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Brief History of Ctenophora
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Abstract

Ctenophores are the descendants of the earliest surviving lineage of ancestral metazoans, predating the
branch leading to sponges (Ctenophore-first phylogeny). Emerging genomic, ultrastructural, cellular, and
systemic data indicate that virtually every aspect of ctenophore biology as well as ctenophore development
are remarkably different from what is described in representatives of other 32 animal phyla. The outcome of
this reconstruction is that most system-level components associated with the ctenophore organization
result from convergent evolution. In other words, the ctenophore lineage independently evolved as high
animal complexities with the astonishing diversity of cell types and structures as bilaterians and cnidarians.
Specifically, neurons, synapses, muscles, mesoderm, through gut, sensory, and integrative systems evolved
independently in Ctenophora. Rapid parallel evolution of complex traits is associated with a broad spectrum
of unique ctenophore-specific molecular innovations, including alternative toolkits for making an animal.
However, the systematic studies of ctenophores are in their infancy, and deciphering their remarkable
morphological and functional diversity is one of the hot topics in biological research, with many anticipated
surprises.
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1 Ctenophores as the Sister Lineage to All Other Animal Phyla

Ctenophores or comb jellies are true wonders of nature! They are
the most unusual animals in the marine realm, both from structural
and molecular standpoints. “Although it is easy in a given case to
determine whether or not a particular animal is a ctenophore, it is
equally difficult to establish how closely or distantly ctenophores
are related to other forms of animals.”—this Krumbach’s note
(1925) and the challenge [1] was reconfirmed by the leading
experts at the beginning of the twenty-first century, with no mor-
phological evidence that could link the phylum Ctenophora to any
other extant phylum [2, 3]. This hundred-year enigma started to be
uncovered only recently.

Arguably ctenophores are the descendants of the earliest sur-
viving lineage of ancestral metazoans [4-8], predating the branch
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Fig. 1 Relationships among five basal metazoan clades with Choanoflagellata as the sister group to
Metazoa. Three species (Pleurobrachia bachei, Mnemiopsis leidyi, and Beroe sp. from Antarctica) illustrate
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mesoderm, and through-gut in Metazoa (see text for details). Possible origins of microRNA and HOX gene
cluster are indicated. Numbers under each lineage are the author’s estimates of the diversity of cell types in
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leading to sponges (Fig. 1). As a result, virtually every aspect of
ctenophore biology, the systemic and molecular organization, as
well as ctenophore development are remarkably different from what
is described in other representatives of 32 animal phyla. In this
respect, comb jellies are indeed “aliens” of the sea.

Ctenophores are exclusively marine species—trom the surface
to the record depth of 10,040 meters [9]. Most of the ctenophores,
especially in deep habitats, are bioluminescent. The functional role
of bioluminescence is unknown, but it is mediated by a distinct
group of photoproteins [10-23] unrelated to the famous green
fluorescent protein family.

These beautiful “aliens of the sea” (sometimes reaching 1.5 m—
Cestum) can be easily recognized on a calm day in seawater [24]
across the globe, from polar to tropical habitats [25]. Any curious
observer can find ctenophores without difficulties (Fig. 2). Cteno-
phores are unmistakably distinguished from the canonical jellies
(which belong to another phylum Cnidaria) by the presence of
brightly iridescent [26] fused cilia assembled in eight comb rows
[27, 28], hence, the name cteno-phora—comb bearers (Ancient
Greek: xteis (kteis) “comb” and @épw (phero) “to carry”). Fused
locomotory cilia are the largest in the animal kingdom and are used
to glide animals in the water with minimal disturbance, often as



Brief History of Ctenophora 3

Fig. 2 Diversity of ctenophore species. (1) Benthic ctenophores (Platyctenida). (2) Tentaculate ctenophores
(Cydippida). (3) Atentaculate Beroida or Nuda (Beroe). (4) Lobata (Bolinopsis and Mnemiopsis). (5) Lobata:
Ocyropsis. (6) Labatolampea

stealth predators [29, 30]. Such a mode of locomotion separates
combjellies from true jellyfishes that are moved by muscular jet-type
propulsions. Most ctenophores are holopelagic, but some are
creeping (Platyctenida) and even sessile ( Tjalficlia tristoma, Lyroc-
teis imperatoris).

