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Abstract. Due to quasicrystals having long-range orientational order but without translational
symmetry, traditional numerical methods usually suffer when applied as is. In the past decade, the
projection method has emerged as a prominent solver for quasiperiodic problems. Transforming
them into higher-dimensional but periodic ones, the projection method facilitates the application of
the fast Fourier transform. However, the computational complexity inevitably becomes high, which
significantly impedes, e.g., the generation of the phase diagram since a high-fidelity simulation of a
problem whose dimension is doubled must be performed for numerous times. To address the com-
putational challenge of quasiperiodic problems based on the projection method, this paper proposes
a multicomponent multistate reduced basis method (MCMS-RBM). Featuring multiple components
with each providing reduction functionality for one branch of the problem induced by one part of
the parameter domain, the MCMS-RBM does not resort to the parameter domain configurations
(e.g., phase diagrams) a priori. It enriches each component in a greedy fashion via a phase transition
guided exploration of the multiple states inherent to the problem. Adopting the empirical interpo-
lation method, the resulting online-efficient method vastly accelerates the generation of a delicate
phase diagram to a matter of minutes for a parametrized two-turn-four dimensional Lifshitz--Petrich
model with two length scales. Moreover, it furnishes surrogate and equally accurate field variables
anywhere in the parameter domain.

Key words. reduced basis method, projection method, quasicrystals, fast Fourier transform,
empirical interpolation method, phase diagram
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1. Introduction. In the 1980s, Shechtman et al. [32] observed a metallic phase
with long-range orientational order in a rapidly cooling Al-Mn alloy. Unlike the pe-
riodic structures that feature translational symmetries or 1-, 2-, 3-, 4-, and 6-fold
rotational symmetries, this new structure has a 5-fold rotational symmetries. Later,
researchers coined this new long-range ordered structure ``quasicrystals"" [23]. Since
the discovery of the 5-fold quasicrystals, more different structures with 5-, 6-, 8-, 12-,
and 20-fold symmetries have emerged in various metallic alloys [33, 36]. There have
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B786 YAJIE JI, LIJIE JI, YANLAI CHEN, AND ZHENLI XU

also been certain soft quasicrystals in soft matter systems [15, 27, 28, 35, 40, 41]. Since
their discoveries, these quasicrystals have been widely used in materials science, ther-
mal engineering, metallurgical engineering, photonics, and energy storage [36, 40, 41].

In order to understand the formation, stability, and various physical properties of
different quasicrystals, some theoretical and numerical methods have been proposed.
For the theoretical model, Lifshitz and Petrich first proposed the Lifshitz--Petrich
(LP) model to explain the 12-fold symmetry excited by dual-frequency filtering in
the Faraday experiment [25]. Subsequently, the LP model has been used to study the
stability of the two-dimensional 5-, 8-, and 10-fold quasicrystals with two characteristic
wavelength scales [20]. The LP model represents a coarse-grained mean field theory.
It assumes that the free energy of the system can be represented as a function of
the order parameters. There are two such parameters, with one representing the
temperature and the other delineating the asymmetry of the order parameter. When
these two parameters vary, the quasicrystals exhibit a rich phase behavior containing
a number of equilibrium ordered phases. This phase diagram, when captured well, can
be used to study the transition path between different structures. For example, the LP
model describing the 12-fold quasicrystals in two dimensions also includes the 6-fold
crystalline state (C6), the lamellar quasicrystalline state (LQ), the transformed 6-fold
crystalline state (T6), and the Lamella state (Lam) [39]. The structures of these stable
states are shown in real and the so-called reciprocal spaces, respectively, in Figure 1.

It is therefore imperative to simulate these quasicrystals accurately across the
entire parameter domain. That proves extremely challenging for two reasons. First,
each simulation is delicate and costly. Unlike periodic structures that are translation
invariant and therefore can be calculated in a unit cell with periodic boundary condi-
tions, quasicrystals are rotationally invariant but not translationally invariant. This
makes it difficult to determine the computational domain and boundary conditions.
Second, the need for repeated simulations exacerbates the situation. To resolve the
phase diagram even on a relatively small parameter domain, thousands of simulations
are needed.

There are two popular methods to overcome the first challenge: the crystaline
approximation method (CAM) [25, 42] and the projection method (PM) [21]. The
CAM approximates the quasicrystals with a periodic structure, and the size of the
computational domain increases rapidly as the accuracy of approximation becomes
higher. This has been systematically illustrated in several papers, and readers can refer

Fig. 1. Order parameters (top) and the corresponding prominent diffraction patterns in the
reciprocal space (bottom) for QC (af), C6(bg), LQ(ch), T6(di), and Lam(ej) states.
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to [21]. The PM utilizes the fact that the reciprocal vectors of a quasicrystal in a lower-
dimensional space can be approximated by a linear combination of basic reciprocal
vectors in a higher-dimensional space. This technique renders the quasicrystal periodic
in a higher-dimensional space [38]. With this idea, the Fourier expansion approach can
be employed for the quasiperiodic systems [11, 20, 21, 22, 43]. This projection method
is performed in a high-dimensional space and can use the fast Fourier transform. For
the two-dimensional LP model with two length scales, the phase diagram is quite
complicated due to the wide range of parameter values and large number of possible
stable states. It is severely time consuming if one wants to generate the phase diagram
for a wide range of parameters accurately [30]. This is an especially onerous task if
the physical and/or parametric domain are of high dimensions. Although an adaptive
method exists [18] that can generate the phase diagram without having to resolve the
full parameter domain, it fails to produce the field variables which are needed, e.g., in
controlling the self-assembly of quasicrystals and a variety of other desired structures
in practical experimental realizations [1, 5, 24, 29]. Moreover, if there are five possible
stable states for each unknown parameter, one needs to solve the LP model five
times with respect to five different initial values and then choose the one having the
minimum free energy as the stable state. Therefore, the pursuit of efficient numerical
algorithms for the parametric LP model has emerged as a prominent research focus.

