, the MSRB preconditioner is significantly de-

graded, which leads to a much slower convergence. This is consistent with

what our formal analysis in Section 3.2.1 predicts.

To demonstrate the efficiency benefit brought by the RBWS method, we

record the cumulative runtime as the number of linear solves increases, which

is shown in Figure 2 top right. The values corresponding to zero solves repre-

sent the computational cost of the offline training process. It can be seen that

the RBI-MGCG methods begin to pay off quickly when the parametrized

system is solved about 60 times thanks to its high online-efficiency. For the

RBI-MSRB methods, the construction of the MSRB preconditioners is much

more time-consuming and generates much less marginal savings online com-

pared with the RBI-MGCG method. For a more detailed comparison, we

report in Tabel 2 the break-even point (BEP) for the two RBWS methods
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that is defined as

BEP =
toff

ton(MGCG)− ton(RBWS)
.

Here, toff denotes the computation time for the offline stage, while ton means

the average computation time for the online stage. We specify two different

values for the tolerance δ and record the iteration step number L required

for the average residual r
(k)
ave to fall below δ. We see that the advantage

of RBM preconditioning (adopted by RBI-MSRBCG) disappears when we

move from low (δ = 10−8) to high (δ = 10−16) precision.

For Example 2, we build the RB spaces of dimensions N = 100, 200, 300

based on 500 training parameters for the L1ROC method and POD-based

RBM respectively, and test all methods for 30,000 testing parameters. The

results of the convergence and the cumulative time are presented in the

bottom row of Figure 2. And the the comparison results of L, toff , ton,

and BEP are shown in Table 3. The comparison of RBI-MGCG and RBI-

MSRBCG is consistent with Example 1.

Table 2: Detailed results with different δ = 10−8, 10−16 for Example 1

Method N

δ = 10−8

L toff ton BEP

MGCG – 10 – 1.87E-02 –

RBI- 10 3 7.31E-01 7.10E-03 61

MGCG 15 0 1.15E00 8.26E-04 63

20 0 1.58E00 9.32E-04 86

RBI- 10 1 6.86E-01 4.62E-03 49

MSRBCG 15 0 8.92E-02 1.54E-03 7

20 0 9.51E-02 1.72E-03 7

δ = 10−16

L toff ton BEP

20 – 3.61E-02 –

13 7.31E-01 2.30E-02 58

9 1.15E00 1.52E-02 56

5 1.58E00 8.79E-03 59

27 1.41E01 6.63E-02 ∞

8 4.70E00 2.39E-02 383

4 2.82E00 1.38E-02 125

4.2. Numerical confirmation of the efficiency degradation of the

RB preconditioner

To confirm our analysis in Section 3.2.1, we estimate the approximation

accuracy of the RB space by computing the maximum relative residual of

the RB solutions solved by (8) over the test set,

rN = max
µ∈Ξtest

‖fh(µ)−Ah(µ)urbh (µ)‖
‖fh(µ)‖

.
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Figure 2: Left: The convergence result with the iteration. Right: The total
computational cost as the number of online solvers increases. (Top: Example
1, Bottom: Example 2.)

Table 3: Detailed results with different δ = 10−8, 10−16 for Example 2

Method N

δ = 10−8

L toff ton BEP

MGCG – 11 – 1.49E-02 –

RBI- 100 7 3.56E01 1.04E-02 3929

MGCG 200 6 1.16E02 8.63E-03 9248

300 4 2.26E02 7.58E-03 15374

RBI- 100 ≥ 40 ≥6.39E02 ≥9.45E-02 –

MSRBCG 200 17 5.45E02 6.57E-02 ∞

300 10 4.66E02 5.19E-02 ∞

δ = 10−16

L toff ton BEP

22 – 2.67E-02 –

18 3.56E01 2.20E-02 5132

16 1.16E02 2.01E-02 10829

15 2.26E02 1.91E-02 17910

≥ 40 ≥6.39E02 ≥9.28E-02 –

≥ 40 ≥1.28E03 ≥1.23E-02 –

≥ 40 ≥2.00E03 ≥1.58E-02 –
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The convergence of rN with the RB dimension N is presented in Figure 3.
Comparing the approximation accuracy of the RB space with the conver-
gence results of the RBI-MSRBCG methods in Figure 2, we can conclude
that the preconditioner starts to be less efficient shortly after the iterative
accuracy exceeds the approximation accuracy of the RB space. Moreover,
we check the decay rate of the Kolmogorov n-width of the residual manifold
dkh = dn(R(k)) by running a POD on the residual snapshot collection

R(k)
:=
{
r

(k− 1

2
)

h (µ) = fh(µ)−Ah(µ)u
(k− 1

2
)

h (µ) : µ ∈ Ξtrain = {µn}nsn=1

}
,

which are obtained by the RBI-MSRBCG method with the RB dimension
N = 20 for Example 1 and N = 300 for Example 2. The rate of decay of the
relative eigenvalues λn/λmax is demonstrated in Figure 4. It’s clear that the
relative eigenvalues decay fast during the first two iterations, and decrease
much slower as the iteration goes on.
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r N
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10
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10
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r
N

Figure 3: The convergence of the relative residual rN with the RB dimension
N . (Left: Example 1, Right: Example 2.)

