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Abstract. We define a link lattice complex for plumbed links, generalizing constructions of
Ozsváth, Stipsicz and Szabó, and of Gorsky and Némethi. We prove that for all plumbed links

in rational homology 3-spheres, the link lattice complex is homotopy equivalent to the link Floer

complex as an A∞-module. Additionally, we prove that the link Floer complex of a plumbed
L-space link is a free resolution of its homology. As a consequence, we give an algorithm to

compute the link Floer complexes of plumbed L-space links, in particular of algebraic links,

from their multivariable Alexander polynomial.
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1. Introduction

1.1. Overview. Lattice homology is a combinatorial invariant of plumbed 3-manifolds defined by
Némethi [Ném05,Ném08], see also [Ném22, Chapter 11]. Némethi’s construction is a formalization
of earlier work of Ozsváth and Szabó [OS03], which computes the Heegaard Floer homology groups
of many plumbed 3-manifolds. If Y is a plumbed 3-manifold, we write HF(Y ) for its lattice
homology, which is a module over the power series ring F[[U ]].

Work of Némethi, Ozsváth, Stipsicz and Szabó [Ném05,Ném08,OS03,OSS14b] proves that

HF(Y ) ∼= HF−(Y )

for many important families of plumbed 3-manifolds. More recently, the third author proved the
isomorphism in general [Zem21b].

Given a knot K in S3, Ozsváth–Szabó [OS04], and Rasmussen [Ras03] defined a refinement of
Heegaard Floer homology, called knot Floer homology. There are several equivalent formulations
of this invariant. For our purposes, it is most convenient to consider knot Floer homology as taking
the form of a free, finitely generated chain complex CFK(K) over the 2-variable polynomial ring
F[U ,V ].

Ozsváth and Szabó also defined a version of Heegaard Floer theory for links in 3-manifolds
[OS08]. For a link L ⊆ S3, we will focus on the description of the link Floer complex as a finitely
generated free chain complex CFL(L) over the polynomial ring F[U1,V1, . . . ,U`,V`], where ` = |L|.
For our purposes, it is also helpful to consider the knot and link Floer complexes over the completed
ring F[[U1,V1, . . . ,U`,V`]], denoted

CFL(L) := CFL(L)⊗F[U1,V1,...,U`,V`] F[[U1,V1, . . . ,U`,V`]].

Their construction also applies more generally when L is a link in a rational homology 3-sphere
Y . In this case, we denote the link Floer complex CFL(Y,L).

A relative version of lattice homology for plumbed knots is defined by Ozsváth, Stipsicz and
Szabó [OSS14]. Modulo notational differences, their version of knot lattice homology is analogous
to the complex CFK(K). They proved that for a plumbed L-space knot in S3, knot lattice homology
coincides with the knot Floer complex CFK(K).

Gorsky and Némethi [GN15] defined a relative version of lattice homology for L-space links.
(Note, their construction does not require the link to be plumbed). They constructed a spectral
sequence from their version of link lattice homology to a version of link Floer homology, which
is the homology of the quotient complex CFL(L)/(V1, . . . ,V`), and proved that it degenerates for
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all algebraic links. In particular, their version of link lattice homology is isomorphic (as a graded
group) to the version of link Floer homology for algebraic links in S3.

In our paper, we construct a new version of link lattice homology. Our link lattice complex is
more closely related to the construction of Ozsváth, Stipsicz and Szabó [OSS14], and is modeled
on the full link Floer complex CFL(L). We use this link lattice complex to study plumbed L-space
links, a family which includes all algebraic links in S3.

1.2. The link lattice complex. Suppose that L is a plumbed link in a plumbed 3-manifold Y .
Such a pair (Y,L) is presented by a weighted graph Γ, whose vertices are partitioned into two sets

VΓ = VG ∪ V↑.

The vertices VG are equipped with integral weights. The vertices in V↑ have no weights, and we
refer to them as arrow vertices. Unless specified explicitly otherwise, we will always assume that
Γ is a tree.

From the tree Γ, we obtain a partitioned link LΓ = LG ∪ L↑ in S3. This link may be described
as a connected sum of Hopf links, with one unknotted component for each vertex of Γ, and one
clasp for each edge of Γ. The manifold Y is the result of surgery on LG, with framing Λ obtained
from the weights. Inside of Y ∼= S3

Λ(LG), the link L is identified with L↑.
Given a plumbing tree Γ presenting a plumbed link (Y,L), we will construct a chain complex

CFL(Γ, V↑).

Given an orientation of L↑, we will equip the chain complex CFL(Γ, V↑) with the structure of a
module over the ring F[[U1,V1, . . . ,U`,V`]], where ` = |V↑|, as well as with a Maslov grading and
a Q`-valued Alexander grading.

It is helpful to view CFL(Γ, V↑) as an A∞-module over F[[U1,V1, . . . ,U`,V`]] with only m1 and
m2 non-vanishing. We note that the complex CFL(Γ, V↑) is not free over this ring unless |V↑| = 1.

A central result of the paper is the following:

Theorem 1.1. Suppose that Γ is a plumbing link diagram which is a tree, and write (Y, L) for the
associated 3-manifold and link. If Y is a rational homology sphere, then CFL(Y,L) is homotopy
equivalent to CFL(Γ, V↑) as an absolutely graded A∞-module over F[[U1,V1, . . . ,U`,V`]].

See Theorem 5.1 for further details. In the above, we are writing CFL(Y,L) for the full link
Floer complex CFL(Y,L) completed over the power series ring F[[U1,V1, . . . ,U`,V`]].

1.3. Algebraic and plumbed L-space links. We recall that a rational homology 3-sphere Y is
called an L-space if

ĤF (Y, s) ∼= F
for each s ∈ Spinc(Y ). A link L ⊆ S3 is called an L-space link if all sufficiently positive surgeries
are L-spaces. We note that since Dehn surgery does not depend on the orientation of the link, the
property of being an L-space link is independent of orientations.

An important family of plumbed links in S3 are algebraic links, which are the links of complex
plane curve singularities. According to Gorsky and Némethi [GN16], algebraic links in S3 are
L-space links.

There is a useful characterization of L-space links in terms of the link Floer complex. If L ⊆ S3,
then L is an L-space link if and only if the homology group HFL(L) is torsion free as an F[U ]-
module, where U acts by UiVi for any i. (Since UiVi and UjVj have chain homotopic actions for
all i and j, the definition is independent of the choice of i).

Ozsváth and Szabó [OS05] proved the knot Floer complex of an L-space knot is a staircase
complex. A very natural question is whether an analog of Ozsváth and Szabó’s result holds for
L-space links. L-space links have also been extensively studied in the literature, see e.g. [BG18,
CL23, GH17, GLM20, GN15, Liu17, Liu19, Liu21]. Despite the interest in L-space links and many
interesting results concerning them, there is to date no result which characterizes the structure of
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the link Floer complex of an L-space link in parallel with Ozsváth and Szabó’s result for L-space
knots.

We prove the following:

Theorem 1.2. Suppose that L ⊆ S3 is a plumbed L-space link. Then the link Floer complex CFL(L)
is homotopy equivalent to a free resolution of its homology over F[U1,V1, . . . ,U`,V`]. Equiva-
lently, the complex CFL(L) is homotopy equivalent to its homology HFL(L) as an A∞-module over
F[U1,V1, . . . ,U`,V`], where we equip HFL(L) with the A∞-module structure which has mj = 0
unless j = 2.
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Figure 1.1. The knot and link Floer complexes of T (3, 4), T (2, 2) and T (2, 4).
Each dot denotes a generator in a free basis. The horizontal direction indicates
the grading of the free resolution.

Remark 1.3. (1) Theorem 1.2 is a natural generalization of the result of Ozsváth and Szabó
for L-space knots because the staircase complex of an L-space knot is easily seen to be a
free resolution of its homology over F[U ,V ].

(2) Theorem 1.2 also holds more generally for plumbed L-space links L in plumbed 3-manifolds
Y which are themselves L-spaces. For details, see Section 6.

(3) A dg-module M over a ring A such that (H∗(M),m2) is homotopy equivalent to M as an
A∞-module over A is called formal. Hence, we may restate Theorem 1.2 by saying that
plumbed L-space links have formal link Floer complexes.

We do not know whether Theorem 1.2 holds for non-plumbed L-space links. We state the
following open question:

Question 1.4. Are there non-plumbed L-space links L ⊆ S3 for which CFL(L) is not homotopy
equivalent to a free-resolution of HFL(L)?

From Theorem 1.2, we obtain an algorithm to compute the link Floer complex of a plumbed
L-space link. Namely, we observe that for an L-space link L, the F[U1,V`, . . . ,U`,V`]-module
HFL(L) is completely determined by the H-function (or equivalently the d-invariants of large
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surgeries). According to [GN15], the H-function of an L-space link in S3 is determined by the
multivariable Alexander polynomials of L and its sublinks. After determining HFL(L), one may
compute CFL(L) by computing its free resolution. Finding such a resolution is algorithmic, see
e.g. [Pee11], and may be done using computer algebra software such as Macaulay2 [GS]. We carry
this out for T (3, 3) and T (4, 4) in Section 7.

Our algorithm to compute the full link Floer complexes enables us to compute the minus and
the hat version of link Floer homology of plumbed L-space links by setting respectively Vi = 0
and Ui = Vi = 0 for all i. Moreover, the hat version of link Floer homology detects the Thurston
norm of the link complement in the three sphere [OS08c]. Hence, the algorithm also gives a way
to compute the Thurston norm of plumbed L-space links in S3.

Corollary 1.5. The link Floer complex of a plumbed L-space link L in S3 is computable from the
multivariable Alexander polynomials of the link L and its sublinks.

Remark 1.6. Computing free resolutions is in general a challenging task. For many purposes (e.g.
taking tensor products), it is more practical to understand the homology group HFL(L) and use
the fact that CFL(L) is homotopy equivalent as an A∞-module toHFL(L) with only m2 non-trivial.
Often the homology group HFL(L) has a much more concise description than its free resolution.
For example in Section 7, we give a simple description of the module HFL(T (n, n)). We describe
free resolutions for T (3, 3) and T (4, 4), which are considerably larger in complexity.

We note that for algebraic links in S3 (which are particular examples of plumbed L-space links)
the fact that the link Floer complex is determined by the Alexander polynomial may be seen
indirectly using the fact that the Alexander polynomial of an algebraic link determines the link.
See work of Yamamoto [Yam84]. This is not the case for algebraic links in other 3-manifolds, or
other plumbed L-space links in S3; see [CDGZ20] and also Proposition 3.20. Nonetheless, our
techniques give a concrete algorithm for computing the link Floer complex based on its Alexander
polynomial. Although foundational, Yamamoto’s work does not give a practical algorithm for
computing link Floer complexes of algebraic links in S3.

1.4. Gorsky and Némethi’s link lattice homology. We also consider Gorsky and Némethi’s
link lattice homology, which is defined for all L-space links. If L is an L-space link, then they
described a chain complex K (L), which they called the link lattice complex. They proved that if
L is an algebraic link, then

H∗(K (L)) ∼= H∗(CFL(L)/(V1, . . . ,V`)), (1.1)

as graded groups, where the right-hand side is identified with the minus version of link Floer
homology.

In our paper, we give an alternate perspective on the complex K (L). Namely, we show that
K (L) is homotopy equivalent as an A∞-module to the derived tensor product

K (L) ' HFL(L) ⊗̃F[U1,V1,...,U`,V`] F[U1,V1, . . . ,U`,V`]/(V1, . . . ,V`)

where we equip HFL(L) with the A∞-module structure which has only m2 non-trivial. As a
corollary of Theorem 1.2, we obtain the following result:

Corollary 1.7. If L is a plumbed L-space link, then Gorsky and Némethi’s link lattice complex
K (L) is homotopy equivalent to CFL(L)/(V1, . . . ,V`) as a graded chain complex.

We note Gorsky and Némethi only prove the isomorphism in Equation (1.1) at the level of
graded groups. Our proof of Corollary 1.7 improves on their result additionally because it equips
K (L) with a dg-module structure over F[U1,V1, . . . ,U`,V`] (i.e. an A∞-module structure with
only m1 and m2 non-trivial) and proves the isomorphism at the level of A∞-modules.

Gorsky and Némethi also constructed a spectral sequence from HFL(L)⊗Λ∗R`(ξ1, . . . , ξ`) to the
homology of CFL(L)/(V1, . . . ,Vn). Here, Λ∗R`(ξ1, . . . , ξ`) is the exterior algebra on `-generators and
R` = F[U1,V1, . . . ,U`,V`]. Our Corollary 1.7 naturally recovers this spectral sequence, as follows.
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We first recall that the module F[U1,V1, . . . ,U`,V`]/(V1, . . . ,V`) has free resolution over R` equal
to the Koszul complex Λ∗R`(ξ1, . . . , ξ`), where we equip each ξi with differential d(ξi) = Vi (extended
via the Leibniz rule). The chain complex (Λ∗R`(ξ1, . . . , ξ`), d) has a cube filtration, and the spectral
sequence associated to the induced cube filtration on HFL(L) ⊗ Λ∗R`(ξ1, . . . , ξ`) coincides with
Gorsky and Némethi’s spectral sequence.

1.5. Structure of the paper. Section 2 describes background on A∞-modules and the homolog-
ical perturbation lemma. We give a basic example from knot Floer theory of two complexes with
isomorphic homology groups, such that one of them is chain homotopy equivalent to its homology
(regarded as a chain complex with trivial differentials), while the other one is not.

Next, we recall some topological background in Section 3. We provide the definitions of plumbed
manifolds and plumbed links. We state the result of Gorsky and Némethi that a plumbed link
in a rational analytic singularity is an L-space link [GN16]. In particular, we show that plumbed
L-space links are a natural generalization of algebraic links in S3. In Section 4, we define our link
lattice complex. We describe the gradings and the F[U1,V1, . . . ,U`,V`]-module structure.

Section 5 proves the equivalence of the link lattice complex and the link Floer complex, stated
above in Theorem 1.1. This is the main technical result of the paper.

In Section 6 we focus on plumbed L-space links. Using Theorem 5.1 and the homological
perturbation lemma, we prove Theorem 1.2, which states that the link Floer complex of a plumbed
L-space link is a free resolution of its homology. As a consequence, we show that the link Floer
complex of a plumbed L-space link is computable from its multivariable Alexander polynomial. See
Theorem 6.6. Additionally, we describe how our link lattice complex recovers the theory described
by Gorsky and Némethi in the case of plumbed L-space links. See Theorem 6.10.

Section 7 describes some algorithms and examples. We provide a concrete way of presenting the
F[U1,V1, . . . ,Un,Vn]-module HFL(L) for an L-space link L, from its H-function. The algorithm of
Lemma 7.1 provides a presentation of HFL(T (n, n)) compatible with the description of Gorsky and
Hom [GH17, Section 5]. Next, we compute CFL(T (3, 3)) and CFL(T (4, 4)) by explicitly constructing
free resolutions.

Acknowledgments. The authors would like to thank Eugene Gorsky, Chuck Livingston, András
Némethi and Lorenzo Traldi for stimulating discussions. We are grateful to Marco Marengon for
the help with the complex of the T (3, 3) torus link. We have benefited a lot from Karol Palka’s
explanations of a current state-of-art on computing resolutions of modules.

2. Algebraic background

In this section we recall the notion of an A∞-module (Subsection 2.1). Then, in Subsection 2.2,
we state the homological perturbation lemma in A∞-category. In Subsection 2.3, we consider the
homological perturbation lemma in the context of free-resolutions of modules. In Subsection 2.4, we
present two complexes over F[U ,V ] with isomorphic homology, but which are not chain homotopy
equivalent. These two complexes appear naturally in knot Floer homology.

2.1. A∞-modules. Throughout the paper, we make use of the category of A∞-modules. The mo-
tivation is that A∞-module structures may be transferred along homotopy equivalences of groups.
Suppose that A is a ring that is an algebra over a field k. Given a finitely generated chain complex
C over A, in very general circumstances, one may pick a homotopy equivalence over k between
C and H∗(C). Given such a homotopy equivalence, the homotopy transfer lemma (cf. [Kad82])
equips H∗(C) with the structure of an A∞-module over A, such that C and H∗(C) are homotopy
equivalent as A∞-modules. Note that unless A is a field, it is rarely the case that C and H∗(C)
are homotopy equivalent as dg-modules over A. When the homotopy equivalence between C and
H∗(C) is suitably simple, the A∞-module maps on H∗(C) are usually computed using a version
of the homological perturbation lemma, stated in Lemma 2.3.

We now recall the basics of A∞-modules. We mostly follow the notation of Lipshitz, Ozsváth
and Thurston [LOT15,LOT18].
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Let A be an associative algebra with unit over a ring k. We will assume that k = F2. We write
µ2 for the multiplication on A.

Definition 2.1. A left A∞-module AM over A is a left k-module equipped with k-module maps

mj+1 : A⊗j ⊗k M →M, j ≥ 0

such that m1 ◦m1 = 0, and for each n and any a1, . . . , an ∈ A, x ∈M , the following holds.
n∑
i=0

mn−i+1(an, an−1, . . . , ai+1,mi+1(ai, . . . , a1,x))

+

n−1∑
k=1

mn(an, an−1, . . . , µ2(ak+1, ak), . . . , a1,x) = 0.

Lipshitz, Ozsváth and Thurston refer to A∞-modules as type-A modules, in contrast to type-D
modules, which we now introduce.

Definition 2.2. A right type-D module NA over A is a right k-module N , together with a k-linear
structure map

δ1 : N → N ⊗k A,
such that

(idN ⊗µ2) ◦ (δ1 ⊗ idA) ◦ δ1 = 0.

2.2. The homological perturbation lemma. It is a general fact that A∞-algebra structures
may be transferred along homotopy equivalences of the chain complex underlying an A∞-algebra.
This was proved by Kadeishvili [Kad82]. Homological perturbation theory gives concrete formulas
for the resulting A∞-module structure under certain restrictions on the chain homotopy equiva-
lence. See [KS01, Theorem 3]. An exposition of the technique may be found in Ph.D. thesis of
Lefèvre–Hasegawa [LH03].

Lemma 2.3. Suppose that A is an associative algebra over a ground ring k, AM = (M,mj) is an
A∞-module over A, (Z, ∂) is a chain complex over k, and that we have three maps of left k-modules

i : Z →M, π : M → Z and h : M →M

satisfying the following:

(1) i and π are chain maps.
(2) π ◦ i = idZ .
(3) i ◦ π = idM +∂(h), where ∂(h) := m1 ◦ h+ h ◦m1.
(4) h ◦ i = 0.
(5) π ◦ h = 0.
(6) h ◦ h = 0.

Then there are A∞-module structure maps mZ
j on Z, as well as A∞-module morphisms

I∗ : AZ → AM, Π∗ : AM → AZ and H∗ : AM → AM

satisfying mZ
1 = ∂, I1 = i, Π1 = π and H1 = h, and such that the analogs of relations (1)–(6) are

also satisfied as by the A∞-module morphisms I∗, Π∗ and H∗.

Remark 2.4. It is important to note that the maps i, π, h in the assumption of homological pertur-
bation lemma are required to be only k-module maps, not necessarily A-module maps. We refer
the interested reader to [LH03, Section 1.4] for a detailed proof.

The extended A∞-module maps in the homological perturbation lemma have a concrete descrip-
tion below. The structure maps on Z are given by the diagrams shown in Figure 2.1. Therein
m>1 denote the A∞ structure maps of M , with m1 excluded, and ∆ is the comultiplication on the
tensor algebra T ∗A.
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∆ h

m>1
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...
...

h
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Figure 2.1. The maps appearing in the homological perturbation lemma for
A∞-modules. The notation is introduced in [LOT18, Section 2]. Shortly, a single
arrow represents an element of AM , while a double arrow represents an element
of
⊕

iA⊗i.

2.3. Free resolutions and A∞-actions. In this section, we describe a useful relation between
free resolutions and A∞-module structures. We assume that A is an algebra over F = Z/2. Suppose
that (AM,mj) is a type-A module which has mj = 0 for j 6= 2. That is, M is a left A-module in
the ordinary sense. A free resolution of M is a collection of free A-modules (Fi, fi)i∈N and A-linear
maps, which form an exact sequence of the following form:

· · · Fi Fi−1 · · · F1 F0 M 0.
fi fi−1 f2 f1 f0

For such a free resolution, write F for the chain complex which is the direct sum of the Fi.
By definition, a free resolution AF is quasi-isomorphic to AM , since the canonical projection

map from F to M is a chain map which induces an isomorphism on homology. In the category of
A∞-modules, quasi-isomorphisms are always invertible as A∞ morphisms. An exposition of this
principle may be found in [Kel01, Section 4]. In our present case, it is also helpful to construct
explicitly the homotopy equivalence, since we will use it and similar homotopy equivalences later.

Proposition 2.5. Suppose that AF is a free resolution of a left A-module AM . Then AF and

AM are homotopy equivalent as A∞-modules over A.