To achieve that goal while dealing with the second challenge, we propose in this
paper a multicomponent multistate reduced basis method (MCMS-RBM) as a generic
framework for reduced order modeling for parametric problems whose solution has
multiple states across the parameter domain. The RBM [16, 30, 31] is a projection-
based model order reduction technique that provides a mathematically accurate surro-
gate solution in a highly efficient manner and is capable of reducing the computational
complexity of the full order model (FOM) by several orders of magnitude after an off-
line learning stage. It was first introduced for a nonlinear structure problem in the
1970s [26] and has been later analyzed and extended to solve many problems, such
as the linear evolutionary equation [14], viscous Burgers' equation [37], and Navier--
Stokes equations [10], among others. Its extension to the reduced over collocation
setting [6, 7, 8] makes available a robust and efficient implementation for the non-
linear and nonaffine setting. The offline-online decomposition, often assisted by the
empirical interpolation method (EIM) [2, 12], is a critical approach to realize online
efficiency, meaning the online solver is independent of the degrees of freedom of the
FOM. We adopt PM, as opposed to CAM, for our underlying FOM due to its supe-
riority of approximating quasiperiodic structures by periodic ones, albeit in a higher
dimension. For consistency among the states, we solve the higher-dimensional prob-
lems even when the structure is periodic (e.g., for C6, T6, and Lam). The proposed
MCMS-RBM has two prominent features in comparison to the standard RBM. First,
it has multiple components with each providing reduction functionality for one branch
of problem induced by one part of the parameter domain. Thanks to this feature,
the method has the potential of solving other parameterized problems whose solution
manifold features multiple braches, such as bifurcation problems. Second, without
resorting to the parameter domain configurations (e.g., phase diagrams) a priori, it
enriches each component in a greedy fashion. With the existence of multiple stable
states and the occurrences of phase transitions, it is difficult to construct precise low
dimesnional RB spaces for each candidate state. The MCMS-RBM overcomes this
difficulty by leveraging the structures of the prominent reciprocal vectors of all possi-
ble stable states and designing a phase transition indicator. This indicator guides the
greedy algorithm to explore the multiple states inherent to the quasicrytal problem.
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The rest of this paper is organized as follows. In section 2, we introduce the
parametrized LP model, the projection method, the pseudospectral method used to
obtain the high-fidelity solution, the phase diagram, and the criteria of phase tran-
sition. The key components of the MCMS-RBM, including the online and offline
procedures and the EIM process, are introduced in section 3. We then present numer-
ical results in section 4 to demonstrate the efficiency and accuracy of the proposed
MCMS-RBM. Finally, concluding remarks are drawn in section 5.

2. Lifshitz--Petrich model and the projection method. In this section, we
introduce the Lifshitz--Petrich model with two characteristic length scales and the
phase-steady full order solutions based on the projection method.

2.1. Lifshitz--Petrich model. The LP model is based on the Swift--Hohenberg
model [34] and the Landau--Brazovskii model [3], which are widely used in the study
of materials science and polymeric systems, respectively. The LP model extends one
wavelength scale of the Swift--Hohenberg equation to two characteristic wavelength
scales. The scalar order parameter \phi (\bfitr ) describes how perfectly the molecules are
aligned. It minimizes the corresponding free energy functional, which is defined as

\scrF (\phi ; c, q,\bfitmu ) =

\int 
V

dr

\biggl\{ 
c

2
| 
\bigl( 
\nabla 2 + 12

\bigr) \bigl( 
\nabla 2 + q2

\bigr) 
\phi | 2  - \varepsilon 

2
\phi 2  - \alpha 

3
\phi 3 +

1

4
\phi 4

\biggr\} 
,(2.1)

where \bfitr \in \scrR d with d = 2, V is the system volume, c is an energy penalty parameter
to ensure that the principle reciprocal vectors of structures is located on | \bfitk | = 1
and | \bfitk | = q, with q being an irrational number depending on the symmetry, \varepsilon is
the reduced temperature, and \alpha is a phenomenological parameter. For simplicity,
we define \bfitmu := [\varepsilon ,\alpha ], a two-dimensional parameter vector, and denote the last two
nonlinear terms of (2.1) and their negative derivative as

h(\phi ;\bfitmu ) = - \alpha 

3
\phi 3 +

1

4
\phi 4, g(\phi ;\bfitmu ) = \alpha \phi 2  - \phi 3.

For a given parameter \bfitmu , the candidate stable states are the local minima of the
free energy functional, that is, the solutions of the Euler--Language equation

\delta \scrF 
\delta \phi 

= 0.(2.2)

This is an eighth-order nonlinear partial differential equation. To solve it, one can use
the gradient flow method [19, 20]

\partial \phi 

\partial t
= - \delta \scrF 

\delta \phi 
= - 

\Bigl[ 
c
\bigl( 
\nabla 2 + 1

\bigr) 2 \bigl( \nabla 2 + q2
\bigr) 2

\phi  - \varepsilon \phi 
\Bigr] 
+g(\phi ;\bfitmu ),(2.3)

which is then discretized by the following implicit-explicit scheme:

\phi n+1  - \phi n

\Delta t
= - 

\Bigl[ 
c
\bigl( 
\nabla 2 + 1

\bigr) 2 \bigl( \nabla 2 + q2
\bigr) 2

\phi n+1  - \varepsilon \phi n
\Bigr] 
+ g(\phi n;\bfitmu ).(2.4)

Depending on the values of \bfitmu , solutions of this eighth order nonlinear partial differ-
ential equation lead to quasicrystals or periodic structures. For the latter, there are
many fast algorithms. Specifically, the pseudospectral method achieves efficiency by
evaluating the gradient terms in the Fourier space and the nonlinear terms in the
physical space. On the other hand, the quasiperiodic structure cannot be solved di-
rectly by these classical methods suitable for the periodic structure. We adopt the
projection method, the topic of the next section.
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MCMS-RBM TOWARD RAPID GENERATION OF PHASE DIAGRAMS B789

2.2. Phase-steady full order solutions based on the projection method.
In the PM [21], a quasicrystal is first computed in a (higher-dimensional) reciprocal
space as a periodic structure which is then projected back to the lower-dimensional
space through the projection matrix. We provide a brief review of this approach.

One can represent the reciprocal vectors \bfitk \in Rd of a d-dimensional quasicrystal
as [4]

\bfitk = h1\bfitp 
\ast 
1 + h2\bfitp 

\ast 
2 + \cdot \cdot \cdot + hn\bfitp 

\ast 
n, hi \in Z,

with \bfitp \ast 
i \in Rd having Z-rank of n1 (n> d). Different choices of the coefficient vector

\bfith \triangleq \{ h1, \cdot \cdot \cdot , hn\} 

(e.g., setting some of them to be zero and enforcing constraints on the others) lead
to different quasicrystal patterns (see Figure 1). The PM finds proper n-dimensional
vectors \bfitb \ast i ,1 \leq i \leq n, being the primitive reciprocal vectors of the n-dimensional
reciprocal space. The reciprocal vector of an n-dimensional periodic structure is then

\bfitH = h1\bfitb 
\ast 
1 + h2\bfitb 

\ast 
2 + \cdot \cdot \cdot + hn\bfitb 

\ast 
n, hi \in Z.

We denote by \scrS \in Rd\times n a projection matrix satisfying \bfitp \ast 
i = \scrS \bfitb \ast i .

This means that the d-dimensional quasicrystal is a periodic structure in the n-
dimensional space. In this paper, we focus on the case that n = 4 and d = 2 and
the quasicrystal is 12-fold (i.e., we take q = 2cos(\pi /12) in the free energy functional
\scrF (\phi (\bfitr ); c, q,\bfitmu ) (2.1). The primitive reciprocal vectors are \bfitp \ast 

1 = (1,0) and \bfitp \ast 
4 = (0,1)

(see Figure 2). However, some reciprocal vectors of the 12-fold case cannot be repre-
sented as a linear combination of \bfitp \ast 

1 and \bfitp \ast 
4 with integral coefficients. We therefore

adopt

\bfitp \ast 
1 = (1,0), \bfitp \ast 

2 = (cos(\pi /6), sin(\pi /6)), \bfitp \ast 
3 = (cos(\pi /3), sin(\pi /3)), \bfitp \ast 

4 = (0,1)

of Z-rank 4, and the projection matrix

\scrS =

\biggl( 
1 cos(\pi /6) cos(\pi /3) 0
0 sin(\pi /6) sin(\pi /3) 1

\biggr) 
.

