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Parameter estimation and optimal experimental design problems have been widely studied across sci-
ence and engineering. The two are inextricably linked, with optimally designed experiments leading
to better-estimated parameters. This link becomes even more crucial when available experiments pro-
duce minimal data due to practical constraints of limited experimental budgets. This work presents
a novel framework that allows for the identification of optimal experimental arrangement, from a
finite set of possibilities, for precise parameter estimation. The proposed framework relies on two
pillars. First, we use multi-fidelity modeling to create reliable surrogates that relate unknown pa-
rameters to a measurable quantity of interest for a multitude of available choices defined through a
set of candidate control vectors. Secondly, we quantify the “estimation potential” of an arrangement
from the set of control vectors through the examination of statistical sensitivity measures calculated
from the constructed surrogates. The measures of sensitivity are defined using analysis of variance
as well as directional statistics. Two numerical examples are provided, where we demonstrate how
the correlation between the estimation potential and the frequency of precise parameter estimation
can inform the choice of optimal arrangement.

KEY WORDS: parameter estimation, optimal design of experiments, multi-fidelity
surrogates, directional statistics, variance-based sensitivity analysis, multi-variate
polynomial-basis conversion

1. INTRODUCTION

Many applications in science and engineering rely on parameterized models. It is often the
case that the parameters in these models cannot be estimated through direct measurements.
Approaches that permit the estimation of the unknown parameters of a model based on
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measurements from other observable quantities are therefore needed. The literature is rife with
examples of parameter estimation or model calibration (also known as inverse analysis). These
include the estimation of structural and load parameters using data from static diagnostic load
testing (Rozsas et al., 2022), soil hydraulic properties using groundwater pressure and soil weight
data (Romano and Santini, 1999), diffusion coefficients of a large body of water via dye con-
centration experiments (Gasca-Ortiz et al., 2021), and groundwater contaminant properties via
data collected from tracer experiments (Kowalsky et al., 2012; Lile et al., 1997; Rainwater et al.,
1987; Zhang et al., 2002). Source localization problems are also often formulated as inverse anal-
ysis problems. Examples include acoustic localization of moving vehicles (Sheng and Hu, 2004;
Yao et al., 2002) and animal species (Ali et al., 2007) as well as the localization of radiation
sources (Rao et al., 2008; Wu et al., 2019).

Similarly, many science and engineering problems rely on optimal design of experiments to
accomplish satisfactory parameter estimation, as is the case in building energy-efficient walls
(Jumabekova and Berger, 2023; Jumabekova et al., 2020), in biological cell signaling (Bandara
et al., 2009), and in detector placement for soil moisture sensing (Wu et al., 2012). Pronzato
(2008) discusses the connection between optimal design of experiments and parameter estima-
tion, emphasizing that optimally designed experiments lead to optimally precise estimations.
To our knowledge, however, parameter estimation and the design of experiments with minimal
data—below what is advised for contemporary estimation methods—is a topic that has not been
directly addressed in the literature.

In this work, we propose a novel framework that addresses the optimal design of experiments
restrained by minimal data in a deterministic setting. We view optimal design in a general con-
text, encompassing parameter estimation problems, where the goal is to identify the best exper-
imental program, as well as localization problems, where the goal is to select the best arrange-
ment for detector sensors. The selection of the optimal experimental setting is formulated as
making the best choice(s) from a finite collection of available options. The proposed framework
relies on (i) multi-fidelity surrogates that provide compact relationships between measurable/ob-
servable quantities of interest and the set of unknown parameters at manageable computational
cost, and (ii) statistical measures of sensitivity that systematically guide the selection process
either through analysis of variance or the directional statistics of the sensitivities (in the sense
of derivatives) with respect to unknown parameters. While we lay out all components of the
proposed framework, topics such as computational complexity will not be discussed and are a
subject of our future research.

The organization of this paper is as follows. In Section 2 we introduce the objective of the
paper as making the optimal choice from a finite number of experimental arrangements for the
purpose of estimating unknown parameters. Section 3 introduces the proposed framework that
draws upon multi-fidelity surrogate modeling in conjunction with the application of different sta-
tistical sensitivity measures. This includes a brief overview of multi-fidelity surrogate modeling
using polynomial chaos expansions and Kaczmarz updating in Section 3.1, some critical defini-
tions such as that of vector-defined quantity of interest and performance function in Section 3.2,
and various strategies to quantify the sensitivity of the surrogates and the estimation potential
of an experimental arrangement in Section 3.3, which also includes a presentation of variance-
based sensitivity measures and those based on directional statistics of the derivative. Section 4
contains the results from two numerical examples: the optimal choice of borehole experiments
to determine properties of deep underground aquifers and the optimal placement of detectors in
a river to pinpoint the location of contaminant source. Section 5, finally, contains the concluding
remarks.
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2. PROBLEM STATEMENT

Let (Q be a mathematical model, representing a particular physical phenomenon, that maps a
vector of control parameters, referred to henceforth as the control vector Z, a vector of fixed and
known parameters [ip, and a vector of unknown parameters [i, to a measurable quantity z, that
is:

2= Q(& iip, i) @1

By an experimental design, we mean the selection of one or more Z's from a space of candidate
control vectors that have the potential to allow for the identification of the unknown parameters
(identification exercise, hereafter) from observed values of z. An optimal experimental design
is an arrangement of points in the space of candidate control vectors that best serves the iden-
tification exercise with acceptable accuracy. We note that the cardinality of the arrangement set
is determined by practical constraints and experimental budget. This could mean very limited
data, potentially on the order of the number of unknown parameters. In what follows, we lay
out the details of an approach that systemically seeks such an optimal arrangement under such
restrictive observation/measurement plans. The proposed approach rests on two pillars: (i) multi-
fidelity surrogates that efficiently emulate the mapping @ for the set of candidate control vectors,
(ii) statistical measures of sensitivity of the surrogates with respect to the unknown parameters.
These measures of sensitivity are used to determine the arrangements most likely to estimate
the unknown parameters with good precision in a deterministic setting and with no regard to
measurement noise. That is, the estimates of the unknown parameters are simply calculated by
minimizing an L?-cost functional constructed from the data associated with the selected arrange-
ment.