Proof. There is a canonical projection map π : F → M , which is just f0 on F0, and 0 on every
other summand. We pick any map of F-vector spaces i : M → F0 such that f0 ◦ i = idM . The map
i induces a direct sum splitting (of F-vector spaces) F0 = im f1 ⊕ im i. The map f1 : F1 → im f1

is surjective, so we pick a section of F-vector space maps, which we denote by h0. The map h0

induces a splitting of F1 into imh0 ⊕ im f2. We define a map h1 : im f2 → F2 to be a splitting of
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the map f2. We proceed in this manner to split the entire free resolution to obtain a diagram

· · · im fi+1 ⊕ imhi−1 im fi ⊕ imhi−2 · · · im f2 ⊕ imh0 im f1 ⊕ im i M 0.

fi

hi−1

fi−1

hi−2

f2

h1

f1

h0

f0

i

Clearly the maps i and π are chain maps. Furthermore, π ◦ i = idM , and

i ◦ π = idF +[∂, h]

where h is the direct sum of the hi. Additionally,

h ◦ i = 0 h ◦ h = 0 and π ◦ h = 0.

In particular, the homological perturbation lemma induces an A∞-module structure on M , which

we denote by AM̃ , such that AM̃ and AF are homotopy equivalent as A∞-modules. We claim

that the higher actions on AM̃ , vanish. Indeed, the map h always maps Fi to Fi+1, while mF
2

preserves the index Fi, and π is only non-vanishing on F0. A quick inspection of the left-most map
in Figure 2.1 shows that mj = 0 for j > 2.

From the claim it follows that AM̃ = AM , completing the proof. �

The following is a helpful restatement of the above result:

Corollary 2.6. Suppose A is an algebra over F = Z/2. Let AM be an A∞-module over A, and
let F be the total complex of a free resolution of H∗(M). Then AM is homotopy equivalent to AF
as an A∞-module if and only if AM is homotopy equivalent as an A∞-module to H∗(M), equipped
with vanishing m1 and vanishing mj for j > 2.

2.4. Example of non-formal chain complexes. As we mentioned in Subsection 2.1 if A is a
field, then any finitely generated chain complex is homotopy equivalent to its homology. If A is a
PID, then it is not hard to show that any finitely generated free chain complex is quasi-isomorphic
to its homology. For general rings, this is not always the case. In this section, we illustrate the
case A = F[U ,V ] with examples from the theory of knot Floer homology.

We consider the two free F[U ,V ]-complexes C and D with generators u,v,x,y, z, respectively
a,b, and c, and with differential represented by arrows as shown below:

C = u⊕
w x

y z

U

V V

U

and D =

a

c b

V

U

For appropriate choices of gradings, there is an isomorphism H∗(C) ∼= H∗(D), since both are
isomorphic to F[U ,V ] ⊕ F, where F has vanishing action of U and V . On the other hand, it is
easy to see that C and D are not homotopy equivalent over F[U ,V ]. For example, if we tensor
both with the module F[U ,V ]/(U ,V ) and take homology, we obtain vector spaces of different
rank over F.

We now equip bothH∗(C) andH∗(D) with A∞-actions by applying the homological perturbation
lemma. Since C is a free resolution of its homology, the induced A∞-action has only m2 non-trivial.

For D, the homology is the F span of U iV j(U a + V c) and b, where i, j ∈ N. We may define
a homotopy equivalence of chain complexes over F with D and the complex F[U ,V ] ⊕ F (with
vanishing differential). Write e for the generator of F[U ,V ] and write f for the generator of F.
The inclusion map i : H∗(D)→ D is given by

i(U nV me) = U nV m(U a + V c), i(f) = b,

for all n,m ≥ 0. We define a projection map π : D → H∗(D) by setting

π(U nV ma) =

{
U n−1V me if n > 0

0 otherwise,
and π(U nV mb) =

{
f if n = m = 0

0 otherwise.
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The map π vanishes on multiples of c. The maps π and i are clearly chain maps, and π ◦ i = id.
We define a homotopy h : D → D, by setting h(a) = h(c) = 0, and

h(U nV mb) =


U n−1V mc if n > 0

V m−1a if n = 0,m > 0

0 otherwise.

It is straightforward to see that i ◦ π = id +[∂, h]. Furthermore, h ◦ i, h ◦ h and π ◦ h vanish. In

particular, the maps i, π and h induce an A∞-module structure maps m
H(D)
j on H∗(D).

We claim that m
H(D)
3 (U ,V , f) = e. To this end, we use the formula on the left of Figure 2.1.

In the present situation, a = U ⊗ V , z = f . Note that ∆(U ⊗ V ) = (U )⊗ (V ), so we compute

m
H(D)
3 (U ,V , f) = π(mD

2 (U , h(mD
2 (V , i(f))))) = π(mD

2 (U ,a)) = e.

Remark 2.7. In Heegaard Floer theory, it is common to also consider the ring F[U ,V ]/U V
(see, e.g., [DHST21]). A similar computation as above shows that H∗(C/U V ) ∼= H∗(D/U V ) as
F[U ,V ]/U V -modules, but that the complexes C/U V and D/U V are not homotopy equivalent.

3. Plumbed manifolds and plumbed links

The goal of this section is to recall notions like plumbed manifolds, resolution graphs, and
plumbed links. We pay particular attention to algebraic links, which are L-space links by work of
Gorsky and Némethi [GN16]. Additionally, in Proposition 3.18 we describe a slightly wider class
of plumbed links which are also L-space links.

3.1. Review of plumbed manifolds. To set up the notation, we recall the constructions of
3-manifolds via plumbing. We refer the reader to [Neu81] for a detailed exposition.

Suppose G is a finite graph. We let VG be the set of its vertices. We assume that each v ∈ VG
has an associated weight λv ∈ Z. From VG we construct a real four-manifold XG, as follows. For
each v ∈ VG, we take Tv, the oriented disk bundle over S2 with Euler number λv. The manifold
XG is obtained by taking a disjoint union of all the Tv and gluing them using the following recipe.
Whenever two vertices v, v′ ∈ VG are connected by an edge e, we trivialize the bundles Tv and Tv′

over chosen disks in the base. Then, we glue these bundles together by an orientation-presenting
diffeomorphism that swaps the base and the fiber. Refer to [GS99, Example 4.6.2] or [Neu81] for
more details.

By convention, if G is not connected, we take a boundary connected sum of manifolds XGi

corresponding to connected components Gi of G.

Definition 3.1. The manifold XG is called the plumbed 4-manifold associated with G. The
boundary YG = ∂XG is the plumbed 3-manifold associated with G.

The construction of a plumbed manifold can be done in a relative setting, providing a pair
consisting of a three-manifold and a link contained in it. The starting data is a graph Γ with
vertices partitioned into two sets VG t V↑. We call V↑ the arrow vertices, and we call VG the
non-arrow vertices. We do not add weights to V↑.

Remark 3.2. From a topological perspective, it is most natural to require each vertex of V↑ to have
valence 1. However, in the combinatorial construction of link lattice homology, we do not need to
make this assumption.

We write G ⊆ Γ for the full subgraph spanned by the non-arrow vertices. The vertices V↑
determine a link L↑ in YG as follows. Suppose v ∈ V↑ is adjacent to a non-arrow vertex w ∈ VG.
We let Lv be a circle fiber of the S1-bundle ∂Tw → S2, such that the projection of Lv onto S2 is
disjoint from all the disks used to plumb the disk bundles of other non-arrow vertices. If more than
one arrow vertex is adjacent to the same non-arrow vertex w, we require each of the corresponding
components of L↑ to be fibers of ∂Tw → S2 over distinct points.

We define L↑ as the union of the circle fibers Lv ranging over v ∈ V↑.
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Definition 3.3. The link L↑ ⊆ YG is called the plumbed link associated with Γ. We say that a link
L ⊆ Y is a plumbed link if there exists an arrow-decorated plumbing graph Γ and a diffeomorphism
(Y, L) ∼= (YG, L↑).

Remark 3.4. One can also consider more general plumbings of disk bundles over higher genus
surfaces. To do so, one considers a plumbing graph where each vertex v ∈ VG is assigned an
additional weight, corresponding to the genus of the base space of disk bundle. However, the
resulting manifold YG is not a rational homology sphere if at least one surface has positive genus.
In the present paper, we are mostly concerned with rational homology spheres, so we restrict the
discussion to the case where all surfaces are spheres. We refer to [Neu81] for more details.

Definition 3.5. Suppose G is a plumbing tree with no arrow vertices. We define the incidence
matrix QG, as follows. The diagonal entries are the weights associated to vertices, while the
off-diagonal terms are 1 or zero, depending on whether the two vertices are connected by an edge.

By construction, QG represents the intersection form on XG. As the intersection form on XG

determines the homology of YG, we have:

Lemma 3.6. There is an isomorphism H1(YG;Z) ∼= cokerQG. In particular, YG is a rational
homology sphere if and only if detQG 6= 0.

There is a well known description of (YG, L↑) in terms of Dehn surgery. See [GS99, Exam-
ple 4.6.2]. We form a partitioned link LΓ = LGtL↑ in S3, as follows. For each vertex of Γ, we add
an unknotted component to LΓ, and for each edge, we add a clasp between the corresponding com-
ponents. The link LΓ may alternatively be described as an iterated connected sum of Hopf links.
The weights on the vertices in VG determine an integral framing Λ on LG, as in Definition 3.5.
Then

(YG, L↑) ∼= (S3
Λ(LG), L↑).

We remark a slight abuse of notation: L↑ denotes both the link in S3 (as a part of LΓ ⊆ S3)
and its image in the plumbed manifold YG.

3.2. Plumbed manifolds and resolutions of analytic singularities. One of the main moti-
vations for introducing plumbed manifolds comes from resolutions of singularities. We give now
a short account on plumbed manifolds obtained from surface singularities. We refer the reader to
introductory lectures of Némethi [Ném99], or to [Ném22, Section 3.3], [Loo13], [NS12, Chapter 4]
for more details and references.

First we focus on the absolute case corresponding to graphs with no arrow vertices. Later on
we discuss the relative case of embedded resolutions, leading to plumbed links.

Suppose (X,x0) is (a germ of) a normal complex analytic surface. The word ‘normal’ refers
to the property of the local ring Ox0

(X) being integrally closed, see [Har77, Exercise I.3.7]. It
implies, among other things, that x0 is an isolated singular point. See [Lau71, Ném99] for more
details. The surface (X,x0) can be analytically embedded into (CN , 0) for N sufficiently large.
Let Bε be a ball in CN with center at 0 and radius ε > 0. It is known, see [Mil68], that the
diffeomorphism type of the intersection LX := X ∩ ∂Bε is independent of ε and of the embedding
of X into CN , provided ε > 0 is small enough. Moreover, the pair (Bε, X ∩Bε) is topologically a
cone over (∂Bε, LX). The space LX is a smooth real 3-dimensional manifold. We call it the link
of the surface singularity (X,x0).

We stress that we study local behavior of X near x0. From the perspective of algebraic geometry,
this is emphasized by saying that X is a germ of a surface. The reader unfamiliar with this notion,
might assume that we replace X by X ∩Bε, where Bε is as above.

The manifold LX admits another description. We let (X̃, E) be a resolution of (X,x0), that is,

a smooth complex analytic surface together with a map π : (X̃, E)→ (X,x0), which is one-to-one
except on π−1(x0) = E. Now E =

∑
Ei is a union of smooth complex curves (Riemann surfaces)

intersecting transversally. Each of the Ei is assigned a number λi which is its self-intersection.
The curves Ei are referred to as the exceptional components of the map π.
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With the resolution we can assign two objects. One is the dual graph GX of the resolution. Its
vertices correspond to divisors Ei. Each vertex is assigned a weight λi. There is an additional
weight of a vertex by the genus of Ei (in the present paper we will consider only the case where
each of the Ei is a sphere, compare Remark 3.4). We add |Ei∩Ej | edges between vertices vi and vj ,
when i 6= j. We add no self-edges. There is a matrix QG associated with GX as in Definition 3.5.
We have the following result.

Proposition 3.7.

(a) The link LX of singularity (X,x0) is diffeomorphic to YGX .
(b) LX is a rational homology sphere if each of the Ei is a sphere and GX is a tree.

The manifold LX determines the graph GX up to a precisely described equivalence relation;
see [Neu81]. The way the resolution is constructed implies that QG is negative definite. A deep
theorem of Grauert [Gra62] shows that this characterizes links of analytic singularities among all
plumbed links.

Theorem 3.8. If QG is negative definite, then YG is a link of an analytic singularity.

We stress that the statement is far from true if the word ‘analytic’ is replaced by ‘algebraic’.
Moreover, in general, there is no uniqueness. While GX determines the diffeomorphism type of
LX , there might be analytically different singularities with the same link LX . There is a vast
research area concerning which invariants of X depend on the link LX , and which depend on the
analytic structure. We refer the reader to the book [Ném22]. Examples of invariants depending on
the analytic structure of X include geometric genus pg (see [Ném22, Section 6.8]), the embedding
dimension (minimal N for which X embeds into CN , see [Ném22, Example 6.7.17]), and the
Hilbert-Samuel function [Ném22, Section 5.1.40]).

3.3. Embedded resolutions. We now consider embedded singularities, which are pairs of ana-
lytic spaces Z ⊆ X, with a point x0 ∈ Z, where X and Z are possibly singular at x0. We restrict
our attention to the case where dimCX = 2 and dimC Z = 1. For an introduction to embedded
singularities, we refer to [Ném22], especially Section 2.2. An overview of singularity theory is given
in [NS12, Section 4.3]. Graph links, and their connection to singularity theory, are described in
[EN85].

Definition 3.9. An embedded singularity is a triple (X,Z, x0), where (X,x0) is a (germ of a)
normal complex analytic surface and Z ⊆ X is a complex analytic curve passing through x0.

Example 3.10. If X = C2, an embedded singularity is precisely a plane curve singularity.

Embed X analytically in CN with x0 mapped to 0. Take a small ball Bε around x0 in CN
as above. For sufficiently small ε > 0, the triple (Bε, X ∩ Bε, Z ∩ Bε) is topologically a cone
over (∂Bε, LX , LZ), where LX and LZ are, respectively, intersections of X and Z with ∂Bε. The
diffeomorphism type of the pair (LX , LZ) depends on neither the choice of ε nor the choice of
embedding.

Definition 3.11. The pair (LX , LZ) is called the link of the embedded singularity.

Example 3.12. Suppose (X,x0) = (C2, 0), and Z is a plane algebraic curve passing through 0.
Then, LX = S3, and the link LZ is precisely the algebraic link in the ordinary sense.

Since the study of singularities is local, we consider only the germ of the singularity. We note
that, by definition, (X,Z) and (X ∩ Bε, Z ∩ Bε) have the same germ. In particular, we may and
will assume that (X,Z) is a topologically a cone over (LX , LZ).

We can recover (LX , LZ) from an embedded resolution. By an embedded resolution of (X,Z, x0)

we mean the triple (X̃, Z̃, E) together with a proper analytic map π : (X̃, Z̃, E)→ (X,Z, x0) with
the following conditions
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• π : X̃ → X is one-to-one away from E. I in particular, the restriction π|Z̃ is one-to-one

away from Z̃ ∩ E;

• X̃ is a smooth surface and Z̃ is a smooth complex curve;
• Each algebraic component of E is a projective (that is, closed) smooth complex curve;

• The union E ∪ Z̃ has only transverse double points as singularities;

As in the non-embedded case, the smooth complex curves whose union in E are referred as the
exceptional components.

Given the embedded resolution, we can create a dual graph of the resolution. The construction
is in two steps. First, out of E, we construct the graph GX as above. Next, if vi ∈ VGX and

Ei is the corresponding component of E, we adjoin |Ei ∩ Z̃| arrow vertices to vi. We denote the
resulting graph ΓX,Z . Recall that we work locally (topologically, we have replaced X by X ∩Bε).
Therefore, Z̃ is the union of disks, each intersecting the graph E precisely at one point. That is,

every arrow vertex of ΓX,Z corresponds to a connected component of Z̃. The following result is
classical.

Proposition 3.13 (see e.g. [Ném22, Proposition 3.3.8]). The pair (YGX , L↑) is diffeomorphic to
(LX , LZ).

Our next aim is to explain the relative analog of Grauert’s Theorem 3.8. As the statement is
slightly technical, we give some extra explanation. Let g : X → C be a reduced analytic map
such that g−1(0) = Z. Here, reduced means that g is not divisible by a square of a non-invertible

analytic function on X. Then, g induces an analytic map g̃ : X̃ → C via g̃ = g◦π. Let v be a vertex
of Γ := ΓX,Z . The vertex v corresponds either to an exceptional component Ev (if v is a non-arrow

vertex), or to a component Z̃v of Z̃, if v is an arrow vertex. In both cases, g̃ vanishes on that
component. We let mv > 0 denote the order of vanishing. This quantity is called the multiplicity of
the vertex v. Note that since g is reduced, mv = 1 for all arrow vertices; see [NS12, Section 4.3.2].
The multiplicities and the weights satisfy the following compatibility relation (see [NS12, Equation
(4.1.5)]):

λvmv +
∑
w∈Vv

mw = 0, (3.1)

for each non-arrow vertex v ∈ VG, where Vv denote the set of all vertices in VΓ adjacent to v. Note
that (3.1), together with the condition mv = 1 for all arrow vertices, determines uniquely all other
multiplicities. However, unless QG is unimodular, the multiplicities need not be integral. If that
is the case, such a plumbed link cannot be realized as an embedded link of an analytic singularity.

We now state a relative analog of Grauert’s Theorem 3.8. For reference, see [Pic01, Corollaire
5.5].

Proposition 3.14. Let Γ be a graph with vertices V = VG ∪ V↑ such that QG is negative definite.
If assigning multiplicity 1 to each arrow vertex of Γ leads to integral positive multiplicities on all
vertices of VG via the compatibility relation (3.1), then (YG, L↑) is a link of an embedded analytic
singularity.

3.4. Rationality. Suppose (X,x0) is an analytic singularity. We define the geometric genus pg =
h1(OX̃); see [Ném99, Section 2]. Many properties of geometric genus are given in various chapters
of [Ném22]. The definition of pg does not depend on the choice of resolution. Geometric genus
is an invariant of the analytic structure of X; there are known examples of singularities with the
same link, but different geometric genus, see [Ném99, Paragraph 4.8]. Put differently, in general
pg cannot be read off from the combinatorics of the resolution graph G.

An exception is the case of rational singularities, which are characterized by the property that
pg = 0; see [Ném22, Section 7.1]. Given a graph G, we can determine, whether it represents
a rational singularity; this result is due to Artin [Art66], see also [Ném99, Theorem 3.8] and
[Ném22, Theorem 7.1.2]. For instance, if YG is a link of a rational singularity, then b1(YG) = 0.



14 MACIEJ BORODZIK, BEIBEI LIU, AND IAN ZEMKE

By studying the relation between pg and combinatorial invariants of XG encoded by G, Némethi
proves the following groundbreaking result:

Theorem 3.15 ([Ném17]). The singularity (X,x0) is rational if and only if LX is an L-space.

The proof of Theorem 3.15 can also be done using recently proved equivalence of lattice and
Heegaard Floer homology [Zem21b]. As the first step, one uses Némethi’s theorem stating that if
G is negative definite, then X is a rational singularity if and only if the reduced lattice homology of
YG is zero; see [Ném05,Ném08]. Next, one refers to [Zem21b] to show the reduced lattice homology
of YG vanishes if and only if YG is an L-space.

Remark 3.16. Theorem 3.15 characterizes only graphs representing an L-space among graphs with
negative definite incidence matrix QG. There are indefinite graphs representing L-spaces. For ex-
ample, if G is a linear plumbing such that QG is non-degenerate, then YG is a lens space, regardless
of whether QG is definite or not. To the best of our knowledge, there is not a generalization of
Theorem 3.15 for indefinite graphs.

3.5. Algebraic links and L-space links. Let us recall the following definition.

Definition 3.17. Let L be a link in a rational homology 3-sphere. We say L is an L-space link if
all sufficiently large positive surgeries on L are L-spaces.

Though usually one considers L-space links in S3 or an integer homology sphere (see e.g. [Liu17,
GN16]), we note that the same definition can be applied to links in rational homology 3-spheres.
Suppose K is a rationally null-homologous knot in Y , then Morse framings on K can be identified
with an affine Z subspace of Q by taking the intersection number of the framing (viewed as a
parallel longitude of K) with a rational Seifert surface. Hence, large surgeries on rationally null-
homologous links are surgeries with Morse framings which are sufficiently large in Q` with respect
to this identification.

In [GN16] Gorsky and Némethi studied which plumbed links in plumbed manifolds are L-space
links. Their main result is that an algebraic link in S3 is an L-space link, [GN16, Theorem 2].
Their proof works in a more general setting, leading to the following statement, which is given in
[GN16, Theorem 12] and the ensuing discussion.

Proposition 3.18. Suppose Γ is a graph such that QG is negative definite and YG is a link of a
rational singularity. Then L↑ is an L-space link.

We stress that the assumption on multiplicities as in Proposition 3.14 is never used in the proof
of Proposition 3.18. That is, Proposition 3.18 does not require that the link L↑ be a link of an
analytic singularity; it only makes a restriction on the graph G being the graph representing a
rational singularity.

To see this, we quickly sketch the argument of [GN16, proof of Theorem 2] proving Proposi-

tion 3.18. One first extends the graph G to another graph, G̃0, which replaces all arrowhead vertices

of Γ by chains of −2 weighted vertices ended by a −1 weighted vertex. By construction, G̃0 can be

contracted to G by successive blow-downs, that is G̃0 represents the manifold YG. Hence, it is a
rational graph. Next, a sufficiently large positive surgery on L↑ can be presented as a subgraph of

G̃0 as long as the chains of −2 weighted vertices are long enough. Since any subgraph of a rational
graph is rational by Laufer’s criterion, large positive surgeries on L↑ are represented by rational
graphs. Rational graphs represent L-spaces by [Ném05, Theorems 6.3 and 8.3]. That is to say, a
sufficiently large positive surgery on L↑ is an L-space. This means, that L↑ is an L-space link.