The first ctenophore drawing (Bolinopsis and Mertensia) was
provided by a ship doctor Martens in 1671, in the vicinity of
Spitzbergen [31]. The relationships of comb jellies with other
organisms were unclear. The phylum Ctenophora was formally
established in 1889 by Hatschek as a separate group distinct in
their organization from cnidarians. However, until recently, their
affinity with cnidarians was considered, forming a clade coelente-
rates. All current phylogenomic reconstructions reject this
association.
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Four ctenophore genomes have been sequenced, annotated,
and published: two closely related cydippid species, Pleunrobrachin
bachei 5] (Figs. 3 and 4) and Hormiphora californensis [32], and
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two closely related lobates (Fig. 5), Mnemiopsis lesdys [33] and
Bolinopsis microptera [6]. Three of them (Hormiphora, Plenrobra-
chin, and Bolinopsis) have chromosome-scale resolution [6, 34]
with about 13 chromosomes, suggesting that a common »# = 13
karyotype is ancestral to this cydippid-lobate group. These
sequenced genomes are quite small, with estimated 1C sizes of
100-254 Mbp. Two additional genomes from atentaculate cteno-
phores (Beroe forskalii and B. ovata) were recently sequenced and
deposited to NCBI (Bioprojects: PRJNA421807, PRJEB23672).
The representatives of Beroida are active swimmers (Fig. 6) and
often prey on other ctenophores (such as Bolinopsis, Fig. 7) and
diverse pelagic invertebrates.

The sequencing of these ctenophore genomes and functional /
developmental data provided convincing arguments that the cte-
nophores form the first branch of the animal tree of life, sister to the
rest of all metazoans (Figs. 1 and 8). This conclusion is based on
two compelling lines of evidence. First, integrative, interdisciplin-
ary analysis of multiple traits and genes encoding neural, muscular,
immune, mesoderm, and intracellular signaling components, com-
bined with phylogenomics, revealed a reduced representation in
each of these toolkits compared to sponges and the rest of metazo-
ans [5]. This discovery led to the scenario that neurons, muscles,
and mesoderm, systemic gut with two anuses, and sensory organs
evolved more than once and independently in the
ctenophores vs. Cnidaria+Bilateria clade [5, 35-37].
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Second, the chromosome-level synteny analyses across Meta-
zoa showed that ctenophores and unicellular eukaryotes share
ancestral metazoan patterns, whereas sponges, bilaterians, and cni-
darians share derived chromosomal rearrangements [6]. Schultz
and colleagues pointed out: “the patterns of synteny shared by
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Fig. 8 Ctenophora as sister to the rest of Metazoa. The tree shows relationships among basal metazoan clades
and within species of the phylum Ctenophora (Adapted and modified from Ref. [8]). Of note, this phylogeny
does not support the classical ctenophore systematics and indicates the polyphyly of Lobata and Cydippida
and the placement of Nuda/Beroida within Lobata

sponges, bilaterians, and cnidarians are the result of rare and irre-
versible chromosome fusion-and-mixing events that provide robust
and unambiguous phylogenetic support for the ctenophore-sister
hypothesis” [6]. More than 30 ctenophore transcriptomes were
obtained in parallel, leading to the same conclusion and the
ctenophore-first hypothesis [5, 7, 8] (Fig. 8).

Giant mitochondria [38] and compact mitochondrial genomes
in ctenophores are also unique and highly derived due to their rapid
evolutionary dynamics [39—47]. These findings prevent the use of
mitogenomics for macrophylogeny. In contrast, mitogenomics is
highly valuable for deciphering divergent evolution within the
phylum [41, 42, 48, 49]. In addition, the diversity of mobile
elements in ctenophores might support the origins of certain inno-
vations and even facilitate transcription factors’ evolution [50, 51];
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many of transcription factor families (e.g. BHLH) resulted from
ctenophore-specific difersification events, supporting complex tis-
sue and organ specification.