3. PROPOSED FRAMEWORK
3.1 Multi-Fidelity Surrogate Modeling

An integral part of the proposed framework in this work is surrogate modeling. For the mathe-
matical model @, the surrogate model serves as an emulator when a quantity of interest (Qol)
from the model Zy—corresponding to a particular realization of the control vector &,

50(i) = G(Q(@0; fip, i) 3.1)

where G is a strictly monotonic function in Eq. (3.1)—needs to be computed many times for
different variations of the unknown parameters.

Research in uncertainty quantification (UQ) has heavily utilized surrogate modeling via poly-
nomial chaos expansions (PCEs) (Ghanem and Spanos, 2003; Xiu, 2010; Xiu and Karniadakis,
2002). Here, we utilize one of the most common ways to build PCE surrogates, nonintrusively,
through oversampling and least-square regression. This has been done, typically, via Monte
Carlo (MC) sampling, which suffers from a poor, sublinear convergence rate of the root mean
squared error in estimates of expectations, requiring oversampling of 1.5-3 times the number of
basis functions in PCE (Shin and Xiu, 2016). Recent advances in UQ, especially those concern-
ing multi-fidelity modeling (Alemazkoor et al., 2022; Le Gratiet and Cannamela, 2015; Narayan
et al., 2014; Parussini et al., 2017; Piazzola et al., 2020; Song et al., 2019; Zhu et al., 2014),
however, have allowed for more efficient construction of PCE surrogates. In the multi-fidelity
approach to surrogate modeling, computational budget is initially invested in computing a large

Volume 5, Issue 4, 2024



98 Gillcrist et al.

number of outputs from a low-fidelity model with inputs that are sampled from the probabil-
ity density functions of the corresponding unknown parameters, [i. The generated data set can
be analyzed to select the inputs that contribute minimally to the L?-error between a calculated
low-fidelity surrogate and the low-fidelity model. Alemazkoor et al. showed that this can be ac-
complished systematically via a Kaczmarz updating scheme, where the size of the initial pool
can be reduced down to the cardinality of the basis set in PCE (Alemazkoor et al., 2022). A new
surrogate is then created using the high-fidelity model and points with the highest yield in the
parameter space that comprises the reduced pool.

3.1.1 Polynomial Chaos Expansion

The set of independent unknown parameters for the model () is modeled as a d-dimensional
random vector M = (M, My, ..., My). Let M; be the ith component of this random vector
with support I, and probability distribution n; : In;, — RT. The support of M is given by
Ipng = X j:l I, , where X represents the tensor product, and the probability distribution of M
is given by n(M) := H?:] 1:(M;). Without loss of generality, we assume components of M
can be mapped to a set of elementary and independent random variables collected in a random
vector = via a one-to-one mapping F' : D — Ips with D = Iz is the tensor product of the
supports of the elementary random variables. We then define uo(E) € L? to be the Qol over the
domain D and write it as

w(E) = 2(F(E) = Y csnbsn(E) (32

s eNgd

with {{,) } i) eng D — R the set of multivariate orthogonal polynomial basis satisfying the
condition

i Yo (E)Wsi) (E)p(E)dE = 845 3.3)

where §;; is the Kronecker delta, and p : Iz — R is the probability distribution of Z. The
exact coefficients in Eq. (3.2) can be calculated by projecting uo(Z) onto the basis functions
Py via
catr = Eolua(Ebacn 2] = [ wl€ s € )o(E)dE (3.4
I=
where E,, is the expectation operator with respect to p(Z). The Qol in Eq. (3.2) is often approx-
imated as a truncated PCE

uo(Z) ~ u(E) = Z csih W (B) (3.5)

s(j)ENdK

where N := {sU) : ||sU)||; < kg}, kg is the desired degree of the PCE, and the cardinality

K of the basis {1 : sY) € N¢.} is given by K = (k}jjj)!. The multidimensional integral in
Eq. (3.4) can be difficult to compute for high values of d: the so-called curse of dimensionality.
In such cases, the coefficients c,(;) in Eq. (3.5) may be approximated via least-squares regression

(Alemazkoor et al., 2022):

c= argznin(“dg — \IIH||§) (3.6)
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- - - T
with @ := (cgm), Cs), ...7CS(K—1))T and 1 = (uo(é(l)),uo(é(z)), ...,uo(E,(NP))> for a pool

of N, known input vectors {E ) }fipl and the measurement matrix W, given as
U, =, (ED) where i=1,2,...,N, and j=0,1,...,K —1 (3.7)

In the absence of multi-fidelity strategies (see below) or other sampling techniques, achieving
adequate accuracy for the above least-squares problem requires the number of samples used to
scale linearly with the cardinality of the basis up to an additional logarithmic factor (Cohen and
Migliorati, 2017). For a computationally demanding solver, this may become intractable.

