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Heegaard Floer homology, knotifications of links, and plane
curves with non-cuspidal singularities

MACIEJ BORODZIK

BEIBEI LIU

IAN ZEMKE

We describe a formula for the H1 -action on the knot Floer homology of knotifications
of links in S3 . Using our results about knotifications, we are able to study complex
curves with non-cuspidal singularities, which were inaccessible using previous
Heegaard Floer techniques. We focus on the case of a transverse double point,
and give examples of complex curves of genus g which cannot be topologically
deformed into a genus g− 1 surface with a single double point.

14H50; 57K18, 14B05, 57R58

1 Introduction

1.1 General context

Let C be a complex curve in CP2 . The curve C is called rational, if C is irreducible
and there exists a continuous degree one map from S2 to C . The curve C is called
cuspidal, if all its singularities have one branch (i.e. their links have one component).

In [1], Fernandez de Bobadilla, Luengo, Melle-Hernandez and Némethi indicated
a connection between Seiberg–Witten invariants and rational cuspidal curves. As a
consequence of these connections, they stated a conjecture binding coefficients of
Alexander polynomials of singular points of a rational cuspidal curve. A variant of this
conjecture was proved in [4]; the proof used the relation of semigroups of singular points
with Vs -invariants of knots together with the Ozsváth–Szabó d -invariant inequality.

The methods of [4] were later generalized by Bodnár, Borodzik, Celoria, Golla, Hedden
and Livingston [2, 3] to the case of non-rational cuspidal curves. Their result does not
generalize immediately to the case where C has non-cuspidal singularities. In this case,
the boundary of a suitably defined tubular neighborhood of C can be presented as a
surgery on a connected sum of links of cuspidal singularities and knotifications of links
of non-cuspidal singularities of C .
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Knotification is an operation described by Ozsváth and Szabó in [26], which transforms
an n-component link L in S3 into a knot L̂ ⊂ #n−1S2 × S1 . The knot Floer homology
HFK−(L̂) admits an action of the exterior algebra over Z on n− 1 generators, which is
identified with Λ∗H1(#n−1S2 × S1). To apply the strategy of [2, 3, 4] to non-cuspidal
singularities, one must compute explicitly the action of Λ∗H1(#n−1S2 × S1) on the
knot Floer complex of the knotification. Performing explicit computations is often
challenging, since computing the action of Λ∗H1(#n−1S2 × S1) involves counting
pseudo-holomorphic curves in a symmetric product Symd(Σ) of a surface Σ in a
Heegaard decomposition of #n−1S2 × S1 , which is used to compute the knot Floer
complex. In this paper, we prove a general result which relates the homology action
on the knotified link to counts of pseudo-holomorphic curves on a Heegaard diagram
for the original link in S3 . In many cases, this is more practical, since it allows us to
compute pseudo-holomorphic curves in a symmetric product of lower index d . For
the links we consider in the present paper, we are able to reduce the computations to
Sym1(S2), which is completely combinatorial.

1.2 Main results

Given an n-component link L ⊂ S3 we use Heegaard Floer TQFT to recover the knot
Floer complex of the knotification L̂ of L together with the action of Λ∗H1(#n−1S2×S1)
on it. This result builds on recent developments in the Heegaard Floer TQFT due
to the third author as well as many others; see [9, 11, 32, 33, 36, 35]. Our main
result concerning knotifications is Proposition 2–10, which describes the action of
Λ∗H1(#n−1S2 × S1) on the knot Floer homology of a knotification in terms of a link
diagram for L .

Using this general result, we compute the knot Floer complexes of the knotifications
of the (2, 2n)-torus link and of its mirror, as well as the action of H1(S2 × S1). In
particular, we are able to compute the invariants Vbot

s and V top
s of these knots. To the

best of our knowledge, these computations have not appeared in the literature before.
For the reader’s convenience, we present the precise result for the knotification of the
torus link T2,2n . For more details about its mirror, see Proposition 2–41.

Proposition (see Proposition 2–40) let T̂2,2n be the knotification of the torus link
T2,2n . The pair (CFK−(S2 × S1, T̂2,2n),Aγ) has a model where CFK−(S2 × S1, T̂2,2n)
is equal to Sn{1

2 ,
1
2} ⊕ S

n−1{− 1
2 ,−

1
2} and Aγ maps Sn to Sn−1 on the chain level.