The outcome of this ctenophore-first hypothesis is that most
cellular and system-level components associated with the animal
organization result from convergent evolution. In other words, the
ctenophore lineage independently evolved such high level of animal
complexities with the astonishing diversity of cell types and struc-
tures as bilaterians and cnidarians. Parallel and early evolution of
complex metazoan traits is associated with a broad spectrum of
ctenophore-specific molecular, cellular, developmental and feed-
ing innovations, including novel toolkits for making an animal.

2 Recent Diversification and Bottlenecks in Ctenophore Evolution

Ctenophores are animals with exceptional rotational-type symme-
try [52, 53] (Fig. 4), not recognized in other metazoans. There are
185 described species of Ctenophora (See Moroz, Collins, Paulay,
Chapter 2, this book [198]), and likely this number could be
doubled to incorporate recently discovered (but not formally
described) and mostly unknown deep-water species.

The existing classical ctenophore taxonomy recognizes two
established classes [2, 31], 9 orders, 32 families, and >50 genera
(see also Fig. 2). Traditionally, the class Tentaculata includes cte-
nophores with tentacles, such as illustrated here representatives of
the two largest orders: Cydippida (Figs. 3 and 4) and Lobata
(Fig. 5). The class Nuda includes ctenophores without tentacles,
with one order (Beroida) and two genera, Neis and Beroe (Figs. 6
and 7), which secondarily lost tentacles both in their larval and
adult stages. The presence of tentacles in adults and larval cteno-
phores (cydippid larva) is likely the ancestral trait.

However, the emerging molecular phylogeny challenges the
classical taxonomy [5, 7, 8], uncovering the polyphyly of Lobata
and Cydippida. The parallel evolution of multiple traits (Figs. 8 and
9) includes two independent transitions to benthic lifestyles in
Platyctenida or benthic ctenophores and Lobatolampen, respec-
tively (Fig. 9, red arrows). Furthermore, the comparative phyloge-
nomic analysis, using more than 30 ctenophore transcriptomes and
molecular clock estimates, indicated that the ctenophore lineage
went through a significant bottleneck about ~350-250 million
years ago [8], with a possibility of the most recent diversification
events that occurred around 100-60 million years ago (Fig. 8),
which correlates with the Cretaceous—Tertiary (K-T') extinction at
the end of the Mesozoic era, also ending the dinosaurs’ epoch.

These evolutionary bottlenecks explain the loss of some dis-
tinctive features of ancient ctenophores found in fossils of about
20 species. Indeed, some Cambrian ctenophores possessed 16-80
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comb rows (vs. only eight comb rows in all extant ctenophores)
[54]. There are also speculations that some ancestral ctenophores
had sclerotized skeletons and could be secondarily sessile, forming a
now-extinct clade Scleroctenophora [55]. Some Ediacaran fossils,
such as Eoandromedn, were interpreted as an early stem-group
ctenophore [56]. Zhao and colleagues also suggested that the ear-
liest ctenophores were suspension feeders [57], implying that ten-
tacles and predation occurred later. The earliest tentaculate
ctenophores were found in the early Cambrian [58] and Devonian
[59, 60]. Nevertheless, it isn’t easy to reconstruct their history due
to the poor preservation of ctenophores in fossil records.

3 Ctenophores as Predators

Ctenophores are carnivores (active or ambush predators), feeding
on a broad range of animals [61-63]: from zooplanktons to other
ctenophores (e.g., Beroe, Fig. 7; see also [64]), narcomedusae (e.g.,
Haeckelin [65-67], or larvaceans for Dryodora (see also [68—
75]. As a result, ctenophores exhibit a remarkable diversity of
behaviors [76-89], which are little investigated. Tentacles and
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their small branches (tentillae/tentilla) contain specialized sticky
glue cells or colloblasts [90, 91], facilitating prey capture and
performing other functions.

Ctenophores have highly elaborated digestive systems with
well-developed tripartite through-gut [31]: mouth, pharynx,
stomach, and a pair of anal pores with rhythmic contractions,
often associated with defecation [92]. Such distinctive through-
gut evolved in ctenophores independently from the rest of metazo-
ans. Absorption of digested nutrients is transported to a branching
gastro-endodermal canal system (meridional canals) and delivered
to the rest of the body.