3.1.2 Multi-Fidelity Surrogate Modeling via Kaczmarz Updating

From the variety of the multi-fidelity approaches proposed in recent years, we use the approach
proposed by Alemazkoor et al. (2022), which relies on a greedy Kaczmarz algorithm (GKA), to
analyze the relative contribution to the overall error from a given sample. A PCE is constructed
using a large pool of randomly selected samples and their corresponding outputs from the low-
fidelity model. The GKA then iteratively goes through and calculates how much the L?-error
would change if the coefficients were updated with a given sample from the pool. This updating
is achieved via an adaptation of the standard Kaczmarz algorithm:

, @ _0..2.
o) — oy M g (3.8)
[ il

where ﬁ;i is the ith row of the measurement matrix ¥, and u((,i) is the ith component of the Qol
vector . The coefficients from the Kaczmarz updating are used to compute the error value

e = || — w&l|, (3.9)

and the sample that provides the largest error will be removed from the pool (equivalent to re-
moving the corresponding ith row from W and the ith entry from ). The pseudocode presented
in Algorithm 1 is similar to one presented in Alemazkoor et al. (2022), where a subset of the
active sample pool needs to be searched to find a sufficiently poor sample for removal. It differs
slightly though in that it does not compute the updated measurement matrix and is included here
for the sake of completeness. The process is repeated until the pool of N, samples is reduced
to a size N,q, providing the ranked set Sgka of N, — N,q samples—in order of most error
contributing to least—to be excluded from the construction of the high-fidelity surrogate; that
is, Stiri = Spool \ SGka, Where Syo01 is the pool of initial samples, Syir; is the reduced pool of
samples used to construct the high-fidelity surrogate, and \ is the set minus operator.

3.2 Quantities of Interest, Dimensionality, and Performance Function

The Qol function 1y : D C RY — B C R is a hyper surface that, for any given value of
b € B, defines a level set. Since level sets contain a continuum of values, g is not injective,
disallowing the existence of a clear inverse function, i.e., iﬂug e 2 | ug '. B — D. In order
for there to be potential injectivity, and thus a potential inverse, the Qol must map to a space of
equal or higher dimensionality than its domain. Therefore, we define ug : D — BN¢ C RN¢,

where ug = (u(()l), u(()z), . uéN”’)) with Ny > d. For a unique candidate control vector 7 %) €
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Algorithm 1: Greedy Kaczmarz algorithm with subset search

1: Inputs: W, gy, Nyq, and Ngyp

2: Initialize N, = length()

3: Initialize ¥°P' = W and @ o = 1o

4: Tnitialize ™ = [1,2, ..., N,]

5. Preallocate i1%¢¢°d as an (N, — N,4) x 1 array

6: foriin [N,, N, — 1,..., Nyqg + 1, N;gq] do

7: Ngup IIliI'l(]\/vsub7 Z)

8: ¢« arg min || g — \Il°p‘6||§

9: Prealloczclte € as an Ny X 1 array
10: S « randperm([1,2, ..., 4])
11: S < [S1,52, oy SN ) > Redefine S to be the first Ny, values of the random

permutation
12: for k =[1,2,..., Ngp] do
13: j <+« Sk
(@ _ J)’OPt - .
14: Crost — C+ % (11);pt) > 1|);.’pt is the jth row of the matrix o'
;™

15: e < ||do — Wy,

16: end for

17: r < Index(max(¢)) > Find the index of the entry with the largest error
18: r <+ Sy > Redefine r as its index regarding WPt
19: iﬂagged . ¢ jrows

Np+1—i T

20: Vs ] > Remove the rth entry from "%
21: b ] > Remove the rth row from WO
22: ug;t) ] > Remove the rth entry from @ o
23: end for

{0, 7@, # ")l each component of uy is itself a distinct and independent Qol derived
from Q:

() = Gi(QED:in, F(E)) (3.10)
where GG, is a monotonic function and F' is the one-to-one mapping mentioned in Section 3.1.1.
Fork € {1,2,...,Ng}, u(()k) : D — B, C R, and B? := Xivil By, where b, € By, the

level sets comprise all the points £, = £ € A such that ugk)(é) = bi. Let Sq C {1,2,..., N4}
now correspond to a particular arrangement of points from the space of candidate control vectors
and the true values for unknown parameter mapped onto D be denoted as & 7¢:

gree (==L (3.11)
k€ESy

To start the identification exercise, given collection of level sets characterized by by, € By
for k € Sg4, the following performance function is constructed:

ME) =" (u<k>(§) - bk)z (3.12)

k€ESq
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where u(®) is the surrogate for u(()k), and the values of b; come from empirical observations

corresponding to the model @), again disregarding the presence of noise. All potential estimates
of the unknown parameters correspond to the minima of Eq. (3.12) in the domain A and will
occur only at the points in £. The quality of a surrogate when used for the purpose of estimating
the unknown parameters via the minimization of Eq. (3.12) is not known a priori. It is, therefore,
advantageous for the number of components, Ny, of vy to adequately exceed d. When viewed
independently from each other, each surrogate u(*) can be constructed using only the points in
S}(I]fF)i = szgl \ng()A However, since the surrogates are all built on the same parameter space,
we use the union of the individual sets, that is

Ng
Suiri = | Shim (3.13)
k=1

to construct the high-fidelity surrogates, which improves the overall accuracy of each surrogate
without any additional computational cost.