Here, we recall that {i, j} denotes a shift in the (grw, grz)-grading by (i, j), and Sn and
Sn−1 are the chain complexes in Definition 2–28.
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Our main application is concerned with general curves in CP2 . To generalize results of
[2, 3] to the setting of complex curves C ⊂ CP2 with non-cuspidal singularities, we
take a precisely defined ‘tubular’ neighborhood N of C . The boundary Y = ∂N can be
described as a surgery on a link L in #ρS2 × S1 , where L is a suitable connected sum of
knotifications of links of singularities and Borromean knots, and ρ can be expressed
in terms of topology of C . As in [2, 3], the manifold Y bounds a four-manifold
X = CP2 \ N , with trivial intersection form. Using Ozsváth–Szabó’s d-invariant
inequality in the version proved by Levine and Ruberman [15], we obtain restrictions
on V top

s (L) and Vbot
s (L).

The main case we focus on is curves C with some finite number of cuspidal singularities
as well as singularities whose links are (2, 2n)-torus links. We obtain the following
result.

Theorem (see Theorem 6–4) Let C be a reduced curve of degree d and genus g.
Suppose that C has cuspidal singular points p1, . . . , pν , whose semigroup counting
functions are R1, . . . ,Rν , respectively. Assume that apart from these ν points, the
curve C has, for each n ≥ 1, mn ≥ 0 singular points whose links are (2, 2n)-torus links
and no other singularities. Define

η+ =
∞∑

n=1

mn and κ+ =
∞∑

n=1

nmn.

For any k = 1, . . . , d − 2, we have:

max
0≤j≤g

min
0≤i≤κ+−η+

(
R(kd + 1− η+ − 2i− 2j) + i + j

)
≤ (k + 1)(k + 2)

2
+ g

min
0≤j≤g+κ+

(R(kd + 1− 2j) + j) ≥ (k + 1)(k + 2)
2

.

Here R denotes the infimal convolution of the functions R1, . . . ,Rν .

Although complex curves cannot have singularities whose links are (non-algebraic)
(2,−2n)-torus links, our techniques also obstruct smooth (non-algebraic) surfaces with
these singularities. See Theorem 6–8.

The technical statement in Theorem 6–4 is best understood by comparing the obstruction
in the case of a single transverse double point to the genus g = 1 obstruction from
[2, 3]. We do this in Proposition 6–14, which we now summarize. Let C be a degree d
curve, and define the quantity υk = 1

2 (k + 1)(k + 2) for k = 1, . . . , d − 2. Write R for
the semigroup counting function. If C has genus 1, then the genus bound from [2, 3]
implies that for each k ∈ {1, . . . , d − 2},

(1–1) R(kd − 1) ∈ {υk − 1, υk} and R(kd + 1) ∈ {υk, υk + 1}.
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In this case, the only constraint on R(kd) is that it lies between R(kd− 1) and R(kd + 1),
and hence R(kd) ∈ {υk − 1, υk, υk + 1}.

On the other hand, our bounds from Theorems 6–4 and 6–8 give a slightly stronger
obstruction than the bound for genus 1 curves in Equation (1–1), based on the value of
R(kd). Since double points may be smoothed topologically, Equation (1–1) must also
hold for genus 0 curves C with a single double point. If C is a genus 0 curve with a
single positive double point, then our bound implies

R(kd) ≤ υk.

If instead C is a smooth curve with a negative double point, then we prove that
R(kd) ≥ υk .

We compare our obstruction with known examples, focusing on the question of
deforming a genus 1 surface into a surface with one double point. In Subsection 6.5 we
provide concrete obstructions. For existing curves (i.e. curves that we can construct),
there are obstructions for trading genus for negative double point, see Example 6–15.

We also compare our obstruction to the obstruction for genus 1 curves from [3]. In [3,
Theorem 9.1], there is a list of genus one curves with a singularity whose link is the
(p, q)-torus knot with p, q coprime. The curves in the list pass the obstruction provided
in [3], but it is not known whether these complex curves exist. We apply our bound to
this list of potential examples. There is a remarkable case of degree 27 curve with a
(10, 73) singularity, where the genus cannot be traded either for a positive or a negative
double point; see Table 1. While the curve passes all known criteria, we do not have a
recipe to construct it.

1.3 Further applications and perspectives

There has been recent interest in the question of “trading genus for double points".
To be more precise, given a surface of genus g, one can ask whether it is possible to
deform it to a genus g− 1 surface with an extra positive or negative double point. In
the context of the surfaces in a four-ball with fixed boundaries, this question is related
to studying the difference between the clasp number and the smooth four-ball genus;
see [5, 6, 12, 14, 20]. We deal with a variation of this question, which concerns trading
genus of a closed surface in CP2 for double points, while preserving the remaining
singularities.

In Subsection 6.6, we consider another infinite family of higher genus curves constructed
by Bodńar, Celoria and Golla. We show that the genus cannot be traded for a negative
double point for any member of the family.