It is well-known that an algebraic knot is determined by its Alexander polynomial. A natural
question is whether this result generalizes to plumbed L-space links. The following well-known
fact is due to Yamamoto.

Proposition 3.19 (see [Yam84]). Two algebraic links in S3 with the same Alexander polynomial
are equal.
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A B

Figure 3.1. Resolution graph of the E8 singularity. All vertices correspond to
spheres with self-intersection −2. The meaning of components A and B is ex-
plained in the text.

−3 −1 −3

Figure 3.2. Plumbing graph of the second knot in Proposition 3.20(b). All
weights that are not explicitly marked have value −2.

The result of Yamamoto relies on the classification of algebraic links in S3, due to Zariski
[Zar32]; we refer to [EN85] for this characterization. In particular, this result does not admit
direct generalizations to links in other 3-manifolds. We give now a few counterexamples for some
naive attempts to generalize the result. Proposition 3.20 is not used in the present paper. Rather
it indicates that algebraic links cannot be distinguished by Alexander polynomials, hence, they
cannot be distinguished by Heegaard Floer homology.

Proposition 3.20.

(a) There exist non-isotopic plumbed L-space links in S3 with the same Alexander polynomial;
(b) There exist non-isotopic knots that are links of embedded analytic surface singularities with

the same Alexander polynomial.

Proof. Item (a) is classical. We know that the (2, 3)-cable on the positive trefoil is a plumbed
knot, and it is an L-space knot by [Hed09, Theorem 1.10]. However, its Alexander polynomial is
the same as that of the T (3, 4) torus knot.

Item (b) expands on results of Campillo, Delgado and Gussein-Zade [CDGZ20]. In fact, in
[CDGZ20, Section 3, Example 2] there are two knots in the Poincaré sphere with the same Alexan-
der polynomial, represented by two plumbing diagrams. We quickly recall their construction. The
starting point is the resolution of the E8 singularity given by the plumbing graph in Figure 3.1.
The first knot is obtained by taking the plumbing diagram of the E8 singularity and adding to it
an arrowhead vertex at the component marked A in Figure 3.1.

The second knot is obtained by drawing an A4-singularity (i.e. with local equation x5− y2 = 0)
transversally to a point at the B component. The resolution of that singularity yields the plumbing
graph drawn in Figure 3.2, compare [CDGZ20, Figure 2].

An explicit algorithm described in [EN85, Chapter 20] transforms these two plumbing graphs
into graph links, which are presented in Figure 3.3. Using the algorithm of [Neu83], we compute
the signature functions of these links, and we present them in Figure 3.4, omitting straightforward
calculations. The signatures are different, so the knots are different. �

Remark 3.21. The signatures might be different, but the discontinuities of the signature function
appear at the same places. This is consistent with the fact that the Alexander polynomials of the
two knots are equal. (It is well-known that the jumps of the signature functions occur only at roots
of the Alexander polynomial.) The fact that the signatures of the two knots in Proposition 3.20(b)
are different means not only that the knots are not isotopic, but also that they are not concordant.
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Figure 3.3. The two links of [CDGZ20] represented as graph links of [EN85].
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Figure 3.4. The signature functions x → σ(e2πix), x ∈ [0, 1/2] for links of Fig-
ure 3.3.

4. Link lattice homology

In this section, we recall some basics about Heegaard Floer homology, and subsequently define
our link lattice complex.

4.1. Background on link Floer homology. To fix the notation and terminology, we give some
necessary background on link Floer homology. We assume some familiarity with basics of Heegaard
Floer homology and its refinements for knots, see [OS04c,OS04,OS08,Ras03].

Let L be an `-component link in a 3-manifold Y . Recall [OS08, Section 3.5] that the pair (Y,L)
can be encoded in a multi-pointed Heegaard link diagram (Σ,α,β,w, z), as follows:

(1) Σ is a closed oriented genus g surface;
(2) α = {α1, . . . , αg+`−1} and β = {β1, . . . , βg+`−1} are collections of simple closed curves

on Σ. The curves αi are pairwise non-intersecting. Also, the curves βi are pairwise non-
intersecting. Moreover, α and β each span a g-dimensional subspace of H1(Σ;Z);

(3) w = {w1, . . . , w`}, z = {z1, . . . , z`}. Each component of Σ \ α (respectively of Σ \ β)
contains a single point of w and a single point of z.

It is not hard to see there exists a Heegaard link diagram for any pair (Y, L). Furthermore, any
two diagrams can be connected by sequence of Heegaard moves for link diagrams. See [OS08,
Theorem 4.7].

Given a Heegaard link diagram, we consider Lagrangian tori

Tα = α1 × · · · × αg+`−1, Tβ = β1 × · · · × βg+`−1

in the symmetric product Symg+`−1(Σ). The link Floer chain complex, CFL(Y,L), is a free chain
complex over

R` = F[U1,V1, . . . ,U`,V`]

generated by intersection points x ∈ Tα ∩ Tβ with the differential counting pseudo-holomorphic

curves in Symg+`−1(Σ) via:

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

(#M(φ)/R)U
nw1 (φ)

1 · · ·U nw` (φ)

` V
nz1 (φ)

1 · · ·V nz` (φ)

` y.

Here the sum is taken over all homotopy classes π2(x,y) of maps φ of a unit disk D ⊆ C to

Symg+`−1(Σ), where φ(−1) = x, φ(1) = y, φ(∂D∩{im(z) ≤ 0}) ⊆ Tα, φ(∂D∩{im(z) ≥ 0}) ⊆ Tβ .
Here, µ(φ) denotes the Maslov index of the class φ. The space M(φ) consists of all pseudo-
holomorphic curves representing the class φ, for a generic 1-parameter family of almost complex
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structures on Symg+`−1(Σ). For x ∈ Σ \ (α ∪ β), we denote by nx(φ) the intersection number of

{x} × Symg+`−2(Σ) ⊆ Symg+`−1(Σ) with φ(D). We refer to [OS04c] for more details.
There is a map sw from Tα ∩ Tβ to the set of Spinc structures on Y . The component of the

map ∂ from x to y can be non-trivial only if sw(x) = sw(y). That is to say, the chain complex
CFL(Y,L) splits as a direct sum over complexes CFL(Y,L, s), for s ∈ Spinc(Y ).

There is completed version of CFL(Y,L) regarded as a module over the ring of power series

R` := F[[U1,V1, . . . ,U`,V`]],

namely we set
CFL(Y,L) := CFL(Y,L)⊗R` R`.

In other words, CFL(Y,L) has the same generators as CFL(Y,L) and the same differential, except
that we work over a larger ring. The completed version appears in the surgery formula.

When Y is a rational homology 3-sphere, the link Floer homology groups have several gradings.
Firstly, there is a Q × Q-valued Maslov bigrading, denoted (grw, grz), as well as a Q`-valued
Alexander grading A. Furthermore

(grw, grz)(Ui) = (−2, 0) (grw, grz)(Vi) = (0,−2) and A(Vi) = −A(Ui) = ei,

where ei is the standard i-th coordinate vector in Q`. Note also that

grw − grz = 2
∑̀
i=1

Ai.

Remark 4.1. In this paper, we normalize grw so that the isomorphism

H∗(CFL(Y, L)/(V1 − 1, . . . ,V` − 1)) ∼= HF−(Y )

is grading preserving. In the above, we are writing HF−(Y ) for the Heegaard Floer homology
computed with a singly pointed Heegaard diagram for Y . We make a similar normalization for
grz. Equivalently, our grading convention is that HF− of a 3-manifold is invariant under adding
extra basepoints as a graded module; compare [OS08, Section 6.1]. We note that some authors
normalize the Maslov gradings so that H∗(CFL(Y,L)/(V1 − 1, . . . ,V` − 1) is isomorphic instead to
HF−(Y )[(`− 1)/2].

4.2. Lattice homology. We recall the definition of lattice homology [Ném08]. We use the nota-
tion of Ozsváth, Stipsicz and Szabó [OSS14b], since our construction of link lattice homology is
slightly easier to describe using their notation. Let G be a plumbing tree, and write VG for the
vertices of G. Write P(VG) for the power set of VG (i.e. the set of all subsets of VG). The lattice
complex is the F[[U ]] module

CF(G) :=
∏

[K,E]∈Char(G)×P(VG)

F[[U ]]⊗ 〈[K,E]〉,

where Char(G) ⊆ H2(XG,Z) denotes the set of characteristic elements of H2(XG,Z) on the
4-manifold XG. Recall that K ∈ H2(XG,Z) is characteristic, if K(x) ≡ x · x mod 2 for all
x ∈ H2(XG,Z).

We now define the differential on CF(G). Note that each vertex v ∈ VG determines an element
of H2(XG), which is class in H2(XG) of the base space of the disc bundle Tv used in the plumbing
construction. For I ⊆ E, one defines

2f(K, I) =

(∑
v∈I

K(v)

)
+

(∑
v∈I

v

)
·

(∑
v∈I

v

)
.

Note that the right-hand side of the above equation is always an even integer, because K is
characteristic. In particular, f(K, I) is an integer. We set g(K,E) = min{f(K, I) : I ⊆ E}. Next,
one defines

Av(K,E) = g(K,E − v) Bv(K,E) = min{f(K, I) : v ∈ I ⊆ E}.
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Set
av(K,E) = Av(K,E)− g(K,E) and bv(K,E) = Bv(K,E)− g(K,E).

By the definition of g(K,E), one can see that g(K,E − v) ≥ g(K,E). Similarly, Bv(K,E) ≥
g(K,E). Hence, av(K,E) and bv(K,E) are both nonnegative integers.

The differential on CF(G) is defined by the formula,

∂[K,E] =
∑
v∈E

Uav(K,E) ⊗ [K,E − v] +
∑
v∈E

U bv(K,E) ⊗ [K + 2v∗, E − v], (4.1)

where v∗ is the Poincaré dual to v. Note that because of the factor 2, K + 2v∗ is characteristic if
and only if K is. Equation (4.1) is extended linearly over F[[U ]]. We will refer to the first summand
in (4.1) as the A-terms in the differential, and we will refer to the second summand as the B-terms
of the differential.

4.3. The link lattice complex. We now suppose that Γ is a plumbing tree, whose vertex set is
partitioned into two sets:

VΓ = VG ∪ V↑.
Recall that the components of VG are equipped with a framing, while those of V↑ are not.

The vertices V↑ determine a link L↑ in the 3-manifold YG. We assume that each component of
L↑ is rationally null-homologous in YG. This occurs, for example, when the incidence matrix QG
is non-singular.

To define the link lattice complex, we first pick a framing on the components of V↑ arbitrarily.
In Proposition 4.13, we will show that the choice of framing on V↑ does not affect the link lattice
complex.

We define the link lattice complex CFL(Γ, V↑) as the quotient of CF(Γ) by the subspace generated
over F[[U ]] by tuples [K,E] where V↑ 6⊆ E. Equivalently, we may view CFL(Γ, V↑) as being
generated by [K,E] where V↑ ⊆ E, equipped with quotient complex differential. We think of the
differential on CFL(Γ, V↑) as being given by the same formula as Equation (4.1), except with the
sums being taken over only v ∈ E ∩ VG.

4.4. The module structure. Recall that

R` = F[U1,V1, . . . ,U`,V`].

We now describe the action of R` on link lattice homology, where ` = |V↑|. Write V↑ = {v1, . . . , v`}.
For each i ∈ {1, . . . , `}, there is an induced element µ∗i ∈ H2(XΓ;YΓ) ∼= H2(XΓ). This element is
dual to the class vi ∈ H2(XΓ) in the sense that µ∗i (vi) = 1, and µ∗i (w) = 0 for all w ∈ VΓ \ {vi}.
The class µ∗i is represented by the co-core disk of the 2-handle corresponding to vi.

Define the quantities:

δ+
i (K,E) = g(K + 2µ∗i , E)− g(K,E) and δ−i (K,E) = g(K − 2µ∗i , E)− g(K,E).

An easy computation shows that

f(K ± 2µ∗i , I) = f(K, I)± 1

if vi ∈ I, and f(K ± 2µ∗i , I) = f(K, I) if vi 6∈ I. In particular, we have that

δ+
i (K,E) ∈ {0, 1} and δ−i (K,E) ∈ {0,−1}

for all i.
For i ∈ {1, . . . , `}, we define

Ui · [K,E] =

{
U [K − 2µ∗i , E] if δ−i (K,E) = 0

[K − 2µ∗i , E] if δ−i (K,E) = −1,
(4.2)

and

Vi · [K,E] =

{
U [K + 2µ∗i , E] if δ+

i (K,E) = 1

[K + 2µ∗i , E] if δ+
i (K,E) = 0.

(4.3)
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We extend Ui and Vi to the entire link lattice complex by declaring them to be F[U ] equivariant.
Equivalently, we set

Ui · [K,E] = Ug(K−2µ∗i ,E)−g(K,E)+1[K − 2µ∗i , E] and

Vi · [K,E] = Ug(K+2µ∗i ,E)−g(K,E)[K + 2µ∗i , E].
(4.4)

Lemma 4.2. If vi ∈ V↑, then the endomorphisms Ui and Vi are chain maps.

Proof. The differential of CFL(Γ, V↑) is given by modifying (4.1) to sum over only v ∈ VG. Clearly
the summands of Vi∂[K,E] are in bijection with the summands of ∂Vi[K,E]. It remains to show
that the powers of U coincide. We consider the A-terms of the differential first. The power of U
from Vi∂[K,E] of [K + 2µ∗i , E − v] is

g(K + 2µ∗i , E − v)− g(K,E − v) + g(K,E − v)− g(K,E)

whereas the power of U from ∂(Vi[K,E]) is

g(K + 2µ∗i , E − v)− g(K + 2µ∗i , E) + g(K + 2µ∗i , E)− g(K,E).

These are obviously equal. Similarly, for the B-terms of the differential we use the equality

Bv(K,E) = (K(v) + v · v)/2 + g(K + 2v∗, E − v).

From here, the argument is similar to the case of type-A terms. We note that

(K + 2µ∗i )(v) + v · v = K(v) + v · v (4.5)

if v 6= vi. For the B-terms of the differential, the U power of the term from ∂Vi[K,E] is

Bv(K + 2µ∗i , E)− g(K + 2µ∗i , E) + g(K + 2µ∗i , E)− g(K,E).

The U -power from Vi∂[K,E] is

g(K + 2v∗ + 2µ∗i , E − v)− g(K + 2v∗, E − v) +Bv(K,E)− g(K,E).

The difference between these terms is ((K + 2µ∗i )(v) + v · v)/2 − (K(v) + v · v)/2 which vanishes
by (4.5).

The claim about the map Ui follows from essentially the same logic. �

Lemma 4.3.

(1) For each i, we have UiVi = ViUi = U .
(2) For all i, j, the commutators [Ui,Vj ], [Ui,Uj ] and [Vi,Vj ] vanish.

Proof. All of the stated relations are easily derived from Equation (4.4). �

Lemma 4.4. The action of R` on CFL(Γ, V↑) extends to an action of the ring of power series

R` = F[[U1,V1, . . . ,U`,V`]].

Proof. We use the following fact about direct products. Suppose that (Ai)i∈I and (Bj)j∈J are
families of vector spaces. Suppose that we have a function on indices γ : I × J → J as well as a
family of maps

fi,j : Ai ⊗Bj → Bγ(i,j).

If fi,j and γ have the property that for each j′ ∈ J , there are only finitely many i and j so that
γ(i, j) = j′ and fi,j 6= 0, then there is a well-defined map∑

i,j

fi,j :
∏
i∈I

Ai →
∏
j∈J

Bj ,

whose component functions are fi,j .
Note that both the lattice complex and the power series ring F[[U1,V1, . . . ,U`,V`]] may be viewed

as infinite direct products of copies of F. Hence, it is sufficient to show that for each y = Un⊗[K,E],
there are at most finitely many monomials a ∈ R` and generators x = Um ⊗ [K ′, E] such that
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a · x = y. If a = U i1
1 . . .U i`

` V j1
1 . . .V j`

` ∈ R` is a monomial, we define ν(a) ∈ H2(XΓ) by the
formula

ν(a) = (j1 − i1)µ∗v1
+ · · ·+ (j` − i`)µ∗v` .

Monomials in R` are equipped with a U -weight

wU (a) = min(i1, j1) + · · ·+ min(i`, j`).

A generator Un ⊗ [K,E] also has a U -weight wU (Un ⊗ [K,E]) = n. It is straightforward to verify
that wU (a · x) ≥ wU (a) + wU (x) for any a and x. In particular, if y = Un ⊗ [K,E] is fixed, then
there are only finitely many possible U weights of a and x such that y = a · x.

Monomials in R` also have an Alexander grading A(a) = (j1 − i1, . . . , j` − i`). Since H2(XΓ)
is torsion free and of rank |LΓ|, we have that ν(a) = ν(a′) if and only if A(a) = A(a′). Also, if
a · [K ′, E] = Un ⊗ [K,E], then it must be the case that K ′ = K − 2ν(a).

Let s ∈ {1, . . . , `}. Note that if As(a) = js − is is sufficiently negative, then Vs[K − 2ν(a), E] =
U [K − 2ν(a) + 2µ∗s, E] by the observation that (K − 2ν(a))(vs) < 0 and the minima involving
g(K − 2ν(a), E) and g(K − 2ν(a) + 2µ∗s, E) will both be attained at some I ⊆ E containing
vs. A similar argument shows that if As(a) is sufficiently positive, then Us[K − 2ν(a), E] =
U [K − 2ν(a)− 2µ∗s, E].

In particular, it follows from the above reasoning that the set of monomials a such that there
is an i satisfying a · U i ⊗ [K − 2ν(a), E] = Un ⊗ [K,E] is bounded in U -weight and Alexander
grading. However, it is easy to verify that the set of elements in R` in bounded Alexander grading
and U -weight is finite, completing the proof. �

4.5. Maslov gradings. If the intersection form of XΓ is non-singular, then the lattice complex
CFL(Γ, V↑) inherits a Maslov grading from CF(Γ). We recall the formula

gr(U i ⊗ [K,E]) = −2i+ 2g(K,E) + |E|+ 1

4
(K2 − 3σ(XΓ)− 2χ(XΓ)). (4.6)

Compare [OSS14, Section 2.3]. Here, σ(XΓ) and χ(XΓ) are the signature and Euler characteristic,
respectively. The number K2 is obtained by factoring K from H2(XΓ) to H2(XΓ, ∂XΓ), squaring
using the cup product, and then evaluating on the fundamental class [XΓ, ∂XΓ] ∈ H4(XΓ, ∂XΓ).

In the setting of link lattice homology, it is more natural to define the Maslov grading via the
formula

grw(U i ⊗ [K,E]) = −2i+ 2g(K,E) + |E| − |V↑|+
1

4
(K|2XG − 3σ(XG)− 2χ(XG)). (4.7)

This grading is defined when the intersection form QG of XG is non-singular. More generally, this
grading may also be defined when QG is singular, as long as we restrict to torsion Spinc structures
on YG.

Lemma 4.5. The differential ∂ on CFL(Γ, V↑) decreases grw by 1. Furthermore, if vi ∈ V↑, then
Vi preserves grw and Ui decreases grw by 2.

Proof. The proof that grw(∂) = −1 is essentially identical to the proof in [OSS14b, Lemma 3.1]
(cf. [Ném08]) so we will not repeat it.

We now consider the actions of Vi and Ui. Note that (K ± 2µ∗i )|2XG = K|2XG , since µ∗i has
trivial restriction to XG. Hence the grading changes are entirely due to the powers of U and
the g(K,E) terms. With this in mind, the stated grading changes follow immediately from the
formulas defining the action of Vi and Ui in Equations (4.3) and (4.2). �

Remark 4.6. Note that grw and gr do not in general differ by a constant. Also ∂ is only ho-
mogeneously graded on CFL(Γ, V↑), and not on the entire complex CF(Γ). The reader should
compare the lattice complex to the Heegaard Floer mapping cone complex of Ozsváth and Szabó
[OS08b]. For K ⊆ S3, with integer framing n, this takes the form of a mapping cone Xn(K) =
Cone(v+hn : A(K)→ B(K)), which is homotopy equivalent to CF−(S3

n(K)). The complex A(K)
is isomorphic to the full knot Floer complex CFK(K) (a finitely generated chain complex over
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F[U ,V ]), and hence admits a grading grw on CFK(K). This does not coincide with the Maslov
grading on Xn(S3

n(K)) (see [OS08b, Section 4]) induced by the isomorphism with CF−(S3
n(K)).

4.6. Alexander gradings. We now define the Alexander multi-grading. If |V↑| = `, our Alexan-
der grading will take values in Q`. We assume that YG is a rational homology 3-sphere.

If v ∈ V↑, we may only view v as a class in H2(XG, ∂XG), and not necessarily H2(XG). Con-
cretely, [v] ∈ H2(XG, ∂XG) is obtained by capping one end of the link cobordism [0, 1]×Lv ⊆ XG

with a disk in S3. Since YG is a rational homology 3-sphere, the knot Lv ⊆ YG is rationally
null-homologous, so we may lift the class [v] ∈ H2(XG, ∂XG) to a class [v̂] ∈ H2(XG;Q). Such a
lift is given by capping with a rational Seifert surface for Lv ⊆ YG.