3.3 Optimal Experiment Design via Statistical Sensitivity Measures

The methods presented in this section seek to quantify the potential of a given arrangement
of control vectors Sy for estimating arbitrary unknown parameters via the minimization of
Eq. (3.12), henceforth referred to as estimation potential. For brevity, we will refer to the sur-
rogate functions u(*) constructed for each u(()k) as potential observation functions (POFs). The
estimation potential then acts as a means for the “quantification” of the likelihood of an arrange-
ment to consistently produce a well-conditioned L?-cost functional based on Eq. (3.12), where
by well-conditioned we mean the ability to precisely estimate arbitrary unknown parameters.
In what follows we explore statistical measures of sensitivity that allow for this quantification
from distinct angles. Parameter estimation problems with two unknown parameters uniformly
likely to lie anywhere in their range—Legendre polynomials are used to construct PCEs—are
presented. The extension to three or more parameters is the subject of our future research, where
the methods proposed herein will act as the foundation for more elaborate approaches tailored
to higher-dimensional problems.

3.3.1 Sobo!’ Indices

The first measure of sensitivity used in this work relies on analysis of variance based on Sobol’
indices to quantify the estimation potential of arrangements of control vectors.

Sudret (2008) shows how the Sobol’ indices can be derived from a Legendre-based PCE of
arbitrary degree. With & € [—1, 1]2, the kth POF is written as

uME)= Y B bn (@) (3.14)

s eNd

The basis functions are grouped into sets denoted by the binary vector subscripts (1) = (1,0),
i =(0,1),and i®) =(1, 1), and Eq. (3.14) is decomposed as

u(k)(z) = c.(g](c(]))l‘l)s(‘)) + Z Z C‘(glfj?)lj)s(j)(z) (315)

1€T jES;
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withes € 7 = {i(l), i®), i(3)}, and where .S; is the set of all linear indices j, which correspond
to all basis functions described by 2. The components of ¢ (z; and ¢,) indicate whether the cor-
responding basis function has any dependence on the first or second variable, respectively, and
the value ¢, is the constant coefficient, while 1) is a normalizing factor. The Sobol’ indices
provide the ratios of the partial variance, in terms of , to the total variance of u*), where the
total variance is given by

D) — Var [u(k)(g )} _ Z (Ci]fj)-)>2E I:Ibi(j) (g)] (3.16)

s()eNL \s®

Sudret (2008) defines the Sobol’ indices as

[SU; | :% (Ci@))zE[ im(é)} (3.17)
JES:

The first-order Sobol’ indices are [SU; | *) and [SU;» | () which correspond to the basis func-
tions dependent on only one variable, and the total Sobol” indices are

k k
[SUT™ = [sU;0]® + [SU;0]® and  [SUF]Y = [SU;0]® + [SU; | ® (3.18)

which correspond to all basis functions that have any dependence on &, or &, respectively.

Figures 1 and 2 depict two arbitrary POFs, indexed by £ and I. A useful visualization of
the Sobol’ indices can be seen in Figs. 1(b) and 2(b), where the variance from either &, or &,
is shown as the total left-or-right gradient contribution or the total up-or-down gradient contri-
bution, respectively. The amount of variance experienced along one axial direction versus the
other can be quantified by taking the ratios of the Sobol’ indices. We define two different ratios
in terms of the first-order and total Sobol’ indices as quantitative measures of the sensitivity of a
POF with respect to inputs and refer to them as first-order Sobol’ ratios and total Sobol’ ratios,
respectively:
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FIG. 1: The surface of the arbitrary POF u® (a) along with the two-way gradient field mapped between
the POF’s surface contours (b)
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FIG. 2: The surface of the arbitrary POF u® (a) along with the two-way gradient field mapped between
the POF’s surface contours (b)

(k) (k)
7= BUL g g = U0

il T (3.19)
[su3)® [su]™

Going back to Eq. (3.12), we then define measures that quantify the estimation potential of
an arrangement composed of two arbitrary control vectors, Z *) and # (), to be the first-order
comparative Sobol’ ratios and total comparative Sobol’ ratios:

max([Rl}(k), [R1](l)>

min([Rl}(k), [31](5))

max([RT] (k)7 [RT] (l))

and CF, =
min([RT](k), [RT](Z))

| S
Cly =

(3.20)

Large comparative ratios imply that a pair of POFs vary “mostly” perpendicularly to each

other along the axial directions. The level curves—Ilevel sets of two-dimensional functions u(()k)

and u(()l)—for a pair of observations corresponding to by and b; are depicted in Fig. 3. These
curves, by definition, contain all possible pairs of (&, &,) in the domain that could produce the
observed values. Moreover, the true parameter values are ideally located at an intersection of
these level curves.

