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ABSTRACT. We define a link lattice complex for plumbed links, generalizing constructions of
Ozsvath, Stipsicz and Szabd, and of Gorsky and Némethi. We prove that for all plumbed links
in rational homology 3-spheres, the link lattice complex is homotopy equivalent to the link Floer
complex as an Aso-module. Additionally, we prove that the link Floer complex of a plumbed
L-space link is a free resolution of its homology. As a consequence, we give an algorithm to
compute the link Floer complexes of plumbed L-space links, in particular of algebraic links,
from their multivariable Alexander polynomial.
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1. INTRODUCTION

1.1. Overview. Lattice homology is a combinatorial invariant of plumbed 3-manifolds defined by
Némethi [Ném05,Ném08], see also [Ném22, Chapter 11]. Némethi’s construction is a formalization
of earlier work of Ozsvéth and Szabd [OS03], which computes the Heegaard Floer homology groups
of many plumbed 3-manifolds. If Y is a plumbed 3-manifold, we write HF(Y) for its lattice
homology, which is a module over the power series ring F[[U]].

Work of Némethi, Ozsvath, Stipsicz and Szabd [Ném05, Ném08, 0S03, 0SS14b] proves that

HF(Y) = HF ™ (Y)

for many important families of plumbed 3-manifolds. More recently, the third author proved the
isomorphism in general [Zem21b].

Given a knot K in $3, Ozsvath-Szabé [0S04], and Rasmussen [Ras03] defined a refinement of
Heegaard Floer homology, called knot Floer homology. There are several equivalent formulations
of this invariant. For our purposes, it is most convenient to consider knot Floer homology as taking
the form of a free, finitely generated chain complex CFK(K) over the 2-variable polynomial ring
Flw, V.

Ozsvath and Szabd also defined a version of Heegaard Floer theory for links in 3-manifolds
[0S08]. For a link L C 3, we will focus on the description of the link Floer complex as a finitely
generated free chain complex CFL(L) over the polynomial ring F[%4, ¥4, ..., %, Vi), where £ = |L|.
For our purposes, it is also helpful to consider the knot and link Floer complexes over the completed
ring F[[%, ", - - . » %, V4]], denoted

CFL(L) := CFL(L) ®wa, n,.... 20, %) Bl N5 - W, Vi)

Their construction also applies more generally when L is a link in a rational homology 3-sphere
Y. In this case, we denote the link Floer complex CFL(Y, L).

A relative version of lattice homology for plumbed knots is defined by Ozsvath, Stipsicz and
Szab6 [0SS14]. Modulo notational differences, their version of knot lattice homology is analogous
to the complex CFK(K). They proved that for a plumbed L-space knot in S2, knot lattice homology
coincides with the knot Floer complex CFIC(K).

Gorsky and Némethi [GN15] defined a relative version of lattice homology for L-space links.
(Note, their construction does not require the link to be plumbed). They constructed a spectral
sequence from their version of link lattice homology to a version of link Floer homology, which
is the homology of the quotient complex CFL(L)/(¥1,..., %), and proved that it degenerates for
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all algebraic links. In particular, their version of link lattice homology is isomorphic (as a graded
group) to the version of link Floer homology for algebraic links in 3.

In our paper, we construct a new version of link lattice homology. Our link lattice complex is
more closely related to the construction of Ozsvéth, Stipsicz and Szab6 [0SS14], and is modeled
on the full link Floer complex CFL(L). We use this link lattice complex to study plumbed L-space
links, a family which includes all algebraic links in S3.

1.2. The link lattice complex. Suppose that L is a plumbed link in a plumbed 3-manifold Y.
Such a pair (Y, L) is presented by a weighted graph T, whose vertices are partitioned into two sets

VF:VGU%.

The vertices Vg are equipped with integral weights. The vertices in V4 have no weights, and we
refer to them as arrow vertices. Unless specified explicitly otherwise, we will always assume that
I' is a tree.

From the tree I', we obtain a partitioned link Ly = Lg U L4 in S3. This link may be described
as a connected sum of Hopf links, with one unknotted component for each vertex of I', and one
clasp for each edge of I'. The manifold Y is the result of surgery on Lg, with framing A obtained
from the weights. Inside of Y 2 S3 (L¢), the link L is identified with L.

Given a plumbing tree I presenting a plumbed link (Y, L), we will construct a chain complex

CFL(T, V).

Given an orientation of Ly, we will equip the chain complex CFL(T, V;}) with the structure of a
module over the ring F[[%, %1, ..., %, V]|, where £ = |V}, as well as with a Maslov grading and
a Q’-valued Alexander grading.
It is helpful to view CFL(T', ;) as an A.-module over F[[%, 1, ..., %, ¥;]] with only m; and
mgy non-vanishing. We note that the complex CFL(T', V}) is not free over this ring unless |V4| = 1.
A central result of the paper is the following:

Theorem 1.1. Suppose that T is a plumbing link diagram which is a tree, and write (Y, L) for the
associated 3-manifold and link. If Y is a rational homology sphere, then CFL(Y, L) is homotopy
equivalent to CFL(T',V4) as an absolutely graded A -module over F[[%, VA, ..., U, V).

See Theorem 5.1 for further details. In the above, we are writing CFL(Y, L) for the full link
Floer complex CFL(Y, L) completed over the power series ring F[[%1, %1, ..., %, V1]]-

1.3. Algebraic and plumbed L-space links. We recall that a rational homology 3-sphere Y is
called an L-space if

HF(Y,s) = F

for each 5 € Spin®(Y). A link L C S is called an L-space link if all sufficiently positive surgeries
are L-spaces. We note that since Dehn surgery does not depend on the orientation of the link, the
property of being an L-space link is independent of orientations.

An important family of plumbed links in S3 are algebraic links, which are the links of complex
plane curve singularities. According to Gorsky and Némethi [GN16], algebraic links in S are
L-space links.

There is a useful characterization of L-space links in terms of the link Floer complex. If L C S3,
then L is an L-space link if and only if the homology group HFL(L) is torsion free as an F[U]-
module, where U acts by %;%; for any i. (Since %;¥; and %;¥; have chain homotopic actions for
all ¢ and j, the definition is independent of the choice of 7).

Ozsvath and Szabd [OS05] proved the knot Floer complex of an L-space knot is a staircase
complex. A very natural question is whether an analog of Ozsvath and Szabd’s result holds for
L-space links. L-space links have also been extensively studied in the literature, see e.g. [BG18,
CL23,GH17, GLM20, GN15, Liul7, Liul9, Liu21]. Despite the interest in L-space links and many
interesting results concerning them, there is to date no result which characterizes the structure of
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the link Floer complex of an L-space link in parallel with Ozsvath and Szabd’s result for L-space
knots.
We prove the following:

Theorem 1.2. Suppose that L C S* is a plumbed L-space link. Then the link Floer complex CFL(L)
is homotopy equivalent to a free resolution of its homology over F|2, Y, ..., %, Y. Equiva-
lently, the complex CFL(L) is homotopy equivalent to its homology HFL(L) as an As-module over
F(%, %, ..., %, V], where we equip HFL(L) with the As-module structure which has m; = 0
unless 7 = 2.

7//
_— L U °
o\%2 \%
T(3,4) e N 7(2,2)
0/1/2 /%1 \
\%\ ° Vo °
=7
e
2/.\ 1
T(2,4) .6% %kgf.
.
\.\/\y
\‘st

FIGURE 1.1. The knot and link Floer complexes of T'(3,4), T(2,2) and T'(2,4).
Each dot denotes a generator in a free basis. The horizontal direction indicates
the grading of the free resolution.

Remark 1.3. (1) Theorem 1.2 is a natural generalization of the result of Ozsvath and Szabé
for L-space knots because the staircase complex of an L-space knot is easily seen to be a
free resolution of its homology over F[%, ¥].

(2) Theorem 1.2 also holds more generally for plumbed L-space links L in plumbed 3-manifolds
Y which are themselves L-spaces. For details, see Section 6.

(3) A dg-module M over a ring A such that (H.(M), mz) is homotopy equivalent to M as an
A..-module over A is called formal. Hence, we may restate Theorem 1.2 by saying that
plumbed L-space links have formal link Floer complexes.

We do not know whether Theorem 1.2 holds for non-plumbed L-space links. We state the
following open question:

Question 1.4. Are there non-plumbed L-space links L C S? for which CFL(L) is not homotopy
equivalent to a free-resolution of HFL(L)?

From Theorem 1.2, we obtain an algorithm to compute the link Floer complex of a plumbed
L-space link. Namely, we observe that for an L-space link L, the F[%, ¥, .., %, ¥;]-module
HFL(L) is completely determined by the H-function (or equivalently the d-invariants of large
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surgeries). According to [GN15], the H-function of an L-space link in S® is determined by the
multivariable Alexander polynomials of L and its sublinks. After determining HFL(L), one may
compute CFL(L) by computing its free resolution. Finding such a resolution is algorithmic, see
e.g. [Peell], and may be done using computer algebra software such as Macaulay2 [GS]. We carry
this out for 7'(3,3) and T'(4,4) in Section 7.

Our algorithm to compute the full link Floer complexes enables us to compute the minus and
the hat version of link Floer homology of plumbed L-space links by setting respectively ¥; = 0
and %; = ¥; = 0 for all i. Moreover, the hat version of link Floer homology detects the Thurston
norm of the link complement in the three sphere [OS08c]. Hence, the algorithm also gives a way
to compute the Thurston norm of plumbed L-space links in S3.

Corollary 1.5. The link Floer complex of a plumbed L-space link L in S® is computable from the
multivariable Alexander polynomials of the link L and its sublinks.

Remark 1.6. Computing free resolutions is in general a challenging task. For many purposes (e.g.
taking tensor products), it is more practical to understand the homology group HFL(L) and use
the fact that CFL(L) is homotopy equivalent as an A,,-module to HFL(L) with only mo non-trivial.
Often the homology group HFL(L) has a much more concise description than its free resolution.
For example in Section 7, we give a simple description of the module HFL(T (n,n)). We describe
free resolutions for T'(3,3) and T'(4,4), which are considerably larger in complexity.

We note that for algebraic links in $® (which are particular examples of plumbed L-space links)
the fact that the link Floer complex is determined by the Alexander polynomial may be seen
indirectly using the fact that the Alexander polynomial of an algebraic link determines the link.
See work of Yamamoto [Yam84]. This is not the case for algebraic links in other 3-manifolds, or
other plumbed L-space links in $%; see [CDGZ20] and also Proposition 3.20. Nonetheless, our
techniques give a concrete algorithm for computing the link Floer complex based on its Alexander
polynomial. Although foundational, Yamamoto’s work does not give a practical algorithm for
computing link Floer complexes of algebraic links in S3.

1.4. Gorsky and Némethi’s link lattice homology. We also consider Gorsky and Némethi’s
link lattice homology, which is defined for all L-space links. If L is an L-space link, then they
described a chain complex J# (L), which they called the link lattice complex. They proved that if
L is an algebraic link, then

H(H (L)) = H.(CFL(L) (4, .., %2)), (L1)

as graded groups, where the right-hand side is identified with the minus version of link Floer
homology.

In our paper, we give an alternate perspective on the complex . (L). Namely, we show that
(L) is homotopy equivalent as an A,-module to the derived tensor product

c%/(L) >~ HF[.:(L) é]ﬁ“[%l,"f/l,...,%z,“f/g] F[%la A//lv e %[7 %]/(7/17 R %)

where we equip HFL(L) with the A,-module structure which has only ms non-trivial. As a
corollary of Theorem 1.2, we obtain the following result:

Corollary 1.7. If L is a plumbed L-space link, then Gorsky and Némethi’s link lattice complex
(L) is homotopy equivalent to CFL(L)/(¥4, ..., %) as a graded chain complex.

We note Gorsky and Némethi only prove the isomorphism in Equation (1.1) at the level of
graded groups. Our proof of Corollary 1.7 improves on their result additionally because it equips
(L) with a dg-module structure over F[%, ¥4, ..., %, ;) (i.e. an As-module structure with
only m; and mq non-trivial) and proves the isomorphism at the level of As,-modules.

Gorsky and Némethi also constructed a spectral sequence from HFL(L) @ A%, (&1, .., &) to the
homology of CFL(L)/(4,. .., ¥n). Here, AL (&1, ..., &) is the exterior algebra on (-generators and
Re =F[2,7,...,%, ). Our Corollary 1.7 naturally recovers this spectral sequence, as follows.
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We first recall that the module F[%1, %1, ..., %, Vi)/ (1, - .., ¥) has free resolution over R, equal
to the Koszul complex A% (£1,. .., &), where we equip each &; with differential d(;) = #; (extended
via the Leibniz rule). The chain complex (A%, (§1,- - .,&), d) has a cube filtration, and the spectral
sequence associated to the induced cube filtration on HFL(L) ® A% (&1, ..,&) coincides with

Gorsky and Némethi’s spectral sequence.

1.5. Structure of the paper. Section 2 describes background on A.,-modules and the homolog-
ical perturbation lemma. We give a basic example from knot Floer theory of two complexes with
isomorphic homology groups, such that one of them is chain homotopy equivalent to its homology
(regarded as a chain complex with trivial differentials), while the other one is not.

Next, we recall some topological background in Section 3. We provide the definitions of plumbed
manifolds and plumbed links. We state the result of Gorsky and Némethi that a plumbed link
in a rational analytic singularity is an L-space link [GN16]. In particular, we show that plumbed
L-space links are a natural generalization of algebraic links in S2. In Section 4, we define our link
lattice complex. We describe the gradings and the F[%4, %1, ..., %, ¥;]-module structure.

Section 5 proves the equivalence of the link lattice complex and the link Floer complex, stated
above in Theorem 1.1. This is the main technical result of the paper.

In Section 6 we focus on plumbed L-space links. Using Theorem 5.1 and the homological
perturbation lemma, we prove Theorem 1.2, which states that the link Floer complex of a plumbed
L-space link is a free resolution of its homology. As a consequence, we show that the link Floer
complex of a plumbed L-space link is computable from its multivariable Alexander polynomial. See
Theorem 6.6. Additionally, we describe how our link lattice complex recovers the theory described
by Gorsky and Némethi in the case of plumbed L-space links. See Theorem 6.10.

Section 7 describes some algorithms and examples. We provide a concrete way of presenting the
R, 71, ..., U, Vi)-module HFL(L) for an L-space link L, from its H-function. The algorithm of
Lemma 7.1 provides a presentation of HFL(T (n,n)) compatible with the description of Gorsky and
Hom [GH17, Section 5]. Next, we compute CFL(T'(3,3)) and CFL(T'(4,4)) by explicitly constructing
free resolutions.

Acknowledgments. The authors would like to thank Eugene Gorsky, Chuck Livingston, Andras
Némethi and Lorenzo Traldi for stimulating discussions. We are grateful to Marco Marengon for
the help with the complex of the T'(3,3) torus link. We have benefited a lot from Karol Palka’s
explanations of a current state-of-art on computing resolutions of modules.

2. ALGEBRAIC BACKGROUND

In this section we recall the notion of an A-module (Subsection 2.1). Then, in Subsection 2.2,
we state the homological perturbation lemma in A..-category. In Subsection 2.3, we consider the
homological perturbation lemma in the context of free-resolutions of modules. In Subsection 2.4, we
present two complexes over F[%, ¥] with isomorphic homology, but which are not chain homotopy
equivalent. These two complexes appear naturally in knot Floer homology.

2.1. As-modules. Throughout the paper, we make use of the category of A,,-modules. The mo-
tivation is that A..-module structures may be transferred along homotopy equivalences of groups.
Suppose that A is a ring that is an algebra over a field k. Given a finitely generated chain complex
C over A, in very general circumstances, one may pick a homotopy equivalence over k between
C and H,(C). Given such a homotopy equivalence, the homotopy transfer lemma (cf. [Kad82])
equips H,(C) with the structure of an A.,-module over A, such that C and H,(C) are homotopy
equivalent as A,,-modules. Note that unless A is a field, it is rarely the case that C' and H,(C)
are homotopy equivalent as dg-modules over 4. When the homotopy equivalence between C' and
H,(C) is suitably simple, the A,,-module maps on H,(C) are usually computed using a version
of the homological perturbation lemma, stated in Lemma 2.3.

We now recall the basics of As-modules. We mostly follow the notation of Lipshitz, Ozsvath
and Thurston [LOT15,LOT18].
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Let A be an associative algebra with unit over a ring k. We will assume that k = Fy. We write
e for the multiplication on A.

Definition 2.1. A left A,.-module 4M over A is a left k-module equipped with k-module maps
mj'+12A®j®kM—>M, 72>0
such that m; omy = 0, and for each n and any ay,...,a, € A, x € M, the following holds.

n
Z mn—i+1(an7 Ap—1y- -5 Qit+1, mi+1(ai7 sy @1, X))
i=0

n—1
+ Zmn(an,an,l, oo pe(akyt, k), ... a1,x) = 0.
k=1

Lipshitz, Ozsvath and Thurston refer to A,-modules as type-A modules, in contrast to type-D
modules, which we now introduce.

Definition 2.2. A right type-D module N4 over A is a right k-module N, together with a k-linear
structure map
LN - Neg A,
such that
(idy ®@pg) o (' @id4) 06" = 0.

2.2. The homological perturbation lemma. It is a general fact that A..-algebra structures
may be transferred along homotopy equivalences of the chain complex underlying an A..-algebra.
This was proved by Kadeishvili [Kad82]. Homological perturbation theory gives concrete formulas
for the resulting A..-module structure under certain restrictions on the chain homotopy equiva-
lence. See [KS01, Theorem 3]. An exposition of the technique may be found in Ph.D. thesis of
Lefevre-Hasegawa [LHO03].

Lemma 2.3. Suppose that A is an associative algebra over a ground ring k, 4M = (M, m;) is an
Aso-module over A, (Z,0) is a chain complex over kK, and that we have three maps of left k-modules
i:Z—->M, w:M—>Z and h: M — M

satisfying the following:

(1) i and 7 are chain maps.

(2) WOi:idZ,

(8) iom =idpy +9(h), where (h) :=mioh+ hom.
(4) hoi=0.

(5) moh=0.

(6) hoh=0.

Then there are Aso-module structure maps mJZ on Z, as well as As-module morphisms

I*:AZ*)AM, H*:AM%AZ and H*:AM*)AM

satisfying m? = 0, I =i, Il; = m and H, = h, and such that the analogs of relations (1)-(6) are
also satisfied as by the Ao-module morphisms I, I, and H,.

Remark 2.4. Tt is important to note that the maps 4, 7, h in the assumption of homological pertur-
bation lemma are required to be only k-module maps, not necessarily A-module maps. We refer
the interested reader to [LHO03, Section 1.4] for a detailed proof.

The extended A,.-module maps in the homological perturbation lemma have a concrete descrip-
tion below. The structure maps on Z are given by the diagrams shown in Figure 2.1. Therein
ms1 denote the A, structure maps of M, with m; excluded, and A is the comultiplication on the
tensor algebra T*A.
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FIGURE 2.1. The maps appearing in the homological perturbation lemma for
Aso-modules. The notation is introduced in [LOT18, Section 2]. Shortly, a single
arrow represents an element of 4M, while a double arrow represents an element

of @, A®".

2.3. Free resolutions and A.,-actions. In this section, we describe a useful relation between
free resolutions and A,,-module structures. We assume that A is an algebra over F = Z/2. Suppose
that (4M,m;) is a type-A module which has m; = 0 for j # 2. That is, M is a left A-module in
the ordinary sense. A free resolution of M is a collection of free A-modules (F}, f;);en and A-linear
maps, which form an exact sequence of the following form:

fi

fici o f1

F, Fi_ I} J LI Y 0.
For such a free resolution, write .# for the chain complex which is the direct sum of the Fj.