Algebraic & Geometric Topology XX (20XX)
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As a perspective and a possibility for future research, we indicate that the methods
can be used to study line arrangements in CP2 . The only missing ingredient is the
computation of Heegaard Floer chain complex of the (d, d)-torus link for d > 2, and
understanding the H1 -action on the knotification these links.

1.4 Organization

Section 2 reviews Heegaard Floer theory. After recalling variuous known definitions
and results, we show how to obtain the knot Floer chain complex of the knotification of
links, as well as the H1/Tors action. A detailed construction of the Heegaard Floer
chain complex of the Hopf link is presented in Subsection 2.5. The generalization to
knotifications of arbitrary (2, 2n)-torus link is given in Subsection 2.6. We conclude
Section 2 with Subsection 2.7, where we recall the computations of the Heegaard Floer
chain complex of the Borromean knot B0 .

Section 3 is devoted to a detailed study of correction terms. We recall the Levine–
Ruberman versions of d -invariants and recall definitions of Vs invariants.

Section 4 contains some important computations that happen behind a scene. We recall
the computation of the Heegaard Floer chain complex of L-space knots, in particular, of
algebraic knots in Subsection 4.2. We show how to recover the Vs invariant of a product
of positive and negative staircases. A precise statement is given in Proposition 4–18.
We show that the assumptions in the second item of that proposition is necessary in
Subsection 4.4.

Next, we consider tensor products of knot Floer chain complexes in manifolds with
b1 > 0. It turns out that most of the knots that we encounter share a property, which
greatly facilitates our computations, namely they have split towers, see Definition 4–29.

Section 5 constructs a tubular neighborhood N of a singular curve and presents the
boundary Y of this neighborhood as a surgery on a link L in #ρS2 × S1 , where ρ is
the first Betti number of C . We then compute homological invariants of Y , N and
CP2 \ N . In particular, we study which Spinc structures on Y extend over CP2 \ N .
These computations are slight generalizations of calculations of [2, 3, 4].

Section 6 contains the proofs of Theorems 6–4 and 6–8. The main technical result
is Proposition 6–3, which computes the d-invariants of Y in terms of the semigroup
counting functions of knots of cuspidal singularities. We also compare Theorems 6–4
and 6–8 with bounds for cuspidal curves of higher genus in Subsection 6.4. Subsec-
tions 6.5 and 6.6 provide explicit examples of curves for which our obstruction can be
applied.
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2 Review of Heegaard Floer theory

2.1 Heegaard Floer complexes with multiple basepoints

Definition 2–1 A multi-pointed Heegaard diagram for a 3-manifold Y is a quadruple
(Σ,α,β,w) where:

• Σ is a genus g surface, which splits Y into two genus g handlebodies, Uα and
Uβ , and w = (w1, · · · ,wn) is a nonempty set of basepoints in Σ.

• α = (α1, . . . , αg+n−1) and β = (β1, . . . , βg+n−1) are collections of simple
closed curves on Σ, where n = |w| . Each curve in α bounds a compressing disk
in Uα , and each curve in β bounds a compressing disk in Uβ . Furthermore, the
curves in α are pairwise disjoint, and similarly for β .

• The curves α and β are transverse.

• The curves in α are linearly independent in H1(Σ \ w), and similarly for β .

Let Tα,Tβ ⊂ Symg+n−1(Σ) be two half-dimensional tori

Tα = α1 × · · · × αg+n−1, and Tβ = β1 × · · · × βg+n−1.

Ozsváth and Szabó [23, Section 2.6] describe a map

sw : Tα ∩ Tβ → Spinc(Y).

Given a Heegaard diagram of Y with a Spinc structure s, we define a Floer chain
complex CF−(Y,w, s) over F[U1, . . . ,Un] where F = Z/2Z. The chain complex is
generated over F[U1, . . . ,Un] by intersection points in Tα ∩ Tβ satisfying sw(x) = s.

Algebraic & Geometric Topology XX (20XX)
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For any x ∈ Tα ∩ Tβ , the differential is defined by

(2–2) ∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#(M(φ)/R)U
nw1 (φ)
1 · · ·Unwn(φ)

n y.

Here, π2(x, y) denotes the set of homotopy classes of maps of a complex unit disk
D to Symg+n−1(Σ) such that point −i is mapped to x, the point i is mapped to y,
∂D ∩ {Re(z) < 0} is mapped to Tβ and ∂D ∩ {Re(z) > 0} is mapped to Tα . The
quantity µ(φ) is the Maslov index of the disk. The space M(φ) is the moduli space of
Js -holomorphic disks representing φ (for some 1-parameter family of almost complex
structures Js on Symg+n−1(Σ)). The condition that µ(φ) = 1 implies that M(φ)/R
is generically a finite set of points. The integers nwi(φ) are intersection numbers of
{wi} × Symg+n−2(Σ) ⊂ Symg+n−1(Σ) with the image of φ.