5. Conclusion

We propose and test a reduced basis warm-start approach employing a highly
efficient RBM variant to initialize the high-fidelity iterative method to obtain
the high-precision solutions of the parametrized linear systems. Moreover,
we discuss the efficiency limitation of RBM, for situations when solutions
with machine accuracy are sought, and when it is adopted as a precon-
ditioner in the iterative methods. The numerical results demonstrate the
advantage of the RBWS initialization and verify the limitation of RBM as
a preconditioner.
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Figure 4: Decay of the eigenvalues for the residual snapshots computed by
the RBI-MSRBCG method. (Left: Example 1, Right: Example 2.)

Appendix A. Estimate of the computational cost of the
offline stage

In this section, we give an estimation of the computational cost of the greedy-

based RBM and illustrate the cost challenge of developing high-precision RB

solutions. Let M = {u(µ) : µ ∈ D} denote the solution manifold consist-

ing of all parameter-dependent solutions. Here we first recall an essential

definition in the numerical analysis of the RBM, the Kolmogorov n-width,

indicating the difference between the optimal n-dimensional linear approxi-

mation space and the solution manifold M

dn = dn(M) = inf
dim(L)=n

sup
u(µ)∈M

dist(u(µ),L),

where L denotes the n-dimensional linear approximation spaces. Assuming

the RB space Wn of dimension n is built by the weak greedy algorithm, we

denote the following approximation error

σn = σn(M) = max
u(µ)∈M

‖u(µ)− PWn
u(µ)‖V ,

where PWn
is the projection operator on Wn. It was proved in [2, 13, 4]

that any polynomial rate of decay achieved by the Kolmogorov n-width dn
is retained by the approximation error σn. Precisely, the following holds, see

[2, Theorem 3.1].
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Theorem A.1. For M > 0 and s > 0, suppose that dn(M) ≤M(max{1, n})−s,
n ≥ 0. We have σn(M) ≤ Msγ

−2(max{1, n})−s, where Ms = 24s+1M , and

γ is a positive threshold parameter independent of n in the weak greedy al-

gorithm.

To achieve a target accuracy ε, with Theorem A.1, an estimate on the

number of greedy steps n(ε) was provided in [10, Corollary 2.4], as follows

Corollary A.1. For M > 0 and s > 0, suppose that dn(M) ≤M(max{1, n})−s,
n ≥ 0. We have n(ε) ≤ M1ε

−1/s, ε > 0, where M1 depends on M , s and

greedy parameter γ.

In the practical calculation, the greedy algorithm is applied based on a

discrete training parameter set D̃ instead of the continuous parameter set

D. In [10], the authors also estimated the size of D̃ under the assumption

‖uh(µ1)− uh(µ2)‖ ≤M‖µ1 − µ2‖, µ1,µ2 ∈ D, M > 0.

They showed that the discrete manifold M̃ = {u(µ) : µ ∈ D̃} should be a ε-

net2 of the manifoldM for the target accuracy ε. Such M̃ could be induced

by a M−1ε-net of D that scales like #D̃ ∼ ε−cp. The size #D̃ in conjunction

with the number of greedy steps n(ε) shows that the total number of error

estimator evaluations is at best of the order O(ε−cp/s).

The offline cost mainly includes two parts, the cost of computing n(ε)

FOM solutions each of dimension N and the cost of computing the error

estimators based on the RB space of dimension N = n(ε). Thus the total

offline cost scales like

Poly(N )n(ε) + Poly(N)O(ε−cp/s).

Given an exponential accuracy ε = 10−a, we can find that the offline cost

increases exponentially as the accuracy parameter a and the parameter di-

mension p increase and the parameter s that indicates the decay rate of the

Kolmogorov width decreases.

Appendix B. Summary of acronyms

To facilitate the reading of this paper, we list our acronyms in Table 4.

2If M̃ satisfies M⊂
⋃

u(µ)∈M̃B(u(µ), δ), M̃ is called a δ-net of M.
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Table 4: Acronyms and their full name used throughout this article.

BEP break-even point

CG conjugate gradient

DoFs degrees of freedom

DEIM discrete empirical interpolation method

FOM full-order model

L1ROC L1-based reduced over-collocation

MG multigrid

MGCG multigrid preconditioned conjugate gradient

MSRB multispace reduced basis

MSRBCG multispace reduced basis preconditioned conjugate gradient

pPDEs parametric partial differential equations

PCG preconditioned conjugate gradient

POD proper orthogonal decomposition

RB reduced basis

RBM reduced basis method

ROM reduced-order model

RBWS reduced basis warm-start

RBI-PCG RBM initialized PCG

RBI-MGCG RBM initialized MGCG

RBI-MSRBCG RBM initialized MSRBCG
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