By definition, a free resolution 4.% is quasi-isomorphic to 4M, since the canonical projection
map from # to M is a chain map which induces an isomorphism on homology. In the category of
Aso-modules, quasi-isomorphisms are always invertible as A,, morphisms. An exposition of this
principle may be found in [KelO1, Section 4]. In our present case, it is also helpful to construct

explicitly the homotopy equivalence, since we will use it and similar homotopy equivalences later.

Proposition 2.5. Suppose that 4.% is a free resolution of a left A-module 4M. Then 4% and
AM are homotopy equivalent as A,-modules over A.

Proof. There is a canonical projection map 7: .# — M, which is just fy on Fy, and 0 on every
other summand. We pick any map of F-vector spaces i: M — Fy such that fyoi =idy;. The map
i induces a direct sum splitting (of F-vector spaces) Fy = im f; @ imé. The map fi: F; — im f;
is surjective, so we pick a section of F-vector space maps, which we denote by hg. The map hg
induces a splitting of Fj into im hg & im fo. We define a map h;: im fo — F5 to be a splitting of
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the map fo. We proceed in this manner to split the entire free resolution to obtain a diagram

fi fi—1 fa fi fo
~-~»imfi+1€9imhi,1 imfi@imhi,g imfg@imho imf1 @ ime M - 0.
\h/ f\h_z/ "\h_l/ r\ho/ K_l/

Clearly the maps 7 and 7 are chain maps. Furthermore, 7 o4 = id;, and
iom=1idg +[0, h]
where h is the direct sum of the h;. Additionally,
hoi=0 hoh=0 and wmoh=0.

In particular, the homological perturbation lemma induces an A,.-module structure on M, which
we denote by AfVY , such that AM and 4.7 are homotopy equivalent as A.,-modules. We claim
that the higher actions on AM , vanish. Indeed, the map h always maps F; to Fj, 1, while m3
preserves the index F;, and 7 is only non-vanishing on Fj. A quick inspection of the left-most map
in Figure 2.1 shows that m; = 0 for j > 2.

From the claim it follows that 4M = 4M, completing the proof. |

The following is a helpful restatement of the above result:

Corollary 2.6. Suppose A is an algebra over F = 7Z/2. Let 4M be an As.-module over A, and
let .F be the total complex of a free resolution of H.(M). Then oM is homotopy equivalent to 4.F
as an Aoo-module if and only if AM is homotopy equivalent as an As-module to H.(M), equipped
with vanishing m1 and vanishing m; for j > 2.

2.4. Example of non-formal chain complexes. As we mentioned in Subsection 2.1 if A is a
field, then any finitely generated chain complex is homotopy equivalent to its homology. If A is a
PID, then it is not hard to show that any finitely generated free chain complex is quasi-isomorphic
to its homology. For general rings, this is not always the case. In this section, we illustrate the
case A = F[%, 7] with examples from the theory of knot Floer homology.

We consider the two free F[%, ¥]-complexes C and D with generators u,v,Xx,y, z, respectively
a, b, and c, and with differential represented by arrows as shown below:

W — %> X a
| | |
C=u®d + & and D = 2%
v ¥ +
Y — %~z c—-%-+b

For appropriate choices of gradings, there is an isomorphism H,(C) = H,(D), since both are
isomorphic to F[%,¥] ® F, where F has vanishing action of % and #. On the other hand, it is
easy to see that C' and D are not homotopy equivalent over F[%,¥]. For example, if we tensor
both with the module F[%,¥|/(% ,?) and take homology, we obtain vector spaces of different
rank over F.

We now equip both H,(C) and H, (D) with A -actions by applying the homological perturbation
lemma. Since C'is a free resolution of its homology, the induced A,.-action has only ms non-trivial.

For D, the homology is the F span of %7 (% a+ ¥ c) and b, where i,j € N. We may define
a homotopy equivalence of chain complexes over F with D and the complex F[%,¥] & F (with
vanishing differential). Write e for the generator of F[%, 7] and write f for the generator of F.
The inclusion map i: H.(D) — D is given by

(w"v™me)=w"YV™(¥a+ ¥c), i(f)=Db,
for all n,m > 0. We define a projection map 7: D — H,(D) by setting
Yty me  ifn>0

otherwise,

f ifn=m=
(WY ™) = and w(%””f/mb):{ ifn=m=0

0 otherwise.
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The map 7 vanishes on multiples of ¢. The maps 7 and i are clearly chain maps, and 7 o i = id.
We define a homotopy h: D — D, by setting h(a) = h(c) =0, and

wntyme  ifn>0
Mu"V™"b) = 7™ a if n.=0,m>0
0 otherwise.

It is straightforward to see that i o m# = id +[0, h|. Furthermore, h o4, h o h and 7 o h vanish. In

particular, the maps 7, 7 and h induce an A..-module structure maps mf(D) on H,(D).

We claim that mf(D)(ﬁi/, ¥, f) = e. To this end, we use the formula on the left of Figure 2.1.
In the present situation, a= % ® ¥, z = f. Note that A(Z @ V) = (%) ® (¥), so we compute

my P @, v, £) = m(mB (% . W(mB (V,i(£))))) = n(m2 (% ,a)) = e.

Remark 2.7. In Heegaard Floer theory, it is common to also consider the ring F[%, Y|/ %V
(see, e.g., [DHST21]). A similar computation as above shows that H,.(C/% V)= H.(D/% V) as
F(%, V)% ¥-modules, but that the complexes C/% ¥ and D/% ¥ are not homotopy equivalent.

3. PLUMBED MANIFOLDS AND PLUMBED LINKS

The goal of this section is to recall notions like plumbed manifolds, resolution graphs, and
plumbed links. We pay particular attention to algebraic links, which are L-space links by work of
Gorsky and Némethi [GN16]. Additionally, in Proposition 3.18 we describe a slightly wider class
of plumbed links which are also L-space links.

3.1. Review of plumbed manifolds. To set up the notation, we recall the constructions of
3-manifolds via plumbing. We refer the reader to [Neu81] for a detailed exposition.

Suppose G is a finite graph. We let Vg be the set of its vertices. We assume that each v € V&
has an associated weight A\, € Z. From Vi we construct a real four-manifold X, as follows. For
each v € Vg, we take T,, the oriented disk bundle over S? with Euler number \,. The manifold
X is obtained by taking a disjoint union of all the T, and gluing them using the following recipe.
Whenever two vertices v,v" € Vg are connected by an edge e, we trivialize the bundles T, and T
over chosen disks in the base. Then, we glue these bundles together by an orientation-presenting
diffeomorphism that swaps the base and the fiber. Refer to [GS99, Example 4.6.2] or [Neu81] for
more details.

By convention, if G is not connected, we take a boundary connected sum of manifolds Xg;,
corresponding to connected components G; of G.

Definition 3.1. The manifold X is called the plumbed 4-manifold associated with G. The
boundary Yo = 0X¢ is the plumbed 3-manifold associated with G.

The construction of a plumbed manifold can be done in a relative setting, providing a pair
consisting of a three-manifold and a link contained in it. The starting data is a graph I' with
vertices partitioned into two sets Vg U Vy. We call V4 the arrow vertices, and we call Vg the
non-arrow vertices. We do not add weights to V;.

Remark 3.2. From a topological perspective, it is most natural to require each vertex of V; to have
valence 1. However, in the combinatorial construction of link lattice homology, we do not need to
make this assumption.

We write G C T for the full subgraph spanned by the non-arrow vertices. The vertices V4
determine a link L4 in Y as follows. Suppose v € V; is adjacent to a non-arrow vertex w € V.
We let L, be a circle fiber of the S'-bundle 9T, — S?, such that the projection of L, onto S? is
disjoint from all the disks used to plumb the disk bundles of other non-arrow vertices. If more than
one arrow vertex is adjacent to the same non-arrow vertex w, we require each of the corresponding
components of Ly to be fibers of 9T}, — S? over distinct points.

We define Ly as the union of the circle fibers L, ranging over v € V.
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Definition 3.3. The link L4 C Y( is called the plumbed link associated with I'. We say that a link
L CY is a plumbed link if there exists an arrow-decorated plumbing graph I" and a diffeomorphism
(V,L) = (Y, Ly).

Remark 3.4. One can also consider more general plumbings of disk bundles over higher genus
surfaces. To do so, one considers a plumbing graph where each vertex v € Vi is assigned an
additional weight, corresponding to the genus of the base space of disk bundle. However, the
resulting manifold Y¢ is not a rational homology sphere if at least one surface has positive genus.
In the present paper, we are mostly concerned with rational homology spheres, so we restrict the
discussion to the case where all surfaces are spheres. We refer to [Neu81] for more details.

Definition 3.5. Suppose G is a plumbing tree with no arrow vertices. We define the incidence
matric Qg, as follows. The diagonal entries are the weights associated to vertices, while the
off-diagonal terms are 1 or zero, depending on whether the two vertices are connected by an edge.

By construction, Q¢ represents the intersection form on X¢g. As the intersection form on X¢
determines the homology of Y, we have:

~

Lemma 3.6. There is an isomorphism Hy(Yg;Z) =2 coker Qg. In particular, Yo is a rational
homology sphere if and only if det Qg # 0.

There is a well known description of (Yg, Lt) in terms of Dehn surgery. See [GS99, Exam-
ple 4.6.2]. We form a partitioned link Lr = Lg U Ly in S, as follows. For each vertex of I', we add
an unknotted component to L, and for each edge, we add a clasp between the corresponding com-
ponents. The link Lr may alternatively be described as an iterated connected sum of Hopf links.
The weights on the vertices in Vg determine an integral framing A on Lg, as in Definition 3.5.
Then

(Ya, Ly) = (S} (La), Ly).

We remark a slight abuse of notation: L; denotes both the link in S% (as a part of Lp C S®)

and its image in the plumbed manifold Yg.

3.2. Plumbed manifolds and resolutions of analytic singularities. One of the main moti-
vations for introducing plumbed manifolds comes from resolutions of singularities. We give now
a short account on plumbed manifolds obtained from surface singularities. We refer the reader to
introductory lectures of Némethi [Ném99], or to [Ném22, Section 3.3], [Lool3], [NS12, Chapter 4]
for more details and references.

First we focus on the absolute case corresponding to graphs with no arrow vertices. Later on
we discuss the relative case of embedded resolutions, leading to plumbed links.

Suppose (X, xzg) is (a germ of) a normal complex analytic surface. The word ‘normal’ refers
to the property of the local ring O,,(X) being integrally closed, see [Har77, Exercise 1.3.7]. It
implies, among other things, that zy is an isolated singular point. See [Lau71,Ném99] for more
details. The surface (X, () can be analytically embedded into (CV,0) for N sufficiently large.
Let B. be a ball in CV with center at 0 and radius ¢ > 0. It is known, see [Mil68], that the
diffeomorphism type of the intersection Lx := X N JB; is independent of ¢ and of the embedding
of X into CV, provided ¢ > 0 is small enough. Moreover, the pair (B., X N B.) is topologically a
cone over (0B, Lx). The space Lx is a smooth real 3-dimensional manifold. We call it the link
of the surface singularity (X, xo).

We stress that we study local behavior of X near zy. From the perspective of algebraic geometry,
this is emphasized by saying that X is a germ of a surface. The reader unfamiliar with this notion,
might assume that we replace X by X N B, where B is as above.

The manifold Lx admits another description. We let (X, E) be a resolution of (X, zy), that is,
a smooth complex analytic surface together with a map m: (X, E) — (X, z), which is one-to-one
except on 7 1(x9) = E. Now E = Y_ E; is a union of smooth complex curves (Riemann surfaces)
intersecting transversally. Each of the E; is assigned a number \; which is its self-intersection.
The curves E; are referred to as the exceptional components of the map .
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With the resolution we can assign two objects. One is the dual graph Gx of the resolution. Its
vertices correspond to divisors E;. Each vertex is assigned a weight )\;. There is an additional
weight of a vertex by the genus of E; (in the present paper we will consider only the case where
each of the F; is a sphere, compare Remark 3.4). We add |E;NE;| edges between vertices v; and vj,
when i # j. We add no self-edges. There is a matrix Q¢ associated with Gx as in Definition 3.5.
We have the following result.

Proposition 3.7.

(a) The link Lx of singularity (X, xo) is diffeomorphic to Ye .
(b) Lx is a rational homology sphere if each of the E; is a sphere and Gx is a tree.

The manifold Ly determines the graph Gx up to a precisely described equivalence relation;
see [Neu81]. The way the resolution is constructed implies that Q¢ is negative definite. A deep
theorem of Grauert [Gra62] shows that this characterizes links of analytic singularities among all
plumbed links.

Theorem 3.8. If Qg is negative definite, then Yg is a link of an analytic singularity.

We stress that the statement is far from true if the word ‘analytic’ is replaced by ‘algebraic’.
Moreover, in general, there is no uniqueness. While G x determines the diffeomorphism type of
Lx, there might be analytically different singularities with the same link Ly. There is a vast
research area concerning which invariants of X depend on the link Lx, and which depend on the
analytic structure. We refer the reader to the book [Ném22]. Examples of invariants depending on
the analytic structure of X include geometric genus p, (see [Ném22, Section 6.8]), the embedding
dimension (minimal N for which X embeds into CV, see [Ném22, Example 6.7.17]), and the
Hilbert-Samuel function [Ném22, Section 5.1.40]).

3.3. Embedded resolutions. We now consider embedded singularities, which are pairs of ana-
lytic spaces Z C X, with a point z¢g € Z, where X and Z are possibly singular at zy. We restrict
our attention to the case where dim¢ X = 2 and dimc Z = 1. For an introduction to embedded
singularities, we refer to [Ném22], especially Section 2.2. An overview of singularity theory is given
in [NS12, Section 4.3]. Graph links, and their connection to singularity theory, are described in
[ENS5].

Definition 3.9. An embedded singularity is a triple (X, Z, x¢), where (X,x0) is a (germ of a)
normal complex analytic surface and Z C X is a complex analytic curve passing through z.

Example 3.10. If X = C?, an embedded singularity is precisely a plane curve singularity.

Embed X analytically in CV with 2o mapped to 0. Take a small ball B, around zg in CV
as above. For sufficiently small € > 0, the triple (B, X N B.,Z N B.) is topologically a cone
over (0B, Lx,Lyz), where Lx and Ly are, respectively, intersections of X and Z with dB.. The
diffeomorphism type of the pair (Lx,Lz) depends on neither the choice of € nor the choice of
embedding.

Definition 3.11. The pair (Lx, Lz) is called the link of the embedded singularity.

Example 3.12. Suppose (X,z9) = (C2,0), and Z is a plane algebraic curve passing through 0.
Then, Lx = S3, and the link Lz is precisely the algebraic link in the ordinary sense.

Since the study of singularities is local, we consider only the germ of the singularity. We note
that, by definition, (X, Z) and (X N B., Z N B.) have the same germ. In particular, we may and
will assume that (X, Z) is a topologically a cone over (Lx, Lz).

We can recover (Lx, Lz) from an embedded resolution. By an embedded resolution of (X, Z, xq)
we mean the triple (X, Z, E) together with a proper analytic map 7: (X, Z, E) — (X, Z, zo) with
the following conditions
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e m: X — X is one-to-one away from E. I in particular, the restriction 7|3 is one-to-one
away from zZn FE;

X is a smooth surface and Z is a smooth complex curve;
Each algebraic component of E is a projective (that is, closed) smooth complex curve;

e The union E U Z has only transverse double points as singularities;

As in the non-embedded case, the smooth complex curves whose union in E are referred as the
exceptional components.

Given the embedded resolution, we can create a dual graph of the resolution. The construction
is in two steps. First, out of E, we construct the graph Gx as above. Next, if v; € Vg, and
E; is the corresponding component of F, we adjoin |E; N Z | arrow vertices to v;. We denote the
resulting graph I'y z. Recall that we work locally (topologically, we have replaced X by X N B.).
Therefore, 7 is the union of disks, each intersecting the graph E precisely at one point. That is,
every arrow vertex of I'x z corresponds to a connected component of Z. The following result is
classical.

Proposition 3.13 (see e.g. [Ném22, Proposition 3.3.8]). The pair (Yo, Lt) is diffeomorphic to
(Lx,Lz).

Our next aim is to explain the relative analog of Grauert’s Theorem 3.8. As the statement is
slightly technical, we give some extra explanation. Let g: X — C be a reduced analytic map
such that g=1(0) = Z. Here, reduced means that g is not divisible by a square of a non-invertible
analytic function on X. Then, g induces an analytic map g: X — C via g = gom. Let v be a vertex
of I' :=TI'x,z. The vertex v corresponds either to an exceptional component E, (if v is a non-arrow
vertex), or to a component Zy of Z, if v is an arrow vertex. In both cases, g vanishes on that
component. We let m, > 0 denote the order of vanishing. This quantity is called the multiplicity of
the vertex v. Note that since g is reduced, m,, = 1 for all arrow vertices; see [NS12, Section 4.3.2].
The multiplicities and the weights satisfy the following compatibility relation (see [NS12, Equation

(4.1.5)]):

Aoy + Y myy =0, (3.1)

weV,
for each non-arrow vertex v € Vi, where V,, denote the set of all vertices in Vr adjacent to v. Note
that (3.1), together with the condition m, = 1 for all arrow vertices, determines uniquely all other
multiplicities. However, unless QQ¢ is unimodular, the multiplicities need not be integral. If that
is the case, such a plumbed link cannot be realized as an embedded link of an analytic singularity.

We now state a relative analog of Grauert’s Theorem 3.8. For reference, see [Pic01, Corollaire
5.5].

Proposition 3.14. Let I' be a graph with vertices V = Vg U V4 such that Qg is negative definite.
If assigning multiplicity 1 to each arrow vertex of I' leads to integral positive multiplicities on all
vertices of Vo via the compatibility relation (3.1), then (Yg, Ly) is a link of an embedded analytic
singularity.

3.4. Rationality. Suppose (X, () is an analytic singularity. We define the geometric genus p, =
(O 3); see [Ném99, Section 2]. Many properties of geometric genus are given in various chapters
of [Ném22]. The definition of p, does not depend on the choice of resolution. Geometric genus
is an invariant of the analytic structure of X; there are known examples of singularities with the
same link, but different geometric genus, see [Ném99, Paragraph 4.8]. Put differently, in general
pg cannot be read off from the combinatorics of the resolution graph G.

An exception is the case of rational singularities, which are characterized by the property that
pg = 0; see [Ném22, Section 7.1]. Given a graph G, we can determine, whether it represents
a rational singularity; this result is due to Artin [Art66], see also [Ném99, Theorem 3.8] and
[Ném22, Theorem 7.1.2]. For instance, if Y¢ is a link of a rational singularity, then b, (Yg) = 0.
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By studying the relation between p, and combinatorial invariants of X encoded by G, Némethi
proves the following groundbreaking result:

Theorem 3.15 ([Ném17]). The singularity (X, xzo) is rational if and only if Lx is an L-space.

The proof of Theorem 3.15 can also be done using recently proved equivalence of lattice and
Heegaard Floer homology [Zem21b]. As the first step, one uses Némethi’s theorem stating that if
G is negative definite, then X is a rational singularity if and only if the reduced lattice homology of
Y is zero; see [Ném05,NémO08]. Next, one refers to [Zem21b] to show the reduced lattice homology
of Y vanishes if and only if Y is an L-space.

Remark 3.16. Theorem 3.15 characterizes only graphs representing an L-space among graphs with
negative definite incidence matrix Q. There are indefinite graphs representing L-spaces. For ex-
ample, if G is a linear plumbing such that Q¢ is non-degenerate, then Y is a lens space, regardless
of whether Q¢ is definite or not. To the best of our knowledge, there is not a generalization of
Theorem 3.15 for indefinite graphs.

3.5. Algebraic links and L-space links. Let us recall the following definition.

Definition 3.17. Let L be a link in a rational homology 3-sphere. We say L is an L-space link if
all sufficiently large positive surgeries on L are L-spaces.