The homology group HF−(Y,w, s) of the chain complex CF−(Y,w, s) has the structure
of F[U1, . . . ,Un]-module.

If c1(s) is torsion, then CF−(Y,w, s) admits an absolute Q-valued grading, which we
denote by grw . The differential decreases the grading by 1, so that the grading descends
to HF−(Y,w, s). Multiplication by any of the Ui decreases the grading by −2.

Formally inverting the variables U1, . . . ,Un in CF−(Y,w, s) gives a chain complex
CF∞(Y,w, s) over F[U1,U−1

1 , . . . ,Un,U−1
n ]. The associated homology group is

denoted HF∞(Y,w, s).

2.2 The link Floer complex

For links in S3 , Ozsváth and Szabó [26] introduced the link Floer homology, which
generalizes the knot Floer homology defined seperately by Rasmussen [28] and Ozsváth–
Szabó [22]. We presently recall their construction.

Definition 2–3 An oriented multi-pointed link L = (L,w, z) in a closed 3-manifold
Y is an oriented link L with two disjoint collections of basepoints w = {w1, . . . ,wn}
and z = {z1, . . . , zn}, such that as one traverses L , the basepoints alternate between w
and z. Furthermore, each component of L has a positive (necessarily even) number of
basepoints, and each component of Y contains at least one component of L .

Analogously to Definition 2–1, we have the following:

Definition 2–4 A multi-pointed Heegaard link diagram for L = (L,w, z) in Y is a
tuple (Σ,α,β,w, z) satisfying the following:

Algebraic & Geometric Topology XX (20XX)
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• (Σ,α,β,w) and (Σ,α,β, z) are embedded Heegaard diagrams for (Y,w) and
(Y, z), respectively, in the sense of Definition 2–1.

• L ∩ Σ = w ∪ z, and furthermore L intersects Σ positively at z and negatively at
w.

• L ∩ Uα (resp. L ∩ Uβ ) is a boundary-parallel tangle in Uα (resp. Uβ ).

Given a multi-pointed Heegaard link diagram (Σ,α,β,w, z) for (Y,L), the link Floer
chain complex is defined as follows. Let

R− = F[U ,V ], R∞ = F[U ,U −1,V ,V −1].

Let s be a Spinc structure on Y . We define the chain complex CFL−(Σ,α,β,w, z, s)
to be the free R− -module generated by x ∈ Tα ∩ Tβ with sw(x) = s . The differential
is given by the formula

(2–5) ∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#(M(φ)/R)U nw1 (φ)+···+nwn (φ)V nz1 (φ)+···+nzn (φ) · y,

extended R− -equivariantly. The differential ∂ squares to 0.

There is a larger version of the link Floer complex, which we call the full link Floer
complex, denoted by CFL−full(Y,L, s). As a module, CFL−full(Y,L, s) is freely generated
over the ring F[U1, . . .Un,V1, . . . ,Vn] by Tα∩Tβ . The differential is similar to (2–5),
except we use the weight nwi(φ) for the variable Ui , and the weight of nzi(φ) for the
variable Vi . In general, CFL−full(Y,L, s) is a curved chain complex, i.e. ∂2 = ωL · id,
for some ωL ∈ F[U1, . . . ,Un,V1, . . . ,Vn]; see [33, Lemma 2.1].

2.3 Homological actions

Ozsváth and Szabó describe an action of Λ∗(H1(Y)/Tors) on the homology group
HF−(Y,w, s); see [23, Section 4.2.5]. For a multi-pointed 3-manifold (Y,w), there is
an analogous action of the relative homology group H1(Y,w) on CF−(Y,w, s) [32].
In this section, we recall the construction and describe some analogs on link Floer
homology.

If (Σ,α,β,w) is a multi-pointed Heegaard diagram, and λ is a path which connects
two distinct basepoints w1,w2 ∈ w, then there is a relative homology action Aλ , which
is an endomorphism of CF−(Y,w, s) and satisfies

(2–6) Aλ∂ + ∂Aλ = U1 + U2.

Algebraic & Geometric Topology XX (20XX)
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See [32, Lemma 5.1].

The map Aλ is defined via the formula

(2–7) Aλ(x) =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

a(λ, φ)#(M(φ)/R)U
nw1 (φ)
1 · · ·Unwn (φ)

n · y.