Definition 4.7. Let Γ be an arrow decorated plumbing tree, as above, and suppose U i · [K,E]
is a generator of CFL(Γ, V↑). Write V↑ = {v1, . . . , v`}. We define the Alexander multi-grading of
U i · [K,E] to be

A
(
U i[K,E]

)
=

(
K(v1 − v̂1) +

∑
v∈V↑ v · (v1 − v̂1)

2
, . . . ,

K(v` − v̂`) +
∑
v∈V↑ v · (v` − v̂`)
2

)
,

which lies in Q`.

Note that the Alexander multi-grading of U i[K,E] depends on K, but not on E or i.

Remark 4.8. More generally, if YG is not a rational homology 3-sphere, we can construct the
Alexander grading Ai when the corresponding component of L↑ is rationally null-homologous, as
long as a rational Seifert surface is chosen. For our purposes, such a choice is equivalent to a choice
of lift v̂i of vi under the map H2(XG;Q)→ H2(XG, ∂XG;Q). Our grading may be defined in this
context as well.

Lemma 4.9. The differential on CFL(Γ, V↑) preserves the Alexander multi-grading. Suppose that
vi, vj ∈ V↑. The action of Ui drops the Alexander grading Aj by δi,j (Kronecker delta) and the
action of Vi increases the Alexander grading Aj by δi,j.

Proof. The A-terms of the differential obviously preserve the Alexander multi-grading since they
do not change K. The B-terms send [K,E] to a sum of U -multiples of [K + 2w∗, E − w], where
w ranges over the non-arrow components. Note that since w ∈ VG, w∗ is the Poincaré dual of the
element [w] ∈ H2(XG;Z), so

(K + 2w∗)(vj − v̂j) = K(vj − v̂j).

Hence the B-terms also preserve Alexander grading.
Next, we consider the actions of Ui and Vi. We note that (K + 2µ∗i )(v̂j) = K(v̂j), since v̂j and

µ∗i are represented by disjoint rational 2-chains. On the other hand, we have

(K + 2µ∗i )(vj) = K(vj) + 2δi,j .

Hence, the conclusion follows from these observations. �

4.7. Conjugation symmetry. As with the original construction of lattice homology [Ném08, Re-
mark 3.2.7], the link lattice complex admits a conjugation symmetry. Compare [OSS16, Sec-
tion 2.2]. This takes the form of a map

J(U i[K,E]) = U i[−K −
∑
v∈E

2v∗, E].

We now observe that the J-map is skew Alexander graded:

Lemma 4.10. The J map satisfies

A(J([K,E])) = −A([K,E]),
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Proof. By construction of the link lattice complex, V↑ ⊆ E. We observe that if v ∈ E \ V↑ and
vi ∈ V↑, then 2v∗(vi − v̂i) = 0 since v∗ is Poincaré dual to a class in H2(XG;Z). Hence, if vi ∈ V↑,
then

(−K −
∑
v∈E

2v∗)(vi − v̂i) +
∑
v∈V↑

v · (vi − v̂i) = (−K −
∑
v∈V↑

2v∗)(vi − v̂i) +
∑
v∈V↑

v · (vi − v̂i)

= −K(vi − v̂i)−
∑
v∈V↑

v · (vi − v̂i).

Therefore, A(J([K,E])) = −A([K,E]). �

We recall from [OSS14, Section 2.3] that J preserves the grading gr from Equation (4.6). On
the other, its interaction with grw is more interesting. Define

grz = grw −2(A1 + · · ·+A`),

where (A1, . . . , A`) is the Alexander grading. Note that by Lemmas 4.5 and 4.9, the action of Ui

preserves the grz-grading, while the action of Vi drops the grz-grading by 2.

Lemma 4.11. The map J interchanges the grw and grz gradings.

Proof. We recall the useful identity (see [OSS14, Equation 2.2]) that

g(K,E)− g(−K −
∑
v∈E

2v∗, E) = f(K,E). (4.8)

Let us write

f([K,E]) =
1

2
(K(vE) + v2

E)

where vE =
∑
v∈E v. Therefore,

grw([K,E])− grw(J [K,E]) = 2f([K,E]) +
1

4
(K|2XG − (−K − 2v∗E)|2XG)

= K(vE) + v2
E − (K ∪ v∗E + v∗E ∪ v∗E)[XG, YG]

Let us write v̂∗E , for the restriction of v∗E to XG, pulled back from H2(XG, YG) → H2(XG). Use
similar notation for individual vertices. Note that if vi ∈ v↑, then v∗i |XG = v̂∗i , where v̂∗i ∈
H2(XG;Q) is the 2-chain appearing in the definition of the Alexander grading. Observe that if
v ∈ E \ V↑, then v̂∗ is still the Poincaré dual of the 2-sphere represented by v, which is contained
in XG. Let us write v↑ for

∑
v∈V↑ v, and define v̂↑ similarly. We compute that

f([K,E]) +
1

4
(K|2XG − (−K − 2v∗E)|2XG) = K(vE) + v2

E − (K ∪ v̂∗E + v̂∗E ∪ v̂∗E)[XG, YG]

= K(v↑ − v̂↑) + v2
↑ − v̂2

↑

= K(v↑ − v̂↑) + v↑(v↑ − v̂↑).
Combining the above with Lemma 4.10 we see that

grw([K,E]) = grw(J([K,E])) + 2(A1 + · · ·+A`)([K,E]) = grz(J [K,E]).

The same argument shows grz([K,E]) = grw(J [K,E]). �

Lemma 4.12. The map J skew-commutes with Ui and Vi, i.e.

J ◦ Vi = Ui ◦ J and J ◦Ui = Vi ◦ J.

Proof. We compute from (4.2) and (4.3):

Ui · J([K,E]) =U1+δ−i (J[K,E]) · [−K −
∑
v∈E

2v∗ − 2µ∗i , E]

J(Vi · [K,E]) =U δ
+
i ([K,E])[−K −

∑
v∈E

2v∗ − 2µ∗i , E].
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Therefore, it suffices to show that

1 + δ−i (J [K,E]) = δ+
i ([K,E]).

Rewriting in terms of the g function, the above is equivalent to

1 = g(K + 2µ∗i , E)− g(K,E) + g(−K −
∑
v∈E

2v∗)− g(−K − 2µ∗i −
∑
v∈E

2v∗, E)

By Equation (4.8), we see that the right-hand side of the above equation is

f(K + 2µ∗i , E)− f(K,E) = µ∗i (
∑
v∈E

v) = 1,

as claimed. (Recall that vi ∈ E by definition of the lattice link complex). An analogous argument
shows that Vi ◦ J = J ◦Ui. �

4.8. Spinc-structures. We describe how the link lattice complex CFL(Γ, V↑) naturally splits over
Spinc(YG) as a module over R`. Recall the isomorphism

Spinc(YG) ∼= Spinc(XG)/H2(XG).

Also, the Chern class map c1 : Spinc(XG) → Char(XG) is an isomorphism of affine H2(XG)-sets
(where C ∈ H2(XG) acts on Char(XG) by K 7→ K + 2C).

In the link lattice complex, we associate the generator [K,E] ⊗ U i with the Spinc structure
[K|XG ], viewed as an element of Char(XG)/H2(XG) ∼= Spinc(YG). This gives the decomposition
of the F[[U ]]-modules

CFL(Γ, V↑) =
⊕

s∈Spinc(YG)

CFL(Γ, V↑, s). (4.9)

Since the differential on CFL(Γ, V↑) is constructed by modifying (4.1) to sum over only v ∈ VG,
the decomposition (4.9) is preserved by ∂. The actions of Ui and Vi also preserve this decompo-
sition, because they change K to K ± 2µ∗i , and µ∗i ∈ H2(XΓ) has trivial restriction to H2(XG).
That is to say, (4.9) yields the decomposition of chain complexes of F[[U1,V1, . . . ,U`,V`]]-modules
over the Spinc structures of YG.

4.9. Independence from the framing on arrow components. We now show that our chain
complex CFL(Γ, V↑) is independent of the choice of framing on the arrow components, up to
canonical isomorphism.

Suppose that G is a weighted plumbing tree obtained by weighting the arrow vertices of Γ by
(any) integral weights, and using the weights from Γ on VG. We obtained a model of the link lattice
complex in the previous section, which we denote by CFLG(Γ, V↑). In this section, we describe a
canonical isomorphism

FG,G′ : CFLG(Γ, V↑)→ CFLG′(Γ, V↑)
for any two extensions G and G′.

Let LΓ ⊆ S3 denote the link associated to Γ as in Subsection 3.1. We write LG to denote LΓ,
equipped with the framing from G. Write n for |VΓ|. Following the notation of Manolescu and
Ozsváth [MO10], we define the linking lattice H(LG) to be the affine Zn subspace of Qn consisting
of vectors s = (s1, . . . , sn) such that si ∈ Z + lk(Li, LΓ − Li)/2. As sets, we clearly have

H(LG) = H(LG′).

The lattices H(LG) and H(LG′) are distinguished by their natural actions of H2(XG) ∼= H2(XG′) ∼=
Zn. The action of H2(XG) on H(LG) is as follows. Given v ∈ VΓ, write λv for the longitude of Kv

determined by the framing of Kv. By writing H1(S3 \LΓ) ∼= Zn, we can identify λv as an element
in Zn, and the action of v on H(LG) can be identified as a translation by this corresponding element
in Zn.

Next, there is a canonical isomorphism

ΦG : Char(XG)→ H(LG)
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given by the formula

ΦG(K) =

(
K(v1) + vG · v1

2
, . . . ,

K(vn) + vG · vn
2

)
. (4.10)

In the above, we write vG = v1 + · · ·+ vn ∈ H2(XG). Note that ΦG is equivariant with respect to
the action of H2(XG).

Given two weight-extensions G and G′ of Γ, we define the group isomorphism

FG,G′ : CFLG(Γ, V↑)→ CFLG′(Γ, V↑),

via the formula

FG,G′([K,E]⊗ U i) = [(Φ−1
G′ ◦ ΦG)(K), E]⊗ U i.

The map FG,G′ is clearly an isomorphism of F[[U ]]-modules. In fact, we have the following:

Proposition 4.13. The map FG,G′ is a (grw, A)-grading preserving chain isomorphism between
CFLG(Γ, V↑) and CFLG′(Γ, V↑).

Proof. The differentials on CFLG(Γ, V↑) and CFLG′(Γ, V↑) are similar to Equation (4.1), except
that we take the sum only over the vertices v ∈ VG. Note that there are no summands in the
differential for v ∈ V↑. We consider the restricted action of H2(XG) ⊆ H2(XΓ) on Char(XG),
Char(XG′), H(LG) and H(LG′). Since the framings of the vertices of VG coincide on XG and XG′ ,
the identification H(LG) ∼= H(LG′) is equivariant with respect to the action of H2(XG).

It is straightforward to verify that the map ΦG is equivariant with respect to the action of
H2(XG). The same argument applies to show that Φ−1

G′ is equivariant as well.

Let K ∈ Char(XG) and write K ′ = (Φ−1
G′ ◦ΦG)(K). The remainder of the proof follows from the

following two claims:

(1) K|XG = K ′|XG .
(2) For all E, we have f(K,E) = f(K ′, E).

We verify these two claims presently.
The first claim follows from the proof of [OSS14b, Lemma 4.6], which we repeat for the benefit

of the reader using our present notation. Write s = ΦG(K) = ΦG′(K
′). Since H2(XG) is torsion

free, it suffices to show that K|XG(v) = K ′|XG(v) for each v ∈ VG. Note that if vi ∈ VG, then
K(vi) = 2si − vG · vi. This quantity only depends on s, on the framing of Ki (the link component
represented by the vertex vi), and on the linking numbers of Ki with other link components. In
particular, K(vi) = K ′(vi), completing the proof of the first claim.

We now consider the second claim. By definition,

2f(K,E) = K(vE) + vE · vE
where vE is the sum of v for v ∈ E. We may rearrange the above expression to obtain

2f(K,E) = (vE − vG) · vE +
∑
v∈E

(K(v) + vG · v) = (vE − vG) · vE +
∑
vi∈E

si.

The right-hand side depends only on s, the framing of LG, and the linking numbers of the compo-
nents of LG , but not on the framings of V↑. This establishes the second claim.

From these considerations, it follows that FG,G′ preserves the grw-grading, and is also a chain
map.

We now establish that FG,G′ preserves the Alexander grading. Suppose that vi ∈ V↑. The
corresponding component of the Alexander grading is half of

K(vi − v̂i) +
∑
v∈V↑

v · (vi − v̂i) = K(vi) +
∑
v∈V↑

v · vi −K(v̂i)−
∑
v∈V↑

v · v̂i

= K(vi) +
∑
v∈VΓ

v · vi −
∑
v∈VG

v · vi −K(v̂i)−
∑
v∈V↑

v · v̂i.
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The first two terms above sum to 2si. The last three terms may be rewritten as follows:

−
∑
v∈VG

PD [v](vi)−K(v̂i)−
∑
v∈V↑

PD [v](v̂i).

In particular each term is the evaluation of an element of H2(XΓ) on an element of H2(XG;Q).
We observe that PD [v]|XG , for v ∈ Γ, is independent of the framing on V↑. Furthermore, K|XG =
K ′|XG . Hence Ai([K,E]) = Ai([K

′, E]).
�

4.10. Freeness of the lattice complex. Since UiVi = U for all i, for ` > 1 the link lattice
complex is not free over F[[U1,V1, . . . ,U`,V`]]. Nonetheless, we prove that the link lattice complex
is free over F[[Ui,Vi]], for each index i.

Proposition 4.14. Suppose that Γ is an arrow decorated plumbing graph with a chosen vertex
vi ∈ V↑. Write Ui and Vi for the variables associated to vi. Then the module CFL(Γ, V↑) is a
completion of a free module over F[[Ui,Vi]].

Proof. We consider the set of generators [K,E] modulo the equivalence relation generated by
[K,E] ∼ [K + 2µ∗i , E] for all K and E. Equivalence classes may be identified with elements of
(Char(Γ)× P(VG))/Z, where 1 ∈ Z acts on Char(Γ) by 2µ∗i .

Fix an equivalence class, and let W denote the F[U ]-span of the generators in this class. We
may write W ∼=

⊕
s∈ZWs where each Ws

∼= F[U ]. We order the Ws so that Vi ·Ws ⊆ Ws+1 and
Ui ·Ws ⊆Ws−1. We make the following claims, from which the result will follow fairly easily:

(f -1) For each s, exactly one of Vi : Ws → Ws+1 and Ui : Ws+1 → Ws will be multiplication by
1, and the other will be multiplication by U . This follows from the fact that Ui · Vi acts
by U .

(f -2) If [K,E] is fixed, then [K,E] is not in the image of U n
i or V n

i for arbitrarily large n. This
follows immediately from Lemma 4.4.

(f -3) If Vi · [K,E] = [K+2µ∗i , E], then Vi · [K+2µ∗i , E] = [K+4µ∗i , E]. Similarly, if Ui · [K,E] =
[K − 2µ∗i , E] then Ui · [K − 2µ∗i , E] = [K − 4µ∗i , E].

We now prove claim (f -3), focusing on the argument for Vi since the claim about Ui is similar.
We recall from Section 4.4 that

f(K + 2µ∗i , E) =

{
f(K,E) if vi 6∈ E
f(K,E) + 1 if vi ∈ E.

Hence, δ+
i (K,E) = 0 if and only if there is a J ⊆ E such that f(K,J) = g(K,E) and vi 6∈ J . In

particular, if Vi · [K,E] = [K + 2µ∗i , E], then there exists such a J . Hence

g(K,E) = f(K,J) = f(K + 4µ∗i , J) ≥ g(K + 4µ∗i , E) ≥ g(K,E),

so we have equality throughout. It follows that Vi · [K + 2µ∗i , E] = [K + 4µ∗i , E].
Note that the claim (f -3) implies there is no [K,E] which is in the image of both Ui and Vi,

since if [K,E] were in the image of both, then the above claims show that

UiVi[K − 2µ∗i , E] = Ui[K,E] = [K − 2µ∗i , E],

which contradicts UiVi = U .
Claims (f -1) and (f -2) imply that there exist generators [K,E] in W which are in the image

of Ui, and there also exist generators which are in the image of Vi. (This rules out the module
F[Ui,Vi,V

−1
i ] and F[Ui,U

−1
i ,Vi]).

From the above considerations, we obtain that there is a unique generator [K,E] such that
Ui[K,E] = [K − 2µ∗i , E] and Vi[K,E] = [K + 2µ∗i , E]. By (f -3) this [K,E] must be a free
generator of W over F[Ui,Vi]. �



26 MACIEJ BORODZIK, BEIBEI LIU, AND IAN ZEMKE

4.11. Type-D modules over K. If G is a weighted plumbing tree (without arrow vertices) and
v is a distinguished vertex, we now describe how to view the lattice complex as a type-D module
over the algebra K, described by the third author [Zem21].

We first recall the algebra K from [Zem21]. It is an algebra over the idempotent ring I ∼= I0⊕I1,
where each Iε ∼= F. We define

I0 · K · I0
∼= F[U ,V ], I0 · K · I1 = 0 and I1 · K · I1

∼= F[U ,V ,V −1].

Finally, I1⊗K⊗ I0 is isomorphic to the direct sum of two copies of F[U ,V ,V −1], viewed as being
generated by two distinguished elements σ and τ . These elements satisfy

σ ·U = UV −1 · σ, σ · V = V · σ

τ ·U = V −1 · τ and τ · V = UV · τ.
where U = U V .

In this section, we describe how to construct a type-D module X (G)K from the data of CF(G).
The construction of X (G)K may be equivalently described as a tensor product of the Hopf, merge
and solid torus modules from [Zem21], though we presently give a direct construction in terms of
lattices. We define X (G)K at the end of the section, after we prove several properties about the
lattice complex.

Write CF0(G) for the codimension 1 subcube of CF(G) generated by tuples [K,E] where v ∈ E.
Write CF1(G) for the codimension 1 subcube generated by tuples [K,E] where v 6∈ E. We view
CF(G) as a mapping cone

CF(G) ∼= Cone
(
FAv + FBv : CF0(G)→ CF1(G)

)
,

where FAv and FBv are the summands of the differential which are weighted by Uav(K,E) and
U bv(K,E), respectively.

We observe that CF0(G) is exactly the link lattice complex if we designate the special vertex v
as the sole arrow vertex. In particular, Proposition 4.14 implies that it is a completion of a free
F[[U ,V ]] module (where U and V are the actions for v).

We may define actions of U and V also on CF1(G), using the same formulas as in Section 4.4.
We first observe that the formulas have a comparatively easier description than on CF0(G):

Lemma 4.15. On CF1(G), we have

U · [K,E] = U [K − 2µ∗, E] and V · [K,E] = [K + 2µ∗, E]

for all K and E such that v 6∈ E.

Proof. If v 6∈ E, then f(K,E) = f(K ± 2µ∗, E), and hence

g(K,E) = g(K ± 2µ∗, E). (4.11)

Both equations follow by applying this fact to the definition of U and V from Section 4.4. �

As a consequence of the above, we may define an action of V −1 on CF1(G) via the formula
V −1 · [K,E] = [K − 2µ∗, E]. As an additional consequence of Lemma 4.15, we have the following
easy analog to Proposition 4.14:

Corollary 4.16. The complex CF1(G) is the completion of a free module over F[U ,V ,V −1].

Let FAv denote the A-term of the differential which increments v. Write FBv for the B-term of
the differential which increments v.

Lemma 4.17. The map FAv satisfies

FAv (U · x) = U · FAv (x) and FAv (V · x) = V · FAv (x)

for all x ∈ CF0(G). Similarly,

FBv (U · x) = V −1 · FBv (x) and FBv (V · x) = V U · FBv (x).
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Proof. We begin with the map FAv . From direct computation,

V · FAv ([K,E]) =Ug(K+2µ∗,E−v)−g(K,E) · [K + 2µ∗, E − v]

=FAv (V · [K,E]).

An entirely analogous argument shows that
[
FAv ,U

]
= 0.

Next, we consider the commutation of FBv with U . We compute that

FBv (U · [K,E]) = Ug(K+2v∗−2µ∗,E−v)−g(K,E)+1+(K−2µ∗)(v)/2+v2/2 · [K − 2µ∗ + 2v∗, E − v]

= V −1 · Ug(K+2v∗,E−v)−g(K,E)+K(v)/2+v2/2 · [K + 2v∗, E − v]

= V −1 · FBv ([K,E]) .

Going from the first line to the second, we are using Equation (4.11).
Next, we consider the commutation of FBv with V . We compute

FBv (V · [K,E]) = Ug(K+2µ∗+2v∗,E−v)−g(K,E)+(K+2µ∗)(v)/2+v·v/2 · [K + 2µ∗ + 2v∗, E − v]

= UV ·
(
Ug(K+2v∗,E−v)−g(K,E)+K(v)/2+v·v/2 · [K + 2v∗, E − v]

)
= UV · FBv ([K,E]) .

Going from the first line to the second, we use Equation (4.11). The proof is complete. �

We are now able to define the type-D module X (G)K. As a right I-module, we write X (G) =
X0 ⊕X1, where each Xε is a vector space over F. We define X0 to be the F vector space generated
by a free F[U ,V ]-basis of CF0(G) from Proposition 4.14. We define X1 to be the F vector space
generated by a free F[U ,V ,V −1]-basis of CF1(G) from Corollary 4.16.