Though usually one considers L-space links in S or an integer homology sphere (see e.g. [Liul7,
GN16]), we note that the same definition can be applied to links in rational homology 3-spheres.
Suppose K is a rationally null-homologous knot in Y, then Morse framings on K can be identified
with an affine Z subspace of Q by taking the intersection number of the framing (viewed as a
parallel longitude of K) with a rational Seifert surface. Hence, large surgeries on rationally null-
homologous links are surgeries with Morse framings which are sufficiently large in Qf with respect
to this identification.

In [GN16] Gorsky and Némethi studied which plumbed links in plumbed manifolds are L-space
links. Their main result is that an algebraic link in S® is an L-space link, [GN16, Theorem 2].
Their proof works in a more general setting, leading to the following statement, which is given in
[GN16, Theorem 12] and the ensuing discussion.

Proposition 3.18. Suppose I" is a graph such that Qg is negative definite and Yg is a link of a
rational singularity. Then Ly is an L-space link.

We stress that the assumption on multiplicities as in Proposition 3.14 is never used in the proof
of Proposition 3.18. That is, Proposition 3.18 does not require that the link L4 be a link of an
analytic singularity; it only makes a restriction on the graph G being the graph representing a
rational singularity.

To see this, we quickly sketch the argument of [GN16, proof of Theorem 2| proving Proposi-
tion 3.18. One first extends the graph G to another graph, @0, which replaces all arrowhead vertices
of I" by chains of —2 weighted vertices ended by a —1 weighted vertex. By construction, Gy can be
contracted to G by successive blow-downs, that is éo represents the manifold Yg. Hence, it is a
rational graph. Next, a sufficiently large positive surgery on L+ can be presented as a subgraph of
Gy as long as the chains of —2 weighted vertices are long enough. Since any subgraph of a rational
graph is rational by Laufer’s criterion, large positive surgeries on Ly are represented by rational
graphs. Rational graphs represent L-spaces by [Ném05, Theorems 6.3 and 8.3]. That is to say, a
sufficiently large positive surgery on L4 is an L-space. This means, that L4 is an L-space link.

It is well-known that an algebraic knot is determined by its Alexander polynomial. A natural
question is whether this result generalizes to plumbed L-space links. The following well-known
fact is due to Yamamoto.

Proposition 3.19 (see [Yam84]). Two algebraic links in S* with the same Alexander polynomial
are equal.
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A B

.

FIGURE 3.1. Resolution graph of the Fg singularity. All vertices correspond to
spheres with self-intersection —2. The meaning of components A and B is ex-
plained in the text.

FIGURE 3.2. Plumbing graph of the second knot in Proposition 3.20(b). All
weights that are not explicitly marked have value —2.

The result of Yamamoto relies on the classification of algebraic links in S2, due to Zariski
[Zar32]; we refer to [EN85] for this characterization. In particular, this result does not admit
direct generalizations to links in other 3-manifolds. We give now a few counterexamples for some
naive attempts to generalize the result. Proposition 3.20 is not used in the present paper. Rather
it indicates that algebraic links cannot be distinguished by Alexander polynomials, hence, they
cannot be distinguished by Heegaard Floer homology.

Proposition 3.20.

(a) There exist non-isotopic plumbed L-space links in S® with the same Alezander polynomial;
(b) There exist non-isotopic knots that are links of embedded analytic surface singularities with
the same Alexander polynomial.

Proof. Ttem (a) is classical. We know that the (2, 3)-cable on the positive trefoil is a plumbed
knot, and it is an L-space knot by [Hed09, Theorem 1.10]. However, its Alexander polynomial is
the same as that of the T'(3,4) torus knot.

Item (b) expands on results of Campillo, Delgado and Gussein-Zade [CDGZ20]. In fact, in
[CDGZ20, Section 3, Example 2] there are two knots in the Poincaré sphere with the same Alexan-
der polynomial, represented by two plumbing diagrams. We quickly recall their construction. The
starting point is the resolution of the Ejg singularity given by the plumbing graph in Figure 3.1.
The first knot is obtained by taking the plumbing diagram of the Eg singularity and adding to it
an arrowhead vertex at the component marked A in Figure 3.1.

The second knot is obtained by drawing an A4-singularity (i.e. with local equation x® —y? = 0)
transversally to a point at the B component. The resolution of that singularity yields the plumbing
graph drawn in Figure 3.2, compare [CDGZ20, Figure 2].

An explicit algorithm described in [EN85, Chapter 20] transforms these two plumbing graphs
into graph links, which are presented in Figure 3.3. Using the algorithm of [Neu83], we compute
the signature functions of these links, and we present them in Figure 3.4, omitting straightforward
calculations. The signatures are different, so the knots are different. (Il

Remark 3.21. The signatures might be different, but the discontinuities of the signature function
appear at the same places. This is consistent with the fact that the Alexander polynomials of the
two knots are equal. (It is well-known that the jumps of the signature functions occur only at roots
of the Alexander polynomial.) The fact that the signatures of the two knots in Proposition 3.20(b)
are different means not only that the knots are not isotopic, but also that they are not concordant.
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3 5 9 3 5 4

FIGURE 3.4. The signature functions z — o(e*™**), x € [0,1/2] for links of Fig-
ure 3.3.

4. LINK LATTICE HOMOLOGY

In this section, we recall some basics about Heegaard Floer homology, and subsequently define
our link lattice complex.

4.1. Background on link Floer homology. To fix the notation and terminology, we give some
necessary background on link Floer homology. We assume some familiarity with basics of Heegaard
Floer homology and its refinements for knots, see [0S04c, 0S04, 0S08, Ras03].

Let L be an ¢-component link in a 3-manifold Y. Recall [OS08, Section 3.5] that the pair (Y, L)
can be encoded in a multi-pointed Heegaard link diagram (X2, o, 3, w, z), as follows:

(1) X is a closed oriented genus g surface;

(2) a = {aq,...,ag40-1} and B = {B1,...,Bg+e—1} are collections of simple closed curves
on Y. The curves «; are pairwise non-intersecting. Also, the curves [3; are pairwise non-
intersecting. Moreover, a and 3 each span a g-dimensional subspace of Hy(X;Z);

(3) w = {wsr,...,wi}, z = {#1,...,2¢}. Each component of ¥ \ a (respectively of ¥\ 3)
contains a single point of w and a single point of z.

It is not hard to see there exists a Heegaard link diagram for any pair (Y, L). Furthermore, any
two diagrams can be connected by sequence of Heegaard moves for link diagrams. See [OSO0S,
Theorem 4.7].

Given a Heegaard link diagram, we consider Lagrangian tori

To=0a1 X - Xagp-1, Tg=p1 X XByroe

in the symmetric product Sym? =1 (%). The link Floer chain complex, CFL(Y, L), is a free chain
complex over

Re =TF2, N, ..., %, V%)
generated by intersection points x € T, N Ty with the differential counting pseudo-holomorphic
curves in Sym?™*~ (%) via:

ox= > 3 HM@) R Dy Dy Oy

Y€TaNTg pem2(x,y)
u(d)=1

Here the sum is taken over all homotopy classes ma(x,y) of maps ¢ of a unit disk D C C to
Sym?+1 (%), where (1) = x, ¢(1) = y, ¢(OD N {im(z) < 0}) C T, 4D N {im(2) > 0}) C Ty,
Here, p(¢) denotes the Maslov index of the class ¢. The space M(¢) consists of all pseudo-
holomorphic curves representing the class ¢, for a generic 1-parameter family of almost complex
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structures on Sym?™*~1(%). For z € ¥\ (a U B), we denote by n,(¢) the intersection number of
{z} x Sym?™*72(£) C Sym? T~ 1(2) with ¢(D). We refer to [0S04c] for more details.

There is a map &, from T, N Tg to the set of Spin® structures on Y. The component of the
map O from x to y can be non-trivial only if s,,(x) = §,,(y). That is to say, the chain complex
CFL(Y, L) splits as a direct sum over complexes CFL(Y, L, s), for s € Spin®(Y).

There is completed version of CFL(Y, L) regarded as a module over the ring of power series

'R,g = F[[%l, 7/1, . .,%g, %H,

namely we set
CFL(Y,L) :=CFL(Y,L) ®r, Re.
In other words, CFL(Y, L) has the same generators as CFL(Y, L) and the same differential, except
that we work over a larger ring. The completed version appears in the surgery formula.
When Y is a rational homology 3-sphere, the link Floer homology groups have several gradings.
Firstly, there is a Q x Q-valued Maslov bigrading, denoted (gr,,gr.), as well as a Q‘-valued
Alexander grading A. Furthermore

(grwvgrz)(%) = (_270) (grfuugrz)(%) = (0’ _2) and A(%) = _A(%) = €,

where ¢; is the standard i-th coordinate vector in Qf. Note also that
‘
gr, —gr, = QZAi.
i=1

Remark 4.1. In this paper, we normalize gr,, so that the isomorphism
HL(CFL(Y, L)/ (% —1,..., % — 1)) = HF~(Y)

is grading preserving. In the above, we are writing HF ™ (Y) for the Heegaard Floer homology
computed with a singly pointed Heegaard diagram for Y. We make a similar normalization for
gr,. Equivalently, our grading convention is that HF~ of a 3-manifold is invariant under adding
extra basepoints as a graded module; compare [OS08, Section 6.1]. We note that some authors
normalize the Maslov gradings so that H.(CFL(Y,L)/(#1 —1,...,% — 1) is isomorphic instead to
HE~(V)[(£ = 1)/2]

4.2. Lattice homology. We recall the definition of lattice homology [Ném08]. We use the nota-
tion of Ozsvéth, Stipsicz and Szab6 [OSS14b], since our construction of link lattice homology is
slightly easier to describe using their notation. Let G be a plumbing tree, and write Vg for the
vertices of G. Write P(Vg) for the power set of Vi (i.e. the set of all subsets of V). The lattice
complex is the F[[U]] module

CF(G) == 11 Fl[U]] @ ([K, E]),
[K,E]eChar(G)xP(Vg)

where Char(G) C H?*(Xq,Z) denotes the set of characteristic elements of H?(Xg,Z) on the
4-manifold Xg. Recall that K € H?(Xg,Z) is characteristic, if K(x) = x - z mod 2 for all
v € Hy(X, Z).

We now define the differential on CF(G). Note that each vertex v € Vo determines an element
of Hy(X¢), which is class in Hy(X¢) of the base space of the disc bundle T;, used in the plumbing
construction. For I C F, one defines

o ($xe) - (£1):(£7)

vel vel vel

Note that the right-hand side of the above equation is always an even integer, because K is
characteristic. In particular, f(K,I) is an integer. We set g(K, E) = min{f(K,I): I C E}. Next,
one defines

Ay (K,E)=g(K,E—v)  By(K,E)=min{f(K,I):velCE}.



18 MACIEJ BORODZIK, BEIBEI LIU, AND IAN ZEMKE

Set
ay(K,E)=A,(K,E) —g(K,E) and b,(K,E)=B,(K,FE)—g(K,E).
By the definition of g(K, E), one can see that g(K,E —v) > ¢g(K,E). Similarly, B,(K,E) >
g(K, E). Hence, a,(K, E) and b,(K, E) are both nonnegative integers.
The differential on CF(G) is defined by the formula,

K, El =Y U»SP K E—v+ ) UFP @K+ 20" E -1 (4.1)
veEE veEE
where v* is the Poincaré dual to v. Note that because of the factor 2, K + 2v* is characteristic if
and only if K is. Equation (4.1) is extended linearly over F[[U]]. We will refer to the first summand
in (4.1) as the A-terms in the differential, and we will refer to the second summand as the B-terms
of the differential.

4.3. The link lattice complex. We now suppose that I' is a plumbing tree, whose vertex set is
partitioned into two sets:

Vr=Vg U V¢
Recall that the components of Vg are equipped with a framing, while those of V; are not.

The vertices V4 determine a link L4 in the 3-manifold Y. We assume that each component of
L4 is rationally null-homologous in Y. This occurs, for example, when the incidence matrix Q¢
is non-singular.

To define the link lattice complex, we first pick a framing on the components of V; arbitrarily.
In Proposition 4.13, we will show that the choice of framing on V; does not affect the link lattice
complex.

We define the link lattice complex CFL(T', V4) as the quotient of CF(I') by the subspace generated
over F[[U]] by tuples [K, E] where V} € E. Equivalently, we may view CFL(T,V;}) as being
generated by [K, E] where V} C E, equipped with quotient complex differential. We think of the
differential on CFL(T', V}) as being given by the same formula as Equation (4.1), except with the
sums being taken over only v € EN V.

4.4. The module structure. Recall that
Re=F[21, ", ..., %, V4]

We now describe the action of Ry on link lattice homology, where ¢ = |V3|. Write V3 = {vy,...,v¢}.
For each i € {1,...,/}, there is an induced element u} € Ho(Xr;Yr) = H?(Xr). This element is
dual to the class v; € Ho(Xr) in the sense that u}(v;) = 1, and pf(w) = 0 for all w € Vi \ {v;}.
The class p is represented by the co-core disk of the 2-handle corresponding to v;.

Define the quantities:

51 (K. E) = g(K + 27, E) — g(K.E) and 0} (K, E) = g(K — 2}, E) — g(K, E).
An easy computation shows that
FUK £ 208, 1) = F(K,T) £ 1
ifv, €I,and f(K +2uf,I)= f(K,I)if v; ¢ I. In particular, we have that
57 (K,F) €{0,1} and ; (K,E) € {0,—1}

for all i.
For i € {1,...,¢}, we define

U K, E] = UK —2u}, E] %f(;i(K,E):O (4.2)
(K —2uf, E| ifo; (K,E) = -1,
and
K +2u;, E] if6f(K,E)=1
¥i 1, B) = UK 210, BL 107 (K E) (43)
(K +2uf, B it 6 (K, E) = 0.
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We extend %; and ¥; to the entire link lattice complex by declaring them to be F[U] equivariant.
Equivalently, we set
% |

Vil

E] = Ug(K—Quf,E)—g(K,E)H[K —2u¥,E] and

,E] = UsE+21 E)=g(K.E)[|c | 9% F]. (4.4)

K
K
Lemma 4.2. If v; € V4, then the endomorphisms % and ¥; are chain maps.

Proof. The differential of CFL(T', V}) is given by modifying (4.1) to sum over only v € V. Clearly
the summands of #0[K, E|] are in bijection with the summands of 0% [K, E]. It remains to show
that the powers of U coincide. We consider the A-terms of the differential first. The power of U
from ¥0[K, E] of [K + 2u}, E —v] is

9(K +2u7, E—v) —g(K,E —v) + g(K,E —v) — g(K, E)
whereas the power of U from (¥ |K, E]) is

9K + 27, E —v) — g(K +2p, E) + g(K + 2, E) — g(K, E).
These are obviously equal. Similarly, for the B-terms of the differential we use the equality
B,(K,E)= (K@) +v-v)/2+ g(K + 2v*,E —v).
From here, the argument is similar to the case of type-A terms. We note that
(K+2u))(v)+v-v=K@w)+v-v (4.5)
if v # v;. For the B-terms of the differential, the U power of the term from 0%;[K, E] is
By (K +2uf,E) — g(K +2uf,E)+ g(K +2u}, E) — g(K, E).
The U-power from ¥0[K, E] is
g(K + 20" +2uf, E—v) — g(K + 20", E —v) + B,(K,E) — g(K, E).

The difference between these terms is ((K + 2u7)(v) +v - v)/2 — (K(v) + v - v)/2 which vanishes

by (4.5).
The claim about the map %; follows from essentially the same logic. ]

Lemma 4.3.
(1) For each i, we have UV; = ViU = U.
(2) For alli,j, the commutators [%, V5], (%, ;) and [V;, ¥;] vanish.
Proof. All of the stated relations are easily derived from Equation (4.4). |

Lemma 4.4. The action of Ry on CFL(T',V4) extends to an action of the ring of power series
R, =TF[[%, ", ..., %, V-

Proof. We use the following fact about direct products. Suppose that (A;)icr and (B;);cs are
families of vector spaces. Suppose that we have a function on indices v: I x J — J as well as a
family of maps

fi,j: A ® Bj — B'y(i,j)'
If f;; and ~ have the property that for each j' € J, there are only finitely many ¢ and j so that
v(2,7) = j" and f; ;j # 0, then there is a well-defined map

> fu [T4i = 1185
i) il jeJ
whose component functions are f; ;.
Note that both the lattice complex and the power series ring F[[%1, 1, . . . , %, V)] may be viewed

as infinite direct products of copies of F. Hence, it is sufficient to show that for each y = U"®|[K, E],
there are at most finitely many monomials a € Ry and generators x = U™ ® [K’, E] such that
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a-x =y Ifa=U".. UV . ¥} € Ryis a monomial, we define v(a) € H?(Xr) by the
formula

v(a) = (1 — i) py, + -+ (e =0y, -
Monomials in Ry are equipped with a U-weight

wy (a) = min(i1, j1) + - - - + min(ie, je).
A generator U" ® [K, E] also has a U-weight wy (U™ ® [K, E]) = n. It is straightforward to verify
that wy(a - ) > wy(a) + wy(z) for any @ and x. In particular, if y = U™ ® [K, E] is fixed, then
there are only finitely many possible U weights of a and x such that y =a - z.

Monomials in R, also have an Alexander grading A(a) = (j; — 41,...,j¢ — 4¢). Since H?(Xr)
is torsion free and of rank |Lr|, we have that v(a) = v(a') if and only if A(a) = A(a’). Also, if
a-[K',E] =U"® [K, E], then it must be the case that K’ = K — 2v(a).

Let s € {1,...,¢}. Note that if A;(a) = js — is is sufficiently negative, then ¥;[K — 2v(a), E] =
UK — 2v(a) + 2, E] by the observation that (K — 2v(a))(vs) < 0 and the minima involving
g(K — 2v(a), F) and g(K — 2v(a) + 2u%, E) will both be attained at some I C E containing
vs. A similar argument shows that if As(a) is sufficiently positive, then %;[K — 2v(a), E] =
UK —2v(a) — 2u%, E.

In particular, it follows from the above reasoning that the set of monomials a such that there
is an i satisfying a - U' ® [K — 2v(a), E] = U™ ® [K, E] is bounded in U-weight and Alexander
grading. However, it is easy to verify that the set of elements in R, in bounded Alexander grading
and U-weight is finite, completing the proof. |

4.5. Maslov gradings. If the intersection form of X is non-singular, then the lattice complex
CFL(T, V4) inherits a Maslov grading from CF(I"). We recall the formula

gr(U' @ [K,E]) = —2i + 29(K,E) + |E| + i(KQ — 30(Xr) — 2x(XT1)). (4.6)

Compare [0SS14, Section 2.3]. Here, o(Xr) and x(Xr) are the signature and Euler characteristic,
respectively. The number K? is obtained by factoring K from H?(Xr) to H?(Xr,0Xr), squaring
using the cup product, and then evaluating on the fundamental class [ X, 0Xr] € Hy(Xr, 0X1).

In the setting of link lattice homology, it is more natural to define the Maslov grading via the
formula

gr, (U ® [K, B]) = =2i + 29(K, E) + |E| - [V4] + i(K@cG —30(Xg) — 2x(Xq))- (4.7)

This grading is defined when the intersection form Q¢ of X is non-singular. More generally, this
grading may also be defined when Q¢ is singular, as long as we restrict to torsion Spin® structures
on YG'.

Lemma 4.5. The differential 0 on CFL(T', V) decreases gr,, by 1. Furthermore, if v; € V4, then
¥; preserves gr,, and %; decreases gr,, by 2.

Proof. The proof that gr,(0) = —1 is essentially identical to the proof in [OSS14b, Lemma 3.1]
(cf. [Ném08]) so we will not repeat it.