Here a(λ, φ) ∈ F is a quantity determined as follows. Homotope the path λ so that it
is an immersed curve in Σ, transverse to the α and β curves. We write D(φ) for the
domain of the class φ, which is a 2-chain on Σ with boundary in α ∪ β . We write
∂D(φ) = ∂α(φ) + ∂β(φ). Then we set a(λ, φ) = #(∂α(φ) ∩ λ). Compare [32, Section
5.1]. Up to chain homotopy, the map Aλ only depends on the relative homology class
of λ in Y , relative to its boundary. In particular, the map Aλ does not depend on the
choice of representative on the surface Σ. See [18, Lemma 2.4] for a proof in a related
context, or [32, Lemma 5.6] for a similar proof in the present context.

If (Σ,α,β,w, z) is a multi-pointed Heegaard link diagram, and λ connects two
basepoints w1 and w2 , there is an analogous map Aλ on the link Floer homology. In
contrast to (2–6), we have

(2–8) Aλ∂ + ∂Aλ = U1V1 + U2V2,

where V1 denotes the variable for the basepoint z1 which immediately follows w1 with
respect to the ordering of basepoints on the link, and similarly V2 is the variable for
the basepoint z2 which immediately follows w2 . The proof follows from the same
strategy as [32, Lemma 5.1]: one counts the ends of index 2 families of holomorphic
disks. There are two types of ends, pairs of index 1 holomorphic disks as well as
index 2 boundary degenerations. Pairs of index 1 holomorphic disks contribute the
left-hand side of (2–8), while the count of boundary degenerations, weighted by a(λ, φ),
contributes the right-hand side.

If zi ∈ z, then there is an endomorphism of CFL−full(Y,L, s) defined by the formula

Ψzi(x) = V −1
i

∑
y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

nzi(φ)#(M(φ)/R)U
nw1 (φ)

1 · · ·U nwn (φ)
n V

nz1 (φ)
1 · · ·V nzn (φ)

n ·y.

We call Ψzi the basepoint action of zi . Note that since the contribution of each disk
class φ is multiplied by nzi(φ) in the sum, the additional factor of V −1

i never results in
negative powers of Vi , and hence the formula induces a well-defined endomorphism of
CFL−full(Y,L, s).

Given wi ∈ w, there is an analogous endomorphism Φwi . The map Ψzi satisfies

Ψzi∂ + ∂Ψzi = Uj + Uj+1,

Algebraic & Geometric Topology XX (20XX)
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where wj and wj+1 are the w basepoints adjacent to zi on the link. In particular, if
we identify all of the Ui variables to a single U , then Ψzi is a chain map. See [29,
Lemma 4.1] or [33, Lemma 3.1]. Similarly, if zi is on a link component which has only
one other basepoint, then Ψzi is also a chain map.

2.4 Heegaard Floer homology of a knotification

Definition 2–9 (Knotification) Let L = L1 ∪ · · · ∪ Ln be a null-homologous link in a
3-manifold Y .

(1) A partial knotification of L with respect to components Li,Lj is a (n − 1)-
component null-homologous link Lij in Y#S2 × S1 obtained by connecting Li

and Lj with an oriented band going across the S2 × S1 summand.

(2) A knotification of L is a knot L̂ in Y#n−1S2× S1 obtained by consecutive partial
knotifications.

The isotopy type L̂ does not depend on the feet of the bands; see [22, Propostion 2.1].

Suppose L = (L,w, z) is an n-component link in #mS2 × S1 , equipped with 2n
basepoints, and L′ is a multi-pointed link in #m+1S2 × S1 , obtained by knotifying the
components Ln−1 and Ln of L. Furthermore, we assume that the basepoints on the
link components L1, . . . , Ln−2 are unchanged in L′ , and on L′n−1 we have only the two
basepoints wn and zn−1 . There are two natural maps

F : CFL−(#mS2 × S1,L)→ CFL−(#m+1S2 × S1,L′)
G : CFL−(#m+1S2 × S1,L′)→ CFL−(#mS2 × S1,L).

The map F is the link cobordism map for a 4-dimensional 1-handle, followed by a
saddle which crosses over the 1-handle. The decoration on the saddle consists of an
arc, which connects the two link components of L. Outside of the saddle region, the
decoration consists of “vertical” arcs which connect L to L′ . See the left-hand side of
[34, Figure 5.1]. The map G is the map for the link cobordism obtained by reversing
the orientation and turning around the above cobordism for F .

The following is a key lemma which we use to compute the H1 action for knotified
links:

Proposition 2–10 Suppose L , L′ , F and G are as above. Let λ be an arc in #mS2× S1

which connects the w basepoints of Ln−1 and Ln . Let γ be the unique element
of H1(#m+1S2 × S1) obtained by joining the ends of λ across the 1-handle used in
knotification. We have the following:

Algebraic & Geometric Topology XX (20XX)
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(a) F and G are homogeneously graded chain homotopy inverses.