We now define the structure map

δ1 : X (G)→ X (G)⊗I K.
The construction is entirely analogous to the setting of the link surgery formula. See [Zem21,
Section 8.5] for a parallel construction. If x is a basis element of CF0(G) and ∂(x) has a summand
of U iV j · y, where y is a basis element, then we define δ1(x) to have a summand of y ⊗ U iV j .
We make a similar definition for basis elements of CF1(G). Next, if FAv (x) = U iV j ·y, we declare
δ1(x) to also have a summand of y ⊗ U iV jσ. Similarly, if FBv (x) = U iV j · y, then we declare
δ1(x) to have a summand of y ⊗ U iV τ . It is straightforward to verify that X (G)K satisfies the
type-D structure relations.

We note that the underlying vector space of X (G)K is infinite dimensional, so completions play
a subtle yet important role in the theory. We leave it to the reader to verify that the modules
satisfy the Alexander module condition described in [Zem21, Section 6].

4.12. An example. In this subsection, we compute the link lattice homology of T (2, 2), the
positive Hopf link. The Hopf link in S3 can be presented by the plumbing graph Γ with one solid
and two arrow vertices, together with two edges connecting the solid vertex with two arrow vertices
respectively. The solid vertex has weight −1, we assign −3 and −2 to the arrow vertices. Denote
the solid vertex by v0 and the two arrow vertices by v1, v2. The link lattice complex CFL(Γ, V↑) is
generated by the elements [K,E1] and [K,E2] as a F[[U ]]-module where K ∈ Char(Γ) and

E1 = {v1, v2} and E2 = {v0, v1, v2}.
It is not hard to see that

Char(Γ) = {K = [2n+ 1, 2m1 + 3, 2m2 + 2] : n,m1,m2 ∈ Z},
where writing K = [2n+1, 2m1 +3, 2m2 +2] means that K(v0) = 2n+1,K(v1) = 2m1 +3,K(v2) =
2m2 + 2. We compute the differentials:

∂[K,E1] = 0
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∂[K,E2] = Uav0 [K,E2] ⊗ [K,E1] + U bv0 [K,E2] ⊗ [K + 2v∗0 , E1].

By direct computations,

g(K,E2) = min{0, n,m1,m2,m1 + n+ 1,m2 + n+ 1,m1 +m2,m1 +m2 + n+ 2}
Av0

(K,E2) = min{0,m1,m2,m1 +m2}
Bv0(K,E2) = min{n,m1 + n+ 1,m2 + n+ 1,m1 +m2 + n+ 2}.

Hence

∂[K,E2] =



[K,E1] + Un[K + 2v∗0 , E1] if n ≥ 0,m1 ≥ 0,m2 ≥ 0,

[K,E1] + Un+1[K + 2v∗0 , E1] if n ≥ 0,m1 < 0,m2 ≥ 0 or m1 ≥ 0,m2 < 0,

[K,E1] + Un+2[K + 2v∗0 , E1] if n ≥ 0,m1 < 0,m2 < 0,

U−n[K,E1] + [K + 2v∗0 , E1] if n < 0,m1 ≥ 0,m2 ≥ 0,

U−n−1[K,E1] + [K + 2v∗0 , E1] if n < 0,m1 < 0,m2 ≥ 0 or m1 ≥ 0,m2 < 0,

U−n−2[K,E1] + [K + 2v∗0 , E1] if n < −1,m1 < 0,m2 < 0.

[K,E1] + U [K + 2v∗0 , E1] if n = −1,m1 < 0,m2 < 0.

(4.12)
Therefore, the link lattice homology HFL(Γ, V↑) is concentrated on the elements [K,E1] where
K = [−3, 2m1 +3, 2m2 +2] for m1 < 0,m2 < 0 and K = [−1, 2m1 +3, 2m2 +2] otherwise. We now
consider the module structure, that is the actions of U1,U2,V1,V2 on these elements. By (4.4),

Ui · [K,E1] = Ug(K−2µ∗i ,E1)−g(K,E1)+1[K − 2µ∗i , E1],

Vi · [K,E1] = Ug(K+2µ∗i ,E1)−g(K,E1)[K + 2µ∗i , E1].

Suppose K = [2n+ 1, 2m1 + 3, 2m2 + 2]. Then

g(K,E1) = min{0,m1,m2,m1 +m2},

g(K ± 2µ∗1, E1) = min{0,m1 ± 1,m2,m1 ± 1 +m2}.
Similarly,

g(K ± 2µ∗2, E1) = min{0,m1,m2 ± 1,m1 +m2 ± 1}.
Hence, for i = 1 or 2, we have

Ui[K,E1] =

{
U [K − 2µ∗i , E1] if mi > 0

[K − 2µ∗i , E1] if mi ≤ 0.

Vi[K,E1] =

{
U [K + 2µ∗i , E1] if mi < 0

[K + 2µ∗i , E1] if mi ≥ 0.

It follows that when m1 = m2 = 0 and m1 = m2 = −1 the corresponding generators [K,E1] are in
the image neither of Ui nor of Vi. In particular, the lattice link homology of T (2, 2) is generated
over F[U1,U2,V1,V2] by the elements

X := [K1, E1] and Y := [K2, E1],

where K1 := [−1, 3, 2] and K2 := [−3, 1, 0].
Using Definition 4.7, one easily computes

A(X) = (0, 0) and A(Y) = (−1,−1).

Additionally, since χ(XG) = 2 and σ(XG) = −1, we compute using Equation (4.7) that

grw(X) =
1

4
(K|2XG − 3σ(XG)− 2χ(XG)) =

1

4
(K|2XG − 1) = 0

grw(Y) = −4 +
1

4
(K|2XG − 1) = −4 + 2 = −2.
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Finally, if i 6= j, we have the following equalities as elements of homology:

Ui ·X = U [K1 − 2µ∗i , E1] = [K1 + 2v∗0 − 2µ∗i , E1] = Vj ·Y.

Comparing the gradings we see that these two relations (corresponding to (i, j) = (1, 2), (2, 1))
generate all relations between the homology classes of X and Y. In Theorem 7.3, we compute the
link Floer homology of T (n, n). Readers can verify that the above description coincides with the
link Floer homology of T (2, 2) (see Figure 1.1 for the link Floer complex).

Using these techniques, it is also possible to compute the H-function of T (2, 2). By using (4.7),
one can compute grw([Km1,m2

, E1]) for m1,m2 ∈ Z and Km1,m2
= [−3, 2m1 + 3, 2m2 + 2] if

m1,m2 < 0, Km1,m2
= [−1, 2m1 + 3, 2m2 + 2] otherwise. The function

(a, b) 7→ −1

2
grw([Ka−1/2,b−1/2, E1])

agrees with the H-function for the Hopf link; see Figure 6.1.

5. The equivalence with link Floer homology

In this section, we prove that link lattice homology and link Floer homology are isomorphic.
The argument follows from similar logic to the case of 3-manifolds [OSS14b] [Zem21b].

Theorem 5.1. Suppose that Γ is an arrow-decorated plumbing tree with vertex set VG ∪ V↑, such
that YG is a rational homology 3-sphere. For each s ∈ Spinc(YG), there is an absolutely (grw, A)-
graded isomorphism of A∞-modules over R`:

CFL(Γ, V↑, s) ' CFL(YG, L↑, s).

Here, both CFL and CFL are equipped with the natural A∞-module structures which have only m1

and m2 non-trivial.

The proof of Theorem 5.1 is completed in Subsection 5.3. We now provide a sketch of the proof.
We will use a relative version of the Manolescu–Ozsváth link surgery formula [MO10], which
computes link Floer homology as a subcube of the full link surgery hypercube. This is stated in
Theorem 5.2. From here, we follow the approach of [Zem21b] and view LΓ as a connected sum of
Hopf links. Using a tensor product formula from [Zem21] for the link surgery complex, one obtains
a combinatorial model for the link surgery complex of LΓ.

Following the approach of Ozsváth, Stipsicz and Szabó [OSS14b], one may identify the lattice
complex with a simplified version of the link surgery hypercube obtained by taking the homology
of the link surgery complex at each vertex of the cube {0, 1}`, and using only the length 1 maps
of the link surgery hypercube. In [Zem21b], the third author shows directly using the connected
sum formula for the link surgery formula that the link surgery complex for LΓ is chain homotopy
equivalent to this simplified model of the link surgery complex. When b1(YG,Q) = 0, we show
that this homotopy equivalence induces a homotopy equivalence between the link lattice complex
and the corresponding quotient complex of the link surgery complex of LΓ. We show that the
morphisms in this homotopy equivalence are well-behaved with respect to the actions of Ui and
Vi, and give a homotopy equivalence of A∞-modules.

5.1. The link surgery complex and sublinks. As a first step, we describe a refinement of the
Manolescu and Ozsváth link surgery formula. If L ⊆ S3 is a link equipped with integral framing
Λ, then Manolescu and Ozsváth construct a chain complex CΛ(L) over F[[U ]] (defined in terms of
the link Floer complex CFL(S3, L), equipped with additional data) and prove that

H∗(CΛ(L)) ∼= HF−(S3
Λ(L)).

There is a refinement of this result which can be used to compute link Floer homology, as follows.
Suppose that M = J ∪ L ⊆ S3 is a partitioned link with |M | = n and |L| = `. Equip J with
a framing Λ. We may extend Λ arbitrarily to a framing Λ′ on all of M to obtain a link surgery
complex CΛ′(M) whose homology is HF−(S3

Λ′(M)).
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The link surgery complex CΛ′(M) is a hypercube of chain complexes, which means that it admits
a natural filtration by the integral points of the cube {0, 1}n, where n = |M |. While more details
are given in [MO10, Section 5], we give some necessary background and introduce the notation. For
any ε ∈ {0, 1}n, we consider the multiplicatively closed subset Sε ⊆ Rn generated by Vi such that
ε(i) = 1. The complex Cε is defined as the algebraic completion of the localization S−1

ε · CFL(M).
We remark that the original definition in [MO10] is seemingly different, though the equivalence
with the above description follows from [Zem21, Lemma 5.7].

If ε, ε′ ∈ {0, 1}n, we write ε ≤ ε′ if εi ≤ ε′i for all i. We write ε < ε′ if ε ≤ ε′ and ε 6= ε′.
If ε, ε′ ∈ {0, 1}n and ε < ε′, Manolescu and Ozsváth construct a map Dε,ε′ : Cε → Cε′ ; see
[MO10, Section 5]. The chain complex CΛ′(M) is the direct sum of complexes Cε and the differential
is the sum of the internal differentials in Cε and of the maps Dε,ε′ .

We now describe a relative complex CΛ(J, L). Note that each axis direction in {0, 1}n corre-
sponds to a component of M . Hence, we may consider the quotient complex CΛ(J, L) obtained by
quotienting the subcomplex of CΛ′(M) consisting of those Cε such that ε(i) = 1 for at least one
index i corresponding to L. Examining Manolescu and Ozsváth’s construction, it is evident that
CΛ(J, L) is independent of the framings of the L components.

Furthermore, the module CΛ(J, L) has a natural action of the ring R`, corresponding to the
variables for L. The underlying spaces Cε are preserved by this R`-module structure. It follows
from [Zem21, Lemma 5.9] that the hypercube maps of CΛ(J, L) commute with the action of R`,
i.e. the action of the variables from L. Note that in general the differential on CΛ(J, L) will not
commute with the actions of the variables from J . The next result is important for our purposes:

Theorem 5.2. Suppose that M ⊆ S3 is a link which is partitioned into two sublinks M = J ∪ L.
Let Λ be an integral framing on J and write ` = |L|. Then there is a homotopy equivalence of
chain complexes over R`:

CFL(S3
Λ(J), L) ' CΛ(J, L).

Furthermore, this isomorphism respects Spinc structures under an isomorphism

Spinc(S3
Λ(J)) ∼= H(M)/(Span(µ∗1, . . . , µ

∗
` ) +H2(WΛ(J))),

where WΛ(J) is the cobordism from S3 to the surgery on the link J .

The above result is a folklore result. We believe the techniques of [MO10] can be adapted in a
straightforward manner to prove this theorem. Nonetheless, experts in the Heegaard Floer surgery
formulas may recognize that although conceptually simple, a rigorous proof requires a substantial
amount of bookkeeping because of the role of algebraic truncations in the surgery formula. A
conceptually simple proof, avoiding truncations, can be found in [Zem23, Corollary 9.2].

5.2. Link lattice homology and the link surgery formula. We now describe how to recast
the link lattice complex in terms of the link surgery complex. This is an adaptation of [OSS14b,
Proposition 4.4] to our present context of links.

Construct an |LG|-dimensional hypercube of chain complexes as follows: For ε ∈ {0, 1}|LG|,
define Zε := H∗(Cε), where Cε is the corresponding submodule of CΛ(LG, L↑). If ε < ε′, construct
a hypercube map δε,ε′ : Zε → Zε′ via the formula:

δε,ε′ :=

{
(Dε,ε′)∗ if |ε′ − ε|L1 = 1

0 otherwise.

Write Z = (Zε, δε,ε′)ε∈{0,1}|LG| . Clearly Z is a hypercube of chain complexes over R`.

Compare the following to [OSS14b, Proposition 4.4]:

Proposition 5.3. Let Γ be an arrow-decorated plumbing tree. The hypercube Z = (Zε, δε,ε′)ε∈{0,1}|LG|

is isomorphic to the link lattice complex CFL(Γ, V↑).
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Before proving Proposition 5.3, we prove a technical lemma which is helpful for relating the
R`-actions on CFL(Γ, V↑) and Z. We note that the following lemma is essentially implicit in the
definition of lattice homology and also Ozsváth, Stipsicz, and Szabó’s construction of the spectral
sequence (cf. [OSS14b, Proposition 4.4]), though we have been unable to find an exact reference
which is suitable for our purposes. If L ⊆ S3 and s ∈ H(L), write

d(L, s) = max
{

grw(x) : x ∈ H∗A−(L, s), x is U -nontorsion
}
.

Here, grw denotes the internal Maslov grading from link Floer homology, and A−(L, s) ⊆ CFL(S3, L)
is a subcomplex corresponding to the Alexander grading s.

Remark 5.4. For an oriented link L ⊆ S3 in the 3-sphere, Gorsky and Némethi [GN15] defined
a link invariant, the so-called H-function, by declaring −2HL(s) = d(L, s). The H-function is a
generalization of the hk-invariant considered by Rasmussen [Ras03, Section 7]. For algebraic links,
it can be related to the semigroup counting function [GN15, Section 3.5]. We later generalized the
H-function for links in rational homology spheres, see Section 6.2.

Lemma 5.5. Let G be a forest of plumbing trees. If E ⊆ VG, write LE ⊆ S3 for the sublink of LG
containing exactly the components corresponding to vertices of E. Let φE : Char(XG) → H(LE)
be the composition of the restriction map from Char(XG) to Char(XE) and the isomorphism from
Char(XE) to H(LE) in Equation (4.10). Then

2g(K,E) = d(LE , φE(K)).

Proof. Note that g(K,E) (computed in XG) is the same as g(K|XE , E) (computed in XE). Hence,
we may assume without loss of generality that E = VG.

Next, we observe that the framings on the components of LG play no role in the statement.
Indeed, if K ∈ Char(XG) and ΦG(K) = (s1, . . . , sn), then Equation (4.10) implies that

2g(K,VG) = min
I⊆VG

(∑
i∈I

2si − vG−I · vI

)
(5.1)

where vG−I is the sum of vi for i ∈ VG \ I and vI is similar. Our proof will be by induction on the
number of vertices. If s ∈ H(LG), we will write 2g(LG, s) for the quantity on the right-hand side
of Equation (5.1). Similarly, if I ⊆ VG we write

2f(s, I) =
∑
i∈I

2si − vG−I · vI . (5.2)

We claim that 2g(LG, s) = d(LG, s).
We begin with the case that LG is an n-component unlink Un. In this case, the homology

HFL(Un) ∼= ⊕s∈H(LG)A
−(Un, s) is well known to be F[U1,V1, . . . ,Un,Vn]/(UiVi − UjVj , i, j ∈

{1, . . . n}), with the class of 1 having (grw, grz)-bigrading (0, 0). The plumbing diagram of the
unlink Un consists of n disjoint arrow vertices. After we assign the weight −1 to each ar-
row vertex, it is straightforward to see that the link lattice homology is also isomorphic to
F[U1,V1, . . . ,Un,Vn]/(UiVi − UjVj , i, j ∈ {1, . . . n}) as an F[U ]-module with the generator as
[K,E] where K = [2s1 + 1, · · · , 2sn + 1] with si ∈ Z and E consists of all arrow vertices equipped
with the same gradings (grw, grz) = (0, 0). That is,

d(Un, s) = 2g(Un, s) =

n∑
i=1

2 min{0, si}.

We now assume that claim is true for some forest G of plumbing trees. We will prove the
claim also holds for LG#H, where H is the positive Hopf link and the connected sum operation
is between one knot component in LG and one knot component of H. We recall that the complex
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of the positive Hopf link takes the following form:

CFL(H) ∼=
a b

c d

Vn

Un+1

Un

Vn+1

. (5.3)

The Alexander bigrading of a,b, c,d are ( 1
2 ,−

1
2 ), ( 1

2 ,
1
2 ), (− 1

2 ,−
1
2 ) and (− 1

2 ,
1
2 ), respectively. The

(grw, grz)-bigradings are (−1,−1), (0,−2), (−2, 0) and (−1,−1), respectively.
We assume that Ln ⊆ H is the component where the connected sum is taken, and Ln+1 ⊆ H

for the remaining component.
Topologically, the link LG is obtained by taking an unlink, and iteratively taking the connected

sum with Hopf links. We recall that that complex for an `-component unlink is obtained by
tensoring the `− 1 Koszul complexes

Ci = x y
U1V1+UiVi

for i = 2, . . . , `. The ` = 2 case of this computation is verified using a genus 0 Heegaard diagram
for a 2-component unlink, and the general case is proven by iteratively using the connected sum
formula [OS04, Section 7]. In Equation (5.3), we observe that the Hopf link also has a similar
2-step filtration.

In particular, since a general LG is obtained by tensoring an unlink with a collection of Hopf
links, we may write CFL(LG) as

Fs → Fs−1 → · · · → F0.

Call the index i for Fi the Hopf grading, where each Fi is a free Rn-module. By [OSS14b,
Lemma 4.2] (cf. [OS03, Lemma 2.6]), LG is an L-space link, so it follows that HFL(LG) is sup-
ported in just one Hopf grading. We observe that the homology must be supported in F0, since
the map F1 → F0 is not surjective. To see that the map is not surjective, define a map from F0 to
F which sends all Ui and Vi to 1 and sends each basis element of F0 to 1. Then the composition
F1 → F0 → F is zero, whereas the map F0 → F is non-zero.

Applying the above argument to CFL(LG#H), we see that any homogeneously graded cycle
in CFL(H)⊗F[Un,Vn] CFL(LG) which represents an F[U ]-non-torsion element of homology may be
written as a sum of an odd number of terms of the form α · b⊗ z or β · c⊗ z, where z ∈ CFL(LG)
is an F[U ]-non-torsion cycle, and α, β ∈ F[Un+1,Vn+1].

Consider s = (s1, . . . , sn+1) ∈ H(LG#H), where sn+1 ∈ 1
2 + Z corresponds to the component

Ln+1 ⊆ H. We break the proof into two cases: sn+1 > 0, and sn+1 < 0.
We consider first the case that sn+1 > 0. Recall that LG#H is an L-space link [OSS14b,

Lemma 4.2]. In this case, H∗A
−(LG#H, s) is generated over F[U ] by the elements V

sn+1−1/2
n+1 ·b⊗z

and V
sn+1+1/2
n+1 · c ⊗ z, where z is F[U ]-non-torsion. Write s′ = (s1, . . . , sn). We obtain from the

above argument that

d(LG#H, s) = max{grw(b) + d(LG, s
′ − 1

2en), grw(c) + d(LG, s
′ + 1

2en)}
= max{d(LG, s

′ − 1
2en),−2 + d(LG, s

′ + 1
2en)}

=d(LG, s
′ − 1

2en).

(5.4)

Here the last equality follows from the facts that d(LG, s
′− 1

2en) = −2HLG(s′− 1
2en), and HLG(s′−

1
2en) ≤ HLG(s′ + 1

2en) + 1 [BG18, Proposition 3.4]. Let I ′ ⊆ VG be any subset. We may view I ′

also as subset of VG ∪ {vn+1}. We compute easily that

2f(s, I ′) = 2f(s′ − 1
2en, I

′), and

2f(s, I ′ ∪ {vn+1}) =

{
2f(s′ − 1

2en, I
′) + 2sn+1 + 1 if vn ∈ I ′

2f(s′ − 1
2en, I

′) + 2sn+1 − 1 if vn 6∈ I ′,
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Since sn+1 > 0, we observe from these equations that

f(s, I ′) = f(s′ − 1
2en, I

′) ≤ f(s, I ′ ∪ {vn+1}).

for all I ′ ⊆ VG and s ∈ H(LG). It follows easily that

g(LG#H, s) = g(LG, s
′ − 1

2en).

By induction 2g(LG, s
′− 1

2en) = d(LG, s
′− 1

2en), so from Equation (5.4) we obtain 2g(LG#H, s) =
d(LG#H, s) when sn+1 > 0.