We now consider the actions of ¥ and %;. Note that (K + 2u7)[%, = K%, since p} has
trivial restriction to Xg. Hence the grading changes are entirely due to the powers of U and
the g(K, E) terms. With this in mind, the stated grading changes follow immediately from the
formulas defining the action of ¥ and %; in Equations (4.3) and (4.2). O

Remark 4.6. Note that gr,, and gr do not in general differ by a constant. Also 0 is only ho-
mogeneously graded on CFL(T', V4), and not on the entire complex CF(I'). The reader should
compare the lattice complex to the Heegaard Floer mapping cone complex of Ozsvith and Szabd
[0S08b]. For K C S3, with integer framing n, this takes the form of a mapping cone X,,(K) =
Cone(v+ hy,: A(K) — B(K)), which is homotopy equivalent to CF~(S3(K)). The complex A(K)
is isomorphic to the full knot Floer complex CFK(K) (a finitely generated chain complex over
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F[%,¥]), and hence admits a grading gr,, on CFK(K). This does not coincide with the Maslov
grading on X,,(S3(K)) (see [OS08b, Section 4]) induced by the isomorphism with CF~(S3(K)).

4.6. Alexander gradings. We now define the Alexander multi-grading. If |[V;| = ¢, our Alexan-
der grading will take values in Q. We assume that Y is a rational homology 3-sphere.

If v € V4, we may only view v as a class in Ho(X¢,0X¢), and not necessarily Ha(Xg). Con-
cretely, [v] € Ho(X¢,0X¢q) is obtained by capping one end of the link cobordism [0,1] x L, C X¢
with a disk in S3. Since Yg is a rational homology 3-sphere, the knot L, C Y is rationally
null-homologous, so we may lift the class [v] € Ha(Xq,0X¢) to a class [0] € Ha(Xg; Q). Such a
lift is given by capping with a rational Seifert surface for L, C Yg.

Definition 4.7. Let I’ be an arrow decorated plumbing tree, as above, and suppose U® - [K, E]
is a generator of CFL(T, V;). Write V4 = {v1,...,v¢}. We define the Alezander multi-grading of
UK, E] to be

5 ey 5

A(UIK.E)) = (K(”l “O) Ve v (0= B) K= )+ Poey, v (v —@0) ,

which lies in Qf.
Note that the Alexander multi-grading of U?[K, E] depends on K, but not on E or i.

Remark 4.8. More generally, if Y5 is not a rational homology 3-sphere, we can construct the
Alexander grading A; when the corresponding component of Ly is rationally null-homologous, as
long as a rational Seifert surface is chosen. For our purposes, such a choice is equivalent to a choice
of lift ¥; of v; under the map Ho(Xg;Q) — Ha(X¢g,0Xg; Q). Our grading may be defined in this
context as well.

Lemma 4.9. The differential on CFL(T, V3) preserves the Alexander multi-grading. Suppose that
v;,v; € Vi. The action of % drops the Alexander grading A; by 0, ; (Kronecker delta) and the
action of ¥; increases the Alexander grading A; by d; ;.

Proof. The A-terms of the differential obviously preserve the Alexander multi-grading since they
do not change K. The B-terms send [K, E] to a sum of U-multiples of [K + 2w*, E — w|, where
w ranges over the non-arrow components. Note that since w € Vg, w* is the Poincaré dual of the
element [w] € Hy(X¢g;Z), so

(K 4 2w")(v; — 05) = K(vj — ;).

Hence the B-terms also preserve Alexander grading.
Next, we consider the actions of %; and ¥#;. We note that (K + 2u})(v;) = K(9;), since 0; and
u; are represented by disjoint rational 2-chains. On the other hand, we have

(K + 207 (v5) = K (vj) + 2655
Hence, the conclusion follows from these observations. O

4.7. Conjugation symmetry. As with the original construction of lattice homology [Ném08, Re-
mark 3.2.7], the link lattice complex admits a conjugation symmetry. Compare [OSS16, Sec-
tion 2.2]. This takes the form of a map

J(U'[K,E) =U'[-K - Y _ 20", E].
veE
We now observe that the J-map is skew Alexander graded:

Lemma 4.10. The J map satisfies
A(J(IK, E])) = —A([K, E]),
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Proof. By construction of the link lattice complex, V4 C E. We observe that if v € E \ V4 and
v; € V4, then 2v*(v; — 0;) = 0 since v* is Poincaré dual to a class in Ho(Xq;Z). Hence, if v; € Vi,

then
-K - 220 v; — ;) ZU'('—% -K - 221) '—01+Z v; — ;)
veEE veEVy veVy veV;
= —K(’Uz' —172) - Z U'(’Ui —f}z)
veVy
Therefore, A(J([K, E])) = —A([K, E]). O

We recall from [OSS14, Section 2.3] that J preserves the grading gr from Equation (4.6). On
the other, its interaction with gr,, is more interesting. Define

gr, = 8y _2(A1 +eee A5)7

where (A1,...,Ay) is the Alexander grading. Note that by Lemmas 4.5 and 4.9, the action of %;
preserves the gr,-grading, while the action of ¥#; drops the gr, -grading by 2.

Lemma 4.11. The map J interchanges the gr,, and gr, gradings.
Proof. We recall the useful identity (See [OSSl4 Equation 2.2]) that

9(K,E) — g(-K = Y 2*,E) = f(K,E). (4.8)
veE
Let us write

FK, B) = S (K () + 03)

where vg = ) . v. Therefore,
1 *
er, (K, E]) — gr, (J[K, E) = 2f([K, E]) + 7 (K&, = (=K = 2vp) %)
= K(vg) +vh — (K Uvy +vh Uvg)[Xa, Yol

Let us write 9%, for the restriction of v} to X¢, pulled back from H?(Xg,Ys) — H?(Xg). Use
similar notation for individual vertices. Note that if v; € vy, then v}|x, = ©0F, where 0} €

77

Hy(X¢;Q) is the 2-chain appearing in the definition of the Alexander grading. Observe that if
v € E'\ V4, then ¢* is still the Poincaré dual of the 2-sphere represented by v, which is contained
in Xg. Let us write vy for Zvew v, and define ¥4 similarly. We compute that

F(K, E)) + E(KB{G — (-K = 20p)[%,,) = K(vp) + v — (K Udg + 05 UiE) [Xe, Yol
= K (vt — ip) + 0§ — 0
= K(vt — 0t) + vy(vr — Op).
Combining the above with Lemma 4.10 we see that
gr, ([K, E]) = gr, (J([K, E])) + 2(A1 + - - + Ag)([K, E]) = gr. (J[K, E]).
The same argument shows gr, ([K, E]) = gr,, (J[K, E]). O
Lemma 4.12. The map J skew-commutes with %; and V;, i.e.
JoVi=%UoJ and JoU=V;ol.
Proof. We compute from (4.2) and (4.3):

U - J(K,E)) =U' % VUICED L[| — " ou* —2u7 B
veER

T [K, B]) =U% BV )¢ — § ™ 90" — 217, B
veE
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Therefore, it suffices to show that
1+6; (JIK, B]) = 6] (|K, E)).
Rewriting in terms of the g function, the above is equivalent to

1=g(K +2u},B) —g(K,BE) + g(=K = > 2v") —g(—K =27 = > 2", E)
vel veE

By Equation (4.8), we see that the right-hand side of the above equation is

FIK + 25, B) — f(K,E) = p; () _v) =1,
veEE
as claimed. (Recall that v; € E by definition of the lattice link complex). An analogous argument
shows that %, 0J = J o %;. O

4.8. Spin“-structures. We describe how the link lattice complex CFL(T", V;) naturally splits over
Spin°(Ye) as a module over R,. Recall the isomorphism

Spin‘(Yg) = Spin®(X¢)/Hz(Xq).

Also, the Chern class map c;: Spin®(Xg) — Char(X¢) is an isomorphism of affine H?(X¢)-sets
(where C' € H?(X¢) acts on Char(Xg) by K — K + 20C).

In the link lattice complex, we associate the generator [K, E] ® U® with the Spin® structure
[K|x], viewed as an element of Char(Xqg)/H2(X¢) = Spin®(Yg). This gives the decomposition
of the F[[U]]-modules

CFL(T,V}) = €P  CFL(T,4,9). (4.9)
s€Spin®(Yg)

Since the differential on CFL(T, V4) is constructed by modifying (4.1) to sum over only v € Vg,
the decomposition (4.9) is preserved by 0. The actions of %; and ¥; also preserve this decompo-
sition, because they change K to K 4 2u}, and pf € H*(Xr) has trivial restriction to H?(Xg).
That is to say, (4.9) yields the decomposition of chain complexes of F[[%, ¥4, . . ., %, ¥i]]-modules
over the Spin® structures of Yg.

4.9. Independence from the framing on arrow components. We now show that our chain
complex CFL(T',V;) is independent of the choice of framing on the arrow components, up to
canonical isomorphism.

Suppose that G is a weighted plumbing tree obtained by weighting the arrow vertices of I' by
(any) integral weights, and using the weights from I" on V. We obtained a model of the link lattice
complex in the previous section, which we denote by CFLg(T", V). In this section, we describe a
canonical isomorphism

Fg7g/ : (CIF]LQ (F, Vtr) — CFLg/(F, VT)
for any two extensions G and G’.

Let Lt C S? denote the link associated to I' as in Subsection 3.1. We write Lg to denote Lr,
equipped with the framing from G. Write n for |Vr|. Following the notation of Manolescu and
Ozsvéath [MO10], we define the linking lattice H(Lg) to be the affine Z™ subspace of Q™ consisting
of vectors s = (s1,...,8,) such that s; € Z+1k(L;, Ly — L;)/2. As sets, we clearly have

H(Lg) = H(Lg).

The lattices H(Lg) and H(Lg/) are distinguished by their natural actions of Ho(Xg) & Ho(Xg/) &
Z". The action of H3(Xg) on H(Lg) is as follows. Given v € Vp, write A, for the longitude of K,
determined by the framing of K. By writing H;(S%\ Lr) = Z", we can identify )\, as an element
in Z™, and the action of v on H(Lg) can be identified as a translation by this corresponding element
in Z™.

Next, there is a canonical isomorphism

(I)g: Char(Xg) — H(Lg)
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given by the formula

K . K .
o(k) = (Kl Ftvg-v - K(vn) Fvg v (4.10)
2 2
In the above, we write vg = v; + -+ + v, € Ha(Xg). Note that &g is equivariant with respect to
the action of Hy(Xg).
Given two weight-extensions G and G’ of ', we define the group isomorphism

Fgg : CFLg(I', V) — CFLg/ (T, V4),
via the formula
Fg.o([K,El@U") = [(®5} o g)(K),E] @ U".

The map Fg g/ is clearly an isomorphism of F[[U]]-modules. In fact, we have the following:

Proposition 4.13. The map Fg g is a (gr,, A)-grading preserving chain isomorphism between
CFLg (T, V4) and CFLg (T, V4).

Proof. The differentials on CFLg(T", V) and CFLg/ (I",V4) are similar to Equation (4.1), except
that we take the sum only over the vertices v € V. Note that there are no summands in the
differential for v € V4. We consider the restricted action of Hy(X¢g) € Hz(Xr) on Char(Xg),
Char(Xg/), H(Lg) and H(Lg/). Since the framings of the vertices of Vi coincide on X¢g and Xg-,
the identification H(Lg) = H(Lg/) is equivariant with respect to the action of Hy(X¢).

It is straightforward to verify that the map ®g is equivariant with respect to the action of
Hy(X¢). The same argument applies to show that <I>§,1 is equivariant as well.

Let K € Char(Xg) and write K’ = (<I>§,1 0 ®g)(K). The remainder of the proof follows from the
following two claims:

(1) Klxo = K'lxe
(2) For all E, we have f(K,FE) = f(K',E).
We verify these two claims presently.

The first claim follows from the proof of [0SS14b, Lemma 4.6], which we repeat for the benefit
of the reader using our present notation. Write s = ®g(K) = ®¢g/(K’). Since H?(Xg) is torsion
free, it suffices to show that K|x,(v) = K'|x,(v) for each v € Viz. Note that if v; € Vi, then
K (v;) = 2s; — vg - v;. This quantity only depends on s, on the framing of K; (the link component
represented by the vertex v;), and on the linking numbers of K; with other link components. In
particular, K (v;) = K'(v;), completing the proof of the first claim.

We now consider the second claim. By definition,

Qf(K, E) = K(’UE) + Vg - VE

where vg is the sum of v for v € E. We may rearrange the above expression to obtain

2f(K,FE) = (vg —vg) -vg + Z(K(v)+vg -v) = (vg —vg) - vE + Z ;.
veEE v, €EE

The right-hand side depends only on s, the framing of L¢g, and the linking numbers of the compo-
nents of Lg, but not on the framings of V4. This establishes the second claim.

From these considerations, it follows that Fg g/ preserves the gr, -grading, and is also a chain
map.

We now establish that Fg g/ preserves the Alexander grading. Suppose that v; € V4. The
corresponding component of the Alexander grading is half of

K(vi—d)+ > v-(vi—0) =K(w)+ Y v-vi— K@) — Y v-d

veVy veVy veVy

= K(v;) + ZU'%‘— Zv-vi—K(@i)— ZU@

veVr veVa ’L)EV¢
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The first two terms above sum to 2s;. The last three terms may be rewritten as follows:

— Y PD[](v;) — K(8:) — > PD[](d).

veVg veEV

In particular each term is the evaluation of an element of H?(Xt) on an element of Hy(Xg;Q).
We observe that PD[v]|x,, for v € T, is independent of the framing on V}. Furthermore, K|x, =
K'|x,. Hence A;([K, E]) = A;([K', E]).

O

4.10. Freeness of the lattice complex. Since %;¥; = U for all i, for £ > 1 the link lattice
complex is not free over F[[2, 1, . .., %, V4]]. Nonetheless, we prove that the link lattice complex
is free over F[[%;, ¥;]], for each index i.

Proposition 4.14. Suppose that T’ is an arrow decorated plumbing graph with a chosen vertex
v; € Vy. Write % and ¥; for the variables associated to v;. Then the module CFL(T',V4) is a
completion of a free module over F[[%;, V7).

Proof. We consider the set of generators [K, E] modulo the equivalence relation generated by
[K,E] ~ [K + 2uf, E] for all K and E. Equivalence classes may be identified with elements of
(Char(T') x P(Vg))/Z, where 1 € Z acts on Char(I") by 2u;.

Fix an equivalence class, and let W denote the F[U]-span of the generators in this class. We
may write W = @, W, where each W, = F[U]. We order the W, so that 7; - W, C Wy, and
U; - Ws C We_1. We make the following claims, from which the result will follow fairly easily:

(f-1) For each s, exactly one of ¥;: Wy — Wyiq and %;: Wsi1 — W, will be multiplication by
1, and the other will be multiplication by U. This follows from the fact that %; - ¥; acts
by U.

(f-2) If [K, E] is fixed, then [K, E] is not in the image of %, or ¥;" for arbitrarily large n. This
follows immediately from Lemma 4.4.

(f-3) It % - |K, E] = [K+2uf, E], then ¥; - [K +2u}, E] = [K +4u?, E]. Similarly, if % - [K, E] =
[K —2uf, E] then %; - [K —2uf, E] = [K — 4u, E].

We now prove claim (f-3), focusing on the argument for ¥; since the claim about %; is similar.

We recall from Section 4.4 that

f(K,E) ifv; ¢ F

K+2u,F)=
SO + 207, B) {f(K,E)+1 if v; € E.

Hence, §; (K, E) = 0 if and only if there is a J C E such that f(K,J) = g(K,E) and v; ¢ J. In
particular, if %; - [K, E] = [K + 2u}, E], then there exists such a J. Hence

g(K,E):f(K,J):f(K-i-leLL;:,J) ZQ(K+4/~L2<3E) ZQ(K’E)a

so we have equality throughout. It follows that ¥; - [K + 2u}, E] = [K + 4u}, E].
Note that the claim (f-3) implies there is no [K, E] which is in the image of both %; and %,
since if [K, E] were in the image of both, then the above claims show that

UV K =27, B = UK, E] = [K = 2u5, E],

which contradicts %;¥; = U.

Claims (f-1) and (f-2) imply that there exist generators [K, F] in W which are in the image
of %;, and there also exist generators which are in the image of ¥;. (This rules out the module
F[%, ¥, %] and F#, %", Vi),

From the above considerations, we obtain that there is a unique generator [K, E] such that
UK, E] = [K —2u},E] and %[K,E] = [K + 2u},E]. By (f-3) this [K, E] must be a free
generator of W over F|%;, ¥;]. O
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4.11. Type-D modules over K. If G is a weighted plumbing tree (without arrow vertices) and
v is a distinguished vertex, we now describe how to view the lattice complex as a type-D module
over the algebra K, described by the third author [Zem21].

We first recall the algebra I from [Zem21]. It is an algebra over the idempotent ring I = Iy &1,
where each I. = F. We define

Ip-K-TIo=2F%,7], Ip-K-I; =0 and I,-K-I; 2F[%,7,7 .
Finally, I; ® K ® Iy is isomorphic to the direct sum of two copies of F[%, ¥, ¥ ~1], viewed as being
generated by two distinguished elements o and 7. These elements satisfy
o U=UV"" 0 o-V=V0
7% =7"17 and 7-¥=UY-T.
where U =%V

In this section, we describe how to construct a type-D module X' (G)* from the data of CF(G).
The construction of X'(G)* may be equivalently described as a tensor product of the Hopf, merge
and solid torus modules from [Zem21], though we presently give a direct construction in terms of
lattices. We define X'(G)* at the end of the section, after we prove several properties about the
lattice complex.

Write CFy(G) for the codimension 1 subcube of CF(G) generated by tuples [K, E] where v € E.
Write CF;(G) for the codimension 1 subcube generated by tuples [K, E] where v € E. We view
CF(G) as a mapping cone

CF(G) = Cone (F* + P : CFo(G) — CF1(G)),
where FUA and FP are the summands of the differential which are weighted by U av(KE) and
UL (KE) respectively.

We observe that CFy(G) is exactly the link lattice complex if we designate the special vertex v
as the sole arrow vertex. In particular, Proposition 4.14 implies that it is a completion of a free
F[[%,?]] module (where % and ¥ are the actions for v).

We may define actions of % and ¥ also on CF;(G), using the same formulas as in Section 4.4.
We first observe that the formulas have a comparatively easier description than on CFy(G):

Lemma 4.15. On CF,(G), we have
U -[K,E]=U|K —2u*,E] and ¥V -|K,E|=[K+2u*, E]
for all K and E such that v & E.
Proof. f v ¢ E, then f(K,E) = f(K £2p*, E), and hence
g(K,E) = g(K +2u*, E). (4.11)
Both equations follow by applying this fact to the definition of % and ¥ from Section 4.4. ]

As a consequence of the above, we may define an action of ¥~ on CF;(G) via the formula
¥~ [K,E] = [K — 2u*, E]. As an additional consequence of Lemma 4.15, we have the following
easy analog to Proposition 4.14:

Corollary 4.16. The complexr CF1(G) is the completion of a free module over F|% , V',V ~1].

Let F2 denote the A-term of the differential which increments v. Write F.P for the B-term of
the differential which increments v.

Lemma 4.17. The map F* satisfies
FMU -x)=% -FAx) and FANY -x)=7¥ - FAx)
for all x € CFy(G). Similarly,
FB(U x)=7"'-FB(x) and FP(¥v -x)=7U-FP(x).
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Proof. We begin with the map FA. From direct computation,
¥ - FA(K, E]) =U9UH2 B=0=00SE) L[| 4oy B — o]
=F\(V - [K, E]).