With this idea, the Fourier expansion for the d-dimendional quasiperiodic function
is given by

\phi (\bfitr ) =
\sum 
\bfitH 

\widehat \phi (\bfitH )ei[(\scrS \cdot \bfitH )T \cdot \bfitr ], \bfitr \in Rd, \bfitH \in Zn.(2.5)

Fig. 2. Reciprocal lattice vectors of 12-fold rotational symmetry in 2- and 4-dimensional space.
The two sets of vectors are connected through the projection matrix \scrS .

1The only \{ hi \in Z\} leading to h1\bfitp \ast 
1 + h2\bfitp \ast 

2 + \cdot \cdot \cdot + hn\bfitp \ast 
n = 0 is hi \equiv 0.
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Denoting by gTk the kth row of \scrS \cdot \bfitH , we have that

\scrS \cdot \bfitH =

\left(  n\sum 
i=1

s1i

n\sum 
j=1

hjb
\ast 
ji, . . . ,

n\sum 
i=1

sdi

n\sum 
j=1

hjb
\ast 
ji

\right)  T

\triangleq (g1, . . . , gd)
T
, hj \in Z,

with b\ast ji, j = 1, . . . , n being the components of b\ast i . The LP free energy functional then
becomes

\scrF (\phi (\bfitr ); c, q,\bfitmu ) =
1

2

\sum 
\bfitH 1+\bfitH 2=0

\Biggl\{ 
c

\biggl( 
1 - 

d\sum 
k=1

g2k

\biggr) 2\biggl( 
q2  - 

d\sum 
k=1

g2k

\biggr) 2

 - \varepsilon 

\Biggr\} \widehat \phi (\bfitH 1) \widehat \phi (\bfitH 2)

 - \alpha 

3

\sum 
\bfitH 1+\bfitH 2+\bfitH 3=0

\widehat \phi (\bfitH 1) \widehat \phi (\bfitH 2) \widehat \phi (\bfitH 3)

+
1

4

\sum 
\bfitH 1+\bfitH 2+\bfitH 3+\bfitH 4=0

\widehat \phi (\bfitH 1) \widehat \phi (\bfitH 2) \widehat \phi (\bfitH 3) \widehat \phi (\bfitH 4) .

(2.6)

Substituting (2.5) into (2.4) and using (2.6), one obtains\left(  1

\Delta t
+ c

\Biggl( 
1 - 

d\sum 
k=1

g2k

\Biggr) 2\Biggl( 
q2  - 

d\sum 
k=1

g2k

\Biggr) 2
\right)  \widehat \phi t+\Delta t(\bfitH ) =

\biggl( 
1

\Delta t
+ \varepsilon 

\biggr) \widehat \phi t(H)

+ \alpha 
\sum 

\bfitH 1+\bfitH 2=\bfitH 

\widehat \phi t (\bfitH 1) \widehat \phi t (\bfitH 2) - 
\sum 

\bfitH 1+\bfitH 2+\bfitH 3=\bfitH 

\widehat \phi t (\bfitH 1) \widehat \phi t (\bfitH 2) \widehat \phi t (\bfitH 3) ,

(2.7)

where \Delta t is the temporal step, and \widehat \phi t+\Delta t and \widehat \phi t represent the Fourier coefficients at
time t+\Delta t and t, respectively. A direct evaluation of the convolution terms of (2.7)
are expensive. Instead, one can calculate these nonlinear terms in the physical space
and then perform FFT to derive the corresponding Fourier coefficients. Therefore,
the computational complexity of the PM is

O (Nt \cdot \scrN log\scrN ) ,

where Nt is the number of time iterations, and \scrN = (N\bfitH )
n
with N\bfitH being the degrees

of freedom of the pseudospectral method in each dimension.

2.3. Phase diagram, phase transition, and multiple phase-steady so-
lutions. The phase diagram is a quantitative and graphical representation of the
stability and interconversion relationships of various metastable/stable phases of a
material under different conditions, e.g., with different temperature \varepsilon and phenomeno-
logical parameter \alpha . The phase field model can be used to not only simulate the phase
transformation and microstructure changes during the processing and handling of ma-
terials, but also to predict the possible emergence of new materials or novel phases.
However, it is quite time consuming to generate the phase diagram for a wide range
of parameter values.

For each value of parameter \bfitmu := [\varepsilon ,\alpha ], due to the existence of the multiple
stable solutions corresponding to the different prominent reciprocal vectors, one needs
to solve (2.7) five times with five different initial values \widehat \phi 0(\bfscrH S) corresponding to
five candidate states \bfscrH S for S \in \{ QC, C6, LQ, T6, Lam\} . The iteration initialized
specifically based on the reciprocal vectors of each state allows for a rapid convergence
of the gradient flow equation. Indeed, we denote by\widehat \phi (\cdot ;\bfscrH S,\bfitmu )

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MCMS-RBM TOWARD RAPID GENERATION OF PHASE DIAGRAMS B791

Table 1
Prominent reciprocal vectors in four-dimensional space with nonzero initial Fourier coefficients.

|S · | = 1
(0 1 0 0) (0 0 0 1) (0 -1 0 1)

(0 -1 0 0) (0 0 0 -1) (0 1 0 -1)

|S · | = q
(1 1 0 0) (0 1 1 0) (0 0 1 1) (-1 0 1 1) (-1 -1 1 1) (-1 -1 0 1)

(-1 -1 0 0) (0 -1 -1 0) (0 0 -1 -1) (1 0 -1 -1) (1 1 -1 -1) (1 1 0 -1)

the steady-state solution for \bfitmu with the initial value given by \widehat \phi 0(\bfscrH S). As indicated
in Figure 1(f), there are 24 prominent reciprocal vectors for S = QC. These two-
dimensional reciprocal vectors can be transformed into four-dimensional space, and
they are related by the projection matrix \scrS (see Figure 2). For a more intuitive
illustration, we display all the 24 prominent reciprocal vectors in four-dimensional
space in Table 1, and the remaining sets \bfscrH S's for S\in \{ C6, LQ, T6, Lam\} are defined
as follows. For S = C6, \bfscrH S contains the six reciprocal vectors displayed in bold.
For S = LQ, it contains the 12 reciprocal vectors underlined. For S = T6, the six
prominent reciprocal vectors are displayed with dash lines. The two reciprocal vectors
for S = Lam are displayed with wavy lines. For a rapid convergence, the Fourier
coefficients of these five sets of reciprocal vectors are initialized with nonzero values\widehat \phi 0(\bfscrH S) = u0,(2.8)

where u0 is a given constant.
The set of multiple phase-steady solutions (PSS) corresponding to \bfitmu is then

\widehat \Phi (\cdot ;\bfitmu )\triangleq Lam\bigcup 
S=QC

\Bigl\{ \widehat \phi (\cdot ;\bfscrH S,\bfitmu )
\Bigr\} 

(2.9)

.Here, for simplicity, we define \{ \widehat \phi (\cdot ;\bfscrH S,\bfitmu )\} to be the empty set when \widehat \phi goes through
a phase transition with the given initial value \widehat \phi 0(\bfscrH S). The rationale is that since
each parameter leads to a stable state solution without phase transitions, the solutions
that undergo phase transitions during the evolution process can be readily discarded.