In the case of large comparative Sobol’ ratios, the intersection of the level curves is expected,
on average, to subtend angles near 90°. Figure 4 demonstrates the intersection of both POFs’
level curves at an approximate angle of 90°. The resulting surface produced from the POFs and
the L?-cost functional (3.12) is seen to contain a minimum that is pronounced more distinctly
along both axial directions than surfaces produced from intersections at acute angles much less
than 90°. We refer to these kinds of minima as highly isotropic (see Fig. 5) and hypothesize that
maximizing the intersection angle between two level curves has the potential to lead to more
pronounced minima. We further conjecture that arrangements of control vector pairs that per-
form well at estimating arbitrary unknown parameters is linked to maximization of comparative
Sobol’ ratios as a quantitative measure of estimation potential.
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Level Curves of u(k)(él, &2) Level Curves of u(l)(fl,ﬁz)
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FIG. 3: Level curves for particular observations (a) u® = by, and (b) u® =,
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FIG. 4: The intersection of two level curves from u(*) and u(*) subtending an obtuse angle 6 = 105°
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FIG. 5: The surface plot (a) and the contour plot (b) of Eq. (3.12) both show a well-pronounced minimum
with high isotropy
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3.3.2 Aggregated Directional Statistics

As mentioned above, for two intersecting curves, the minimum of the performance function in
Eq. (3.12) is maximally pronounced when the curves subtend an angle of 90°. With multiple
curves, however, the optimal angle subtended by their intersection must be updated. It turns out
that for n intersecting curves, this angle is 180° /n. A potential drawback with the comparative
Sobol’ ratios, however, is that their extension to cases with more than two POFs is nontrivial.
Consider a particular pair of level curves for two arbitrary POFs depicted in Fig. 6(a). The level
curves intersect at three distinct coordinates. This will necessarily produce at least three distinct
minima on the surface of the performance function (3.12). The occurrence of multiple minima
may be circumvented by the inclusion of additional POFs. As can be seen in Fig. 6(b), this
could correspond to an arrangement composed of three control vectors where the inclusion of
an additional POF, indexed by m, results in a single intersection point shared by the three level
curves.

A more robust quantification of estimation potential can be derived from a direct analysis of
the intersection angles between multiple POF level curves. From Figs. 1(b) and 2(b), it appears
that the comparative Sobol’ ratios act as an indirect and imprecise aggregation of the intersection
angles between the level curves. An alternative and more direct approach to compare angles of
intersection is to analyze the slope fields of the level curves. The slope of a level curve u(*) (z )=
by, at an arbitrary point £ = (p1,p2) can be quantified by implicit differentiation of the equation
with respect to &; or &,. Without loss of generality, let us choose &, to get

k) k) k)
du _Outl OuTd& (3.21)
d&, 0&; 0& d&,;

from which the slope field (see Fig. 7) and its associated angle can be calculated as

= dé, ou® /9,
k) (7). 22 _
m'"(&) - i 5ul 0%, (3.22)

Level Curve for u® = by and «W = b, . . (k) ) (m)
A N Level Curve for u®) = by, u® = b, and u(™ =b,,
1 ¥

uk) = b, o True Parameter
u o by, u®) = by W™ = b,
ull) = b, xFalse Parameters \ L= by o True Parameters

&2
o

—0.5 —0.5

FIG. 6: The intersection using two arbitrary POFs (a) produces two false minima while the true minimum
is only distinct when using three POFs (b)
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Level Curves of u(m(&,fz)

—0.5

FIG. 7: Arbitrary POF u® contour lines and slope field

0 () = arctan(m<k)(§ )) (3.23)

Equation (3.23) is dependent on Eq. (3.22), which requires the first-order differentiation of
the POFs written in a Legendre basis. The first derivative of the nth Legendre polynomial is
given by Abramowitz and Stegun (1972)

d

T Pule) =) () (3.24)
where C,(l“) (z) is the nth degree Gegenbauer (ultraspherical) polynomial. The differentiation
process can become tedious particularly for large cardinality PCEs, as the computation of Gegen-
bauer polynomials can be undesirably slow in various programming languages. Algorithm 2 is
an alternative approach to computing Eq. (3.22) directly. The algorithm converts a Legendre ba-
sis, on the domain [—1, 1]%, into a monomial basis, on the domain [0, 1]¢, allowing for Eq. (3.23)
to be easily computed. We note that the polynomial may be mapped back to [—1,1]¢ after the
conversion. We also note that Algorithm 2 is the multivariate extension of the one that converts
univariate Legendre bases into monomial bases (Barrio and Pena, 2004).

Analyzing the behaviors of each POF’s slope-angle field requires the statistics of the angle
in Eq. (3.23) to be computed. However, arithmetic averages do not provide useful information
for angles and other cyclic quantities. To address this challenge, we adopt a strategy based on
directional statistics (Fisher, 1995; Ley and Verdebout, 2017). Let © = {0,0,,...,6,} be a
collection of n angles. In directional statistics, the average is defined in terms of the angular
moments. Let Sy and Sy be

Sx = {cos(61),cos(02), ..., cos(0,)} (3.25)
Sy = {sin(0,), sin(6,), ..., sin(0,,) } (3.26)

The mean direction of © (see Fig. 8), also referred to as the circular mean (Ley and Verdebout,
2017), denoted as O, is defined in terms of angular moments S'x and Sy as

© = atan2 (§ @) (3.27)

Journal of Machine Learning for Modeling and Computing



Design of Experiments via Multi-Fidelity Surrogates 107

Algorithm 2: Legendre to monomial conversion

1:

11:
12:

13:

15:
16:

Inputs: cp, I > Cp is a column vector of PCE coefficients in a Legendre

basis. I is a tall matrix of ¢p’s vector indices
Initialize n = length (¢p) — 1

Initialize N = /(2 + 1)/2 > IN are the normalization factors for Legendre basis
¢ = width([I)
Preallocate ¢pr as an (n + 1) x 1 array > ¢ps are the monomial basis coefficients
foriin[l1,2,....,n+ 1] do
r‘r’M—I_; Df;istheithrowofI
t < min(rows(I)) > rows(r7) > t contains all the row indices of T that satisfy the
inequality
k«+ I}
s height(k)
T, 4— HJ (1/2),, /( m;!) > (x)y, denotes the Pochhammer symbol
Vi (ﬁffilg g) ® Ny > ® is the Hadamard product, ® is the tensor

product, and J is the all-ones matrix. (‘g““’) is the
binomial coefficients applied element-wise to
matrices A and B
Cone Hle rows( Vi)
Omk — (—1)0Zf 1Ry =my) 40 55=1m; > © denotes the Hadamard power, Ej is jth row
of k
Cuyi < (€ pf) < (T © Comic ® émk) > - denotes the scalar product of two vectors
end for

chcl Curves of u(k)(fl &2)