We now consider the case sn+1 < 0. In this case, H∗A
−(LG#H, s) is generated by elements of

the form U
−sn+1+1/2
n+1 · b⊗ z and U

−sn+1−1/2
n+1 · c⊗ z. A similar argument to sn+1 > 0 case yields

that

d(LG#H, s) = d(s′ + 1
2en) + 2sn+1 − 1. (5.5)

One computes directly that

2f(s, I ′) =

{
2f(s′ + 1

2en, I
′)− 2 if vn ∈ I ′

2f(s′ + 1
2en, I

′) if vn 6∈ I ′,
and (5.6)

2f(s, I ′ ∪ {vn+1}) = 2f(s′ + 1
2en, I

′) + 2sn+1 − 1,

for all I ′ ⊆ VG. Since sn+1 < 0, we have

2f(s, I ′ ∪ {vn+1}) = 2f(s′ + 1
2en, I

′) + 2sn+1 − 1 ≤ 2f(s, I ′),

where the last inequality comes from (5.6), so 2g(LG#H, s) = 2g(LG, s
′ + 1

2en) + 2sn+1 − 1.
Combined with Equation (5.5), we conclude that 2g(LG#H, s) = d(LG#H, s), completing the
proof of Lemma 5.5. �

Proof of Proposition 5.3. Note that [OSS14b, Proposition 4.4] proves the identification on the level
of chain complexes of F[[U ]]-modules. It suffices to show that the decomposition respects the refined
actions of the ring R`. We recall the basics of their isomorphism. The lattice H(LΓ) represents
the set of Alexander gradings supported by the link Floer complex CFL(LΓ). If L ⊆ LΓ, and
ε ∈ {0, 1}n is the indicator function for the components of L, then we may write A−ε (LΓ, s) for the
subcomplex of S−1

ε · CFL(LΓ) in Alexander grading s. According to [OSS14b, Lemma 4.2], there
is an isomorphism

H∗(A
−
ε (LΓ, s)) ∼= F[[U ]].

Additionally, there is an isomorphism H(LΓ) → Spinc(XΓ) (stated in Equation (4.10)). This
gives an isomorphism between Z and CFL(Γ, V↑) as F[[U ]]-modules. The Maslov grading of the
generator of H∗(A

−
ε (LΓ, s)) is d(LΓ, s) and the maps Dε,ε′ for |ε′ − ε| = 1 are determined by the

Maslov grading of the generators of the domain and target. Following Lemma 5.5 and the same
argument in [OSS14b, Proposition 4.4], the differentials also coincide. It remains to show that the
isomorphism respects the R`-module structure.

To disambiguate the actions, let us write F[[U1,V1, . . . ,U`,V`]] for the action we have described
on CFL(Γ, V↑), and let us write F[[U1,V1, . . . ,U`,V`]] for the action induced by the identification
CFL(Γ, V↑) ∼= Z. As a first step, note that by definition Ui changes the Alexander grading s ∈
H(LΓ) by −ei ∈ Zn (where ei is the unit vector with i-th component 1, and other components
0). It follows from Lemma 5.5, that Ui has the same grw-grading as Ui, and similarly Vi has the
same grw-gradings as Vi. Clearly, if [K,E] is a generator, then Ui · [K,E] = U ε[K − 2µ∗i , E] and

Ui · [K,E] = U ε
′
[K − 2µ∗i , E] for some ε, ε′ ∈ {0, 1}. Since Ui and Ui have the same grw-grading

as endomorphisms, we must have that ε = ε′, so that Ui and Ui have the same action. The same
argument implies Vi = Vi. �
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5.3. Proof of Theorem 5.1. In this subsection we give the proof of Theorem 5.1, though we
delay the discussion about absolute gradings until Subsection 5.4. The main steps of the proof
follow from [Zem21b, Section 5.2]. We provide a summary and highlight the necessary changes for
our present setting.

By Theorem 5.2, we have a homotopy equivalence of chain complexes over R`:

CFL(YG, L↑) ' CΛ(LG, L↑).

In particular, the above chain homotopy equivalence may be viewed as a homotopy equivalence
of A∞-modules over R`, where each module has mj = 0 for j > 2. Above, we also constructed
a hypercube Z = (Zε, δε,ε′) of R`-modules by taking the homology of CΛ(LG, L↑) at each cube
point, and using only the length 1 maps from CΛ(LG, L↑). By Proposition 5.3, we have a chain
isomorphism

Z ' CFL(Γ, V↑).

Hence, it suffices to construct an A∞-homotopy equivalence

Z ' CΛ(LG, L↑). (5.7)

This homotopy equivalence follows from the same logic as [Zem21b, Section 6.2], which we sum-
marize for the benefit of the reader.

We will write C = (Cε,Φε,ε′) for CΛ(LG, L↑). The underlying complex Cε at each vertex of
CΛ(LG, L↑) is obtained from CFL(LΓ) by localizing at the variables Vi such that ε(i) = 1, and
then taking an appropriate completion. The complex CFL(LΓ) is a tensor product of Hopf link
complexes. The Hopf link has a 2-step filtration (see Equation (5.3)), and hence CFL(LΓ) has a
description as

CFL(S3, LG ∪ L↑) ∼=
(
Fm Fm−1 · · · F0.

)
(5.8)

where each F i is a free Rn-module, n = |VΓ| and m is the number of edges in Γ (i.e. Hopf link
components). Each Cε has a similar filtration, which we denote by F iε. We call the superscript i
in F i the Hopf grading.

Since LΓ is an L-space link, each Zε is a direct product of copies of F[[U ]]. Following [Zem21b,
Proposition 6.2], there is a natural way to construct a homotopy equivalence between each Cε and
Zε, for each ε. This is because the homology of Cε is supported in F0

ε so the projection map of
F0
ε onto Zε gives a quasi-isomorphism. Since in each Alexander grading (i.e. each s ∈ H(LΓ))

the homology of Zε is F[[U ]] (in particular, a projective F[[U ]] module), it is straightforward to
construct a splitting over F[[U ]] of the sequence in Equation (5.8) in each Alexander grading. This
gives us maps

πε : Cε → Zε, iε : Zε → Cε and hε : Cε → Cε,

which satisfy

πε ◦ iε = id, iε ◦ πε = id +[∂, hε], hε ◦ hε = 0, πε ◦ hε = 0, hε ◦ iε = 0.

Remark 5.6. Note that these maps are usually only F[[U ]]-equivariant; but not necessarily R`-
equivariant. The only exception is πε, because it is the canonical projection of F0

ε to F0
ε / imF1 ∼=

H∗(Zε).

The homological perturbation lemma for hypercubes (see [HHSZ22, Lemma 2.10]) induces hy-
percube structure maps dε,ε′ on

⊕
ε∈{0,1}n Zε, which is homotopy equivalent to the hypercube

CΛ(LG, L↑). Let us write W for the hypercube (Zε, dε,ε′). The structure maps dε,ε′ are given by
the concrete formula

dε,ε′ :=
∑

ε=ε1<···<εn=ε′

πεn ◦ Φεn−1,εn ◦ hεn−1
◦ · · · ◦ hε2 ◦ Φε1,ε2 ◦ iε1 . (5.9)
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There are also homotopy equivalences Π: C → W , I : W → C and H : C → C, given by similar
formulas, which satisfy

Π ◦ I = id, I ◦Π = id +∂(H), H ◦H = 0, Π ◦H = 0, and H ◦ I = 0.

We will also need to understand the map Π, which is given by

Πε,ε′ =
∑

ε=ε1<···<εn=ε′

πεn ◦ Φεn−1,εn ◦ hεn−1 ◦ · · · ◦ Φε1,ε2 ◦ hε1 . (5.10)

A natural strategy is to show that W = Z. Note that the underlying groups are identical, so it
suffices to understand the structure maps. We observe that δε,ε′ = dε,ε′ whenever |ε − ε′|L1 = 1.
In general, it is not the case that dε,ε′ = δε,ε′ when |ε − ε′|L1 > 1. Instead the main argument
of [Zem21b] is to show that the analog of CΛ(LG, L↑) is homotopy equivalent to a hypercube
which has the same underlying internal chain complexes as CΛ(LG, L↑) and for which the induced
hypercube structure on the analog of W coincides with that of Z. The argument in our present
setting is essentially identical to the one in [Zem21b, Section 6.2]. In fact, we may take the modified
hypercube structure on CΛ(LG, L↑) to be the restriction of the one constructed in [Zem21b], viewing
CΛ(LG, L↑) as a subcube of the full link surgery hypercube for LΓ. We write C′Λ(LG, L↑) for the
resulting hypercube. We will also write

C′ = (Cε,Φ′ε,ε′)
for C′Λ(LG, L↑), and W ′ for the hypercube constructed via homological perturbation. There are
maps

Π′ : C′ →W ′, I ′ : W ′ → C′ and H ′ : C′ → C′

constructed similarly to the maps Π, I and H, using formulas as in (5.10).
Concretely, CΛ(LG, L↑) is constructed by tensoring the link surgery complex of Hopf links using

the tensor product formula from [Zem21b, Equation 3.2]. The complex C′Λ(LG, L↑) is constructed
by tensoring the link surgery complexes of Hopf links together using an algebraically simplified
model of the tensor product, where several terms have been deleted. (This simplified model appears
in [Zem21b, Theorem 3.4]). The key property of the hypercube maps appearing in C′Λ(LG, L↑)
are the maps Φ′ε,ε′ are non-increasing in the Hopf grading from (5.8) only when |ε − ε′|L1 ≤ 1.

Furthermore, when |ε − ε′|L1 = 1, the map Φ′ε,ε′ preserves the Hopf grading. Since hε strictly
increases the Hopf grading and πε is non-vanishing only on the lowest Hopf grading, the composition
in (5.9) will only be non-trivial when |ε− ε′|L1 = 1. Hence

W ′ = Z.
In particular, composing these homotopy equivalences, we obtain a homotopy equivalence of

chain complexes
CFL(YG, L↑) ' Z. (5.11)

It remains to show that the homotopy equivalence in (5.11) may be extended to a homotopy
equivalence of A∞-modules over R`. There are two subclaims:

(R-1) The homotopy equivalence between CΛ(LG, L↑) and C′Λ(LG, L↑) may be taken to be R`-
equivariant.

(R-2) The homotopy equivalence C′Λ(LG, L↑) ' CFL(Γ, V↑) (from the homological perturbation
lemma of hypercubes) extends to a homotopy equivalence of A∞-modules over R`.

We address (R-1) first. In [Zem21b, Corollary 4.8], it is shown that the simplified connected sum
formula yielding C′Λ(LG, L↑) is valid as long as in forming LΓ by an iterated connected sum, we
never take the connected sum of two knot components which are both homologically essential
after we surger on the other components of LG. In the case that b1(YG) = 0, we always avoid
this configuration (cf. [Zem21b, Lemma 6.5]). The homotopy equivalence between CΛ(LG, L↑)
and C′Λ(LG, L↑) is concrete and obtained by relating the connected sum formula in [Zem21b,
Equations (3.2)] and the simplified connected sum formula in [Zem21b, Theorem 3.4]. As described
in [Zem21b, Corollary 4.8] relating these two models amounts to constructing a null-homotopy of
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an algebraically defined homology action on the link surgery formula. It is observed [Zem21b,
Remark 4.3] that this null-homotopy may be taken to be R`-equivariant.

We now address (R-2). Proposition 5.3 shows that Z is chain isomorphic as an R`-module to
CFL(Γ, V↑). It is sufficient to show that the homotopy equivalence C′ ' Z of chain complexes is in
fact a homotopy equivalence of A∞-modules over R`. To see this, it is in fact sufficient to show that
the map Π′ : C′ → Z defined as in (5.10), commutes with the R` action. This is sufficient because
in the category of A∞-modules, quasi-isomorphisms are always invertible as A∞-morphisms. To
establish the R`-equivariance, we observe that the projection maps πε are themselves equivariant
since they are merely quotient maps; compare Remark 5.6. Next, we examine the expression for
Π′ε,ε′ , as in (5.10). By considering the Hopf grading similarly to how we did with dε,ε′ above, we

observe that the maps Π′ε,ε′ are non-trivial only when ε = ε′. In this case, the only non-vanishing
contribution is from πε, so R`-equivariance is established, and the proof is complete. �

Remark 5.7. By using the homological perturbation lemma, stated in Lemma 2.3, a concrete
homotopy equivalence of A∞-modules between C′Λ(LG, L↑) and Z may be constructed. Indeed the
hypercube maps Π′, I ′ andH ′, constructed via the homological perturbation lemma for hypercubes,
also satisfy the assumptions of the homological perturbation lemma for A∞-modules. These maps
then induce an A∞-module structure on Z over the ring R`, which is homotopy equivalent to
CFL(YG, L↑). By considering the Hopf grading, similarly to the above, we obtain only a non-trivial
m1 and m2 on Z. We observe also that the morphisms Π′, H ′ and I ′ extend to A∞-morphisms
Π′j , H

′
j and I ′j . Hopf grading considerations show that Π′j = 0 unless j = 1, in which case the only

contribution is from πε. We observe that I ′j may be non-trivial for 1 ≤ j ≤ |LΓ|.

5.4. Absolute gradings. In this section, we prove the subclaim of Theorem 5.1 concerning the
absolute Maslov and Alexander gradings. Compare [OSS14b, Proposition 4.8].

We begin by stating formulas for the absolute gradings on the link surgery complex, and its
subcube refinement for sublinks. Although likely known to experts, these formulas have not ap-
peared in the literature except in special cases. For example, in the case of knots, the result is due
to Ozsváth and Szabó [OS04, Section 4]. Detailed proofs of the absolute grading formula can be
found in [Zem23, Section 10].

If L ⊆ S3 is a link with framing Λ, let WΛ(L) denote the standard 2-handle cobordism from S3

to S3
Λ(L). If ε ∈ {0, 1}n, where n = |L|, and s ∈ H(L), write Cε(s) ⊆ CΛ(L) for the subspace of Cε

which lies in internal Alexander grading s. Finally, if s ∈ H(L), write zs ∈ Spinc(WΛ(L)) for the
Spinc structure which satisfies

〈c1(zs),Σi〉 − Σ · Σi
2

= −si (5.12)

for all i ∈ {1, . . . , n}. In the above, Σi denotes the core of the 2-handle attached along component
Ki ⊆ L, and Σ denotes the sum of all Σi.

Lemma 5.8 ([Zem23, Theorem 10.2]). Suppose that L ⊆ S3 is a link with framing Λ, and that
b1(S3

Λ(L)) = 0. The homotopy equivalence CF−(S3
Λ(L)) ' CΛ(L) is absolutely graded if we equip

Cε(s) ⊆ CΛ(L) with the Maslov grading

g̃r := grw +
c1(zs)

2 − 2χ(WΛ(L))− 3σ(WΛ(L))

4
+ |L| − |ε|,

where grw is the Maslov grading from CFL(L).

In [OS08b], Ozsváth and Szabó prove this formula in the context of knot surgery formula. Their
main tool is computing the grading change of a surgery cobordism map, which they denote by
f+

3 . A similar strategy to Ozsváth and Szabó’s proof of the grading formula is likely possible in
the context of the link surgery formula. Nonetheless, algebraic truncations make writing a simple
proof challenging.

There is also a relative version of the statement. Suppose that we have a partitioned link
J tL ⊆ S3 and that J is equipped with an integral framing Λ. If Ki is a link component of J tL,
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there is a class Σi ∈ H2(WΛ(J), ∂WΛ(J)). If Ki is in J , then Σi is the core of the corresponding 2-
handle. If Ki is in L, then Σi is an annulus, with boundary on the images of Ki in S3 and S3

Λ(J).
We write Σ for the sum of the classes for all components of J t L. If the component Ki ⊆ L
becomes rationally null-homologous in S3

Λ(J), we write Σ̂i for the class in H2(WΛ(J);Q) obtained
by capping with a rational Seifert surface. Finally, if s ∈ H(L), we write zJs ∈ Spinc(WΛ(J)) for
the Spinc structure which satisfies Equation (5.12) for all link components Ki in J .

Lemma 5.9 ([Zem23, Theorem 10.8]). Suppose that J ∪ L ⊆ S3 is a partitioned link and Λ is an
integral framing on J such that b1(S3

Λ(J)) = 0. Then the isomorphism CFL(S3
Λ(J), L) ' CΛ(J, L)

from Theorem 5.2 is absolutely grw-graded if we equip Cε(s) ⊆ CΛ(J, L) with the Maslov grading

g̃rw = grw +
c1
(
zJs
)2 − 2χ(WΛ(J))− 3σ(WΛ(J))

4
+ |J | − |ε|,

where grw is the internal grw-grading on CFL(J ∪ L). The isomorphism is absolutely graded with
respect to the Alexander grading A = (A1, . . . , A|L|) if we define Ai on Cε(s) via the formula

Ai = si +
〈c1
(
zJs
)
, Σ̂i〉 − Σ · Σ̂i

2
.

Proposition 5.10. If b1(YG) = 0, the isomorphism from Theorem 5.1 respects the absolute Maslov
and Alexander gradings.

Proof. As a first step, we consider the absolute case when there are no arrow vertices. We recall
that we already constructed an isomorphism ΦG : Char(XG) → H(L) in Equation (4.10). In the
present case, it is straightforward to verify from the definitions that c1(zs) = −Φ−1

G (s). If s ∈ H(LG)
and s = ΦG(K), then this is equivalent to

c1(zs) = −K. (5.13)

Next, we recall that in Lemma 5.5, we identified the quantity g([K,E]) with the grw-grading of
the generator of the tower in the s-graded subspace of the homology of CFL(LG), localized at the
Vi variables for vertices in E. Noting that (−K)2 = K2, we obtain Equation (4.6).

We now consider the case that there are arrow vertices. Suppose that Γ is a tree with VΓ =
VG ∪ V↑. Lemma 5.9 computes the Maslov grading shift. If K ∈ Char(XΓ) and s = ΦΓ(K), then
we have similarly to Equation (5.13) that

c1
(
zLGs
)

= −K|XG . (5.14)

In particular, the statement from Lemma 5.5 implies that the Maslov grading on CFL(S3
Λ(LG), L↑)

coincides with the one defined in Equation (4.7).
We now consider the Alexander grading. We note that given s ∈ H(LΓ), there are two Spinc

structures of interest: zLGs ∈ Spinc(XG) and zLΓ
s ∈ Spinc(XΓ). It is straightforward to verify that

zLGs = zLΓ
s |XG .

If s = (s1, . . . , s|LΓ|) ∈ H(LΓ), and Ki ∈ L↑, we view CΛ(LG, L↑, s) as having internal Alexander

grading Ai equal to si. Lemma 5.9 implies that the isomorphism CFL(S3
Λ(LG), L↑) ' CΛ(LG, L↑)

is Alexander graded if we shift the internal Alexander grading si (for a component Ki ∈ L↑) of

CΛ(LG, L↑, s) by (〈c1(zLGs ), Σ̂i〉 − Σ · Σ̂i)/2.
By the definition of ΦΓ, if ΦΓ(K) = s, then

si =
〈K,Σi〉+ Σ · Σi

2
,

where the pairings occur in XΓ. In particular, the generator [K,E] in the lattice complex will be
given ith Alexander grading

si +
〈c1(zLGs ), Σ̂i〉 − Σ · Σ̂i

2
.
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By Equation (5.14), we may write the above as

K(vi − v̂i) +
∑
v∈VΓ

v · (vi − v̂i)
2

.

We note that for v ∈ VG, the pairing v · (vi − v̂i) will vanish, and hence we can replace the sum
in the above equation with a sum over only v ∈ V↑. This recovers the formula for the Alexander
grading stated in Section 4.6, so the proof is complete. �

6. Plumbed L-space links

In this section, we compute the link Floer complexes of plumbed L-space links. In Section 6.1, we
prove that their complexes are formal (i.e. CFL(YG, L↑) is homotopy equivalent as an A∞-module
to (HFL(YG, L↑),mj), where mj = 0 unless j = 2). Consequently, the chain complexes are also
homotopy equivalent to free resolutions of their homology. In Section 6.2 we recall work of Gorsky
and Némethi [GN15] which allows one to compute the module HFL(YG, L↑) when YG = S3 and
L↑ is an L-space link. We extend their description to the case where YG is a rational homology
L-space. Finally, in Section 6.3, we prove that our model of link lattice homology recovers the
version of Gorsky and Némethi [GN15] in the case of plumbed L-space links.

6.1. Plumbed L-space links and free resolutions. Suppose Γ is an arrow-decorated plumbing
tree. Our goal is to show that the chain complex CFL(YG, L↑) is a free resolution of its homol-
ogy, in particular, that the chain complex is determined by the homology up to chain homotopy
equivalence.

In this section, we consider plumbings where L↑ is an L-space link. We observe that this implies
that YG is a rational homology 3-sphere, and furthermore is itself an L-space. In particular, by
Proposition 3.18, the results in this subsection hold for links of embedded analytic singularities,
as long as the underlying surface singularity is rational.

Theorem 6.1. Suppose that Γ is an arrow-decorated plumbing tree, with VΓ = VG ∪ V↑. Let
L↑ ⊆ YG be the associated link and assume that YG is a rational homology 3-sphere. If L↑ is an
L-space link, then CFL(YG, L↑) is a free resolution over R` of HFL(YG, L↑).

Proof. To simplify the notation, we assume that YG is an integer homology 3-sphere. For rational
homology 3-spheres, one may apply the same argument to each Spinc structure.