4 Ctenophore Life Is Based on Cilia and Alternative Neural Systems

It would be proper to say that virtually all ctenophore organization
and their life is based on cilia [27, 93]. The diversity, complexity,
and control of cilia in ctenophores are greater than that observed in
other animals. In contrast to other animals, cilia, not muscles, are
the primary effectors in many ctenophores. Muscles in ctenophores
are usually involved in pray catching rather than in locomotion.
Only a few species evolved muscular jet-like propulsion (e.g., Ocyr-
opsis crystalline) and sinusoidal undulations of the whole body (e.g.,
Cestum veneris) during swimming escape responses. Some muscles
are giant and well-characterized electrophysiologically [94—
100]. These muscles control hydroskeleton tone, body shape, and
feeding, which might be the original functions of muscle elements
in animal ancestors.

Figure 10 illustrates cilia diversity in Beroe abyssicola with dif-
ferent types of cilia in the mouth (some serve as teeth for prey
capture [101-103]) and body wall. At least six types of cilia [104]
construct the aboral organ as a gravity center with dozens of living
cells—lithocytes containing statolith [105-107]. Ciliated furrows
are also efficient conductive pathways mediating various behaviors.
There are multiple types of ciliated receptors formed by nonmotile
cilia [102, 108-110].

The cilia are primarily used for locomotion with the unique
ability to reverse cilia beating [111] and contain ctenophore-
specific proteins CTENO64 and CTENO189, which are required
for paddling of comb plates and locomotion of ctenophores [112]
as well as reinforce the elastic connection among cilia to overcome
the hydrodynamic drag of giant multiciliary plates [113].

A diverse spectrum of behaviors, ciliated and muscular locomo-
tion, as well as feeding [30, 68, 93, 107], is controlled by quite
complex neural systems, and, at least in part, it is coordinated by the
aboral organ [107], an analog of the elementary brain.

The study of the neural organization of ctenophores was
started in 1880s by R. Hertwig [114] as a logical expansion of
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Fig. 10 Scanning electron microscopy of the mouth, aboral organ, and ciliated furrows of Beroe abbysicola.
(See details in Refs. [102, 103])

similar studies on cnidarians by Hertwig’s brothers [115-
117]. This fundamental work led to the most well-known hypoth-
esis of nervous system evolution [118, 119]. However, ctenophore
neurons are elusive cells to stain with convenient histological dyes
or bilaterian molecular markers due to the lack of pan-neuronal
genes across Metazoa [120].

The overall microanatomy of neural systems is now described
for 11 ctenophore species [27, 102, 108, 109, 121-128] and
summarized in Fig. 11 [129]. About 10,000 neurons were counted
in Pleurobrachia bachei, representing five distinct components:
(i) the aboral organ, (ii) polar fields, (iii) conductive pathways,
and (iv) subepithelial and (v) mesogleal nerve nets.

Integrative comparative analyses, including genomics, metabo-
lomics, molecular mapping, and physiology, suggest that cteno-
phore neurons are remarkably different from all other studied
neurons in Cnidaria and Bilateria, meaning, together with the
current phylogenetic reconstruction, their independent origins
and ongoing parallel evolution (summarized in [35-37, 130-
133]. Recent volume electron microscopy reconstruction of
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species [102, 108, 109, 127, 128, 196] with the cydippid Pleurobrachia bachei as a key reference model.
Different colors indicate different cellular populations. Most neurons and receptors (yellow) are located within
the subepithelial neural net in the skin (blue, magenta) and tentacle shields with two tentacular nerves (dark
blue). There are two concentrations of neural elements: one in the aboral organ (green) with densely packed
neurons and other cell types (the elementary brain?) and the second in the polar fields putative chemosensory
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neuron-like cells (red). Eight ciliated furrows (conductive ciliated cells—red lines) connect the aboral organ
with comb plates. The ciliated furrows are closely associated with neural net elements (insert) and are
possible under neuronal control. (Adapted from Ref. [129])

juvenile Mnemiopsis found that five neurons in the subepithelial
network form the syncytium [134], which is likely a secondary
adaptation for some neural elements. Still, most neurons and
neuro-effector communications are chemical [197] with the dis-
tinct tripartite organization of ctenophore synapses, also known as
“presynaptic triad.” Each presumed presynaptic zone contains a
three-layer complex of organelles: a single layer of synaptic vesicles
lining the presynaptic membrane, a cistern of agranular endoplas-
mic reticulum just above the row of vesicles, followed by one or
several mitochondria [27, 122, 125, 134-136].