(b) The map F satisfies

F(Aλ + U Φwn) ' F(Aλ + V Ψzn) ' AγF.

Proof To simplify the notation, we will describe the case when L is a link in S3 with
two components L1 and L2 . We begin with claim (a). The proof is formally identical to
the proof of [34, Proposition 5.1] and follows from two 4-dimensional surgery relations
[34, Propositions 5.2 and 5.4].

We now move onto claim (b). We first show that

(2–11) F(Aλ + V Ψz2) ' AγF.

By definition, we may take

(2–12) F = S−w2,z1
Fw

B F1,

where F1 is the 1-handle map, S−w2,z1
is a quasi-destabilization map, and Fw

B is a type-w
saddle map; see [36] for precise definitions of the relevant maps. Here B denotes the
band (i.e. saddle) which crossed over the 1-handle used in the knotification operation.

We have now

(2–13) F1(Aλ + V Ψz2) = (Aλ + V Ψz2)F1

by the same argument that the 1-handle is a chain map [25, Section 4.3] (see also [32,
Lemma 8.11]). Analogously, the computation of the quasi-stabilized differential in [33,
Proposition 5.3] implies that

AγS−w2,z1
= S−w2,z1

Aγ .

Hence, it is sufficient to show that

Fw
B (Aλ + V Φz1) = AγFw

B .

We recall the definition of the map Fw
B . We pick a Heegaard triple (Σ,α,β,β′,w, z)

subordinate to the band [36, Defintion 6.2]. The diagram (Σ,β,β′,w, z) contains two
canonical intersection points, Θw

β,β′ and Θz
β,β′ , where Θo

β,β′ is the top degree generator
with respect to the gro -grading, where o ∈ {w, z}. By definition

Fw
B (x) = Fα,β,β′(x,Θz

β,β′).

Counting the ends of Maslov index 1 families of holomorphic triangles, weighted by
a(λ, ψ), we obtain the relation

Fα,β,β′(Aλ(x),Θz
β,β′) + Aλ(Fα,β,β′(x,Θz

β,β′))

=FA
λ(∂x,Θz

β,β′) + FA
λ(x, ∂Θz

β,β′) + ∂FA
λ(x,Θz

β,β′);
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see [32, Lemma 5.2]. Here FA
λ counts index 0 holomorphic triangles with an extra factor

of a(λ, ψ). Note that one might expect an extra term involving Fα,β,β′(x,Aλ(Θz
β,β′)),

however this term vanishes since Aλ weights disks based on their changes across the α

curves and Θz
β,β′ ∈ Tβ ∩ Tβ′ . Since ∂Θz

β,β′ = 0, we obtain that

(2–14) Fw
B ◦ Aλ + Aλ ◦ Fw

B ' 0.

Similarly, counting the ends of index 1 families of holomorphic triangles, weighted by
nz2(ψ), we obtain

Fα,β,β′(V Ψz2(x),Θz
β,β′) + Fα,β,β′(x,V Ψz2(Θz

β,β′)) + V Ψz2(Fα,β,β′(x,Θz
β,β′))

=F′(∂x,Θz
β,β′) + F′(x, ∂Θz

β,β′) + ∂F′(x,Θz
β,β′),

where F′ counts index 0 triangles weighted by a factor of nz1(ψ). The above equation
implies that

(2–15) Fw
B ◦ V Ψz2 + V Ψz2 ◦ Fw

B ' Fα,β,β′(−,V Ψz2(Θz
β,β′)).

We claim now that the map Fα,β,β′(−,V Ψz2(Θz
β,β′)) is null-homotopic. To establish

this, it is sufficient to show that

(2–16) [V Ψz2(Θz
β,β′)] = 0,

where the brackets denote the induced element of homology. Indeed, assuming the
existence of an η ∈ CFL−(Σ,β,β′,w, z) such that ∂η = V Ψz2(Θz

β,β′), associativity
of holomorphic triangles implies that

Fα,β,β′(x,V Ψz2(Θz
β,β′)) = ∂Fα,β,β′(x, η) + Fα,β,β′(∂x, η),

so

(2–17) Fα,β,β′(−,V Ψz2(Θz
β,β′)) ' 0.

We will now demonstrate Equation (2–16). We observe that the map Ψz2 commutes
with the homotopy equivalences associated to changing Heegaard diagrams by [33,
Lemma 3.2]. Furthermore, the homology class [Θz

β,β′] is also preserved by these
homotopy equivalences by [36, Lemma 3.7], since it is the unique generator in its grading.
In particular, we may verify Equation (2–16) for any convenient choice of Heegaard
diagram for an unknot with four basepoints. We perform the computation using the
genus 0 Heegaard diagram shown in Figure 1. On this diagram, Ψz2(Θz

β,β′) = 0.
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w1 z2
w2

z1

Θw
β,β′

Θz
β,β′

ββ′

Figure 1: An unkot with 4 basepoints. The dashed arc is λ .