// // /
/ /// /
N /
/ //// 1

—1 —0.5 1
]

o
o

&2
\

FIG. 8: Arbitrary POF u® contour lines and average (constant) slope field
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where atan? is the two-argument arctangent function. This averaging strategy, however, applies
only to quantities periodic on (—, 7]; quantities that are cyclic but periodic on different intervals
must be mapped to (—, 7]. Such is the case here where the angle of slope lines described by
Eq. (3.23), in radians, is periodic on the interval (—m/2, 7 /2]. Therefore, to perform directional
statistics, we define the boosted slope-angle function as

dM(E) =20 (&) (3.28)

With this new definition, any member of the sets in Egs. (3.25) and (3.26) can be written as

(%)
k) gy _ 1
Sy (&)= PR TCRR PN 1 (3.29)
+
( 0&; ) ( 0&; )
u® oy k)
(au(k))z (@uae))z '
+
0&, 0&;
where we have used trigonometric identities to simplify things. There are several different ways

to define a meaningful measure of dispersion. Here, we use the mean resultant length (MRL)
(Ley and Verdebout, 2017), which is given by

sn=\/(5% )+ (5 ) (3.31)

It can be shown that 6z € [0, 1], with 6z = 1 corresponding to zero dispersion, i.e., a collection
of angles that are all equivalent, and 8 g = 0 corresponding to either uniformly distributed angles
or angles distributed symmetrically about any two perpendicular axes (see Fig. 9).

3.3.3 Global Approach via Mean Resultant Length

For each POF, the mean angular moments can be written as

5 / / S (E)de, de, (3.32)

5 = / / S (E)dz, de, (3.33)

The direct computation of the above integrals is unnecessary. Here we compute an approximation
of these averages by sampling n points, {£, M E@ & (")}, in the domain as

- 1 o

Sy~ Y SYED) (3.34)
i=1

_ 1 o

Sy S SPIED) (3.35)
i=1
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90°

180° 180°

—150° —150°

—90° —90°

(a) (b)

FIG. 9: More-dispersed angles (a) have a low mean resultant length (6 — 0), while less-dispersed angles
(b) have larger mean resultant length (5 — 1)

and use Eq. (3.31) as a means for the quantification of estimation potential:

2 2
Sr = NL <Z S§?>> + (Z S§Z“>> (3.36)

s k€Sq kE€Sq

which we refer to as global MRL, with Ng being the cardinality of S; corresponding to the
control vectors in a given arrangement. The value 0 from Eq. (3.36) quantifies how dispersed
the average boosted angles are for an arrangement of control vectors, .S;. On average, for values
of 8r = 0, the intersection of level curves occurs at angles near 180° /Ng. We then conjecture
that the surface created using Eq. (3.12) from POFs whose mean resultant length is near zero
will have better-pronounced minima with greater isotropy than surfaces where 6z > 0. Though
Eq. (3.36) is defined for an arbitrary number of POFs, only arrangements composed of Ng = 3
control vectors are considered in this paper when quantifying estimation potential using global
MRL measure.

3.3.4 Local Approach via Mean Resultant Length

Both the comparative Sobol’ ratios and global MRL rely on the evaluation of a summary statistic
for each POF before quantifying the estimation potential of the arrangement. An alternative
approach is to average over “point-wise” estimation potential of arrangements. To this end, we
define the point-wise MRL for a combination of POFs corresponding to an arrangement as

5r(E) = Nis (Z S (E >> + (Z Sy (& >> (337)

keSq k€Sq

The average of this function, &, referred to as local MRL, is used for quantification of estima-
tion potential. Values of d p— 0 indicate that the point-wise average intersection of level curves
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occurs at widely dispersed angles, and the values of 5z — 1 indicate intersections occurring
at narrowly dispersed angles. A potential, yet minor, drawback of this approach is that for an
arrangement of Ng control vectors chosen from a candidate set of cardinality N, there will be
(%g ) number of distinct functions (3.37) to average. If very precise averages of Eq. (3.37) are
required, then this approach may demand high computational costs. However, for reasonably
precise averages of the kind needed here, the computational cost of this approach would likely
not exceed the cost required to create the surrogates themselves. As with the global MRL, only
arrangements composed of Ng = 3 control vectors are considered in this paper when quantify-

ing estimation potential using local MRL.

4. NUMERICAL EXAMPLES

For all examples presented here, the PCEs constructed used an initial pool of 1500 samples fed
to the low-fidelity model. Selecting samples for the high-fidelity model using GKA was done
with a subset search size of 50, which reduced the pool to equal that of the cardinality of the
PCEs. For each problem, 1000 random values of girue were generated uniformly over [—1, 1]?
(in the domain of the Legendre polynomials), the L?-error was used when comparing with Eest,
The associated outputs for each component of the Qol vector, corresponding to Eq. (3.10), were
produced, and estimates of £est were calculated using Eq. (3.12) and a line search gradient
descent algorithm with a minimum step size of § = 10~* and a stopping criterion of t,..; = 10~*
for the gradient magnitude. To demonstrate the success of the proposed framework, scatter plots
were used where we showed the correlation between the rate at which unknown parameters were
estimated within the predefined L?-error threshold—as displayed on the horizontal axis—and the
value of the indicator used to quantify the estimation potential and select the best arrangement
of control vectors—displayed on the vertical axis. For indicators based on directional statistics
indicators, about 2500 uniformly selected inputs were chosen in the computation of the mean
resultant length.