The diversity of synaptic vesicles implies the variety of signal
molecules and neurotransmitters—most of them are currently
unknown. Gaseous nitric oxide (NO) was also implicated in inter-
cellular signaling. However, nitric oxide synthase (NOS) was not
detected in ctenophore neurons [137, 138]. Initial analysis of the
Pleurobrachia genome and transcriptomes for dozen of related
species, complemented by metabolomic and functional studies,
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indicated that the canonical bilaterian neurotransmitters such as
serotonin, dopamine, octopamine, noradrenaline, adrenaline, his-
tamine, and acetylcholine are absent in the ctenophores, and likely
bilaterian innovations [37, 120, 139].

Glutamate was proposed as a candidate for neuromuscular
transmission [5, 140] and small secretory peptides are major trans-
mitters with about 100 of ctenophore-specific neuropeptides
[5, 37]. The diversity and role of neuropeptides were subsequently
validated in two other species Mnemiopsis [141] and Bolinopsis
[142], confirming the hypothesis that the earliest transmitters can
be secretory peptides [119] and neurons evolved from genealogi-
cally different secretory cell types [132]. Of note, none of the
ctenophore neuropeptides had recognized homologs outside of
this phylum, further supporting the hypothesis about the unique
organization of ctenophore neural systems, their independent ori-
gins, and extensive parallel evolution.

5 Unique Ctenophore Development

Most ctenophores are direct developing, self-fertile hermaphrodites
with a few exceptions, such as the presence of both sexes in Ocyr-
opsis [143]. Gonads derive from the endoderm of meridional
canals; one part represents the female and the second male gonads.
Gametes are released through pores in the epidermis or through
meridional canals and anal pores (personal observation in Pleuro-
brachia bachei - see Fig 6, next Chapter). Unlike other metazoans,
polyspermy occurs in ctenophores such as Beroe. As many as
20 spermatozoa enter the egg, and the female pronucleus moves
and “selects” a male pronucleus, and the position of the selection
determines the position of the blastoporal pore [144—146]. Patterns
of early development seemed to be shared across ctenophores and
were observed for several decades of research, starting with
classical pioneering work at the end of the nineteenth century
[31, 147-161]. The latest progress is summarized in [162] using
Mmnemiopsis leidyi as a model. All available data indicate that cteno-
phore development distinctly differs from other basal metazoans
(e.g., see Fig. 12 for Pleurobrachin bachei).

The early [147, 148] and controversial history of ctenophore
embryology started with the pioneering work on biodiversity and
the earliest developmental specification discovered in 1880s by
C. Chun [149]. When C. Chun separated blastomers in two-cell
embryos, he found that each half-embryo developed half of the
adult structures in ctenophores, suggesting highly deterministic
mechanisms even after the first division during the
cleavage. G. Freeman showed that the oral-aboral axis is established
at the time of the first cleavage that cleavage plays a causal role in
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Fig. 12 Development in Pleurobrachia bachei. (Modified from Ref. [127]; see text for details)

setting up the axis and that comb plate-forming potential begins to
be localized in the aboral region of the embryo at this time [163].

The first division starts with a characteristic unipolar cleavage
furrow. Most cell fates are determined at the first cleavage stages
and continue through 60-cell stages and gastrulation, as carefully
characterized by microinjection and dye-tracing techniques
[162, 164, 165]. Macromere lineages give rise to the endoderm
and its derivatives (including endothelium of meridional canals, the
mineral-containing lithocytes generated in the floor of the aboral
organ). In contrast, aboral micromeres give rise to the ectoderm
and its components (skin, comb rows, most of the aboral organ,
tentacle epidermis with colloblasts, some neurons, and pharyngeal
epithelium). Furthermore, in ctenophores, the epithelial might also
be regulated differently than in bilaterians and cnidarians. Specifi-
cally, Par protein localization during the early development of
Munemiopsis  leidyi  suggests other modes of epithelial
organization [166].