Combining (2–14), (2–15) with (2–17), we obtain

(2–18) Fw
B (Aλ + V Ψz2) ' (Aλ + V Ψz2)Fw

B .

Next, consider a path λ′ from w1 to w2 , which is a subarc of L′ . We choose λ′ so that
it is oriented from w1 to w2 . There are two such subarcs of L′ , and we pick the one so
that the portion of λ′ nearest to w1 is in the beta-handlebody (equivalently, we pick
the one which goes over the band B before arriving at a z basepoint). Without loss of
generality, we may assume that λ′ crosses over z2 . See Figure 2. We define

γ := λ ∗ λ′,

where ∗ denotes concatenation.

λ′w1

z1

z2

w2

B

Figure 2: The configuration of the band B , the basepoints, and the arc λ′ ⊂ L′ .

On the Heegaard diagram, we may choose λ′ to cross only the alpha curves between
w1 and z2 , and only the beta curves between z2 and w2 . Clearly,

a(λ′, φ) = nw2(φ)− nz2(φ).

Hence, Aλ′ = U Φw2 + V Ψz2 , or equivalently

(2–19) V Ψz2 = Aλ′ + U Φw2 .
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Combining (2–18) and (2–19), we obtain

F(Aλ + V Ψz2) ' S−w2,z1
(Aλ + Aλ′ + U Φw2)Fw

B F1

' S−w2,z1
(Aγ + U Φw2)Fw

B F1

' AγS−w2,z1
Fw

B F1.

(2–20)

The second line of (2–20) follows from the relation Aγ ' Aλ + Aλ′ . The final line
follows from (2–13), as well as the relation that S−w2,z1

Φw2 ' S−w2,z1
S+

w2,z1
S−w2,z1

' 0 by
[36, Lemmas 4.11 and 4.13], completing the proof of (2–11).

Finally, to see that
F(Aλ + U Φw2) ' AγF,

it is sufficient to show that V Ψz2 ' U Φw2 on CFL−(L). To see this, we note that
on a diagram for L, we can consider a shadow of the link component L2 . The arc
L2 \ {w2, z2} contains two subarcs, one of which intersects only the alpha curves, and
one of which intersects only the beta curves. Hence a(L2, φ) = nw2(φ)− nz2(φ) for any
class of disks φ . On the other hand, this implies that the homology action associated to
0 = [L2] ∈ H1(S3) satisfies

0 ' AL2 = U Φw2 + V Ψz2 ,

completing the proof.

The homology action on full knotifications may be computed by iterating the above
result, via the following lemma:

Lemma 2–21 Let L, L′ , F and G be as in Proposition 2–10.

(1) Suppose that γ ∈ H1(#mS2 × S1). Write γ also for the induced element of
H1(#m+1S2 × S1). Then Aγ commutes with F and G up to chain homotopy.

(2) If λ is an arc in #mS2×S1 which connects two components of L1, . . . , Ln−2 , then
the relative homology map Aλ commutes with F and G up to chain homotopy.

(3) If w and z are basepoints on one of the link components L1, . . . , Ln−2 , then Φw

and Ψz commute with F and G up to chain homotopy.

The proof of Lemma 2–21 is similar to the proof of Proposition 2–10 (though strictly
easier), and hence we omit it. We refer the reader to [32, Section 5] and [36, Section 4]
for related results.
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α

β

ha
hb hc

hd

λ
e

w1 z2 z1 w2

Figure 3: A genus 0 Heegaard diagram for the Hopf link. The thick (red) curve is the α-curve,
the thin (blue) curve is the β -curve. The dotted curve is used to compute the action of
H1(S2 × S1;Z) on the knotification of the Hopf link.

2.5 The Hopf link

Our next goal is to describe the CFL− complexes for the (2, 2n)-torus links, denoted by
T2,2n , their mirrors and their knotifications. As the calculations are rather involved, we
begin with describing the Floer chain complex for the link T2,2 (ie. the positive Hopf
link), leaving the general case to Subsection 2.6. While the complex CFL−(T2,2) is
well known (it can be computed explicitly using a very simple diagram), to the best of
our knowledge, the calculation of the action of H1(S2 × S1) on the knot Floer chain
complex of the knotification of T2,2 is new.

As our main focus will be eventually the knotification of T2,2 , we restrict our attention
to the link Floer complex over the ring R− = F[U ,V ], as opposed to the version with
a variable for each basepoint.