An entirely analogous argument shows that [F;‘, 4 ] =0.
Next, we consider the commutation of F? with %/. We compute that

FUB(% . [K, E]) _ Ug(K+2v*—Q,u*,E‘—v)—g(K,E)—i—l—i—(K—Q,u*)(v)/2+v2/2 . [K _ 2/1J* + QU*,E _ 1}]
— 1. ge(K+20" E—v)—g(K,E)+K(v)/2+v?/2 | (K + 20", E — v]
=71 F7 (K, E]).

Going from the first line to the second, we are using Equation (4.11).
Next, we consider the commutation of F® with ¥. We compute

FB (¥ -[K,E)) = UK+ +20" E=v)—g(UCE)+(K42u")(0)/2400/2 (| 4 9% 4 2% | E — 0]
—Uy - (Ug(mzv*,E—v)—g(K,E>+K(v>/z+v-v/z K + 20", B — v])
—U¥ - FP (K, E).
Going from the first line to the second, we use Equation (4.11). The proof is complete. O

We are now able to define the type-D module X'(G)*. As a right I-module, we write X (G) =
Xo @ X7, where each X, is a vector space over F. We define X to be the F vector space generated
by a free F[% , ¥]-basis of CFo(G) from Proposition 4.14. We define X; to be the F vector space
generated by a free F[%, ¥, ¥ ~!]-basis of CF;(G) from Corollary 4.16.

We now define the structure map

5 X(G) = X(G) @1 K.

The construction is entirely analogous to the setting of the link surgery formula. See [Zem21,
Section 8.5] for a parallel construction. If x is a basis element of CFy(G) and 9(x) has a summand
of %'V -y, where y is a basis element, then we define §!(x) to have a summand of y @ % *77.
We make a similar definition for basis elements of CF;(G). Next, if FA(x) = 77 -y, we declare
§1(x) to also have a summand of y ® Z*#7o. Similarly, if FP(x) = Z*#7 -y, then we declare
§'(x) to have a summand of y ® *#7. It is straightforward to verify that X'(G)* satisfies the
type-D structure relations.

We note that the underlying vector space of X'(G)* is infinite dimensional, so completions play
a subtle yet important role in the theory. We leave it to the reader to verify that the modules
satisfy the Alezander module condition described in [Zem21, Section 6.

4.12. An example. In this subsection, we compute the link lattice homology of T'(2,2), the
positive Hopf link. The Hopf link in S? can be presented by the plumbing graph I" with one solid
and two arrow vertices, together with two edges connecting the solid vertex with two arrow vertices
respectively. The solid vertex has weight —1, we assign —3 and —2 to the arrow vertices. Denote
the solid vertex by vy and the two arrow vertices by vy, ve. The link lattice complex CFL(T', V4) is
generated by the elements [K, E1] and [K, Es] as a F[[U]]-module where K € Char(T") and

E1 = {Ul,’UQ} and E2 = {’1)0,1)1,112}.
It is not hard to see that
Char(T") = {K = [2n+ 1,2mq + 3,2ma + 2]: n,mq1,mo € Z},

where writing K = [2n+1, 2m +3, 2msy+2] means that K(vg) = 2n+1, K(v1) = 2mq+3, K(v2) =
2mg + 2. We compute the differentials:

0K, Ey] =0
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OIK, Ey] = UwolEoE2l @ [k By] + Ubwl B2l o [K + 208, By).
By direct computations,
9(K, E2) = min{0,n,m1, ma,m; +n+ 1,ms +n+ 1,m; + ma,m; +mg +n + 2}
Ay (K, E3) = min{0, mq, ma, my + ma}
B,, (K, Ey) = min{n,m; +n+ 1,ma +n+1,m; + ma +n + 2}.
Hence

(K, Eq1] + U"[K + 2v§, F4] ifn>0,m; >0,my >0,

(K, Eq] + UMK + 20}, B4 if n>0,m; <0,my>0o0rm >0,my <0,
K, E1] + U2 (K + 203, By if n>0,m; <0,me <0,

O0IK, Ey) = S UK, Eq] + [K + 20§, E1] if n <0,m; >0,mg >0,

U= YK, Bl + [K + 2v8, E1]  if n < 0,m1 < 0,mz >0 or my > 0,my <0,
Ufnfz[K, Ei)+ [K + 20§, E1] ifn<—1,m <0,mg <0.

(K, E1] + UK + 2v§, E1] ifn=-1,m; <0,my <0.

(4.12)
Therefore, the link lattice homology HFL(I', V) is concentrated on the elements [K, E1] where
K =[-3,2m1+3,2mo+2] for m; < 0,ms < 0and K = [—1,2m; + 3, 2ms + 2] otherwise. We now
consider the module structure, that is the actions of %, %, ¥1, %2 on these elements. By (4.4),

U, - K, By = U9E -2 B0 =g(KEDH | 9% ]
¥ [K, By] = UIE+20EB)=g(C B (|0 9% By
Suppose K = [2n + 1,2m; + 3,2mqy + 2|. Then
9(K, E1) = min{0,m1, ma, m; + ma},
g(K £2u7, Fy) = min{0,my £ 1,ma,m; £ 1+ ma}.
Similarly,
g(K £+ 2u5, Er) = min{0, m1,mg £ 1,mq +mg £ 1}.

Hence, for ¢ = 1 or 2, we have

WK By] = UIK —2ur, E1]  if m; >0
RPNV K 2w By ifms <0
e (K +2uf, By if m; > 0.

It follows that when m; = mg = 0 and m; = mg = —1 the corresponding generators [K, 1] are in
the image neither of %; nor of ¥;. In particular, the lattice link homology of T'(2,2) is generated
over F[%, U, V1, V2] by the elements

X = [K17El] and Y := [K27E1]7

where K7 :=[-1,3,2] and K, :=[-3,1,0].
Using Definition 4.7, one easily computes

A(X)=(0,0) and A(Y)=(-1,-1).
Additionally, since x(X¢g) = 2 and 0(X¢) = —1, we compute using Equation (4.7) that

1
gl (X) = Z

1
gr,(Y)=—4+ Z(KB(G —1)=—-4+2=-2.

(K[, ~30(Xa) ~ 21(Xe)) = (K[}, —1) =0
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Finally, if ¢ # j, we have the following equalities as elements of homology:
62/7; - X = U[Kl —2/1;,E1} = [Kl +27}6 —QMI,El] = 7/J -Y.

Comparing the gradings we see that these two relations (corresponding to (i,75) = (1,2),(2,1))
generate all relations between the homology classes of X and Y. In Theorem 7.3, we compute the
link Floer homology of T'(n,n). Readers can verify that the above description coincides with the
link Floer homology of T'(2,2) (see Figure 1.1 for the link Floer complex).

Using these techniques, it is also possible to compute the H-function of T'(2,2). By using (4.7),
one can compute gr, ([Km, m,, E1]) for mi,me € Z and Ky m, = [—3,2m1 + 3,2mg + 2] if
my, Mg < 0, Ky me = [—1,2mq + 3,2mg + 2] otherwise. The function

1
(a,b) — 3 gty ([Ka—1/2,0—1/2: Er])

agrees with the H-function for the Hopf link; see Figure 6.1.

5. THE EQUIVALENCE WITH LINK FLOER HOMOLOGY

In this section, we prove that link lattice homology and link Floer homology are isomorphic.
The argument follows from similar logic to the case of 3-manifolds [0SS14b] [Zem21D).

Theorem 5.1. Suppose that I' is an arrow-decorated plumbing tree with vertex set Vg U V;, such
that Ye is a rational homology 3-sphere. For each s € Spin®(Yq), there is an absolutely (gr,,, A)-
graded isomorphism of A.o-modules over Ry:

CFL(F, VT’ 5) =~ CFE(Y(;, LT75>'

Here, both CFL and CFL are equipped with the natural Ao,-module structures which have only my
and mo non-trivial.

The proof of Theorem 5.1 is completed in Subsection 5.3. We now provide a sketch of the proof.
We will use a relative version of the Manolescu—Ozsvath link surgery formula [MO10], which
computes link Floer homology as a subcube of the full link surgery hypercube. This is stated in
Theorem 5.2. From here, we follow the approach of [Zem21b] and view L as a connected sum of
Hopf links. Using a tensor product formula from [Zem21] for the link surgery complex, one obtains
a combinatorial model for the link surgery complex of Lr.

Following the approach of Ozsvéth, Stipsicz and Szab6 [0SS14b], one may identify the lattice
complex with a simplified version of the link surgery hypercube obtained by taking the homology
of the link surgery complex at each vertex of the cube {0,1}¢, and using only the length 1 maps
of the link surgery hypercube. In [Zem21b], the third author shows directly using the connected
sum formula for the link surgery formula that the link surgery complex for Lr is chain homotopy
equivalent to this simplified model of the link surgery complex. When b (Yg,Q) = 0, we show
that this homotopy equivalence induces a homotopy equivalence between the link lattice complex
and the corresponding quotient complex of the link surgery complex of Lpr. We show that the
morphisms in this homotopy equivalence are well-behaved with respect to the actions of %; and
¥;, and give a homotopy equivalence of A,.-modules.

5.1. The link surgery complex and sublinks. As a first step, we describe a refinement of the
Manolescu and Ozsvéth link surgery formula. If L C S2 is a link equipped with integral framing
A, then Manolescu and Ozsvéth construct a chain complex C (L) over F[[U]] (defined in terms of
the link Floer complex CFL(S%, L), equipped with additional data) and prove that

H.(Ca(L)) = HF~ (S}(L)).

There is a refinement of this result which can be used to compute link Floer homology, as follows.
Suppose that M = J UL C S3 is a partitioned link with [M| = n and |L| = ¢. Equip J with
a framing A. We may extend A arbitrarily to a framing A’ on all of M to obtain a link surgery
complex Cps(M) whose homology is HF ~(S%,(M)).
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The link surgery complex Ca/ (M) is a hypercube of chain complexes, which means that it admits
a natural filtration by the integral points of the cube {0,1}", where n = |M|. While more details
are given in [MO10, Section 5], we give some necessary background and introduce the notation. For
any ¢ € {0,1}", we consider the multiplicatively closed subset S. C R,, generated by ¥; such that
(i) = 1. The complex C. is defined as the algebraic completion of the localization S- 1 - CFL(M).
We remark that the original definition in [MO10] is seemingly different, though the equivalence
with the above description follows from [Zem21, Lemma 5.7].

If e,¢/ € {0,1}", we write ¢ < &' if g; < &} for all i. We write e < ¢’ if ¢ < & and € # €.
If e,/ € {0,1}" and ¢ < €', Manolescu and Ozsvath construct a map D, . : C. — C.; see
[MO10, Section 5]. The chain complex Cps (M) is the direct sum of complexes C. and the differential
is the sum of the internal differentials in C. and of the maps D, ...

We now describe a relative complex Ca(J, L). Note that each axis direction in {0,1}" corre-
sponds to a component of M. Hence, we may consider the quotient complex Cx(J, L) obtained by
quotienting the subcomplex of Cy/ (M) consisting of those C. such that (i) = 1 for at least one
index ¢ corresponding to L. Examining Manolescu and Ozsvath’s construction, it is evident that
Ca(J, L) is independent of the framings of the L components.

Furthermore, the module Ca(J, L) has a natural action of the ring Ry, corresponding to the
variables for L. The underlying spaces C. are preserved by this Ry-module structure. It follows
from [Zem21, Lemma 5.9] that the hypercube maps of Cx(.J, L) commute with the action of Ry,
i.e. the action of the variables from L. Note that in general the differential on Ca(J, L) will not
commute with the actions of the variables from J. The next result is important for our purposes:

Theorem 5.2. Suppose that M C S® is a link which is partitioned into two sublinks M = JU L.
Let A be an integral framing on J and write £ = |L|. Then there is a homotopy equivalence of
chain complexes over Ry:

CFL(S3(J), L) ~Cp(J, L).
Furthermore, this isomorphism respects Spin® structures under an isomorphism
Spin®(S3(J)) = H(M)/(Span(ui, - .., u7) + Ha(Wa(J))),
where Wy () is the cobordism from S3 to the surgery on the link J.

The above result is a folklore result. We believe the techniques of [MO10] can be adapted in a
straightforward manner to prove this theorem. Nonetheless, experts in the Heegaard Floer surgery
formulas may recognize that although conceptually simple, a rigorous proof requires a substantial
amount of bookkeeping because of the role of algebraic truncations in the surgery formula. A
conceptually simple proof, avoiding truncations, can be found in [Zem?23, Corollary 9.2].

5.2. Link lattice homology and the link surgery formula. We now describe how to recast
the link lattice complex in terms of the link surgery complex. This is an adaptation of [OSS14b,
Proposition 4.4] to our present context of links.

Construct an |Lg|-dimensional hypercube of chain complexes as follows: For ¢ € {0,1}/%¢l,
define Z, := H,(C.), where C. is the corresponding submodule of CA(Lg, L¢). If € < €', construct
a hypercube map 0, .- : Z. — Z. via the formula:

(Deer)s it e’ —elpr =1
55,5’ = .
0 otherwise.

Write 2 = (Z., (56’5/)56{0,1}@(;\. Clearly Z is a hypercube of chain complexes over R,.
Compare the following to [0SS14b, Proposition 4.4]:

Proposition 5.3. Let I be an arrow-decorated plumbing tree. The hypercube Z = (Ze, 0ce1) c(o,1}106|
is isomorphic to the link lattice complex CFL(T, V4).
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Before proving Proposition 5.3, we prove a technical lemma which is helpful for relating the
R-actions on CFL(T', V4) and Z. We note that the following lemma is essentially implicit in the
definition of lattice homology and also Ozsvath, Stipsicz, and Szabd’s construction of the spectral
sequence (cf. [OSS14b, Proposition 4.4]), though we have been unable to find an exact reference
which is suitable for our purposes. If L C S% and s € H(L), write

d(L,s) = max {gr,(z) : « € HA (L,s),z is U-nontorsion} .

Here, gr,, denotes the internal Maslov grading from link Floer homology, and 24~ (L,s) C CFL(S?, L)
is a subcomplex corresponding to the Alexander grading s.

Remark 5.4. For an oriented link L C S® in the 3-sphere, Gorsky and Némethi [GN15] defined
a link invariant, the so-called H-function, by declaring —2H,(s) = d(L,s). The H-function is a
generalization of the hj-invariant considered by Rasmussen [Ras03, Section 7]. For algebraic links,
it can be related to the semigroup counting function [GN15, Section 3.5]. We later generalized the
H-function for links in rational homology spheres, see Section 6.2.

Lemma 5.5. Let G be a forest of plumbing trees. If E C Vg, write Ly C S3 for the sublink of Lg
containing exactly the components corresponding to vertices of E. Let ¢g: Char(Xg) — H(Lg)

be the composition of the restriction map from Char(X¢g) to Char(Xg) and the isomorphism from
Char(Xg) to H(Lg) in Equation (4.10). Then

29(K,E)=d(Lg,¢pp(K)).

Proof. Note that g(K, FE) (computed in X¢) is the same as g(K|x,, F) (computed in Xg). Hence,
we may assume without loss of generality that £ = V.

Next, we observe that the framings on the components of L play no role in the statement.
Indeed, if K € Char(X¢) and @ (K) = (s1,--.,5,), then Equation (4.10) implies that

29(K,Va) = IHClgé (Z 2s; —vg-1 - UI) (5.1)

where vg_ is the sum of v; for i € Vg \ I and vy is similar. Our proof will be by induction on the
number of vertices. If s € H(Lg), we will write 2g(Lg,s) for the quantity on the right-hand side
of Equation (5.1). Similarly, if I C Vi we write

= 2251’_“(}’—1 - Ur. (52)
il
We claim that 2¢g(L¢g,s) = d(Lg, s).

We begin with the case that Lg is an n-component unlink U,. In this case, the homology
HFL(Uy) = @senne)d™ (Un,s) is well known to be F[%1, 71, ..., U, Wl /(U — U V5,i0,) €
{1,...n}), with the class of 1 having (gr,,, gr,)-bigrading (0,0). The plumbing diagram of the
unlink U,, consists of n disjoint arrow vertices. After we assign the weight —1 to each ar-
row vertex, it is straightforward to see that the link lattice homology is also isomorphic to
F(20, %, .., U, Y0/ (U — Ui V5,4, € {1,...n}) as an F[U]-module with the generator as
[K, E] where K = [2s1 +1,---,2s, + 1] with s; € Z and E consists of all arrow vertices equipped
with the same gradings (gr,,,er,) = (0,0). That is,

d(U,,s) =2¢g(U Z 2min{0, s;}

We now assume that claim is true for some forest G of plumbing trees. We will prove the
claim also holds for Lg#H, where H is the positive Hopf link and the connected sum operation
is between one knot component in Lg and one knot component of H. We recall that the complex



32 MACIEJ BORODZIK, BEIBEI LIU, AND IAN ZEMKE

of the positive Hopf link takes the following form:

a — Uns+1—~> b

~ T
CFL(H) = ) o (5.3)

1 \

C —Voy1—d

The Alexander bigrading of a, b, c,d are (%, —%), (%, %), (—%, —%) and (—%, %), respectively. The
(gr,,, gr,)-bigradings are (—1,—1), (0,—-2), (—2,0) and (—1, —1), respectively.

We assume that L,, C H is the component where the connected sum is taken, and L,+1 C H
for the remaining component.

Topologically, the link Lg is obtained by taking an unlink, and iteratively taking the connected
sum with Hopf links. We recall that that complex for an ¢-component unlink is obtained by

tensoring the ¢ — 1 Koszul complexes

Ci= x U +U Vs
for i =2,...,£. The ¢ = 2 case of this computation is verified using a genus 0 Heegaard diagram
for a 2-component unlink, and the general case is proven by iteratively using the connected sum
formula [0S04, Section 7]. In Equation (5.3), we observe that the Hopf link also has a similar
2-step filtration.

In particular, since a general Lg is obtained by tensoring an unlink with a collection of Hopf
links, we may write CFL(Lg) as

Fs—>Fy 1 — - — F.

Call the index i for F; the Hopf grading, where each F; is a free R,-module. By [OSS14b,
Lemma 4.2] (cf. [0S03, Lemma 2.6]), Lg is an L-space link, so it follows that HFL(Lg) is sup-
ported in just one Hopf grading. We observe that the homology must be supported in Fp, since
the map F; — Fp is not surjective. To see that the map is not surjective, define a map from Fj to
F which sends all %; and ¥; to 1 and sends each basis element of Fy to 1. Then the composition
Fy — Fy — T is zero, whereas the map Fy — F is non-zero.

Applying the above argument to CFL(Lg#H), we see that any homogeneously graded cycle
in CFL(H) ®wa, v, CFL(Lg) which represents an F[U]-non-torsion element of homology may be
written as a sum of an odd number of terms of the form «-b® z or - ¢ ® z, where z € CFL(L¢)
is an F[U]-non-torsion cycle, and «, 8 € F|%n+1, Yn+1)-

Consider s = (s1,...,8,+1) € H(Lg#H), where s,41 € % + Z corresponds to the component
L, 41 C H. We break the proof into two cases: s,4+1 > 0, and 5,41 < 0.

We consider first the case that s,+1 > 0. Recall that Lg#H is an L-space link [OSS14b,
Lemma 4.2]. In this case, H. A~ (Lg#H,s) is generated over F[U] by the elements ”1/715;1“1_1/2 ‘bRz

and “I/;_HIH/Q - ¢ ® z, where z is F[U]-non-torsion. Write s’ = (s1,...,,). We obtain from the
above argument that

d(La#H,s) =max{gr, (b) + d(Lc,s' — 1e,),gr,(c) + d(Lg,s + ie,)}
=max{d(Lg,s' — 3e,), —2+d(Lg,s' + Se,)} (5.4)
=d(L¢,s' — %en).
Here the last equality follows from the facts that d(L¢,s' — 3e,) = —2H,(s'— e,,), and Hy (s —

1e,) < Hp,(s'+ ie,) + 1 [BG18, Proposition 3.4]. Let I’ C Vi; be any subset. We may view I’
also as subset of Vg U {v,41}. We compute easily that

2f(sa Il) = 2f(sl - %enajl)a and

2f(s’ — %en,l’) + 2841 +1 ifv, el

2f(s, I' U {v, =
f(S {U +1}) {Qf(s’ _ %en,l') +25n+1 -1 if v, §_ZI/,
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Since s,4+1 > 0, we observe from these equations that

f(s, 1) = f(s' — Sen, I') < f(s, 1" U{vni1}).
for all I' C Vi and s € H(Lg). It follows easily that

g(Lg#H,s) = g(La,s' — 3en).