The most fascinating is the “mesoderm” development. Accord-
ing to the carefull work of E. Metschnikoff [150] in 1885, “cteno-
phores have a ‘true’ mesoderm of entodermal origin” [31] derived
from small cells at their oral poles. These cells carried inward during
the gastrulation process proliferate and “become the cells of the
collenchyme, including muscle cells” [31].

Recent studies of Martindale and Henry on Mnemiopsis con-
vincingly identified a distinct subset of macromer-derived “oral”
micromeres, which subsequently move inside the embryo and
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differentiate into mesenchymal cells [162, 165]. The muscle cells
are supposedly derived from a type of mesenchyme cell in the
mesoglea; they are segregated early in embryonic development
and, therefore, can be considered as “true” mesodermal derivatives
(separate from epidermis and gastrodermis [167, 168]). Sepa-
rate comparative analyses of Pleurobrachia [5] and Mnemiopsis
[33] genomes revealed that ctenophores do not possess
many canonical developmental regulatory genes required for bila-
terian mesoderm specification. Moreover, these data and the
ctenophore-sister phylogeny imply that muscles and mesoderm
evolved independently in ctenophores. Thus, the ctenophore
“mesoderm” might not be homologous to the bilaterian meso-
derm as we know it today. As a result, the term “ctenoderm” was
proposed to refer to cells residing in this layer [169].

Later, post-hatching development varies more than embryonic
development, creating enormous diversity of ctenophore forms
across the phylum. Lobate ctenophores are generally flattened in
the tentacles plane, while Platyctenida are flattened in the aboral-
oral direction.

For example, after hatching as a classical cydippid larva/or
juvenile, tentacles are dramatically reduced in Lobata representa-
tives and can even be lost in adult Ocyropsis. Representatives of the
order Beroida lost their tentacles at all developmental stages and in
adults.

In some benthic ctenophores Platyctenids, adults can also lose
comb plates from their cydippid larvae. A fascinating case was
discovered in the Greenland sessile Tjalfiella tristoma, which is
viviparous; the young ctenophores grow in a womb
[31, 170]. Finally, one species Lampetia has an undifferential larval
stage that parasitizes salps [170]. This larval stage was initially not
recognized as the same species and was called Gastrodes.

Does dissogeny exist in ctenophores? In Mnemiopsis (and possibly
Beroe), continuous reproduction was reported from early juvenile
animals to large mature adults [171]. These observations challenge
the concept of dissogeny or the presence of separate phases of larval
and adult reproduction (see also [172]). Edgar and colleagues
suggested that “spawning at small body size should be considered
the default, on-time developmental trajectory rather than preco-
cious, stress-induced, or otherwise unusual for ctenophores. The
ancestral ctenophore was likely a direct developer, consistent with
the hypothesis that multiphasic life cycles were introduced after the
divergence of the ctenophore lineage” [171]. Whether such an
exceptional situation would be applied to other ctenophore species
would be the subject of future research [172].
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6 Ctenophores Are Kings of Regeneration

Woun

Control,
removal
of skin

[ Bolinopsis
_ infundibulum

In contrast to highly deterministic “mosaic” development, many
ctenophore species are capable of fast and efficient regeneration
[173-181], the most characteristic for very fragile lobate cteno-
phores (Fig. 13), but also observed for tentacles and additional
body parts (e.g., tentacles) in other lineages within Cydippida
[182] and Platynectida. The creeping Platyctenida even can repro-
duce asexually from their fragments that could regenerate the
whole animal with all organs [173, 176, 183, 184]. In contrast,
Beroids have a minimal regeneration capability.