4.1 Borehole Function

For the first example, we choose the borehole function, which is used to model groundwater flow
through a borehole connecting an upper and lower aquifer. This function is given by

QU ip, 1) = it Lt @
(k) 2LT, T,
ln(r/rw ) <1 + 1n(r/rfu’“))(r8‘))21<&k) + T,)

where 7 (%) = (rfuk),Kka)), ip = (Ty,H,,r, L), and i = (H;,T}); see Table 1 below for the
definition of parameters.

Fi(-) and F;(-) are linear mappings from &, and &, to H; and T}, respectively. The high-
fidelity borehole function is written as

271'77“(Hu - Fl(al))

(k) 2LT, Ly
In(r/ri?) (1 TP Fz@z))

u{P(E) = log, (4.2)
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TABLE 1: Description of each value in Z *), [ip, and [i along with how they are evaluated

Var. Description Probability Parameter
name distribution/Value(s) type
T, Transmissivity of upper aquifer [m?/yr] 83,000 Known
H, Potentiometric head of upper aquifer [m] 1045 Known
H, Potentiometric head of lower aquifer [m] U[700, 820] Unknown
r Radius of influence [m] 3200 Known
i Radius of borehole [m] {0.05,0.1,0.15} Control
L Length of borehole [m] 1400 Known
*) Hydraulic conductivity of borehole [m/yr] {500,5-10*,7-10°} Control
T Transmissivity of lower aquifer [m?/yr] U[63.1,116] Unknown

whereas the low-fidelity function is written as

STu(Hu — Fl(‘il))
(k) 2LT, T,
ln(r/rw ) (1'5 T D) R FZ“*Z))

where we have used Gi(-) = log,,(-) for all values of k as the monotonic filter function; see
Eq. (3.1). Additionally, the set of all candidates for #(¥) is given by the following Cartesian
product: {0.05,0.1,0.15} x {500,5-10%,7-10%}, which yields N4 = 9 distinct candidates. The
values of rfuk ) are chosen as standard values of the radius of the borehole, and the values of K ka)
are chosen within the range of possible values for medium-grained sand, coarse sand, and gravel
(Domenico and Schwartz, 1998). The values used in [{p are also selected to be consistent with
the ranges reported in previous analyses using the borehole function (Alemazkoor et al., 2022;
Morris et al., 1993; Zhou et al., 2011). The PCEs are constructed, after screening the initial pool
of 1500 samples using GKA as laid out in Section 3.1, with sixth-degree polynomials and 28
high-fidelity model evaluations.

The plots in Fig. 10 use comparative Sobol’ ratios and provide a good indication to select the
best control vectors. The plots in Fig. 11, which use noncorrected mean resultant length values,
however, provide a much better indication, through a strong correlation between success and
indicator value, basically pinning down the best candidates for control vectors.

ul(k)(g) = logy,

(4.3)

4.2 Advection-Diffusion-Reaction Equation: River Contaminant

For the second example, we use a partial differential equation (PDE) that models the steady-state
concentration of pollutants in a straight shallow river (Hamdi, 2007). The PDE is given as

v (Dﬁc + a(xz)c) 0 = 8(7) (4.4)

_ (D 0 = (vi(2)
D._(Ol Dz) v.—<102> (4.5)

where
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FIG. 11: Global and local mean resultant length as an indicator for 84 triples of control vectors
and on the domain (x), ;) € [0, L] X [—w/2, w/2] with the following boundary conditions:
C =0 onthe left boundary z; = 0
oC . .
= 0  onthe right boundary x; = L and river edges z; = + w/2
n

and D, = (w/ L)4/ D, based on Richardson’s turbulent pair diffusion rule (Batchelor, 1952;
Hamdi, 2007). A simple finite difference scheme is applied to solve this PDE, where the domain
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in z; is divided into m — 1 subintervals of length Az, and the domain in x, was divided into
n — 1 subintervals of length Az, with a convergence rate of O(Az?, Az3).

We set the parameter estimation problem here to be that of source localization for a point
source that is approximated as

S(x,y) =No(x1—x1,5)0(x2—22,5) = A exp ( ! ((xl — x175)2+ (z; — x275)2)> (4.6)

202
where 0 = max(Ax!, Azl) with Azl and Az}, corresponding to the mesh size in low-fidelity
model. The mathematical model is the solution to the PDE on the m x n grid:

Q(f(k)a liD7 ﬁ) = C(mxn) (xik)a xgk)v Dlea w, T, Vo, }\7 Tg, ys) (47)

where 7 (F) = (xgk),xgk)), ip = (Dy,L,w,r,v,A), and [ = (x5, %2,5); sce Table 2 below
for the definition of parameters.