The existence of multiple convergent solutions for the same \bfitmu serves two purposes.
On one hand, for the single-query setting, the state within \widehat \Phi (\cdot ;\bfitmu ) that leads to the
smallest free energy functional is the stable state for the queried parameter. On the
other hand, for the multiquery setting, the construction of the multiple components of
our proposed MCMS-RBM takes advantage of the existence of the multiple solutions
corresponding to the multiple states. The many-to-many pattern between components
and states, a main novelty of the MCMS-RBM, enables the quick and simultaneous
enriching of the reduced spaces with limited FOM queries. The detailed high-fidelity
solver for

\bfitmu \mapsto \rightarrow \widehat \Phi (\cdot ;\bfitmu )
is shown in Algorithm 1.

This algorithm utilizes a phase transition indicator (PTI), which is given in
Algorithm 2. It is inspired by the observation that, if the initial state is not in
the stable state (out of the five possible states) corresponding to the given param-
eter, the evolution may or may not undergo a transition to other states. When the
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Algorithm 1 FOM for the LP model, \bfitmu \mapsto \rightarrow \widehat \Phi (\cdot ;\bfitmu ).
1: Input: parameter \bfitmu , tolerance tol, temporal step \Delta t, and maximum iteration T

2: Set \widehat \Phi (\cdot ;\bfitmu ) = \{ \} 
3: For S\in \{ QC, C6, LQ, T6, Lam\} 
4: Initialize the Fourier coefficients \widehat \phi 0 corresponding to \bfscrH S

5: Initialize res = 1, PTIS = 0, and t= 0. Calculate \phi 0 =F - 1(\widehat \phi 0)
6: While res\geq tol \& t\leq T \& PTIS = 0

7: Obtain \widehat \phi t+\Delta t by (2.7) using \widehat \phi t and \phi t

8: res = \| \widehat \phi t+\Delta t  - \widehat \phi t\| 2
9: t= t+\Delta t, \phi t =F - 1(\widehat \phi t)

10: PTIS =PTI(\widehat \phi 0, \widehat \phi t)
11: End While

12: If PTIS = 0, set \widehat \Phi (\cdot ;\bfitmu ) = \widehat \Phi (\cdot ;\bfitmu )\cup \{ \widehat \phi t\} 
13: End For

14: Output: High fidelity PSS set \widehat \Phi (\cdot ;\bfitmu )
Algorithm 2 Phase transition indicator, PTI (\widehat \phi 0, \widehat \phi t).

1: Input: Reference state \widehat \phi 0, candidate \widehat \phi t, and tolerance \delta 

2: Calculate the locations of the elements of \widehat \phi 0 with | \widehat \phi 0| > \delta 

3: Calculate the locations of the elements of \widehat \phi t with | \widehat \phi t| > \delta 
4: If they coincide, then PTI = 0, otherwise, PTI = 1

transition happens, it deteriorates the low-rank nature of the corresponding branch
of the solution manifold. We therefore discard the convergent solution whenever a
phase transition occurs in the evolution process. The detection of such transitions is
made possible by the realization that solutions sharing the same structure maintain
consistent characteristics in their corresponding spectral signature (the set of spectral
coefficients whose magnitudes are above a certain tolerance) throughout the entire
evolution. The ``emergence"" or ``disappearance"" of a spectral mode therefore signifies
a phase transition.

3. The MCMS-RBM. As detailed in section 2.2, the PM method can produce
an accurate approximation of the quasicrystals by solving the LP model in a higher-
dimensional reciprocal space while taking advantage of FFT to deal with the linear
and nonlinear terms. However, determining a delicate phase diagram of the LP model
is still expensive due to the wide range of parameters and the existence of multiple
stable states. Although an adaptive method exists [18] that can generate the phase
diagram without having to resolve the full parameter domain, it fails to produce
the field variables \widehat \phi and \phi , which are needed, e.g., in controlling the self-assembly
of quasicrystals and a variety of other desired structures in practical experimental
realizations [1, 5, 24, 29].

The proposed MCMS-RBM strives to learn the parameter dependence of the PM
solution, vastly accelerate the generation of the phase diagram, and furnish surrogate
and equally accurate field variables anywhere in the parameter domain. The MCMS-
RBM has two prominent features in comparison to the standard RBM. First, it has
multiple components, with each providing reduction functionality for one branch of
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MCMS-RBM TOWARD RAPID GENERATION OF PHASE DIAGRAMS B793

the problem induced by one part of the parameter domain. Second, without resorting
to the parameter domain configurations (e.g., phase diagrams) a priori, it enriches
each component in a greedy fashion via a phase-transition guided exploration of the
multiple states inherent to the problem. Specifically, it tests each stable state for every
parameter value and retains all solutions that have not gone through any phase tran-
sitions. All these solutions, which are multiple for each parameter value, are adopted
by the RBM components according to their convergent state.

We devote the rest of this section to the presentation of the two parts of the
MCMS-RBM, namely, its online and offline procedures, the adaptive algorithm that
we adopt from [18], and its enhancement by the MCMS-RBM.

A key strategy of the RBM is the offline-online decomposition. During the offline
procedure, five low-dimensional RB spaces of dimensions NS

W S
N\mathrm{S}

for each state S \in \{ QC, C6, LQ, T6, Lam\} 

are generated by a greedy algorithm. These are called the five components of the
MCMS-RBM. During the online procedure for any given parameter value \bfitmu , the
unknown RB coefficients in each component are solved through a reduced order model
with an initial value given in the corresponding state. Here, we first introduce the
online procedure which will be repeatedly called during the offline construction phase
to build \{ W S

N\mathrm{S}
\} . To achieve online efficiency, we resort to the EIM [2, 12].

3.1. Empirical interpolation method. For an online efficient computation of
the two nonlinear functions g and h, a greedy algorithm is employed. This algorithm
identifies a function-specific (\bfitmu -independent) interpolation basis and corresponding
interpolation points. The resulting EIM approximation interpolates each function
using this function-specific basis at the chosen points:

g(\phi (\bfitx , t);\bfitmu )\approx gMg
(\phi (\bfitx , t), t;\bfitmu ) =

Mg\sum 
m=1

dMg,m(\bfitmu , t)g(\bfitx ;\bfitmu m
g ),

h(\phi (\bfitx , t);\bfitmu )\approx hMh
(\phi (\bfitx , t), t;\bfitmu ) =

Mh\sum 
m=1

\gamma Mh,m(\bfitmu , t)h(\bfitx ;\bfitmu m
h ).