In Bolinopsis and Mnemiopsis, we noted the remarkable regen-
eration of the aboral organ, which takes 2.5-3.5 days at ambient
temperatures, and restoration of observable behaviors within
5-6 days (n=45, author’s observations). For example, I observed
the regeneration of the aboral organ four times from the very same
animal. After the first regeneration event, I fed animals following
the recovery of their behaviors and repeated the procedure four
times! Cellular, molecular, and genomic bases of such unique

d healing: 2-3 hrs Aboral Organ
) 3olinopsis

45 min

|Neurons in skin

Fig. 13 Ctenophore regeneration. An illustrative example of wound healing in Bolinopsis microptera, where an
experimental cut of the skin area induced its rapid closing within 1 h after the injury. The aboral organ in this
species (shown on the right) can efficiently regenerate within 3 days (see text for details). The aboral organ’s
wound healing and regeneration are accompanied by notable reorganization of the subepithelial neural net

(lower right)
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regeneration capabilities are under intensive investigation
[182, 185, 186] and can provide deep insights into the synthetic
biology of the future.

7 Future Directions: Ctenophores as Key Reference Species: Culturing,
Genomics, and Gene Editing

Systematic interdisciplinary studies of ctenophores are in their
infancy, and deciphering the remarkable morphological and func-
tional diversity is one of the hot topics in biological research over
the following decades, with many anticipated surprises. Many of
these surprises would be from examples of convergent evolution,
including deciphering lineage-specific diversification across integra-
tive systems and signaling in ctenophores (Fig. 14).

Several reasonably straightforward directions in the field are
outlined below.

Classical Synapses
go nlvf_rg e ntf ACh, GI;.)GABA. 5-HT, DA, NA, AD, OA, His, s
voiution o Gly. ATP, NO, CO, H;S, H, 100 peptides + mesaderm
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Ctenophora
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Fig. 14 Molecular innovations underlying the parallel evolution of neuromuscular organization and respective
(neuro)transmitter systems in ctenophores vs. other basal metazoan lineages (Modified from Refs. [5, 37]).
Bars indicate the presence or independent radiation of selected gene families (e.g., ionotropic glutamate
receptors [iGIUR], innexins [5, 199], acid-sensitive channels (ENA) in ctenophores and Cnidaria+Bilateria
clades. Our model suggests that sponges and placozoans never developed “true” neural and muscular
systems. However, both neurons and muscles independently evolved in common ancestors of the
ctenophore vs. Cnidaria and Bilateria lineages with a distinct complement of signaling molecules and
secretory peptides
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1. Although most ctenophores cannot be routinely maintained in
laboratory culture, we already see remarkable progress in this
direction for some species [ 187—-192], primarily using facilities
of marine stations.

2. Ctenophore cells can be efficiently maintained in cell culture,
enabling a diversity of experimental manipulations [95, 193,
194].

3. The remarkable breakthrough was a success in gene editing
using CRISPR-cas9 technology in Mnuemiopsis [188] and mor-
pholinos in Bolinopsis [142].

4. Sequencing, chromosome-level, and functional annotation of
genomes from dozens of diverse ctenophore species represent-
ing all families of the phylum is needed and will be achievable
soon. This research will decipher ctenophore innovations and
be a critical platform for virtually all directions in the field.

5. Nevertheless, most surprises are anticipated in the sea, from
investigations of animals in their native habitats toward little
explored functional biodiversity for these enigmatic species.
This strategy would expand work from standard model organ-
isms such as specialized and abundant Mnemiopsis to dozens of
other ctenophore species. Here, the progress relies on the
infrastructure of already established marine laboratories as the
first step.

6. However, we expect the most discoveries by direct access to
ctenophores in their native living habitats using remote opera-
tion vehicles (ROV) and even full-scale interdisciplinary float-
ing laboratories at sea, such as the Ship-seq approach [195]
introduced earlier and leading to the first systematic molecular
access to more than 30 species [8].

7. Finally, we expect a shift from more traditional genomic or
embryological /developmental approaches to a deeper experi-
mental analysis of ctenophore cellular and system physiology,
neuroscience, and deciphering cellular bases of behaviors and
use this knowledge for future synthetic biology to make new
cell types, tissues, organs, organisms, and behaviors.

8. Finally, we anticipate discoveries in (micro)paleontology using
novel techniques and approaches to expand our understanding
of basal metazoan lineages’ origins and early radiation.
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