Next, we observe that it is sufficient to show that CFL(YG, L↑) is homotopy equivalent to a
free resolution of HFL(YG, L↑). This may be seen as follows: The R`-module HFL(YG, L↑) is
finitely generated and hence admits a finitely generated free resolution over R` by Hilbert’s syzygy
theorem [Hil90]. See e.g. [Pee11, Theorem 15.2] for a modern exposition. Furthermore, it is
straightforward to see that if C and C ′ are two free, finitely generated chain complexes over R`
which are both (grw, grz)-graded, then C and C ′ are homotopy equivalent over R` if and only if
C⊗R`R` and C ′⊗R`R` are homotopy equivalent. Moreover, the completion of a free resolution of
HFL(YG, L↑) will be a free resolution of HFL(YG, L↑), by similar reasoning. Hence, CFL(YG, L↑)
will be homotopy equivalent to a free resolution of HFL(YG, L↑) if and only if CFL(YG, L↑) is
homotopy equivalent to a free resolution of HFL(YG, L↑).

Since L↑ ⊆ YG is an L-space link, HFL(YG, L↑) is a torsion-free F[U ]-module. By Theorem 5.1,
CFL(YG, L↑) is homotopy equivalent to CFL(Γ, V↑) as an A∞-module over R`.

The link lattice complex has a cube grading:

CFL(Γ, V↑) = ( Zn Zn−1 · · · Z1 Z0,
fn,n−1 f1,0

)

where Zq is spanned by Up[K,E] where |E| = q, p ≥ 0. Furthermore, each Zi is itself an R`-
module. (In particular, the action of R` preserves the cube grading).

We claim that the homology of CFL(Γ, V↑) is supported in a single Zi. We observe that if
there are two Zi which support the homology, then HFL(YG, L↑) will split as a direct sum of
R`-modules. We claim that this is impossible.
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To see this, we argue by considering the localization at the multiplicatively closed subset S ⊆R`

spanned by monomials. Since L↑ ⊆ YG is an L-space link, it follows that s · x 6= 0 for all s ∈ S
and non-zero x ∈HFL(YG, L↑). Therefore, the localization map is injective, so it suffices to show
that S−1HFL(YG, L↑) does not split as the direct sum of two R`-modules.

We claim that S−1CFL(Γ, V↑) is isomorphic to HFL∞(S3,U`), which is spanned by a single
generator under the R`-action. To see this, we observe that localization is an exact functor, so
it suffices to consider the localization of the chain complex. We pick an arbitrary (s1, . . . , sn) ∈
H(Y,L). We observe that after localizing, we may perform a change of basis and replace each basis
element x with a basis element

V
−A1(x)+s1

1 · · ·V −A`(x)+s`
` x.

(We use s so that the powers of Vi are integral). With this choice of basis, all generators of
CFL(YG, L↑) are now concentrated in Alexander grading s. Hence, each component of the differ-
ential is weighted by powers of UiVi. Setting Vi equal to 1 recovers CF∞(YG, L↑), so we conclude
that

CFL∞(YG, L↑) ∼= CF∞(YG, w1, . . . , w`)⊗F[U1,...,U`] R`,

where Ui acts on R` by UiVi. Here, CF−(YG, w1, . . . , w`) denotes the `-pointed Floer complex for
YG. It follows from [OS04b, Theorem 10.1] that the singly pointed Floer complex CF−(YG, w1)
is homotopy equivalent to F[[U,U−1], and by [OS08, Proposition 6.5], adding the basepoint wi

has the effect of tensoring with the Koszul complex x y
U1+Ui . In particular, it follows that

HFL∞(YG, L↑) is isomorphic to

S−1R`/(UiVi −UjVj : i, j ∈ {1, . . . , `})

This does not decompose as a direct sum of R`-modules, since it has a single generator (the image
of 1 ∈R`) over the ring S−1R`.

Consider first the case that the homology is supported in cube grading i = 0. In this case, we
may pick a splitting over F of the complex CFL(Γ, V↑). Such a splitting determines a homotopy
equivalence of CFL(Γ, V↑) with its homology. We may apply the homological perturbation lemma
to obtain an induced A∞-module structure over R` on the homology HFL(Γ, V↑). A filtration
argument like the one in the proof of Theorem 5.1 implies that the induced A∞-module structure
on Z0/ imZ1

∼= H∗CFL(Γ, V↑) has mj = 0 unless j = 2. By Corollary 2.6, this implies that
CFL(YG, L↑) is homotopy equivalent over R` to a free resolution of its homology.

We now consider the case that CFL(Γ, V↑) is supported at Zi for some i 6= 0. Our argument
proceeds by induction, with the base case i = 0 covered above. We will use techniques described
in Subsection 2.3.

As i > 0, in particular H∗(Z0) = 0, so f1,0 is surjective. We may pick a splitting i0,1 of f1,0 as
a map of vector spaces, which induces a splitting of Z1 as Z1 = Zl1 ⊕ Zr1 (where the direct sum
is of F-vector spaces), and Zl1 = ker(f1,0) and Zr1 = im(i0,1). Note that Zr1 is not in general an
R`-module, as it is the image of an F-linear map, however ker(f1,0) is always an R`-submodule
since f1,0 is R`-equivariant.

There is a chain complex Z ′ obtained by deleting Zr1 and Z0, and the above maps determine
a chain homotopy equivalence between CFL(Γ, V↑) and Z ′ as chain complexes over F. Via the
homological perturbation lemma for A∞-modules, we may equip Z ′ with an A∞-module structure
over R` which is homotopy equivalent to CFL(Γ, V↑). The map h appearing in the homological
perturbation lemma is the map i0,1. The inclusion and projection maps are the obvious ones.
Compare Section 2.3. Since ker(f1,0) is closed under the action of R`, the action on Z ′ from
the homological perturbation lemma is the standard one. This reduces the index at which the
homology of CFL(Γ, V↑) is supported. Proceeding by induction we reduce to the base case i = 0,
completing the proof. �
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6.2. Computing the Floer chain complex from Alexander polynomials. In this subsection,
we consider the H-function for oriented `-component links L in rational homology spheres Y .
We begin by defining a lattice H(Y,L), which is an affine space over H1(Y \ L,Z). The set
H(Y,L) is a subspace of Q` × Spinc(Y ). The simplest definition of H(Y, L) is that it is the set of

(s, t) ∈ Q` × Spinc(Y ) such that ĤFK (Y, L, t) is non-trivial in some Alexander grading s′ ∈ Q`

satisfying s− s′ ∈ Z`. Since ĤFK (Y,L, t) 6= 0 for each t when Y is a rational homology 3-sphere,
this construction gives a well-defined set H(Y,L). The action of an element γ ∈ H1(Y \L) is given
by

γ · (s1, . . . , s`, t) = (s1 − lk(γ,K1), . . . , s` − lk(γ,K`), t + PD [i∗γ])

where lk(γ,Ki) ∈ Q is the rational linking number, and i : Y \ L→ Y is inclusion.
A more topological description may be obtained by presenting Y \L as surgery on a link L′ in the

complement of an `-component unlink in S3. Such a presentation induces link cobordism (W,Σ)
from the complement of an `-component unlink to Y \ L such that W is a 2-handlebody, and Σ
consists of ` annuli, each of which cobounds an unknot component in S3 and a knot component of
L. If t ∈ Spinc(Y ), the fiber over t under the map H(Y,L)→ Spinc(Y ) consists of (s, t) where

s ∈

(
〈c1(t′), Σ̂1〉 − [Σ̂1] · [Σ]

2
, · · · , 〈c1(t′), Σ̂`〉 − [Σ̂`] · [Σ]

2

)
+ Z`, (6.1)

and t′ ∈ Spinc(W ) is any lift of t ∈ Spinc(Y ). Here, we view Σ as the union of Σ1, . . . ,Σ`. We

write [Σ] and [Σi] for the induced classes in H2(W,∂W ;Z), and we write [Σ̂i] for the lifts under
the map H2(W ;Q)→ H2(W,∂W ;Q).

This may be seen to coincide with the definition in terms of Alexander gradings on ĤFL(Y,L)
using a small modification of the cobordism argument from [Zem19, Section 5.5] (which is stated
for integrally null-homologous links). See [HHSZ22, Section 3.2] for an exposition in the setting
of rationally null-homologous knots. It is an easy consequence of the cobordism description of the

Alexander grading that ĈFL(Y,L) is supported on H(Y,L).

Lemma 6.2. As affine spaces over H1(Y \L;Z), there is an isomorphism H(Y, L) ∼= H1(Y \L;Z).

Proof. This follows from the short exact sequence of affine spaces

0→ Z` → H(Y,L)→ Spinc(Y )→ 0 (6.2)

which is parallel to the short exact sequence of homology groups

0→ Z` → H1(Y \ L;Z)→ H1(Y ;Z)→ 0.

If we pick a base element (s, t) ∈ H(Y, L), we obtain a map of affine spaces from H1(Y \ L;Z) to
H(Y,L) which makes the natural diagram commute. By the five-lemma, we obtain that H(Y,L)
and H1(Y \ L;Z) are isomorphic as affine spaces. �

We are now ready to define the H-function of a link in a rational homology sphere.

Definition 6.3. For an oriented link L ⊆ Y in a rational homology sphere Y and (s, t) ∈ H(Y, L),
we define the HL : H(Y, L) → Q by saying that −2HL(s, t) is the maximal grw-grading of a non-
zero element in the free part of H∗(A

−(L, s, t)) where A−(L, s, t) is the subcomplex of CFL(Y, L, t)
lying in Alexander grading s.

The H-function of L-space links in the 3-sphere can be computed from Alexander polynomials
of the link and all sublinks [GN15, BG18]. In order to generalize the result to links in rational
homology sphere, we first recall generalized Alexander polynomials. Friedl, Juhász and Rasmussen

[FJR11, Theorem 1] prove that ĤFL(Y,L) categorifies the Turaev torsion ∆(Y,L) of Y \L, which
we view as an element in F[H1(Y \ L)], well-defined up to multiplication by monomials. When Y
is a rational homology 3-sphere, we refer to ∆(Y, L) as the generalized Alexander polynomial.
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In our present setting, it is helpful to view ∆(Y, L) as taking values in the F[H1(Y \L)]-module
F[H(Y,L)] instead of F[H1(Y \ L)] itself, via the following formula:

∆(Y, L) = χ(ĤFL(Y, L)) :=
∑

(s,t)∈H(Y,L)

t(s,t) · χ(ĤFL(Y, L, s, t)) ∈ F[H(Y,L)].

We may think of χ(ĤFL(Y, L)) as a normalized version of the Turaev torsion. Similarly to [OS08,

Proposition 8.1], it is not hard to see that the Euler characteristic of ĤFL(Y,L) is symmetric with
respect to the involution of H(Y,L) given by (s, t) 7→ (−s, t+PD [L]) (cf. [Zem19, Proposition 8.3]).

To make more transparent connections with integer homology spheres, we refine the definition
of ∆(Y,L). For t ∈ Spinc(Y ), we set:

∆(Y, L, t) = χ(ĤFL(Y,L, t)) :=
∑

s : (s,t)∈H(Y,L)

ts · χ(ĤFL(Y,L, s, t)) ∈ F[H(Y, L)]. (6.3)

We recall that the graded Euler characteristics of ĤFL and HFL− are related by the formula

χ(HFL−(Y,L)) =
1∏`

i=1(1− ti)
χ(ĤFL(Y,L)).

See [OS08, Proposition 9.2].
For any sublink L′ ⊆ L, define the natural forgetful map:

πL,L−L′ : H(Y,L)→ H(Y,L− L′)

as follows. In the case that L′ = K1, the map πL,L−L′ is given by the formula

πL,L−L′(s1, . . . , s`, t) =

(
s2 −

lk(K1,K2)

2
, . . . , s` −

lk(K1,K`)

2
, t

)
,

where L = K1 ∪ · · · ∪K`. For general L′, the formula is a composition of several of these maps.
We refer reader to [MO10, Section 3.7] for explicit formulas of the forgetful map for links in S3.
Compare [BG18, Section 3].

Given (s, t), (s′, t′) ∈ H(Y,L), we say (s, t) ≥ (s′, t′) if and only if t = t′ and s ≥ s′. That is,
si ≥ s′i for all i, where s = (s1, . . . , s`) and s′ = (s′1, . . . , s

′
`).

Lemma 6.4. For an oriented L-space link L ⊆ Y in a rational homology sphere with t ∈ Spinc(Y ),
the H-function HL satisfies:

HL(s, t) =
∑
L′⊆L

(−1)|L
′|−1

∑
(s′,t)∈H(Y,L′)

(s′,t)≥πL,L′ (s+1,t)

χ(HFL−(Y,L′, s′, t)). (6.4)

where 1 = (1, . . . , 1). In particular, the H-function is determined by the generalized Alexander
polynomials ∆(Y,L′, t) of all sublinks L′ ⊆ L.

Proof. The arguments of [GN15, Theorem 2.10] relating HL to χ(HFL−(Y,L)) in the case of links
in S3 can be repeated verbatim for the case of HL and χ(HFL−(Y, L)) to get (6.4), though here we
follow the convention in [BG18, Theorem 3.15] and assume HFL−(Y, ∅) = 0. The right-hand side

of (6.4) is determined by χ(ĤFL(Y,L′)) for all sublinks L′, which can be computed from Alexander
polynomials of L′ by (6.3). Therefore, the H-function is determined by the Alexander polynomials
of all sublinks L′ ⊆ L.

�

Example 6.5. We normalize the multivariable Alexander polynomial of the unlink U in the 3-sphere
to be 0, and the H-function for an `-component unlink in S3 is the following:

HU`(s1, . . . , s`) =
∑
i

(|si| − si)/2.



42 MACIEJ BORODZIK, BEIBEI LIU, AND IAN ZEMKE

If L ⊆ S3 is the Hopf link in the 3-sphere, its Alexander polynomial ∆(t1, t2) = 1 and si ∈ Z+1/2.
By the formula in [BG18,Liu17], the value of the H-function at each lattice point (s1, s2) is shown
as follows:
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Figure 6.1. The H-function of the Hopf link

Theorem 6.6. Suppose that Γ is an arrow-decorated plumbing tree, with VΓ = VG ∪ V↑. Let
L↑ ⊆ YG be the associated link and assume that YG is a rational homology 3-sphere. If L↑ is an L-
space link, then the full link Floer complex CFL(YG, L↑) is determined by the generalized Alexander
polynomials of L↑ and its sublinks.

Proof. By Theorem 6.1, the chain complex CFL(YG, L↑) is a free resolution of HFL(YG, L↑). In
particular, CFL(YG, L↑) is determined by the homology group HFL(YG, L↑) as an R`-module.
Therefore, it suffices to prove that the generalized Alexander polynomials determine the homology
HFL(YG, L↑). By Lemma 6.4, the H-function is determined by the generalized Alexander polyno-
mials of L↑ and its sublinks, it remains to prove that the H-function determines the R`-module
structure of HFL(YG, L↑).

There is a decomposition of F[U ]-modules

HFL(YG, L↑) =
⊕

(s,t)∈H(YG,L↑)

HFL(YG, L↑, s, t).

Since L↑ is an L-space link in YG, HFL(YG, L↑, s, t) ∼= F[U ] for all (s, t) ∈ H(YG, L↑). The (grw, A)-
grading of the generator of HFL(YG, L↑, s, t) is determined by the H-function. That is, the Alexan-
der gradings of the generator equal s and the Maslov grading grw equals −2HL↑(s, t). Hence, it
suffices to see the Ui and Vi actions on HFL(YG, L↑, t) are also determined by the H-function.

To see this, note that we may view Ui as restricting to a map

HFL(YG, L↑, s, t) ∼= F[U ]→ HFL(YG, L↑, s− ei, t) ∼= F[U ]. (6.5)

Since the map Vi goes in the opposite direction and UiVi = U , the map Ui is given by either
multiplication by 1 or U , with respect to identifications in (6.5). We observe that the map Ui

has grw-grading −2, and hence the choice of being U or 1 is determined by the grw-gradings of
the copies of F[U ] in (6.5), which is encoded by the H-function. Similarly, the action of Vi is
also determined by the H-function since UiVi = U , and the action of Ui is determined by the
H-function. Therefore, for L-space links, the Alexander polynomials determine the full link Floer
chain complexes. �



LATTICE HOMOLOGY, FORMALITY, AND PLUMBED L-SPACE LINKS 43

6.3. Comparison to Gorsky and Némethi’s link lattice homology. We now compare our
chain complex CFL(Γ, V↑) to the definition of link lattice homology due to Gorsky and Némethi
[GN15].

As a first step, we recall their definition. Let L ⊆ S3 be a link of ` components. Write Ci for
the mapping cone complexes

Ci := Cone(Vi : R` → R`), i = 1, . . . , `.

Write K (L) for the (non-free) complex of R`-modules obtained by tensoring the homology group
HFL(L) with C1, . . . , C`, over the ring R`.

Remark 6.7. Note that C1⊗R` · · ·⊗R`C` is the Koszul complex for the regular sequence (V1, . . . ,V`)
in R`. See [Wei94, Section 4.5].

If L is an L-space link, Gorsky and Némethi define the link lattice complex to be the chain
complex K (L). Gorsky and Némethi prove the following:

Theorem 6.8 ([GN15, Theorem 2.9]). If L is an algebraic link, then

H∗K (L) ∼= H∗ (CFL(L)/(V1, . . . ,V`)) .

Remark 6.9. Gorsky and Némethi prove Theorem 6.8 at the level of graded F vector spaces.
There are additional module actions of F[[U1,V1, . . . ,U`,V`]] on both sides. Gorsky and Hom
[GH17, Proposition 3.7] equip K (L) with commuting endomorphisms U1, . . . ,U`. In our notation,
their action of Ui coincides with the standard action of Ui on theHFL(L) tensor factor of K (L). Of
course, one can also consider the action of Vi, defined symmetrically. Note that as an endomorphism
of K (L), each Vi is null-homotopic since K (L) is defined by tensoring HFL(L) with the Koszul
complex of the sequence (V1, . . . ,V`). More explicitly, we can write K (L) as a mapping cone

K (L) = Cone
(
K 0
i (L) K 1

i (L)
)
,

Vi

where K 0
i (L) (resp. K 1

i (L)) is the codimension one subcube which has i-coordinate 0 (resp. 1).
As an endomorphism of K (L), the module action of Vi preserves both K 0

i (L) and K 1
i (L). We

define an endomorphism H of K (L), which sends K 1
i (L) to K 0

i (L) via the identity, and observe
that on K (L):

Vi = [∂,H ].

We now explain how our Theorem 6.1 quickly recovers Theorem 6.8, and also to prove a re-
finement which takes into account the R`-action. To state our result, we equip K (L) with an
A∞-module structure which has only m1 and m2 non-trivial. The action of m2 corresponds to the
standard the action on the HFL(L) factor of the tensor product.

Theorem 6.10. If L ⊆ S3 is a plumbed L-space link, then there is a homotopy equivalence of
A∞-modules over F[U1,V1, . . . ,U`,V`]

K (L) ' CFL(L)/(V1, . . . ,V`).

Proof. We first consider the proof only at the level of chain complexes, and then subsequently
consider the R`-module structure.

Note that Ci is a free resolution of R`/Vi as an R`-module. Furthermore, the `-dimensional
cube-shaped complex C1 ⊗ · · · ⊗ C` is a free resolution of F[U1,V1, . . . ,U`,V`]/(V1, . . . ,V`).

We use the algebraic formalism of type-D and type-A modules of Lipshitz, Ozsváth and Thurston
[LOT18] [LOT15] to give a small model of the derived tensor product of A∞-modules. We may
view Ci as a type-D module R`Ci whose underlying F vector space has two generators, xi and yi,
and whose structure map δ1 is given by

δ1(xi) = Vi ⊗ yi.
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Similarly, the complex C1 ⊗ · · · ⊗ C` naturally corresponds to a type-D module over R`, whose
underlying vector space is generated by the points of an `-dimensional cube. We write R`C1,...,`

for this cube-shaped complex.
By definition,

K (L) := HFL(L)R` �
R`C1,...,`.

By Theorem 6.1, if L is a plumbed L-space link, HFL(L) and CFL(L) are homotopy equivalent
as A∞-modules over R`. On the other hand, CFL(L)R` is free over R`, which translates to the
fact that there is a type-D module CFL(L)R` such that

CFL(L)R`
∼= CFL(L)R` � R`R`R` .

We observe that since R`C1,...,` is a free resolution of R`/(V1, . . . ,V`), it follows that R`C1,...,` '
R`R`/(V1, . . . ,V`).

Putting these relations together, we obtain

K (L) = HFL(L)R` �
R`C1,...,`

' CFL(L)R` �
R`C1,...,`

= CFL(L)R` � R`R`R` � R`C1,...,`

' CFL(L)R` � R`R`/(V1, . . . ,V`).

(6.6)

We now consider the R`-module structures. We note that the complexes R`C1,...,` extends to
a DA-bimodule R`(C1,...,`)R` . This DA-bimodule has the same generators and δ1 as R`C1,...,`.
Additionally, there is a δ1

2 action given by δ1
2(x, a) = a ⊗ x for any a ∈ R` and x ∈ C1,...,`. We

observe that by definition

K (L)R` = HFL(L)R` �
R`(C1,...,`)R` .