Here, \{ \bfitmu m
g \} Mg

m=1 and \{ \bfitmu m
h \} Mh

m=1 are two sets of parameter ensembles chosen by the
greedy algorithm, while g(\bfitx ;\bfitmu m

g ) and h(\bfitx ;\bfitmu m
h ) are the corresponding functions that

are orthonormal under point evaluations at the interpolation points.
Specifically to our developed MCMS-RBM, we construct one set of EIM expan-

sions for each of the five states. Indeed, for each parameter initiated with each of the
five states, the high-fidelity solution that has not gone through any phase transitions
in the evolution will be adopted in the greedy procedure.

3.2. Online procedure. The MCMS-RBM approximates the high-fidelity so-
lution with a surrogate solution\widehat \phi (\bfitmu , t)\approx \widehat \phi rb(\bfitmu , t) =WNcN (\bfitmu , t),(3.1)

where WN is one of the W S
N\mathrm{S}

's. For simplicity, we omit the sub- and super-scripts
S whenever there is no confusion. Moreover, cN is the RB coefficient to be solved
for that component whose notational dependence on S is also omitted. The inverse
Fourier transform of this surrogate solution can be directly derived as

\phi (\bfitmu , t)\approx iWNcN (\bfitmu , t)
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with iWN representing the inverse Fourier transform of basis space WN . Therefore,
the repeated transformations in real and reciprocal spaces during the iteration will
also be calculated in low-dimensional space and it is independent of the degrees of
freedom of the FOM. For simplicity, we denote the unknown RB coefficients cN (\bfitmu , t)
at iteration t by ct(\bfitmu ). Substituting these surrogate solutions and the EIM approxima-
tion into (2.7) and using the Galerkin projection method, one can derive the reduced
order model

WT
N

\Bigl( 
1 +\Delta t \cdot c

\bigl( 
1 - \bfitk 2

\bigr) 2 \bigl( 
q2  - \bfitk 2

\bigr) 2\Bigr) 
WNct+1 =WT

N (1 +\Delta t \cdot \varepsilon )WNct

+ \Delta t \cdot WT
NF (V g

MdMt ),
(3.2)

where \bfitk 2 =
\sum d

k=1 g
2
k. Here, V g

M is the basis space constructed by the EIM for
g(\phi (\bfitx , t);\bfitmu ) = \alpha \phi 2  - \phi 3, and dMt is the coefficient of the EIM at every iteration.
We rewrite this equation as

A1ct+1 =A2ct +\Delta t \cdot \varepsilon A2ct +A3d
M
t ,(3.3)

where A1 = WT
N (1 + \Delta t \cdot c(1 - \bfitk 2)2(q2  - \bfitk 2)2)WN \in RN\times N , A2 = WT

NWN \in RN\times N ,
and A3 =\Delta tWT

NF (V g
M )\in RN\times M . We note that they can all be precomputed during

the offline procedure via updates as each snapshot is identified. Further, they also
depend on S but with notational dependence omitted.

The calculation of the free energy can also be accelerated since we have

Erb =
c

2
cTt E1ct  - 

\varepsilon 

2
cTt A2ct +

\bigl( 
\gamma L
t

\bigr) T
V h
L 1,(3.4)

where E1 = iWT
N ((1  - \bfitk 2)2(q2  - \bfitk 2)2)2iWN \in RN\times N , V h

L is the basis space of EIM
for nonlinear terms of the free energy functional h(\phi (\bfitx , t);\bfitmu ) =  - \alpha 

3 \phi 
3 + 1

4\phi 
4, \gamma L

t is
the coefficient of EIM at terminal time, and 1 is a column vector of 1's. The detailed
online algorithm is provided in Algorithm 3.

The complexity of this procedure is

O(Nt,RB \cdot (N3 +NM2)),

where Nt,\bfitR \bfitB is the iteration times of the RBM, which is almost the same as the
iteration times of solving the FOM. However, O(M2 + N3) is much smaller than

Algorithm 3 Online procedure of the MCMS-RBM.

1: Input: Precomputed reduced matrices A1, A2, A3, and E1 for a given S\in \{ QC,
C6, LQ, T6, Lam\} , tolerance \delta , parameter \bfitmu , temporal step \Delta t, and total time
T

2: Initialize the Fourier coefficient \widehat \phi 0 for state S, and derive the initial RB
coefficient c0. Set res = 1 and t= 0

3: While res\geq \delta and t\leq T
4: Calculate the EIM coefficient dMt for \bfitmu 
5: Solve the RB coefficient ct+\Delta t by (3.3), and calculate res = \| ct+\Delta t  - ct\| 2
6: t= t+\Delta t
7: End While
8: Calculate the EIM coefficient \gamma L

t for \bfitmu 

9: Output: Surrogate solution \widehat \phi t,rb =WNct, \phi t,rb = iWNct, and the free energy

functional E = c
2c

T
t E1ct  - \varepsilon 

2c
T
t A2ct +

\bigl( 
\gamma L
t

\bigr) T
V h
L 1
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MCMS-RBM TOWARD RAPID GENERATION OF PHASE DIAGRAMS B795

O(\scrN log\scrN ) because N3 \ll \scrN and NM2 \ll \scrN . Moreover, the surrogate solution
obtained by the RBM is essentially an approximation of the truth solution at each
moment, so asymptotically the phase transition between the surrogate solution and
the high-fidelity solution occurs almost simultaneously.

3.3. Offline procedure. Now we present the greedy algorithm for construct-
ing the RB spaces. For general nonlinear parametrized PDEs, designing a rigorous
residual-based error estimator is far from trivial. By recalling that,

\bullet the high order gradient term in the LP model ensures two-wavelength selec-
tion and is very important for pattern formation with two wavelength scales
[25],

\bullet the second term \varepsilon \phi 2/2, which corresponds to \varepsilon \phi of (2.4), describes the growth
of the instability, as appears in the Swift--Hohenberg model [34],

\bullet the remaining two terms in g(\phi ;\bfitmu ) (see (2.4)) are higher order terms with
its first term \alpha \phi 2 dominating and can be approximated by 2\alpha \phi when \| \phi \| 
is small with \phi representing the error between the FOM and RB solutions\widehat \phi  - \widehat \phi rb.

2

In our multiple-component multistate framework, the error estimator should reflect
the two wavelength scales and capture the instability evolution. Therefore, the fol-
lowing error indicator is adopted:

\Delta n(\bfitmu ) :=
\| rn(\bfitmu )\| 2
\beta (\bfitmu )

.(3.5)

This is inspired by the traditional residual-based error estimators [9, 13, 17, 31]
yet reflects the particular nature of the problem we study in this paper. Specifically,
we note the following.

\bullet The denominator \beta (\bfitmu ) is defined based on the first three terms of the non-
linear steady-state full order model corresponding to (2.4).