By induction 2g(L¢, s’ — %en) =d(Lg,s’ — %en), so from Equation (5.4) we obtain 2¢g(Lg#H,s) =
d(Lg+#H,s) when s,11 > 0.

We now consider the case s,+1 < 0. In this case, H, 2~ (Lg#H,s) is generated by elements of
the form 02/,:{"““/2 ‘b ®z and 02/”;3{1“_1/2 -c®z. A similar argument to s,4+1 > 0 case yields
that

d(La#H,s) = d(s' + en) + 2541 — 1. (5.5)
One computes directly that

2f(s' + 2en, I') =2 ifv, €T

d 5.6
2(s + Le, 1) vl >0

2f(S,I/) = {

2f (s, I' U{vps1}) = 2f (8" + en, I') + 2541 — 1,

for all I’ C V. Since s,11 < 0, we have
2f (s, I' U{vpi1}) = 2f(s" + 3en, I') + 251 — 1 < 2f (s, I'),

where the last inequality comes from (5.6), so 2g9(La#H,s) = 2g(La,s’ + 3e5) + 25,41 — 1.
Combined with Equation (5.5), we conclude that 2g(Lg#H,s) = d(Lg#H,s), completing the
proof of Lemma 5.5. ]

Proof of Proposition 5.3. Note that [0SS14b, Proposition 4.4] proves the identification on the level
of chain complexes of F[[U]]-modules. It suffices to show that the decomposition respects the refined
actions of the ring R,. We recall the basics of their isomorphism. The lattice H(Lr) represents
the set of Alexander gradings supported by the link Floer complex CFL(Ly). If L C Lr, and
e € {0,1}™ is the indicator function for the components of L, then we may write A_ (Lr,s) for the
subcomplex of S71 - CFL(Lr) in Alexander grading s. According to [0SS14b, Lemma 4.2], there
is an isomorphism

H. (A (Lr,s)) = F[[U]].

Additionally, there is an isomorphism H(Lr) — Spin®(Xr) (stated in Equation (4.10)). This
gives an isomorphism between Z and CFL(T, V;) as F[[U]]-modules. The Maslov grading of the
generator of H,(AZ (Lr,s)) is d(Lr,s) and the maps D, for |[¢ — €| = 1 are determined by the
Maslov grading of the generators of the domain and target. Following Lemma 5.5 and the same
argument in [OSS14b, Proposition 4.4], the differentials also coincide. It remains to show that the
isomorphism respects the R,-module structure.

To disambiguate the actions, let us write F[[2, %, - . ., %, ¥4]] for the action we have described
on CFLL(T, V4), and let us write F[[U1, V1, ...,Us, Ve]] for the action induced by the identification
CFL(T,V;) = Z. As a first step, note that by definition U; changes the Alexander grading s €
H(Lr) by —e; € Z™ (where e; is the unit vector with i-th component 1, and other components
0). It follows from Lemma 5.5, that U; has the same gr,-grading as %;, and similarly V; has the
same gr,-gradings as ¥;. Clearly, if [K, E] is a generator, then %; - [K, E] = U¢[K — 2u}, F] and
Ui - [K,E] = U [K — 2u*, E] for some ¢, ¢ € {0,1}. Since U; and % have the same gr, -grading
as endomorphisms, we must have that € = ¢, so that %; and U; have the same action. The same
argument implies ¥; = V;. O
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5.3. Proof of Theorem 5.1. In this subsection we give the proof of Theorem 5.1, though we
delay the discussion about absolute gradings until Subsection 5.4. The main steps of the proof
follow from [Zem21b, Section 5.2]. We provide a summary and highlight the necessary changes for
our present setting.

By Theorem 5.2, we have a homotopy equivalence of chain complexes over R;:

C.’FE(YG7 LT) ~ CA(Lg, LT)'

In particular, the above chain homotopy equivalence may be viewed as a homotopy equivalence
of As-modules over R, where each module has m; = 0 for j > 2. Above, we also constructed
a hypercube Z = (Z,6. ) of Re-modules by taking the homology of Ca(L¢g, Lt) at each cube
point, and using only the length 1 maps from Ca(L¢, Lt). By Proposition 5.3, we have a chain
isomorphism

Z ~ CFL(T, V;).
Hence, it suffices to construct an A..-homotopy equivalence

Z ZCA(L(;',LT). (57)

This homotopy equivalence follows from the same logic as [Zem21b, Section 6.2], which we sum-
marize for the benefit of the reader.

We will write C = (C., P /) for Ca(Lg, Ly). The underlying complex C. at each vertex of
Ca(Lg, Lt) is obtained from CFL(Lr) by localizing at the variables ¥#; such that (i) = 1, and
then taking an appropriate completion. The complex CFL(Lr) is a tensor product of Hopf link
complexes. The Hopf link has a 2-step filtration (see Equation (5.3)), and hence CFL(Lr) has a
description as

CFL(S®, L U Ly) & ( F —— Ft —— oo —— FO. ) (5.8)

where each F' is a free R,,-module, n = |V| and m is the number of edges in I' (i.e. Hopf link
components). Each C. has a similar filtration, which we denote by F¢. We call the superscript i
in ¢ the Hopf grading.

Since Lr is an L-space link, each Z is a direct product of copies of F[[U]]. Following [Zem21b,
Proposition 6.2], there is a natural way to construct a homotopy equivalence between each C. and
Z., for each e. This is because the homology of C. is supported in F? so the projection map of
FO onto Z. gives a quasi-isomorphism. Since in each Alexander grading (i.e. each s € H(Lr))

g
the homology of Z. is F[[U]] (in particular, a projective F[[U]] module), it is straightforward to
construct a splitting over F[[U]] of the sequence in Equation (5.8) in each Alexander grading. This
gives us maps
we:Co = Zey ie: Ze —C. and h.:C.—C,.,
which satisfy
e 0de =1d, dcome =id+[0,he], heoh. =0, mcoh:.=0, hooi.=0.

Remark 5.6. Note that these maps are usually only F[[U]]-equivariant; but not necessarily R-
equivariant. The only exception is 7., because it is the canonical projection of F? to F0/im F' =
H.(Z.).

The homological perturbation lemma for hypercubes (see [HHSZ22, Lemma 2.10]) induces hy-
percube structure maps d. . on €, {0,1}n Z., which is homotopy equivalent to the hypercube
Ca(Lg, Ly). Let us write W for the hypercube (Z.,d. /). The structure maps d. . are given by
the concrete formula

deer i= § Te, ©Pe, 1, Ohe, ;0 0he, 0Pg o, Oy (5.9)

e=eg1< - <enp=¢’
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There are also homotopy equivalences II: C - W, I: W — C and H: C — C, given by similar
formulas, which satisfy

Mol=id, Toll=id40(H), HoH =0, IIoH =0, and HolI=0.
We will also need to understand the map II, which is given by

I, . = Z e, OPe, 1 e, 0he, ;0 0D, o, 0h,. (5.10)
e=e1< - <egp=¢’

A natural strategy is to show that W = Z. Note that the underlying groups are identical, so it
suffices to understand the structure maps. We observe that J. . = d. - whenever |¢ —&'|1 = 1.
In general, it is not the case that de s = d.» when |e — &'|p1 > 1. Instead the main argument
of [Zem21b] is to show that the analog of Cx(Lg, L+) is homotopy equivalent to a hypercube
which has the same underlying internal chain complexes as Cy(L¢, L+) and for which the induced
hypercube structure on the analog of W coincides with that of Z. The argument in our present
setting is essentially identical to the one in [Zem21b, Section 6.2]. In fact, we may take the modified
hypercube structure on Cx (L, Lt) to be the restriction of the one constructed in [Zem21b)], viewing
Ca(Lg, Lt) as a subcube of the full link surgery hypercube for Lr. We write C) (Lg, L+) for the
resulting hypercube. We will also write

(s (CE, (I);:‘,E’)

for C\ (Lg, L), and W' for the hypercube constructed via homological perturbation. There are
maps

m:c —-w, I'-w —¢ and H:C —(
constructed similarly to the maps II, T and H, using formulas as in (5.10).

Concretely, Ca(Lg, L¢) is constructed by tensoring the link surgery complex of Hopf links using
the tensor product formula from [Zem21b, Equation 3.2]. The complex C} (L, L+) is constructed
by tensoring the link surgery complexes of Hopf links together using an algebraically simplified
model of the tensor product, where several terms have been deleted. (This simplified model appears
in [Zem21b, Theorem 3.4]). The key property of the hypercube maps appearing in Cj(Lg, L¢)
are the maps ®, _, are non-increasing in the Hopf grading from (5.8) only when [¢ —¢&'[z1 < 1.
Furthermore, when |e — &’|1 = 1, the map <I>’€’6, preserves the Hopf grading. Since h. strictly
increases the Hopf grading and 7. is non-vanishing only on the lowest Hopf grading, the composition
in (5.9) will only be non-trivial when |e — &’|p1 = 1. Hence

W = Z.
In particular, composing these homotopy equivalences, we obtain a homotopy equivalence of
chain complexes
Cfﬁ(YG,LT) ~ Z. (511)
It remains to show that the homotopy equivalence in (5.11) may be extended to a homotopy
equivalence of A.,-modules over Ry. There are two subclaims:

(R-1) The homotopy equivalence between Cy(Lg, L+) and Cj(Lg, L) may be taken to be Ry-
equivariant.

(R-2) The homotopy equivalence Cj (Lg, Ly) ~ CFL(T', V) (from the homological perturbation
lemma of hypercubes) extends to a homotopy equivalence of A..-modules over R.

We address (R-1) first. In [Zem21b, Corollary 4.8], it is shown that the simplified connected sum
formula yielding C) (Lg, L4) is valid as long as in forming Lr by an iterated connected sum, we
never take the connected sum of two knot components which are both homologically essential
after we surger on the other components of Lg. In the case that b1(Yg) = 0, we always avoid
this configuration (cf. [Zem21b, Lemma 6.5]). The homotopy equivalence between Ca(Lg, Lt)
and Cj(Lg,Lq) is concrete and obtained by relating the connected sum formula in [Zem21b,
Equations (3.2)] and the simplified connected sum formula in [Zem21b, Theorem 3.4]. As described
in [Zem21b, Corollary 4.8] relating these two models amounts to constructing a null-homotopy of
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an algebraically defined homology action on the link surgery formula. It is observed [Zem21b,
Remark 4.3] that this null-homotopy may be taken to be R,-equivariant.

We now address (R-2). Proposition 5.3 shows that Z is chain isomorphic as an R,-module to
CFL(T, V4). It is sufficient to show that the homotopy equivalence C’ ~ Z of chain complexes is in
fact a homotopy equivalence of A.,-modules over R;. To see this, it is in fact sufficient to show that
the map II': C" — Z defined as in (5.10), commutes with the R, action. This is sufficient because
in the category of A..-modules, quasi-isomorphisms are always invertible as A,.-morphisms. To
establish the R -equivariance, we observe that the projection maps 7. are themselves equivariant
since they are merely quotient maps; compare Remark 5.6. Next, we examine the expression for
1. ./, as in (5.10). By considering the Hopf grading similarly to how we did with d. . above, we
observe that the maps II_ _, are non-trivial only when ¢ = ¢’. In this case, the only non-vanishing
contribution is from 7., so Ry-equivariance is established, and the proof is complete. O

Remark 5.7. By using the homological perturbation lemma, stated in Lemma 2.3, a concrete
homotopy equivalence of A.-modules between C) (Lg, L1+) and Z may be constructed. Indeed the
hypercube maps IT’, I’ and H’, constructed via the homological perturbation lemma for hypercubes,
also satisfy the assumptions of the homological perturbation lemma for A,,-modules. These maps
then induce an As,-module structure on Z over the ring R,, which is homotopy equivalent to
CFL(Yq, Ly). By considering the Hopf grading, similarly to the above, we obtain only a non-trivial
my and mg on Z. We observe also that the morphisms II’;, H' and I’ extend to A.,-morphisms
I, H} and I}. Hopf grading considerations show that II’; = 0 unless j = 1, in which case the only
contribution is from .. We observe that I J’ may be non-trivial for 1 < j < |Lrp|.

5.4. Absolute gradings. In this section, we prove the subclaim of Theorem 5.1 concerning the
absolute Maslov and Alexander gradings. Compare [0OSS14b, Proposition 4.8].

We begin by stating formulas for the absolute gradings on the link surgery complex, and its
subcube refinement for sublinks. Although likely known to experts, these formulas have not ap-
peared in the literature except in special cases. For example, in the case of knots, the result is due
to Ozsvath and Szabd [0S04, Section 4]. Detailed proofs of the absolute grading formula can be
found in [Zem23, Section 10].

If L C S? is a link with framing A, let W (L) denote the standard 2-handle cobordism from S3
to S3(L). If e € {0,1}", where n = |L|, and s € H(L), write C-(s) C Ca(L) for the subspace of C.
which lies in internal Alexander grading s. Finally, if s € H(L), write 35 € Spin®(Wx (L)) for the
Spin® structure which satisfies

(c1(s), Xi) =X -%i _

5 =

for all i € {1,...,n}. In the above, ¥; denotes the core of the 2-handle attached along component
K; C L, and ¥ denotes the sum of all ¥;.

—8; (5.12)

Lemma 5.8 ([Zem23, Theorem 10.2]). Suppose that L C S® is a link with framing A, and that
b1(S3(L)) = 0. The homotopy equivalence CF~(S3 (L)) ~ Ca(L) is absolutely graded if we equip
Ce(s) C Ca(L) with the Maslov grading

c1(3s)? — 2x(Wa (L)) — 30(Wa(L))
4

gr:=gr, + + L] = Jel,

where gr,, is the Maslov grading from CFL(L).

In [OS08b], Ozsvéth and Szabd prove this formula in the context of knot surgery formula. Their
main tool is computing the grading change of a surgery cobordism map, which they denote by
fi. A similar strategy to Ozsvéath and Szabd’s proof of the grading formula is likely possible in
the context of the link surgery formula. Nonetheless, algebraic truncations make writing a simple
proof challenging.

There is also a relative version of the statement. Suppose that we have a partitioned link
JUL C 83 and that J is equipped with an integral framing A. If K; is a link component of J L L,
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there is a class ¥; € Ho(Wa(J),0Wa(J)). If K; is in J, then ¥; is the core of the corresponding 2-
handle. If K; is in L, then ¥; is an annulus, with boundary on the images of K; in S® and S3 (.J).
We write ¥ for the sum of the classes for all components of J U L. If the component K; C L
becomes rationally null-homologous in S% (.J), we write 3; for the class in Ha(Wa(.J); Q) obtained
by capping with a rational Seifert surface. Finally, if s € H(L), we write 37 € Spin®(Wy(J)) for
the Spin® structure which satisfies Equation (5.12) for all link components K; in J.

Lemma 5.9 ([Zem23, Theorem 10.8]). Suppose that JU L C S3 is a partitioned link and A is an
integral framing on J such that by(Sx(J)) = 0. Then the isomorphism CFL(S3(J), L) =~ Ca(J, L)
from Theorem 5.2 is absolutely gr,,-graded if we equip C.(s) C Ca(J, L) with the Maslov grading

G —gr, 10 (a¢) —2x<WAiJ)> —30(Wa(J))

where gr,, is the internal gr,,-grading on CFL(J U L). The isomorphism is absolutely graded with
respect to the Alevander grading A = (Ay, ..., Ajr|) if we define A; on C.(s) via the formula

+ J] = lel,

(1 (37).%) - 23
; .

Proposition 5.10. Ifb;(Yg) = 0, the isomorphism from Theorem 5.1 respects the absolute Maslov
and Alexander gradings.

A, =s; +

Proof. As a first step, we consider the absolute case when there are no arrow vertices. We recall
that we already constructed an isomorphism ®¢: Char(Xq) — H(L) in Equation (4.10). In the
present case, it is straightforward to verify from the definitions that ¢; (35) = —®5'(s). If s € H(Lg)
and s = ®¢(K), then this is equivalent to

1(3s) = — K. (5.13)

Next, we recall that in Lemma 5.5, we identified the quantity ¢([K, F]) with the gr,-grading of
the generator of the tower in the s-graded subspace of the homology of CFL(L¢), localized at the
¥; variables for vertices in E. Noting that (—K)? = K?, we obtain Equation (4.6).

We now consider the case that there are arrow vertices. Suppose that I' is a tree with Vp =
Ve U V4. Lemma 5.9 computes the Maslov grading shift. If X' € Char(Xr) and s = ®p(K), then
we have similarly to Equation (5.13) that

e (39) = —K|xo- (5.14)

In particular, the statement from Lemma 5.5 implies that the Maslov grading on CFL(S3 (Lg), Lt)
coincides with the one defined in Equation (4.7).

We now consider the Alexander grading. We note that given s € H(Lr), there are two Spin®
structures of interest: 326 € Spin®(X¢) and 35T € Spin®(Xr). It is straightforward to verify that
5£G = 3er |XG :

If s = (s1,...,8|Ly)) € H(Lr), and K; € Ly, we view Ca(Lg, Ly, s) as having internal Alexander
grading A; equal to s;. Lemma 5.9 implies that the isomorphism CFL(S3(Lg), L) ~ Ca(Lg, Lt)
is Alexander graded if we shift the internal Alexander grading s; (for a component K; € Ly) of
Ca(Lg, Lt,s) by ({e1(349), 2i) — X - ) /2.

By the definition of ®r, if ®p(K) = s, then

(K,2)+%-%;
§i= o,
2
where the pairings occur in Xr. In particular, the generator [K, E] in the lattice complex will be
given i*? Alexander grading

(c1(359), %) = 5 - %,
5 .

8; +
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By Equation (5.14), we may write the above as
K(vi —0:) + ey v (0 — 1)
5 .

We note that for v € Vi, the pairing v - (v; — ©;) will vanish, and hence we can replace the sum
in the above equation with a sum over only v € V4. This recovers the formula for the Alexander
grading stated in Section 4.6, so the proof is complete. O

6. PLUMBED L-SPACE LINKS

In this section, we compute the link Floer complexes of plumbed L-space links. In Section 6.1, we
prove that their complexes are formal (i.e. CFL(Yg, Lq) is homotopy equivalent as an A..-module
to (HFL(Yq, Ly),m;), where m; = 0 unless j = 2). Consequently, the chain complexes are also
homotopy equivalent to free resolutions of their homology. In Section 6.2 we recall work of Gorsky
and Némethi [GN15] which allows one to compute the module HFL(Yq, L+) when Yo = S? and
L4 is an L-space link. We extend their description to the case where Y is a rational homology
L-space. Finally, in Section 6.3, we prove that our model of link lattice homology recovers the
version of Gorsky and Némethi [GN15] in the case of plumbed L-space links.

6.1. Plumbed L-space links and free resolutions. Suppose I is an arrow-decorated plumbing
tree. Our goal is to show that the chain complex CFL(Yg, Lt) is a free resolution of its homol-
ogy, in particular, that the chain complex is determined by the homology up to chain homotopy
equivalence.

In this section, we consider plumbings where L; is an L-space link. We observe that this implies
that Yg is a rational homology 3-sphere, and furthermore is itself an L-space. In particular, by
Proposition 3.18, the results in this subsection hold for links of embedded analytic singularities,
as long as the underlying surface singularity is rational.