Again with F(-) and F,(-), the linear mappings from &, and &; to x, and ys, respectively,
we have the high-fidelity solution as

uﬁf)(i) = log (C(253x41)($§k)7555k); Dy, Lyw, r,vo,\, Fy (&), Fz(f,z))) (4.8)
whereas the low-fidelity solution is

ul(’”(é’) = log,, (0(64x11)($§k),$§k)§ Dy, L,w,r,vo,\, F1 (&), Fz(az))) 4.9
with G (1) = log,,(-) being the monotonic filter function for all values of k. Four different
detector arrays are used as hypothetical in situ measurement apparatuses. Each detector array is
comprised of Ny = 15 detectors, where each detector corresponds to a unique control vector—

a unique coordinate in (z;, x2)—with its associated POF. The constructed PCE is a 15-degree
polynomial built eventually with 136 high-fidelity runs.

TABLE 2: Description of each value in # (¥), [ip, and [i along with how they are evaluated

Var. Description Probability Parameter
name distribution/Value(s)  type
Dy Downriver diffusion constant [m?/s] 8 Known
L Length of the river segment [m] 1000 Known
w Width of the river segment [m] 100 Known
r Reaction coefficient [s~'] 2.2-107° Known
9 Center velocity [m/s] 0.12 Known
mgk) Length-wise coordinate of concentration [m]  Array Dependent Control
x1,s Length-wise coordinate of source location [m]  U[333.3, 666.7] Unknown
:cgk) Width-wise coordinate of concentration [m]  Array Dependent Control
x5 Width-wise coordinate of source location [m] U[-50,50] Unknown
A Source rate [kg/s] 2.3 Known
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4.2.1 Upriver-Situated Detector Array

A conceivable configuration for a detector array would be to place detectors uniformly upriver
within the river segment, as seen in Fig. 12.

The plots in Figs. 13 and 14, based on comparative Sobol’ ratios and noncorrected mean
resultant length values, respectively, provide strong indications for the selection of best control
vectors all with reasonably strong correlation between success and indicator value.

4.2.2 Mid-River-Situated Detector Array

Another reasonable configuration is that the detector array is placed in the center of the river
segment, as seen in Fig. 15.

Barring Fig. 16(b), which provides reasonably good insight, the plots in Fig. 17 and the plot
in Fig. 16(a) provide poor indications for the choice of control vectors.

4.2.3 Downriver-Situated Detector Array

A third reasonable configuration is that the detector array is placed downriver, as seen in Fig. 18.

L2 L * * ®
- * * * *
L * * * ®

FIG. 12: The upriver detector array (L): the marked locations show where hypothetical in sifu detectors
would be in the river with respect to the indices (z, j) of the low-fidelity mesh coordinates (x1,;, <2, ;)
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FIG. 13: Comparative first-order and total ratios as an indicator for 105 pairs of control vectors
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FIG. 14: Global and local mean resultant length as an indicator for 455 triples of control vectors
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FIG. 15: The mid-river detector array (M): the marked locations show where hypothetical in situ detectors
would be in the river with respect to the indices (2, j) of the low-fidelity mesh coordinates (x,;, z2,;)
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FIG. 16: Global and local mean resultant length as an indicator for 455 triples of control vectors
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FIG. 18: The downriver detector array (R): the marked locations show where hypothetical in situ detectors
would be in the river with respect to the indices (i, j) of the low-fidelity mesh coordinates (z1 i, z2,;)

Just like the mid-river detector array, the downriver array provides reasonably good insight
through Fig. 19(b), yet the plots in Fig. 20 and the plot in Fig. 19(a) provide poor indications for
the choice of control vectors.

4.2.4 Whole-River-Situated Detector Array

A fourth reasonable configuration is that the detector array is uniformly spread across the whole
river segment as seen in Fig. 21.

Similar to the previous two arrays, the whole-river array provides reasonably good insight in
Fig. 22(b). The plots in Fig. 23 provide a poor indication for the choice of control vector, while
the plot in Fig. 22(a) provides mediocre insight.

5. CONCLUDING REMARKS

We presented a novel framework for the identification of optimal experimental arrangement,
from a finite set of candidates, for precise parameter estimation. The framework is particularly
useful when minimal data is available through experiments due to limited experimental budget or
practical constraints and rests on the following pillars: (i) efficient emulators built through multi-
fidelity resolution of a parent mathematical model of a physical phenomenon and (ii) statistical
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FIG. 21: The whole-river detector array (W): the marked locations show where hypothetical in sifu detec-
tors would be in the river with respect to the indices (4, j) of the low-fidelity mesh coordinates (1,3, x2,;)
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FIG. 23: Comparative first-order and total ratios as an indicator for 105 pairs of control vectors

measures of sensitivity that systematically inform the choice of experimental arrangement. The
surrogate models provide potential observation functions (POFs) for the parent mathematical
model as a function of the model’s unknown parameters for a particular choice of control pa-
rameters, referred to as a control vector. An arrangement is a choice of several control vectors
from a set of candidate control vectors and is optimal when it provides the best route to parame-
ter estimation among all possible choices for a given predefined number of control vectors. The
outputs from the POFs are used to define an L?-cost functional, which is then used to quantify
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the estimation potential of an arrangement based on how well-conditioned the minima is for ar-
bitrary observations. This is done via strategies derived from variance-based sensitivity analysis
and directional statistics including comparative Sobol’ ratios and measures of dispersion based
on both global and local mean resultant lengths that allow for the examination of the average
angle of intersection between the POFs’ level curves. Two numerical examples were presented
involving the estimation of deep underground aquifer properties and the source localization of a
contaminant in a river, collectively indicating the potential of the proposed framework to identify
the optimal experimental design.
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