\beta (\bfitmu ) = \sigma min (\scrA  - \varepsilon I  - 2\alpha I)

is the absolute value of the smallest eigenvalue of the matrix \scrA  - \varepsilon I - 2\alpha I. \scrA 
is a diagonal matrix and each of its diagonal elements corresponds to one of
c(1 - \bfitk 2)2(q2  - \bfitk 2)2, and I is the identity matrix. For this diagonal matrix,
certain elements will be near zero for some values of the Fourier frequency, c,
and parameter (\varepsilon ,\alpha ). In these cases, the estimators may yield large numbers,
and the corresponding parameters are then likely to be chosen by the greedy
algorithm. This greedy selection is effective, and the resulting convergence
rate and stability are better than those of other indicators such as the random
selection and the nonscaled error estimator \| rn(\bfitmu )\| 2.

\bullet Resorting to the gradient flow method, the residual rn is defined as

rn(\bfitmu ) =\scrA ct  - \varepsilon Wnct  - F (V g
M )dMt .

Note that the computational complexity of the residual's norm is made inde-
pendent of \scrN via an offline-online decomposition. Indeed, one has that

\| rn(\bfitmu )\| 22 = cTt (B1  - 2\varepsilon B2 + \varepsilon 2B4)ct + 2cTt (\varepsilon B5  - B3)d
M
t + (dMt )TB6d

M
t ,

(3.6)

2The contribution by the \alpha \phi 2 term to the residual is \alpha (\widehat \phi + \widehat \phi \mathrm{r}\mathrm{b})(\widehat \phi  - \widehat \phi \mathrm{r}\mathrm{b}), which can be approx-

imated by 2\alpha (\widehat \phi \mathrm{r}\mathrm{b})(\widehat \phi  - \widehat \phi \mathrm{r}\mathrm{b}) when the RB solution is more accurate (e.g., with a larger number of
RB basis n). We further linearize and simplify this term in our calculation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

6/
24

 to
 1

72
.2

54
.6

4.
51

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



B796 YAJIE JI, LIJIE JI, YANLAI CHEN, AND ZHENLI XU

where B1 = \scrA T\scrA \in Rn\times n, B2 = \scrA TWn \in Rn\times n, B3 = \scrA TF (V g
M ) \in Rn\times M ,

B4 =WT
n Wn \in Rn\times n, B5 =WT

n F (V g
M )\in Rn\times M , andB6 = (F (V g

M ))TF (V g
M )

\in RM\times M can be precomputed and updated at each greedy loop. Afterward,
the computation of the error indicator only depends on the numbers of the
EIM and RB basis.

We are now ready to describe the greedy algorithm for constructing the five RB
spaces W S

N\mathrm{S}
with S \in \{ QC, C6, LQ, T6, Lam\} . We first discretize the parameter do-

main \scrD by a sufficiently fine training set \Xi train. For any given S, the guiding principle
is that the RB space W S

N\mathrm{S}
should contain snapshots having the structure correspond-

ing to the component S. Thus unlike the vanilla RBM, the first snapshot cannot be
totally random. Indeed, this can be realized by performing Algorithm 1 for several
parameters until the first \bfitmu whose PSS (2.9) contains a branch corresponding to the
current component S is identified. Next, we call the online solver for S via Algo-
rithm 3 and calculate the error estimator for each parameter in the training set. The
temporary candidate for the (n + 1)th (n = 1,2, . . . ,N  - 1) parameter is selected as
the maximizer of the error estimators

\bfitmu temp
n+1 = argmax

\bfitmu \in \Xi \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

\Delta n(\bfitmu ).

We then call Algorithm 1, with initial value \widehat \phi 0(\bfscrH S) to obtain the high-fidelity PSS\widehat \Phi (\cdot ;\bfitmu temp
n+1 ). If this PSS contains a branch corresponding to S, that is, the phase

transition does not happen, we enrich W S
N\mathrm{S}

with this branch.3 If \widehat \Phi (\cdot ;\bfitmu temp
n+1 ) contains

no S-specific component, we prune \bfitmu temp
n+1 and go to the next maximizer of the error

indicators. This is repeated until we find a \bfitmu temp
n+1 whose PSS has a S-specific compo-

nent. Finally, we set \bfitmu n+1 to be this \bfitmu temp
n+1 . The detailed greedy algorithm for the

construction of the RB spaces \{ W S
N\mathrm{S}

\} is described in Algorithm 4.

Algorithm 4 Offline procedure of MCMS-RBM.

1: Input: training set \Xi train, component S to be built

2: Select \bfitmu 1 from \Xi train so that PSS \widehat \Phi (\cdot ;\bfitmu 1) has an S-state denoted by \widehat \phi (\bfitmu 1).

Initialize S1 =\bfitmu 1, W1 = \{ \widehat \phi (\bfitmu 1)/\| \widehat \phi (\bfitmu 1)\| 2\} , iW1 =F - 1(\widehat \phi )/\| F - 1(\widehat \phi )\| 2, and
n= 1

3: for n= 2,3, \cdot \cdot \cdot ,N  - 1 do
4: Solve the RB coefficient in the S-component of the MCMS-RBM, cn(\bfitmu ), by

(3.3) for each \bfitmu \in \Xi train, and calculate the error estimator through (3.5)

5: Choose \bfitmu temp
n+1 = argmax\bfitmu \in \Xi \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

\Delta n(\bfitmu ) and solve PSS \widehat \Phi (\cdot ;\bfitmu temp
n+1 ) with the

initial value \widehat \phi 0(\bfscrH S) through Algorithm 1. If PSS is empty, one discards
this parameter and chooses the next maximizer of the error indicators,
until the one whose PSS has a component S is met. Set \bfitmu n+1 =\bfitmu temp

n+1 , and\widehat \phi n+1 =PSS \widehat \Phi (\cdot ;\bfitmu n+1)

6: Update Sn+1 = \{ Sn,\bfitmu n+1\} , Wn+1 =GS(Wn, \widehat \phi n+1), \phi n+1 =F - 1(\widehat \phi n+1),
\eta n+1 = \phi n+1/\| \phi n+1\| 2, iWn+1 = \{ iWn, \eta n+1\} , and the reduced matrices
\{ Ai\} 3i=1,\{ Bi\} 6i=1, and E1

7: end for
8: Output: Reduced basis space Wn, the inverse RB space iWn, and the reduced

matrices \{ Ai\} 3i=1,\{ Bi\} 6i=1 and E1

3In practice, we incorporate a Gram--Schmidt procedure for numerical robustness.
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MCMS-RBM TOWARD RAPID GENERATION OF PHASE DIAGRAMS B797

Algorithm 5 Adaptive phase diagram generation by the MCMS-RBM.