Theorem 6.1. Suppose that I' is an arrow-decorated plumbing tree, with Vi = Vg U V4. Let
Ly C Yg be the associated link and assume that Yg is a rational homology 3-sphere. If Ly is an
L-space link, then CFL(Yq, Ly) is o free resolution over Ry of HFL(Yq, Ly).

Proof. To simplify the notation, we assume that Yy is an integer homology 3-sphere. For rational
homology 3-spheres, one may apply the same argument to each Spin® structure.

Next, we observe that it is sufficient to show that CFL(Yg, L) is homotopy equivalent to a
free resolution of HFL(Yq,L+). This may be seen as follows: The Rep-module HFL(Yq, Ly) is
finitely generated and hence admits a finitely generated free resolution over R, by Hilbert’s syzygy
theorem [Hil90]. See e.g. [Peell, Theorem 15.2] for a modern exposition. Furthermore, it is
straightforward to see that if C and C’ are two free, finitely generated chain complexes over R,
which are both (gr,,, gr,)-graded, then C' and C’ are homotopy equivalent over R, if and only if
C®r,R¢ and C' ®%, R are homotopy equivalent. Moreover, the completion of a free resolution of
HFL(Ye, Ly) will be a free resolution of HFL(Yq, Lt), by similar reasoning. Hence, CFL(Yq, Lt)
will be homotopy equivalent to a free resolution of HFL(Yq,L4) if and only if CFL(Yq, Ly) is
homotopy equivalent to a free resolution of HFL(Yq, Ly).

Since Ly C Y¢ is an L-space link, HFL(Yq, L) is a torsion-free F[U]-module. By Theorem 5.1,
CFL(Yg, Ly) is homotopy equivalent to CFL(T', V4) as an A-module over R,.

The link lattice complex has a cube grading:

CFL(T, V;) = ( Z, "33 7, 7 Iy 700

where Z, is spanned by UP[K, E] where |E| = ¢, p > 0. Furthermore, each Z; is itself an R,-
module. (In particular, the action of Ry preserves the cube grading).

We claim that the homology of CFL(T',V;) is supported in a single Z,. We observe that if
there are two Z; which support the homology, then HFL(Ys, Ly) will split as a direct sum of
R-modules. We claim that this is impossible.
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To see this, we argue by considering the localization at the multiplicatively closed subset S C Ry
spanned by monomials. Since Ly C Y is an L-space link, it follows that s-z # 0 for all s € S
and non-zero x € HFL (Y, Ly). Therefore, the localization map is injective, so it suffices to show
that STYHFL(Yg, L4) does not split as the direct sum of two R-modules.

We claim that S™!CFL(T, V4) is isomorphic to HFL™(S3,Uy), which is spanned by a single
generator under the Ry-action. To see this, we observe that localization is an exact functor, so
it suffices to consider the localization of the chain complex. We pick an arbitrary (s1,...,8,) €
H(Y, L). We observe that after localizing, we may perform a change of basis and replace each basis
element x with a basis element

7/1*A1(x)+81 o 7/[7Ag(x)+5gx.

(We use s so that the powers of ¥; are integral). With this choice of basis, all generators of
CFL(Yg, Ly) are now concentrated in Alexander grading s. Hence, each component of the differ-
ential is weighted by powers of %;%;. Setting ¥; equal to 1 recovers CF* (Y, L), so we conclude
that

CFL™ (Yg, LT) >~ CF*(Yg, w1, ..., wy) QF[U,...,Ud] Ry,

where U; acts on Ry by %;¥;. Here, CF~ (Y, w1, ..., w;) denotes the ¢-pointed Floer complex for
Ye. It follows from [OS04b, Theorem 10.1] that the singly pointed Floer complex CF~ (Yg, w1)
is homotopy equivalent to F[[U, U], and by [OS08, Proposition 6.5], adding the basepoint w;

has the effect of tensoring with the Koszul complex x Uity y . In particular, it follows that
HFL™ (Yg, Lt) is isomorphic to

SR U — WYy i j € {1, 0}

This does not decompose as a direct sum of R-modules, since it has a single generator (the image
of 1 € Ry) over the ring S™'R,.

Consider first the case that the homology is supported in cube grading ¢ = 0. In this case, we
may pick a splitting over F of the complex CFL(T', ;). Such a splitting determines a homotopy
equivalence of CFL(T", V4) with its homology. We may apply the homological perturbation lemma
to obtain an induced A.-module structure over R, on the homology HFL(IT',V;). A filtration
argument like the one in the proof of Theorem 5.1 implies that the induced A..-module structure
on Zy/imZ; = H,CFL(T',V}) has m; = 0 unless j = 2. By Corollary 2.6, this implies that
CFL(Yq, Ly) is homotopy equivalent over R, to a free resolution of its homology.

We now consider the case that CFL(T', V) is supported at Z; for some ¢ # 0. Our argument
proceeds by induction, with the base case ¢ = 0 covered above. We will use techniques described
in Subsection 2.3.

As i >0, in particular H.(Zy) = 0, so f1, is surjective. We may pick a splitting i1 of f10 as
a map of vector spaces, which induces a splitting of Z; as Z; = Z! @ Z7 (where the direct sum
is of F-vector spaces), and Z{ = ker(f10) and Z] = im(ip1). Note that ZJ is not in general an
Re-module, as it is the image of an F-linear map, however ker(fi o) is always an R,-submodule
since f,9 is Rye-equivariant.

There is a chain complex Z’ obtained by deleting Z] and Z;, and the above maps determine
a chain homotopy equivalence between CFL(T, V;) and 2’ as chain complexes over F. Via the
homological perturbation lemma for A..-modules, we may equip £’ with an A.,-module structure
over Ry which is homotopy equivalent to CFL(T', V}). The map h appearing in the homological
perturbation lemma is the map % ;. The inclusion and projection maps are the obvious ones.
Compare Section 2.3. Since ker(f1) is closed under the action of Ry, the action on Z’ from
the homological perturbation lemma is the standard one. This reduces the index at which the
homology of CFL(T', V4) is supported. Proceeding by induction we reduce to the base case i = 0,
completing the proof. O



40 MACIEJ BORODZIK, BEIBEI LIU, AND IAN ZEMKE

6.2. Computing the Floer chain complex from Alexander polynomials. In this subsection,
we consider the H-function for oriented ¢-component links L in rational homology spheres Y.
We begin by defining a lattice H(Y, L), which is an affine space over H1(Y \ L,Z). The set
H(Y, L) is a subspace of Qf x Spin®(Y"). The simplest definition of H(Y, L) is that it is the set of
(s,t) € Q° x Spin®(Y) such that HOFK (Y, L,t) is non-trivial in some Alexander grading s’ € Q°
satisfying s — s’ € Z*. Since HFK (Y, L,t) # 0 for each t when Y is a rational homology 3-sphere,
this construction gives a well-defined set H(Y, L). The action of an element v € Hy(Y \ L) is given
by
v (81,0, 80,t) = (51 — k(y, K1), ..., 80 — 1k(v, K¢), t + PD[iy])

where 1k(v, K;) € Q is the rational linking number, and i: Y\ L — Y is inclusion.

A more topological description may be obtained by presenting Y\ L as surgery on a link L’ in the
complement of an ¢-component unlink in S3. Such a presentation induces link cobordism (W, X)
from the complement of an ¢-component unlink to Y\ L such that W is a 2-handlebody, and ¥
consists of ¢ annuli, each of which cobounds an unknot component in S* and a knot component of
L. If t € Spin®(Y), the fiber over t under the map H(Y, L) — Spin®(Y") consists of (s, t) where

‘e <<cl(t/),21>[2l].[z] <cl(t/),2e>[iz].[2]> s (6.1)

2 B 2

and t' € Spin®(W) is any lift of t € Spin®(Y’). Here, we view X as the union of ¥y,...,%,. We
write [%] and [¥;] for the induced classes in Hy(W,dW;Z), and we write [2;] for the lifts under
the map Ha(W;Q) — Ha(W,0W;Q).

This may be seen to coincide with the definition in terms of Alexander gradings on EF\L(Y, L)
using a small modification of the cobordism argument from [Zem19, Section 5.5] (which is stated
for integrally null-homologous links). See [HHSZ22, Section 3.2] for an exposition in the setting
of rationally null-homologous knots. It is an easy consequence of the cobordism description of the
Alexander grading that C/’F\‘L(Y, L) is supported on H(Y, L).

Lemma 6.2. As affine spaces over H1(Y \ L; Z), there is an isomorphism H(Y, L) =2 H, (Y \ L; Z).
Proof. This follows from the short exact sequence of affine spaces
0 — Z* — H(Y,L) — Spin°(Y) = 0 (6.2)
which is parallel to the short exact sequence of homology groups
07 - H(Y\L;Z) = H\(Y;Z) = 0.

If we pick a base element (s,t) € H(Y, L), we obtain a map of affine spaces from H;(Y \ L;Z) to
H(Y, L) which makes the natural diagram commute. By the five-lemma, we obtain that H(Y, L)
and Hq(Y \ L;Z) are isomorphic as affine spaces. O

We are now ready to define the H-function of a link in a rational homology sphere.

Definition 6.3. For an oriented link L C Y in a rational homology sphere Y and (s, t) € H(Y, L),
we define the Hy,: H(Y, L) — Q by saying that —2H (s, t) is the maximal gr,-grading of a non-
zero element in the free part of H, (A~ (L,s,t)) where A7 (L, s, t) is the subcomplex of CFL(Y, L, t)
lying in Alexander grading s.

The H-function of L-space links in the 3-sphere can be computed from Alexander polynomials
of the link and all sublinks [GN15,BG18]. In order to generalize the result to links in rational
homology sphere, we first recall generalized Alezander polynomials. Friedl, Juhdsz and Rasmussen
[FIJR11, Theorem 1] prove that EF\L(Y7 L) categorifies the Turaev torsion A(Y, L) of Y\ L, which
we view as an element in F[H;(Y \ L)], well-defined up to multiplication by monomials. When Y
is a rational homology 3-sphere, we refer to A(Y, L) as the generalized Alexzander polynomial.
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In our present setting, it is helpful to view A(Y, L) as taking values in the F[H; (Y \ L)]-module
F[H(Y, L)] instead of F[H; (Y \ L)] itself, via the following formula:

A(Y,L) = x(HFL(Y,L)) == Y &Y y(HFL(Y,L,s,1)) € F[H(Y, L)).
(s,t)€H(Y,L)

We may think of x(ﬁF\L(Y, L)) as a normalized version of the Turaev torsion. Similarly to [OSO08,

Proposition 8.1], it is not hard to see that the Euler characteristic of ﬁF\L(Y7 L) is symmetric with
respect to the involution of H(Y, L) given by (s, t) — (—s, t+PDIL]) (cf. [Zem19, Proposition 8.3]).

To make more transparent connections with integer homology spheres, we refine the definition
of A(Y,L). For t € Spin“(Y), we set:

A(Y,L,t) = x(HFL(Y,L,0)) := Y - x(HFL(Y,L,s,t)) € F[H(Y, L)), (6.3)
s: (s,t)€H(Y,L)

We recall that the graded Euler characteristics of HFL and HFL™ are related by the formula
1

T ti)X(ﬁF\LW’L))'

X(HFL™(Y,L)) =
See [OS08, Proposition 9.2].
For any sublink L’ C L, define the natural forgetful map:

TL,L—L'": H(Y, L) — H(Y, L— LI)
as follows. In the case that L' = K4, the map 7 _r/ is given by the formula

ﬂ'L’L,Ll(Sl,...,Sg,f) = <82 — w,...,;% — H{(I{;I(Z),t) s
where L = K1 U---U Ky. For general L', the formula is a composition of several of these maps.
We refer reader to [MO10, Section 3.7] for explicit formulas of the forgetful map for links in S3.
Compare [BG18, Section 3].

Given (s,t), (s/,t') € H(Y, L), we say (s,t) > (s',t') if and only if t = ¢ and s > s’. That is,
s; > s for all ¢, where s = (s1,...,s,) and s’ = (s},...,s)).

Lemma 6.4. For an oriented L-space link L C'Y in a rational homology sphere with t € Spin®(Y),
the H-function Hy, satisfies:

Hy(s, )= > (-1~ > Y(HFL™(Y,L',s,1)). (6.4)
L'CL (s’ , ) €H(Y,L")
(S/7t)27rL,L' (s+1,t)

where 1. = (1,...,1). In particular, the H-function is determined by the generalized Alexander
polynomials A(Y, L' t) of all sublinks L' C L.

Proof. The arguments of [GN15, Theorem 2.10] relating Hy, to x(HFL™ (Y, L)) in the case of links
in S3 can be repeated verbatim for the case of Hy, and x(HFL™ (Y, L)) to get (6.4), though here we
follow the convention in [BG18, Theorem 3.15] and assume HFL™ (Y, () = 0. The right-hand side
of (6.4) is determined by X(ﬁF\L(Y, L)) for all sublinks L', which can be computed from Alexander
polynomials of L’ by (6.3). Therefore, the H-function is determined by the Alexander polynomials
of all sublinks L' C L.

]

Ezample 6.5. We normalize the multivariable Alexander polynomial of the unlink U in the 3-sphere
to be 0, and the H-function for an ¢-component unlink in S? is the following:

HIU[(Sly .. .785) = Z(|Sl‘ — Sl)/2

%
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If L C S3 is the Hopf link in the 3-sphere, its Alexander polynomial A(ty,t2) = 1 and s; € Z+1/2.

By the formula in [BG18,Liul7], the value of the H-function at each lattice point (s1,s2) is shown
as follows:

S1 = 1/2

=~ w no no no [\ [\

[ U N e e
o O
o O
o O
o O

FIGURE 6.1. The H-function of the Hopf link

Theorem 6.6. Suppose that I' is an arrow-decorated plumbing tree, with Vr = Vg U V4. Let
Ly C Yg be the associated link and assume that Yg is a rational homology 3-sphere. If Ly is an L-
space link, then the full link Floer complex CFL(Yq, L) is determined by the generalized Alexander
polynomials of Ly and its sublinks.

Proof. By Theorem 6.1, the chain complex CFL(Yq, Lq) is a free resolution of HFL(Yq, Ly). In
particular, CFL(Yq, L+) is determined by the homology group HFL(Yq, L) as an Re-module.
Therefore, it suffices to prove that the generalized Alexander polynomials determine the homology
HFL(Yq, Ly). By Lemma 6.4, the H-function is determined by the generalized Alexander polyno-
mials of Ly and its sublinks, it remains to prove that the H-function determines the R,-module
structure of HFL(Yq, Ly).

There is a decomposition of F[U]-modules

HFL(Yg, L) = B  HAL(YG. Ltos,b).

(s,t)€H(Yq,Ly)

Since L4 is an L-space link in Y, HFL(Yq, Ly, s, t) = F[U] for all (s, t) € H(Yg, Ly). The (gr,,, A)-

grading of the generator of HFL(Yq, Ly, s, t) is determined by the H-function. That is, the Alexan-

der gradings of the generator equal s and the Maslov grading gr,, equals —2H (s, t). Hence, it

suffices to see the %; and ¥; actions on HFL(Yq, Ly, t) are also determined by the H-function.
To see this, note that we may view %; as restricting to a map

HFL(Y, Lt,s,t) = F[U] — HFL(Ya, Ly, s — e, 1) = F[U]. (6.5)

Since the map ¥; goes in the opposite direction and %;%; = U, the map %; is given by either
multiplication by 1 or U, with respect to identifications in (6.5). We observe that the map %;
has gr,,-grading —2, and hence the choice of being U or 1 is determined by the gr, -gradings of
the copies of F[U] in (6.5), which is encoded by the H-function. Similarly, the action of ¥ is
also determined by the H-function since %;%; = U, and the action of %; is determined by the
H-function. Therefore, for L-space links, the Alexander polynomials determine the full link Floer
chain complexes. |
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6.3. Comparison to Gorsky and Némethi’s link lattice homology. We now compare our
chain complex CFL(T, V4) to the definition of link lattice homology due to Gorsky and Némethi
[GN15].

As a first step, we recall their definition. Let L C S3 be a link of £ components. Write C; for
the mapping cone complexes

C;:=Cone(¥: Re = Ry), i =1,....,¢

Write £ (L) for the (non-free) complex of R,-modules obtained by tensoring the homology group
HFL(L) with C1,...,Cy, over the ring Ry.

Remark 6.7. Note that C1®gr, - - -®r, Cy is the Koszul complex for the regular sequence (41, ..., %)
in Ry. See [Wei94, Section 4.5].

If L is an L-space link, Gorsky and Némethi define the link lattice complex to be the chain
complex J# (L). Gorsky and Némethi prove the following:

Theorem 6.8 ([GN15, Theorem 2.9]). If L is an algebraic link, then
H. (L) = H, (CFL(L)/ (M, ..., 7)) -

Remark 6.9. Gorsky and Némethi prove Theorem 6.8 at the level of graded F vector spaces.
There are additional module actions of F[[%, ¥4, ..., %, ¥%]] on both sides. Gorsky and Hom
[GH17, Proposition 3.7] equip 2 (L) with commuting endomorphisms %4, . .., %;. In our notation,
their action of %; coincides with the standard action of %; on the HFL(L) tensor factor of #(L). Of
course, one can also consider the action of 7#;, defined symmetrically. Note that as an endomorphism
of (L), each ¥; is null-homotopic since % (L) is defined by tensoring HFL(L) with the Koszul
complex of the sequence (¥1,...,%;). More explicitly, we can write .# (L) as a mapping cone

(L) = Cone (H(L) —2— A1 (L)),

where J#°(L) (resp. J;'(L)) is the codimension one subcube which has i-coordinate 0 (resp. 1).
As an endomorphism of J# (L), the module action of ¥; preserves both J#;°(L) and #;*(L). We
define an endomorphism H of .# (L), which sends J# (L) to J#°(L) via the identity, and observe
that on ¢ (L):

We now explain how our Theorem 6.1 quickly recovers Theorem 6.8, and also to prove a re-
finement which takes into account the Rs-action. To state our result, we equip (L) with an
Ao.-module structure which has only m; and ms non-trivial. The action of ms corresponds to the
standard the action on the HFL(L) factor of the tensor product.

Theorem 6.10. If L C S3 is a plumbed L-space link, then there is a homotopy equivalence of
Aso-modules over B[, 1, ..., %, V]

K (L) ~ CFL(L)/(A, ..., V7).

Proof. We first consider the proof only at the level of chain complexes, and then subsequently
consider the R,-module structure.

Note that C; is a free resolution of R;/¥; as an Re-module. Furthermore, the ¢-dimensional
cube-shaped complex C1 ® - -+ ® Cy is a free resolution of |24, Y1, ..., %, Y2/ (Y, -.., Y0).

We use the algebraic formalism of type-D and type-A modules of Lipshitz, Ozsvéth and Thurston
[LOT18] [LOT15] to give a small model of the derived tensor product of As-modules. We may
view C; as a type-D module ®¢C; whose underlying F vector space has two generators, x; and y,,
and whose structure map &' is given by

S(xi) =%y,
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Similarly, the complex C7 ® --- ® Cp naturally corresponds to a type-D module over R;, whose
underlying vector space is generated by the points of an ¢-dimensional cube. We write "¢ Ci,..¢
for this cube-shaped complex.

By definition,

H (L) = HFL(L)g, ®RCy .

By Theorem 6.1, if L is a plumbed L-space link, HFL(L) and CFL(L) are homotopy equivalent
as Aso-modules over Ry. On the other hand, CFL(L)g, is free over Ry, which translates to the
fact that there is a type-D module CFL(L)®* such that

CFL(L)r, = CFL(L)* K, Rir, -

We observe that since ¢ Ci,... ¢ is a free resolution of Ry/(#4, ..., %), it follows that z,C1,.. ¢ ~
RRe/ (M1, V).