Additionally, it is easy to check that

R`R`R` � R`(C1,...,`)R` ' R`(R`/(V1, . . . ,V`))R` ,

so that the manipulation from Equation (6.6) extends to an equivalence of A∞-modules. �

7. Computations

In this section, we give some computational tools. In Subsection 7.1, we provide an algorithm to
compute the link Floer homology of an L-space link from its H-function. Next, in Subsection 7.2,
we describe the Rn-module HFL(T (n, n)) based on Gorsky and Hom’s computation of the H-
function of T (n, n). By our Theorem 6.1, this Rn-module contains equivalent information to
CFL(T (n, n)). In Subsections 7.3 and 7.4, we compute explicit free resolutions of HFL(T (3, 3))
and HFL(T (4, 4)).

7.1. Generators and relations for the homology of an L-space link. In this section, we
describe generators and relations for the modules HFL(L) when L is an L-space link. We focus on
the case L ⊆ S3 to simplify the notation, but this is not essential.

If s ∈ H(L), we write Xs ∈ HFL(L) for the generator of the F[U ]-tower in Alexander grading s.
By definition,

A(Xs) = s and grw(Xs) = −2HL(s).

We let G denote the set of Xs ∈ HFL(L) which satisfy

HL(s− ei)−HL(s) = 1 and HL(s)−HL(s + ei) = 0 (7.1)

for all i ∈ {1, . . . , `}. Here, ei denotes the unit vector (0, . . . , 1, . . . 0).

Lemma 7.1. Let L be an `-component L-space link in S3.

(1) The set G is finite and is the unique R`-module generating set of HFL(L) of minimal
length.
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(2) The kernel of the natural map

Rn` → HFL(L)

is spanned by the following generating set:
(r-1) All elements of the form

αXs + βXs′

where Xs, Xs′ ∈ G, and α, β are monomials such that wU (α) = wU (β) = 0, gcd(α, β) =
1 with

A(α) + s = A(β) + s′ and grw(α)− 2HL(s) = grw(β)− 2HL(s′).

We use the notation wU (α) = min{i1, j1} + · · · + min{i`, j`} for any monomial α =

U i1
1 · · ·U

i`
` V j1

1 · · ·V
j`
` .

(r-2) For each i, j and Xs ∈ G the element

(UiVi + UjVj)Xs.

Proof. Since CFL(L) is a finitely generated R`-module, and CFL(L) admits Maslov and Alexander
gradings, the R`-module HFL(L) is spanned by finitely many homogeneously graded vectors Xs.
Equation (7.1) is equivalent to the statement that Xs is in the image of neither Ui nor Vi for any
i ∈ {1, . . . , `}. Therefore any minimal length generating set can only contain elements of G. In
particular, G generates HFL(L).

We now claim that any minimal length generating set must contain all elements of G. To see
this, we write G = {Xs1

, . . . , Xsn} and suppose

Xsj =
∑
i 6=j

αiXsi

for some homogeneously graded αi ∈ R`. We may assume each αiXsi has the same grw and
Alexander gradings as Xsj . However HFL(L) is rank 1 over F in each Maslov and Alexander
grading in which it is supported. Therefore if αi 6= 0, then Xsj = αiXsi . However Equation (7.1)
implies that αi = 1 since none of the Xsi admit non-trivial factorizations. Therefore every minimal
length generating set contains all of G.

We now consider the claim about relations. Suppose that
n∑
i=1

αiXsi = 0.

We may assume that each αi is a monomial (or zero) and all αiXsi have the same Alexander
and Maslov gradings. When all of the αiXsi have the same homogeneous Alexander and Maslov
gradings,

∑n
i=1 αiXsi = 0 if and only if #{i : αi 6= 0} is even, since HFL(L) has rank 1 over F

in each of the gradings in which it is supported. In particular, pairing elements of {i : αi 6= 0}
arbitrarily, we may write the sum

∑n
i=1 αiXsi as an R`-linear combination of elements of the form

αXs + βXs′ , where α, β 6= 0 and such that αXs and βXs′ have the same Maslov and Alexander
gradings. By canceling common factors, we may assume that gcd(α, β) = 1.

If max(wU (α), wU (β)) > 0, we claim that we can still reduce this relation further. For concrete-
ness, assume that wU (α) > 0. This means that UjVj divides α, for some j. Note that β 6= 1, so
assume that either Vi or Ui divides β, for some i. By using (r-2), we may replace the factor of UjVj
in α with UiVi, and assume UiVi divides α. The resulting monomials α and β have gcd(α, β) 6= 1,
so we divide out common factors. This operation is non-increasing in the total degree of α and β,
so we may repeat this procedure until gcd(α, β) = 1 and wU (α) = wU (β) = 0. This completes the
proof. �

Remark 7.2. We can describe the relations (r-2) more concretely, as follows. Let Xs, Xs′ ∈ G and
write

s = (s1, . . . , s`), and s′ = (s′1, . . . , s
′
`).
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We let

Pi =

{
Vi if si < s′i
Ui if si > s′i

and Qi =

{
Ui if si < s′i
Vi if si > s′i.

If si = s′i, then we view Pi = Qi = 1. The relations labeled (r-2) may be rewritten as those of
the form

Pi1
1 · · ·P

i`
` ·Xs = Qj1

1 · · ·Q
j`
` ·Xs′

ranging over all Xs, Xs′ ∈ G and all sequences i1, . . . , i` ≥ 0 and j1, . . . , j` ≥ 0 such that

ik + jk = |sk − s′k| and grw(Pi1
1 · · ·P

i`
` ·Xs) = grw(Qj1

1 · · ·Q
j`
` ·Xs′).

for all k. Note in particular that there are only finitely many relations of the form (r-2).

7.2. The type-A module of the T (n, n) torus link. We now compute the Heegaard Floer mod-
ule HFL(T (n, n)) of torus link T (n, n) in the three sphere. Recall that Rn = F[U1,V1, . . . ,Un,Vn].

Theorem 7.3. As an Rn-module, the group HFL(T (n, n)) has a unique minimal generating set,
consisting of n generators, X1, . . . , Xn. The relations are spanned by the following(∏

i∈Ik

Ui

)
Xk =

 ∏
j∈{1,...,n}\Ik

Vj

Xk+1 (7.2)

UiViXk = UjVjXk. (7.3)

Here Ik runs through all subsets of the set {1, . . . , n} of length k (so (7.2) has
(
n
k

)
relations for

each k), and in (7.3), i, j, and k range from 1 to n.

Proof. Since the torus link T (n, n) is an L-space link, by Lemma 7.1 the minimal generating set
consists of the set of all Xs which satisfy

H(s− ei)−H(s) = 1 and H(s)−H(s + ei) = 0, (7.4)

for each i ∈ {1, . . . , n}. Here, H(s) denotes the H-function of the torus link T (n, n).
The H-function of the torus link T (n, n) is computed in [GH17]. Its Alexander polynomial

equals to

∆(t1, . . . , tn) = ((t1 · · · tn)1/2 − (t1 · · · tn)−1/2)n−2,

which is symmetric in the variables t1, . . . , tn. Because of the symmetry of the Alexander polyno-
mial of T (n, n), the H-function for T (n, n) is also symmetric in s1, . . . , sn. Therefore we consider
the case that s1 ≤ s2 ≤ · · · ≤ sn. By [GH17, Theorem 4.3]

H(s1, . . . sn) = h

(
s1 −

n− 1

2

)
+ h

(
s2 −

n− 1

2
+ 1

)
+ · · ·+ h

(
sn −

n− 1

2
+ n− 1

)
(7.5)

where h(s) = (|s| − s)/2. We note that h(s) is the H-function of the unknot. It is not hard to
compute that

H(s1, . . . , sn) = 0 (7.6)

if si ≥ (n− 1)/2 for all i, and

H(s) = −(s1 + s2 + · · ·+ sn) (7.7)

if si ≤ −(n− 1)/2 for all i.
We first consider the diagonal vertices, that is, s1 = · · · = sn = m, m ∈ Z + (n − 1)/2. If

m > (n− 1)/2, then

H(s1, . . . , sn) = H(s1 − 1, s2, . . . , sn) = 0

by (7.6), which does not satisfy (7.4). Similarly, if m < −(n− 1)/2, then

H(s1, . . . , sn) = H(s1, . . . , sn + 1) + 1
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by (7.7), which also does not satisfy (7.4). Now we consider the n diagonal vertices where −(n−
1)/2 ≤ m ≤ (n− 1)/2, that is,

s1 = s2 = · · · = sn =
n+ 1

2
− k

for all integers k between 1 and n. The corresponding generators are X1, . . . , Xn with Alexander
gradings (

n+ 1

2
− k, n+ 1

2
− k, . . . , n+ 1

2
− k
)
.

By a straightforward computation, Equation (7.4) is satisfied by values of the H-function at these
vertices, so X1, . . . , Xn are all contained in the minimal generating set from Lemma 7.1. We claim
these diagonal vertices are the only ones where the H-function satisfies Equation (7.4). It suffices
to prove that the non-diagonal vertices do not satisfy Equation (7.4). Recall that we assume
s1 ≤ s2 ≤ · · · ≤ sn. Suppose that sn = s is the maximal value among the si, and there are exactly
λ coordinates equal to s where λ < n, i.e., sn−λ+1 = sn−λ+2 = · · · = sn = s, and sn−λ < s.

If s > (λ− 1)− (n− 1)/2, then by (7.5)

H(s1, . . . , sn−λ, sn−λ+1 − 1, . . . , sn) = H(s1, . . . , sn)

which does not satisfy (7.4).
If s ≤ (λ− 1)− (n− 1)/2, then by (7.5)

H(s1, . . . , sn−λ + 1, sn−λ+1, . . . , sn) + 1 = H(s1, . . . , sn),

which also does not satisfy (7.4). By Lemma 7.1, X1, · · · , Xn form a unique minimal generating
set of HFL(T (n, n)) over Rn. Based on the values of the H-function, one can compute that

grw(Xk) = −k(k − 1).

We now consider the relations satisfied by X1, . . . , Xn over Rn. For convenience, if I =
(i1, . . . , in) is a sequence of nonnegative numbers, write U I for U i1

1 · · ·U in
n . Define V J simi-

larly. Lemma 7.1 and Remark 7.2 immediately imply that if 1 ≤ p < q ≤ n, then the relations
involving Xp and Xq are spanned by (UiVi + UjVj)Xp and (UiVi + UjVj)Xq for i, j ∈ {1, . . . , n},
as well as sums

U IXp + V JXq

ranging over sequences of nonnegative integers I and J such that

I + J = (q − p, . . . , q − p) and |I|L1 =

q−1∑
s=p

s =
(p+ q − 1)(q − p)

2
. (7.8)

If q = p+ 1, these are exactly the relations in the statement.

We will show by induction on q that the relations between Xp and Xq are in the span of the
relations between consecutive Xi and Xi+1, as well as the relations (UiVi + UjVj)Xk = 0 (labeled
(r-2) above). The case that q = p+ 1 is vacuous, so we suppose that q > p+ 1.

We let I = (I1, . . . , In) and J = (J1, . . . , Jn) be tuples of non-negative integers such that
I + J = (q − p, . . . , q − p) and |I|L1 = p+ · · ·+ q − 1. We claim first that there is a tuple I ′ such
that

0 ≤ I ′ ≤ I, |I ′|L1 = q − 1, and |I ′|L∞ ≤ 2. (7.9)

(We remark that it may not be possible to find such an I ′ which satisfies |I ′|L∞ ≤ 1). For k ∈ N,
we write

ak := #{i : Ii ≥ k}.
We observe that

|I|L1 =

q−p∑
k=1

ak =
(p+ q − 1)(q − p)

2
and a1 ≥ a2 ≥ · · · ≥ aq−p. (7.10)
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Our claim about the existence of an I ′ as above is equivalent to the claim that a1 + a2 ≥ q− 1. If,
to the contrary a1 + a2 < q − 1, then we observe that a2 < (q − 1)/2 and therefore

q−p∑
k=1

ak = a1 + a2 +

q−p∑
n=3

ak < q − 1 + (q − p− 2)
q − 1

2
=

(q − p)(q − 1)

2
.

However this contradicts Equation (7.10), so we conclude that an I ′ satisfying Equation (7.9) must
exist.

By induction, if J ′ denotes (q − p− 1, . . . , q − p− 1)− (I − I ′), then the relation

U I−I′Xp = V J′Xq−1 (7.11)

is in the span of the claimed relations between consecutive Xi and Xi+1, as well as the rela-
tions (r-2). We observe that our relations imply

U IXp = U I′U I−I′Xp = U I′V J′Xq−1.

If |I ′|L∞ = 1, then we have the relation

U I′Xq−1 = V (1,...,1)−I′Xq,

which implies with Equation (7.11) that U IXp = V JXq, which would complete the proof.
If instead |I ′|L∞ = 2, then we observe that any coordinate i such that I ′i = 2 has the property

that (I − I ′)i < q − p − 1 and hence J ′i > 0. In particular, U I′V J′ has a factor of UiVi for
each i such that I ′i = 2. Using relation (r-2) we can trade each of these UiVi for a UjVj where

I ′j = 0. Proceeding in this manner, we may relate U I′V J′Xq−1 with some U I′′V J′′Xq−1 where
|I ′′|L1 = q − 1 and |I ′′|L∞ = 1. The relations between Xq−1 and Xq now show that

U I′V J′Xq−1 = U I′′V J′′Xq−1 = V JXq,

completing the proof. �

In general, a free resolution of the homology HFL(T (n, n)) can be computed algorithmically, see
[Pee11], or, for a concrete value of n, using a computer algebra system such as Macaulay2 [GS].

7.3. The free complex of the T (3, 3) torus link. We present a free resolution of the torus
link T (3, 3). The homology of the torus link T (3, 3) is generated by X1, X2, X3 with the following
relations:

UiX1 =
∏

j∈{1,2,3}\{i}

VjX2, ViX3 =
∏

j∈{1,2,3}\{i}

UjX2;

UiViXk = UjVjXk.

Then a free resolution of the homology is

0→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 → 0,

with the spaces C0, C1, C2, C3 and the maps ∂1, ∂2, ∂3 defined as follows.
The space C0 = R3

3 is generated by X1, X2, X3. Take the space C1 = R8
3 generated by b1, b2, b3,

B1, B2, B3, and Z1, Z2. For symmetry, it is helpful to consider an extra variable Z3 which satisfies
Z3 = Z1 + Z2; Z3 is not a generator of C1. The differential ∂1 : C1 → C0 is given by

∂1bi = UiX1 +
∏

j∈{1,2,3}\{i}

VjX2, ∂1Bi = ViX3 +
∏

j∈{1,2,3}\{i}

UjX2,

∂1Z1 = U2V2X2 + U3V3X2, ∂1Z2 = U1V1X2 + U3V3X2

∂1Z3 = ∂1(Z1 + Z2) = U1V1X2 + U2V2X2.

The link Floer homology of T (3, 3) is coker ∂1. Indeed, the relations UiViXk = UjVjXk for k = 1
and k = 3 follow from other relations. For example,

0 = V1(U1X1 − V2V3X2)− V2(U2X1 − V1V3X2) = (U1V1 −U2V2)X1.
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We define the module C2 = R6
3 with generators c1, c2, c3, d1, d2, d3 and let ∂2 be the differential

∂2ck = Uibj + Ujbi + VkZk

∂2dk = ViBj + VjBi + UkZk.

Here {i, j, k} ranges through all permutations of the set {1, 2, 3}. There is a relation between
c1, . . . , d3. That is, there is a module C3 = R3 generated by e with ∂3 : C3 → C2 given by

∂3e = U1c1 + U2c2 + U3c3 + V1d1 + V2d2 + V3d3.

It can be checked either directly, or using a computer algebra system, that ker ∂1 = im ∂2,
ker ∂2 = im ∂3 and ker ∂3 = 0. That is to say, the complex we constructed is a free resolution of
coker ∂1.

Remark 7.4. By examining the resolution of HFL(T (3, 3)) shown in Figure 7.1, we see that the
relations described in Lemma 7.1 have some redundancy. For example (U1V1 + U2V2)X1 = 0 is a
consequence of the relations U1X1 = V2V3X2 and U2X2 = V1V3X2.

e

c1 c2 c3 d1 d2 d3

b3 b2 b1 Z1 Z2 B3 B2 B1

X1 X2 X3

U1 U2 U3 V1 V2 V3

U2 V1
U3U1 U3

V2

U2U3

V3

V3

U1

U2
V2U3

U3

V1V2

U3 V1V3U2

V2V3

U1

U2V2+U3V3 U1V1+U3V3
U1U2

V2 V1

U1U3

V3 V1

U2U3

V3

U2 V3 V2 V1

Figure 7.1. The complex CFL(T (3, 3)) as a free resolution.

7.4. The free complex of the T (4, 4) torus link. To stress the usefulness and power of Theo-
rem 6.1, we show how to compute the link Floer chain complex of the T (4, 4) torus link. We start
with the model of the link Floer homology for T (4, 4) as described in Theorem 7.3 and compute its
free resolution. It is pretty straightforward to find candidates for the relations between generators
of the T (4, 4) torus link, and then candidates for the relations among relations (second syzygies),
and to iterate this procedure. This amounts to creating a complex (Ci, ∂i), whose homology at the
zero grading is HFL(T (4, 4)). Showing that the relations are complete, that is, that the complex
we construct is acyclic in higher gradings, is rather tedious. We have used Macaulay [GS] to verify
this fact.

We can give a quick description of the free resolution of the T (4, 4) torus link. The free resolution
has length four, as follows:

0→ C4
∂4−→ C3

∂3−→ C2
∂2−→ C1

∂1−→ C0 → 0
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Let C0 be the free R4 module generated by X1, . . . , X4. Consider the module C1 ∼= R20
4 generated

by Zkij with k = 2, 3, j = i+1, a1, . . . , a4, Bij with 1 ≤ i < j ≤ 4 and A1, . . . , A4. As in the T (3, 3)

case, for symmetry, we add variables Zkij for j > i+1, satisfying Zkij = Zki,i+1+Zki+1,i+2+· · ·+Zkj−1,j .
If j < i we set Bij := Bji. There is a map ∂1 : C1 → C0 given by

∂1Z
k
i,i+1 = (UiVi + Ui+1Vi+1)Xk ∂1ai = UiX1 +

∏
j 6=i

VjX2

∂1Bij = UiUjX2 +
∏
i′<j′

{i,j,i′,j′}={1,2,3,4}

Vi′Vj′X3 ∂1Ai =
∏
j 6=i

UjX3 + ViX4.

By Theorem 7.3, the link Floer homology of T (4, 4) is coker ∂1. We define now the module C2 ∼=
R28

4 . It is generated by aij , Aij with 1 ≤ i < j ≤ 4, and cijk , C
k
ij .

The indexing of c and C generators is a bit complex. We choose, 1 ≤ k ≤ 4, and {i, j} is a
subset of {1, 2, 3, 4} \ {k} with j > i. To obtain a smaller resolution, we reduce the number of
generators by declaring that the c-generators are c23

1 and c34
1 , c13

2 and c34
2 , c12

3 and c24
3 , as well as

c12
4 and c23

4 . Whenever another configuration of indices appears in the differential, we declare it to
be the sum of the other two generators with the same subscript, like c24

1 is not a generator, but
c24
1 = c23

1 + c34
1 etc.

For C-generators, for each three-element subset {a, b, c} ⊆ {1, 2, 3, 4} we choose two out of
three permutations {i, j, k} with i < j and these indices are C-generators. The third object is
declared to be the sum of the other two. More specifically, we choose C1

23, C
2
13 to be generators

and C3
12 = C1

23 + C2
13, C1

24, C
4
12 as generators, and C2

14 = C1
24 + C4

12, C1
34, C

3
14 as generators, with

C4
13 = C1

34 + C3
14. Finally, C2

34, C
3
24 are generators, whereas C4

23 = C2
34 + C3

24.
Therefore, we have 8 c-generators and 8 C-generators. The map ∂2 : C2 → C1 is given by

∂2aij = Ujai + Uiaj +
∏
k 6=i,j

VkZ
2
ij

∂2Aij = VjAi + ViAj +
∏
k 6=i,j

UkZ
3
ij

∂2C
k
ij = UjBik + UiBjk + V`Z

3
ij

∂2c
ij
k = ViBik + VjBjk + UkZ

2
ij ,

where ` = {1, 2, 3, 4} \ {i, j, k}.
The module C3 ∼= R14

4 is generated by aijk, Aijk, B
′
ij where 1 ≤ i < j < k ≤ 4 with the map

∂3 : C3 → C2 given by

∂3aijk = Uiajk + Ujaik + Ukaij + V`(Vic
jk
i + Vjc

ik
j + Vkc

ij
k )

∂3Aijk = ViAjk + VjAik + VkAij + U`(UiC
`
jk + UjC

`
ik + UkC

`
ij)

∂3B
′
ij = VkC

k
ij + V`C

`
ij + Uic

k`
j + Ujc

k`
i ,

where we let ` = {1, 2, 3, 4} \ {i, j, k}.
The module C4 ∼= R2

4 is generated by d1234, D1234 with the map ∂4 is given by

∂4(d1234) =
∑
i

Uiajk` +
∑
i<j

ViVjB
′
ij

∂4(D1234) =
∑
i

ViAjk` +
∑

i<j, k<`
{i,j,k,`}={1,2,3,4}

UiUjB
′
kl.

In each of the two equations, where the sum runs over the indices i, we let 1 ≤ j < k < ` ≤ 4 be
such that {i, j, k, `} is a permutation of {1, 2, 3, 4}.

It can be verified that the above description of CFL(T (4, 4)) is acyclic except at resolution grading
0, with coker ∂1 being the link Floer homology of T (4, 4).
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