1: Input: tolerance \delta 0, initial coarse grid \Xi diag, size of current grid ndiag, number
of iterations nadap = 0, and distance index dadap = 2\delta 0

2: While dadap > \delta 0
3: Initialize boundary points \Xi diag,bp = \{ \} 
4: Calculate free energy functional for all \bfitmu \in \Xi diag through Algorithm 3, and

derive the current phase diagram
5: for n= 1,2, . . . , ndiag do
6: If the eight nearest neighbors of the nth point of \Xi diag, \Xi diag(n) are in the

same stable state of itself, then Ibp = 0; otherwise, Ibp = 1 and enrich
\Xi diag,bp = \{ \Xi diag,bp,\Xi diag(n)\} 

7: If Ibp = 1, calculate all the middle points \bfitmu mid between \Xi diag(n) and its
neighbors with different stable states. Enrich \Xi diag,bp = \{ \Xi diag,bp,\bfitmu mid\} 

8: Record the largest distance dadap between points in \Xi diag,bp and their
neighbors with different stable states

9: end for
10: Update \Xi diag =\Xi diag,bp, nadap = nadap + 1, ndiag = | \Xi diag| 
11: End While

3.4. Adaptive phase diagram generation by the MCMS-RBM. One ad-
vantage of building an efficient surrogate solver such as the developed MCMS-RBM
is that it makes feasible the generation of phase diagrams via an exhaustive sam-
pling of the parameter domain. We propose to further leverage the efficiency of the
MCMS-RBM by adopting the adaptive strategy [18] when querying the parameter
domain. The idea is to first sample a coarse cartesian grid to determine the phase
of each point, and then for each point one checks the eight nearest neighbors. If all
of them are identified as the same phase, one labels this point as an internal point.
Otherwise, one regards the current point as a boundary point. The largest distance
between this boundary point and its neighboring points with different stable states is
recorded. For the next refinement, one appends the middle point between this bound-
ary point and its neighboring points with different stable states, along with all the
current boundary points, to form the new set for the next loop. Then one proceeds
to identify all these points as internal and boundary points, enriching a new set for
a new adaptive loop. We remark that, as the adaptive algorithm proceeds, the grid
will become more unstructured, making the ``eight nearest neighbors"" not as easily
identifiable as the initial structured grid. In this case, we simply sort the neighbors
by its Euclidean distances to the base point. This adaptive refinement algorithm is
provided in Algorithm 5. It ends when the boundaries between different states are
considered resolved, which is defined to be that the distance between two points that
are along the boundary but have different states is small enough.

4. Numerical results. In this section, we test the proposed MCMS-RBM on
the two-dimensional quasiperiodic LP model parameterized by the reduced temper-
ature \varepsilon and the phenomenological parameter \alpha delineating the level of asymmetry.
Furthermore, we highlight its efficiency and accuracy by adopting the adaptive phase
diagram generation algorithm to produce a phase diagram that is as accurate as the
state of the art.
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4.1. Setup and notation. The parameter domain is set to be \scrD = [ - 0.0125,
0.0515]\times [0,1]. The training and testing sets for constructing the EIM and RB spaces
are \scrD 's two disjoint uniform cartesian discretizations,

\Xi train = ( - 0.0125 : 0.002 : 0.0515)\times (0 : 0.05 : 1),

\Xi test = ( - 0.01 : 0.015 : 0.05)\times (0.025 : 0.1 : 0.925).

For the high-fidelity solver of the LP model, we set the degree of freedom of the
Fourier spectral method in each direction as NH = 32. We denote the worst-case
relative errors of the nonlinear terms with m- dimensional space V g

M by \phi g
err(m), and

solutions and free energy functionals with n- dimensional space Wn by \phi err(n) and
Eerr(n), respectively.

\phi g
err(m) = max

\bfitmu \in \Xi \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

\biggl\{ \| g(\bfitmu ) - gMg
(\bfitmu )\| 2

\| g(\bfitmu )\| 2

\biggr\} 
,

\phi err(n) = max
\bfitmu \in \Xi \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

\Biggl\{ 
\| \widehat \phi (\bfitmu ) - \widehat \phi n,rb(\bfitmu )\| 2

\| \widehat \phi (\bfitmu )\| 2
\Biggr\} 
,

Eerr(n) = max
\bfitmu \in \Xi \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

\Biggl\{ 
\| \scrF (\widehat \phi (\bfitmu )) - \scrF (\widehat \phi n,rb(\bfitmu ))\| 

| \scrF (\widehat \phi (\bfitmu ))| 
\Biggr\} 
.

Finally, we denote by \Delta RB(n) the worst-case error indicators when the RB spaces are
of n-dimensional,

\Delta RB(n) = max
\bfitmu \in \Xi \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{n}

\Delta n(\bfitmu ).

4.2. MCMS-RBM results. We are now ready to present the numerical results
of the MCMS-RBM applied to the parameterized two-dimensional quasiperiodic LP
model.

EIM results. The relative error curves of the nonlinear terms in the LP model
and the distribution of the first M(= 30) selected parameters for each of the five
MCMS-RBM components are showed in Figures 3 and 4. As expected, the error
curves exhibit exponential convergence as the number of the EIM basis increases. It
is worth noting that all five states can effectively limit the error to within 10 - 4 using
just up to 30 basis functions. This allows for significant speedup for the reduced
model. As to the distribution of the chosen parameter values, the selected parameters
predominantly lie within the corresponding state of their phase diagrams for relatively
simple structures like Lam (Figure 4(e)). However, for other complex structures such
as QC and LQ (Figure 4(a), (c)), some parameters are chosen from other states and
with a more uniform distribution with clusters toward the boundary. In Figure 4(f),
the histogram is displayed to show the number of parameters distributed in different
states. These results underscore the many-to-many feature between components and
states of the developed MCMS-RBM.

RBM results. In Figure 5(a), (b), we present the error indicators and relative
errors during the offline training stage. Initially, when the number of RB basis is in-
sufficient, the solution manifold for each state is far from being resolved. The nonco-
ercive nature of the problem causes the estimator to oscillate. After this initial phase,
the decrease and saturation stages of the error indicator in Figure 5(a) and those of
the actual error in Figure 5(b) are well-aligned. This includes the order of each state
going into its stagnation stage. Moreover, when we omit the oscillation stage (of the
first 5 or 6 bases) in Figure 5(a), the starts of saturation in both Figure 5(a) and (b)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

6/
24

 to
 1

72
.2

54
.6

4.
51

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



MCMS-RBM TOWARD RAPID GENERATION OF PHASE DIAGRAMS B799
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Fig. 3. Relative EIM errors.
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Fig. 4. Distributions of the parameters selected by EIM corresponding to phases QC, C6, LQ,
T6, and Lam (a)--(e), and the histogram of each set of basis (f).

are nearly the same. The consistency in convergence features in both figures further
indicates the effectiveness of the proposed estimator. The efficiency of the error in-
dicator and the accuracy of the MCMS-RBM are also underscored by the observed
stable exponential convergence that the relative error curves exhibit right from the
beginning. Furthermore, the relative errors of the solution with only 15 bases can
reach 10 - 3. The testing errors, in both the solution and the functional, are shown
in Figure 5(c), (d). They, too, decrease exponentially. The distribution of the se-
lected parameters of the RBM is shown in Figure 6. One notes that, just like the
distributions of parameters in the EIM process shown in Figure 4 and RB studies of
other equations, the chosen parameters are unstructured. The many-to-many feature
between components and states also resembles that of the EIM process.
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Fig. 5. Training (a)--(b) and testing (c)--(d) results of MCMS-RBM. Top: Error indicators (a)
and relative error curves during training (b). Bottom: Relative testing error curves of the solutions
(c) and free energy functional (d).