Putting these relations together, we obtain
H (L) = HFL(L)r, B C,...0
~ CFL(L)g, RRCCy .,
=CFL(L)™ B, Rer, B™®C1 4
~ CFL(L)** R, Re/(N, ., V).

(6.6)

We now consider the R,-module structures. We note that the complexes Re C1,...¢ extends to
a DA-bimodule ®¢(Cy, 4)r,. This DA-bimodule has the same generators and &' as ®¢C; .
Additionally, there is a d3 action given by d3(x,a) = a ® x for any a € Ry and x € Cy,_ 4. We
observe that by definition
H (L)g, = HFL(L)g, R*(C1.. )R,
Additionally, it is easy to check that

ReRfRe X Re (Cl,u-’f)Re =Ry (Re/(%, ) 7/4))73@7

so that the manipulation from Equation (6.6) extends to an equivalence of A,-modules. O

7. COMPUTATIONS

In this section, we give some computational tools. In Subsection 7.1, we provide an algorithm to
compute the link Floer homology of an L-space link from its H-function. Next, in Subsection 7.2,
we describe the R,-module HFL(T'(n,n)) based on Gorsky and Hom’s computation of the H-
function of T'(n,n). By our Theorem 6.1, this R,-module contains equivalent information to
CFL(T(n,n)). In Subsections 7.3 and 7.4, we compute explicit free resolutions of HFL(T(3,3))
and HFL(T (4,4)).

7.1. Generators and relations for the homology of an L-space link. In this section, we
describe generators and relations for the modules HFL(L) when L is an L-space link. We focus on
the case L C S® to simplify the notation, but this is not essential.
If s € H(L), we write X € HFL(L) for the generator of the F[U]-tower in Alexander grading s.
By definition,
A(Xs)=s and gr, (Xs) =—2H(s).
We let G denote the set of X € HFL(L) which satisfy
Hp(s—e;)—Hp(s)=1 and Hp(s)— Hp(s+e)=0 (7.1)
for all i € {1,...,¢}. Here, e; denotes the unit vector (0,...,1,...0).

Lemma 7.1. Let L be an {-component L-space link in S3.

(1) The set G is finite and is the unique Ro-module generating set of HFL(L) of minimal
length.
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(2) The kernel of the natural map
Ry — HFL(L)

s spanned by the following generating set:
(r-1) All elements of the form
aXs + /BXS/
where X, Xg» € G, and a, B are monomials such that wy () = wy (B) = 0, ged(a, B) =
1 with

Ala) +s=AB) +5 and gr,(a) — 2Hz(s) = g1, (8) — 2HL(s).

We use the notation wy () = min{éy, ji1} + -+ - + min{ic, j¢} for any monomial o =
U - UV
(r-2) For each i, j and Xs € G the element

(U Vi + U V5) Xs.

Proof. Since CFL(L) is a finitely generated Re-module, and CFL(L) admits Maslov and Alexander
gradings, the Ry-module HFL(L) is spanned by finitely many homogeneously graded vectors Xs.
Equation (7.1) is equivalent to the statement that Xy is in the image of neither %; nor ¥; for any
1 € {1,...,¢}. Therefore any minimal length generating set can only contain elements of G. In
particular, G generates HFL(L).

We now claim that any minimal length generating set must contain all elements of G. To see
this, we write G = { X, ,..., X5, } and suppose

Xo, = aiXs,
i#]
for some homogeneously graded a; € Ry. We may assume each «o;Xs, has the same gr,, and
Alexander gradings as Xg;. However HFL(L) is rank 1 over F in each Maslov and Alexander
grading in which it is supported. Therefore if a; # 0, then X, = a;Xs,. However Equation (7.1)
implies that «; = 1 since none of the X5, admit non-trivial factorizations. Therefore every minimal
length generating set contains all of G.
We now consider the claim about relations. Suppose that

i OéiXSi =0.
i=1

We may assume that each «; is a monomial (or zero) and all a; X, have the same Alexander
and Maslov gradings. When all of the «; X5, have the same homogeneous Alexander and Maslov
gradings, .1 | &; X, = 0 if and only if #{i : a; # 0} is even, since HFL(L) has rank 1 over F
in each of the gradings in which it is supported. In particular, pairing elements of {i : a; # 0}
arbitrarily, we may write the sum Z?:l a; X, as an Ry-linear combination of elements of the form
aXg + X, where «, 8 # 0 and such that aXg and 8Xg have the same Maslov and Alexander
gradings. By canceling common factors, we may assume that ged(a, 8) = 1.

If max(wy (a), wy (B)) > 0, we claim that we can still reduce this relation further. For concrete-
ness, assume that wy () > 0. This means that %;7%; divides «, for some j. Note that 5 # 1, so
assume that either ¥; or %; divides 3, for some i. By using (r-2), we may replace the factor of %;¥;
in a with %;¥;, and assume %;¥; divides a.. The resulting monomials a and 8 have ged(a, §) # 1,
so we divide out common factors. This operation is non-increasing in the total degree of o and f,
so we may repeat this procedure until ged(a, 8) = 1 and wy(a) = wy(B) = 0. This completes the
proof. O

Remark 7.2. We can describe the relations (r-2) more concretely, as follows. Let X5, Xg € G and
write
s=(s1,...,80), and s =(s],...,s)).
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We let

. if s ! . if s: !
P, = v; ?fsl<sl and 2, = U ?fsl<sZ
U, if s; > s ¥ if s > sl

If s; = s}, then we view &; = 2; = 1. The relations labeled (r-2) may be rewritten as those of
the form

9;19;@ .stggl...gzé X
ranging over all Xg, Xy € G and all sequences i1, ...,i, > 0 and ji,...,j¢ > 0 such that
ik k= |sk — 8| and  gr (P P X)) =g, (2] - 20 - Xy).
for all k. Note in particular that there are only finitely many relations of the form (r-2).

7.2. The type-A module of the T(n,n) torus link. We now compute the Heegaard Floer mod-
ule HFL(T (n,n)) of torus link T'(n,n) in the three sphere. Recall that R,, = F[24, %1, ..., %n, Vn)-

Theorem 7.3. As an R,-module, the group HFL(T(n,n)) has a unique minimal generating set,

consisting of n generators, Xy, ..., X,. The relations are spanned by the following
(H %) X, = IT 7| Xk (7.2)
i€l je{l,...,n}\lk
U Vi Xy = UV Xy, (7.3)

Here Iy, runs through all subsets of the set {1,...,n} of length k (so (7.2) has (}) relations for
each k), and in (7.3), i,7, and k range from 1 to n.

Proof. Since the torus link T'(n,n) is an L-space link, by Lemma 7.1 the minimal generating set
consists of the set of all Xg which satisfy
H(s—e;)—H(s)=1 and H(s)— H(s+e;) =0, (7.4)

for each i € {1,...,n}. Here, H(s) denotes the H-function of the torus link T'(n,n).
The H-function of the torus link T'(n,n) is computed in [GH17]. Its Alexander polynomial
equals to
Aty otn) = (b tn) 2 = (tr ) 722,

which is symmetric in the variables ¢1,...,t,. Because of the symmetry of the Alexander polyno-
mial of T'(n,n), the H-function for T'(n,n) is also symmetric in $1, ..., $,. Therefore we consider
the case that s; < s5 <--- < s,. By [GH17, Theorem 4.3]

-1 -1 -1
H(sh...sn):h(sl—nQ>+h<52—n2+1)+--~+h(sn—712+n—1> (7.5)

where h(s) = (|s| — s)/2. We note that h(s) is the H-function of the unknot. It is not hard to
compute that

H(s1,...,8,) =0 (7.6)
if s; > (n—1)/2 for all ¢, and
H(s) = —(s1+ 82+ +sp) (7.7)
if s; < —(n—1)/2 for all .
We first consider the diagonal vertices, that is, s; = -+ = s, =m, m € Z+ (n—1)/2. If
m > (n—1)/2, then
H(s1,...,8,) =H(s1 —1,89,...,8,) =0
by (7.6), which does not satisfy (7.4). Similarly, if m < —(n — 1)/2, then

H(s1,...,8n) = H(S1,...,8n,+1)+1
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by (7.7), which also does not satisfy (7.4). Now we consider the n diagonal vertices where —(n —
1)/2 <m < (n—1)/2, that is,

n+1
§1 =8y =---=8, = 5 —k
for all integers k& between 1 and n. The corresponding generators are X1, ..., X, with Alexander
gradings
n+1 n+1 n+1
( 5 -k, 5 —k,..., > —k;).

By a straightforward computation, Equation (7.4) is satisfied by values of the H-function at these
vertices, so X1, ..., X, are all contained in the minimal generating set from Lemma 7.1. We claim

these diagonal vertices are the only ones where the H-function satisfies Equation (7.4). It suffices
to prove that the non-diagonal vertices do not satisfy Equation (7.4). Recall that we assume
s1 < 89 < -+ < sp,. Suppose that s, = s is the maximal value among the s;, and there are exactly

A coordinates equal to s where A < n, i.e., Sp_xt1 = Sp—ry2 ="'+ =5, =S, and s,_ < s.
If s> (A—1)—(n—1)/2, then by (7.5)
H(s1y s Sn—xsSn-x+1 — 1,y 8n) = H(S1,...,8n)

which does not satisfy (7.4).
If s <(A—1)—(n—1)/2, then by (7.5)

H(s1,. oy 8n—x+ 1,841y, 8n) +1=H(s1,...,8,),
which also does not satisfy (7.4). By Lemma 7.1, X, -+, X, form a unique minimal generating
set of HFL(T'(n,n)) over R,,. Based on the values of the H-function, one can compute that
gr,(Xi) = —k(k—-1).

We now consider the relations satisfied by Xi,..., X, over R,. For convenience, if I =
(i1,...,4,) is a sequence of nonnegative numbers, write %! for 2" --- %». Define ¥’ simi-
larly. Lemma 7.1 and Remark 7.2 immediately imply that if 1 < p < ¢ < n, then the relations
involving X, and X, are spanned by (%¥; + %; V;)Xp and (% Vi + «;7;) X4 for 4,5 € {1,...,n},
as well as sums

w'xX,+v’'X,
ranging over sequences of nonnegative integers I and J such that
qg—1
p+qg—1)(g—p
I+J=(q—p,...,q—p) and |I|L1:ZS:( 2)( ) (7.8)
s=p

If ¢ = p+ 1, these are exactly the relations in the statement.

We will show by induction on ¢ that the relations between X, and X, are in the span of the
relations between consecutive X; and X1, as well as the relations (% %; + %;7;) X = 0 (labeled
(r-2) above). The case that ¢ = p + 1 is vacuous, so we suppose that ¢ > p+ 1.

We let I = (I,...,I,) and J = (J1,...,J) be tuples of non-negative integers such that
I+J=(q—-p,...,q—p) and |[I|;» =p+---+ g — 1. We claim first that there is a tuple I’ such
that

0<I'<I, |[I'ljn=q—1, and |I'|~ <2 (7.9)
(We remark that it may not be possible to find such an I’ which satisfies |I'|,~ < 1). For k € N,
we write
ag = #{i: I; > k}.
We observe that

— (p+q—1(g—p)
I = Zak = 5 and a; >az > - > ag_p. (7.10)
k=1
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Our claim about the existence of an I’ as above is equivalent to the claim that a; +ag > ¢ — 1. If,
to the contrary a; 4+ a2 < ¢ — 1, then we observe that as < (¢ — 1)/2 and therefore

— — g—1 (¢—p)g—1)
];ak:aleang;ak<q71+(q7p72) 5 = 5 .

However this contradicts Equation (7.10), so we conclude that an I’ satisfying Equation (7.9) must
exist.
By induction, if J" denotes (¢ —p—1,...,q—p—1) — (I — I’), then the relation
WX, =7 X, (7.11)

is in the span of the claimed relations between consecutive X; and X;i1, as well as the rela-
tions (r-2). We observe that our relations imply

UXy=U"U"""Xy=U"V" Xy 1.
If |I'| = = 1, then we have the relation
%I/Xq—l — /7/(1’”'"1)71/Xq,

which implies with Equation (7.11) that ZfX, = ¥’ X,, which would complete the proof.

If instead |I’|~ = 2, then we observe that any coordinate ¢ such that I/ = 2 has the property
that (I —I'); < ¢ —p — 1 and hence J! > 0. In particular, 7 #”7" has a factor of %;¥; for
each ¢ such that I/ = 2. Using relation (r-2) we can trade each of these %;%; for a %;¥; where
Ij’- = 0. Proceeding in this manner, we may relate %I/V‘]'Xq_l with some ?/I””//J”Xq_l where
|[I"|r = ¢ —1and [I”|p~ = 1. The relations between X, ; and X, now show that

w'y' X, =w" v X, =X,
completing the proof. O

In general, a free resolution of the homology HFL(T (n,n)) can be computed algorithmically, see
[Peell], or, for a concrete value of n, using a computer algebra system such as Macaulay2 [GS].

7.3. The free complex of the T(3,3) torus link. We present a free resolution of the torus
link 7'(3,3). The homology of the torus link T'(3, 3) is generated by X7, Xo, X3 with the following
relations:

U X, = H VX, ViX3= H U; Xo;
Jj€{1,2,3}\ {3} J€{1,2,3}\ {4}
UV Xy = UV Xy,

Then a free resolution of the homology is
0—)6'36—3>C'26—2>C'1a—l)C’Q—>O7

with the spaces Cy, C1,Cs, C3 and the maps 01, J9, 03 defined as follows.

The space Cyp = R3 is generated by X7, Xa, X3. Take the space C; = RS generated by by, ba, b3,
Bi1, By, B3, and Z1, Z5. For symmetry, it is helpful to consider an extra variable Z3 which satisfies
Z3 = Z1 + Zy; Z3 is not a generator of Cy. The differential 0,: Cy — Cy is given by

abi=umXxi+ | X oBi=7%Xs+ ] %X,
J€{1,2,31\ {3} J€{1,2,3}\ {3}
OhZ1 = U Vo Xo + Us V3 Xo, O Zy = U Xo + UsV3Xo

OhZ3 = 01 (21 + Z) = U V1 X + U V2 Xs.

The link Floer homology of T'(3,3) is coker 01. Indeed, the relations % ¥ Xy, = %; V; Xy, for k=1
and k = 3 follow from other relations. For example,

0= N (X1 — VaV3Xe) — Vo(U X1 — V1 V5X0) = (WU — U)X
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We define the module Cy = RS with generators ¢y, ¢z, c3,d1,dz, d3 and let 9 be the differential
Oocy, = Uib; + Uib; + Vi Zy,
Oody, = "f/iBj + %Bz + Uy Zy,.

Here {i,j,k} ranges through all permutations of the set {1,2,3}. There is a relation between
.,d3. That is, there is a module C'5 = R3 generated by e with d3: C3 — C5 given by

Ose = Uc1 + Uasco + Uscs + Vidi + Vada + Vads.

It can be checked either directly, or using a computer algebra system, that ker 9y = im0y,
ker O = im J3 and ker d3 = 0. That is to say, the complex we constructed is a free resolution of
coker 0.

Remark 7.4. By examining the resolution of HFL(T(3,3)) shown in Figure 7.1, we see that the
relations described in Lemma 7.1 have some redundancy. For example (%1% + % 72)X;1 =0is a
consequence of the relations %, X1 = #5273 Xs and % Xe = ¥175Xo.

%/%/ : \%%%

Us Uy Us Us Us 02/2

l/ \/ \l

\b2
%"I/ Us Vs Uy Y %“f/ /
\ \%7/3 2 Vo+UsVs3 11+33% /

R 2N

FIGURE 7.1. The complex CFL(T'(3,3)) as a free resolution.

/\\/\\ I

7.4. The free complex of the T(4,4) torus link. To stress the usefulness and power of Theo-
rem 6.1, we show how to compute the link Floer chain complex of the T'(4,4) torus link. We start
with the model of the link Floer homology for T'(4,4) as described in Theorem 7.3 and compute its
free resolution. It is pretty straightforward to find candidates for the relations between generators
of the T'(4,4) torus link, and then candidates for the relations among relations (second syzygies),
and to iterate this procedure. This amounts to creating a complex (C;, 9;), whose homology at the
zero grading is HFL(T(4,4)). Showing that the relations are complete, that is, that the complex
we construct is acyclic in higher gradings, is rather tedious. We have used Macaulay [GS] to verify
this fact.

We can give a quick description of the free resolution of the 7'(4, 4) torus link. The free resolution
has length four, as follows:

O—>C48—4>638—3>C2 %Cl i)Co—)o
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Let Cy be the free R4 module generated by X7, ..., X,. Consider the module C; = R3° generated
bny? withk =2,3,j=144+1, a1,...,a4, B;; with1 <i < j <4andA1,...,A4. As in the T'(3,3)

case, for symmetry, we add variables Zk for j > i+1, satisfying Z l-k"iH —|—Zf+1)i+2+~ . -—|—ZJ’-Z1 j
If j <i we set B;; := Bj;. There is a rnap 01: C1 — Cy given by
NZE oy = (Ui + Ui Vig1) X Oa; = UX) + [ [ 15Xz
J#i
O Bij = UU; Xo + 11 ViV Xy A =[] % X5+ 7 X,
i'<j’ J#i

{i,4,i",5' }={1,2,3,4}
By Theorem 7.3, the link Floer homology of T'(4,4) is coker d;. We define now the module Cy =
R38. Tt is generated by a;;, A;; with 1 <4 < j <4, and c?, Ck

The indexing of ¢ and C' generators is a bit complex. We choose, 1 <k<4, and {i,j} is a
subset of {1,2,3,4} \ {k} with 5 > . To obtain a smaller resolution we reduce the number of
generatore by declaring that the c-generators are ¢3® and ¢}, ci® and c3?, ci? and 3%, as well as

2 and c?*. Whenever another configuration of indices appears in the dlfferentlal we declare it to
be the sum of the other two generators with the same subscript, like ¢?* is not a generator, but
e =23 4} ete.

For C-generators, for each three-element subset {a,b,c} C {1,2,3,4} we choose two out of
three permutations {i,j,k} with ¢ < j and these indices are C-generators. The third object is
declared to be the sum of the other two. More specifically, we choose C;, C%; to be generators
and C3, = Cl; + C%;, Cd,,C1, as generators, and C3, = C}, + Cf,, C3,, C3, as generators, with
Ci; = Cl, + C3,. Finally, C%,,C3, are generators, whereas Cy3 = C3, + C3,

Therefore, we have 8 c-generators and 8 C-generators. The map 0: C; — C; is given by

62aij = %ai + %aj + H /%CZ’LQJ
k#i,j
02Ai; = VA + VA + H U7,
k#i,j
0.C k' = U;Bii + UBj, + Z;
aQCk = ¥;Bir + 'VBjk + U Z, 1]7
where ¢ = {1,2,3,4}\ {4, 4, k}.
The module C3 = R}* is generated by aijk,Aijk7B,§j where 1 < i < j < k < 4 with the map
03: C3 — Co given by
Osaijn = Uaji + Ujain + Unas; + Vo(Vicl® + V5cF + Vic)))
O3Aiji = Vilju + Vi Air + Viij + U Ui Clyp + Ui Ch + U:CL5)
dsBj; = WCYs + NiCy; + Uikt + Ui,
where we let £ = {1,2,3,4}\ {4, 4, k}.
The module C4 = R? is generated by di234, D1234 With the map 0y is given by

(94 d1234 Z%(lakf—l'zly/”f/B
i<j
04(D1234) = Z Viljre + > U U; By
i i<j, k<t
(a5, k03 ={1,2,3,4}
In each of the two equations, where the sum runs over the indices i, we let 1 < j < k < ¢ < 4 be
such that {i, 7, k, ¢} is a permutation of {1,2,3,4}.
It can be verified that the above description of CFL(T'(4,4)) is acyclic except at resolution grading
0, with coker 9; being the link Floer homology of T'(4,4).
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