Fig. 6. Distributions of the parameters selected by MCMS-RBM corresponding to phases QC,
C6, LQ, T6, and Lam (a)-(e), and the histogram of each set of basis (f).

Finally, we select five different parameters with one from each phase and apply our
MCMS-RBM online solver to the corresponding LP model. We present in Table 2 the
EIM/RB dimensions, the wall clock times for the full problem and the reduced prob-
lem, the offline time, the ``break-even"" number, and the MCMS-RBM errors in the
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Table 2
Online computation time (in seconds), offline time (in seconds), break-even numbers, and rel-

ative error for the LP model at different parameters with \Delta t = 0.1 and N\bfitH = 32. The degrees of
freedom of the CAM and PM are 10242 and 324, respectively, with the CAM producing less-accurate
solutions than the PM (see [21]).

\bfitmu (5\times 10 - 6,
\surd 
2/2) (0.05,1) (0.005,0.6) (0.05,0.3) (0.05,0.1)

Phase QC C6 LQ T6 Lam

(M,N) (20,15) (10,5) (30,15) (20,10) (10,5)

PM time 4.51e+01 1.04e+01 7.47e+01 4.80e+01 4.16e+01

CAM time 3.28e+01 7.78e+00 5.20e+01 3.31e+01 2.85e+01

RBM time 3.24e-02 1.14e-02 5.08e-02 2.18e-02 1.29e-02

Offline time 6.88e+04 3.49e+04 6.77e+04 3.73e+04 8.38e+04

break-even num. PM 513 593 591 545 214

break-even num. CAM 694 657 782 774 288

\phi \mathrm{e}\mathrm{r}\mathrm{r} 4.06e-06 4.23e-08 1.63e-05 5.68e-05 5.23e-09

E\mathrm{e}\mathrm{r}\mathrm{r} 4.32e-11 9.19e-12 2.72e-09 5.87e-12 1.06e-14
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Fig. 7. Cumulative runtime of the MCMS-RBM, the PM, and the CAM of components
QC,LQ,C6,T6, and Lam (a)--(e).

order parameter \phi and the energy functional \scrF . For a more intuitive observation, we
display in Figure 7 the cumulative computation time for the MCMS-RBM, the PM
[18], and the CAM [39]. The initial nonzero start of the MCMS-RBM corresponds to
the offline time and the intersection point is the break-even number, which measures,
for each state, the critical number of solves after which the MCMS-RBM will begin to
recoup the offline time. For example, we observe that, for the QC state when n> 287
and n> 630, the MCMS-RBM starts to save time in comparison to the repeated runs
of the underlying PM and CAM solvers, respectively. We note that this break-even
number can be further decreased, with the limit being of the order of O(N + M),
with a more efficient implementation of the offline algorithm. For example, for our
EIM implementation, we generate full order solutions for the entire training set \Xi train.
This is not necessary. Producing the most optimal implementation is not the focus
of this paper, but rather the methodology design of the MCMS-RBM. However, the
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MCMS-RBM consistently achieves an acceleration of three orders of magnitude online
while both relative errors are at levels of 10 - 5 and 10 - 9 with respect to the accuracy
of the PM. Moreover, when the goal is the phase diagram generation (see section 4.3),
even our suboptimal implementation would save computation time by two orders of
magnitude.

4.3. Phase diagram generation. We now apply the adaptive phase generation
algorithm of section 3.4 to our parametric LP model with the EIM and RB dimensions
given as in Table 2. The initial phase diagram on a uniform coarse grid is generated
by repeatedly invoking the online solver of the MCMS-RBM (see Figure 8(a)). Then
the adaptive refinement is performed along the automatically detected boundaries of
adjacent phases (see Algorithm 5). The bottom row of Figure 8 contains the results
of three consecutive refinements, with the third one capturing the delicate boundaries
of the phase diagram quite well. The numbers of repeated solves corresponding to
Figure 8(a) and (c)--(e) are n= 693,981,1829, and 3333. We emphasize that all these
phase diagrams are generated by only using the reduced solutions which are formed
by just 50 (which is equal to the sum of RB dimensions for all components) FOM
solutions. It is clear, by comparing with Table 2, that the MCMS-RBM starts saving
time from the second refinement since we are well above the corresponding break-even
number. In comparison, we query MCMS-RBM on a highly refined discretization of
the parameter domain, a 601 \times 501 uniform grid. See Figure 8(b) for the resulting
phase diagram. It is clear that the third iteration of the adaptive algorithm agrees
with this fine phase diagram, which is in turn consistent with that in [39].

As evidence of the efficiency of the adaptive algorithm, we list the wall clock time
(in seconds) of each iteration in Table 3. It is clear that the generation of the coarse
diagram only takes 120.31 seconds, and this value will increase when one performs

Fig. 8. The iterative phase diagrams (a), (c)--(e) generated by the adaptive MCMS-enhanced
algorithm. Shown on the top right (b) is a phase diagram with high resolution.
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Table 3
Online computation time (in seconds) for the adaptive boundary refinement algorithm. See

Table 2 for the offline time.

Phase QC C6 LQ T6 Lam Total

Coarse 31.79 9.90 40.88 18.24 12.06 112.87

1st iteration 9.59 4.02 9.30 6.28 3.02 32.21

2nd iteration 25.30 9.92 15.41 10.83 2.81 64.27

3rd iteration 26.62 15.86 25.45 17.45 3.11 88.49

one more iteration, as shown in the 7th column of the table. The total time of the
generation of Figure 8(e) is 297.84, which is derived by summarizing all the values
of the 7th column. Indeed, the 601 \times 501 fine phase diagram takes about 16 hours
in a serial environment by MCMS-RBM. A simple scaling with the acceleration rate
of Table 2 indicates that this phase diagram would have taken over 40 months to
generate if we were to call the FOM solver repeatedly without the adaptive refinement
technique. In a word, the computational cost of the phase diagram is significantly
reduced by the MCMS-RBM and it can be further reduced by the adaptive refine
boundary algorithm.

5. Conclusion. This paper proposes a multicomponent multistate reduced basis
method (MCMS-RBM) for the parametrized quasiperiodic LP model with two length
scales. Featuring multiple components with each providing a reduced order model
for one branch of the problem induced by one part of the parameter domain, the
MCMS-RBM serves as a generic framework for reduced order modeling of parametric
problems whose solution has multiple states across the parameter domain.

Via a greedy algorithm that identifies the representative parameter values and a
phase transition indicator, the method searches for the (potentially multiple) phase-
steady solutions for each parameter value, which are then used to enrich the corre-
sponding components of the MCMS-RBM. Numerical experiments corroborate that
the method can provide surrogate and equally accurate field variables, with speedup of
three orders of magnitude, anywhere in the parameter domain. It can also accelerate
the generation of a delicate phase diagram to a matter of minutes.
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