Consider the diagram for the Hopf link, as in Figure 3. The complex CFL−(T2,2) is
generated over R− by four elements, ha , hb , hc and hd , which correspond to the
intersections of the α and β curves in Figure 3. The gradings are as follows:

(grw(ha), grz(ha)) =

(
1
2
,−3

2

)
(grw(hc), grz(hc)) =

(
−3

2
,

1
2

) (grw(hb), grz(hb)) =

(
−1

2
,−1

2

)
(grw(hd), grz(hd)) =

(
−1

2
,−1

2

)(2–22)

The differential in the complex is computed by counting holomorphic disks of Maslov
index 1. Counting bigons shows that

(2–23) ∂ha = ∂hc = 0, ∂hb = ∂hd = U ha + V hc.
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The homology of CFL∞(T2,2) is a direct sum of two copies of R∞ . One copy is
spanned by [hb + hd], the other copy is spanned by ha or hc .

We now describe the homology action Aγ on CFK−(T̂2,2), where T̂2,2 denotes the
knotification of T2,2 , and γ is a generator of H1(S2×S1). We will use Proposition 2–10.
The formula therein involves the relative homology action Aλ on CFL−(T2,2), which
we compute presently. In our present case, the arc λ has only one intersection with
an alpha curve, which occurs at a point labeled e in Figure 3. The map Aλ counts
holomorphic disks of Maslov index 1, with weights corresponding to changes along the
alpha boundary of a disk; see (2–7). Counting bigons with these weights, we obtain:

(2–24) Aλ(ha) = V (hb + hd), Aλ(hb) = 0, Aλ(hc) = U (hb + hd), Aλ(hd) = U ha.

We recall that in Section 2.4 we defined a knotification map

F : CFL−(T2,2)→ CFK−(T̂2,2),

which is a homotopy equivalence. In Proposition 2–10, we showed that

F(Aλ + U Φw2) ' AγF.

Hence, as a model for the pair (CFK−(T̂2,2),Aγ), we may use (CFL−(T2,2),Aλ+U Φw2).
Hereafter, by a model for a chain complex (possibly with an extra structure) defined up
to chain homotopy equivalence, we mean a concrete chain complex in the class of an
appropriate (usually: bifiltered) chain homotopy equivalence. Abusing notation slightly,
we will write Aγ for the endomorphism of CFL−(T2,2) given by Aγ := Aλ + U Φw2 .
One easily computes

Φw2(hd) = ha,

and Φw2 vanishes on the other generators. Hence,

(2–25) Aγ(ha) = V (hb+hd), Aγ(hb) = U ha, Aγ(hc) = U (hb+hd), Aγ(hd) = U ha.

With a change of basis h′d = hb + hd , we obtain the following presentation of
(CFK−(T̂2,2),Aγ):

(2–26)

ha hb

h′d hc

V

U

U

V

U

In (2–26), the dashed arrows denote differentials, and the solid arrows denote the action
of Aγ .
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We may obtain a simpler model of the homology action by replacing Aγ with Aγ+[∂,F],
where F is the R− -equivariant map which satisfies

F(ha) = ha, and F(hb) = F(hc) = F(hd) = 0.

The resulting model for (CFK−(T̂2,2),Aγ) is shown in (2–27).

(2–27)

ha hb

h′d hc

V

U

V

U

2.6 The torus link T2,2n

Before we start computation of Floer chain complex of the (2, 2n)-torus link and its
knotification, we introduce a family of complexes Sn , n ∈ Z, which play a prominent
role in the present paper.

Definition 2–28 Suppose n ≥ 1. We write Sn for the complex generated by elements
x0, y1, . . . , y2n−1, x2n with differential ∂(x2i) = 0 and

∂(y2i+1) = U x2i + V x2i+2.

The bigradings are given by (grw(xj), grz(xj)) = (−j, j − 2n), if j is even. The same
formula holds for yj , if j is odd.

The complex S−n is defined as the dual complex to Sn . More specifically, it is
generated by elements x0, y1

, . . . , y
2n−1

, x2n with differential ∂(y
2i+1

) = 0, ∂(x2i) =

V y
2i−1

+ U y
2i+1

, and the convention that y−1
= y

2n+1
= 0. For j even, the grading

of xj is (j, 2n− j), and an analogous formula holds for the grading of y
j

if j is odd.

Remark 2–29 The complex Sn is the CFK− complex of the positive torus knot
T2,2n+1 , while S−n is the complex for the negative torus knot T2,−(2n+1) . Hence, we
also call Sn a staircase complex. For details of staircase complexes, see Section 4.1.

Recall that T2,2n ⊂ S3 denote a 2-component (2, 2n)-torus link. In this subsection, we
study the Floer chain complex CFL−(T2,2n) as an R− -module. This gives the Floer
chain complex CFK−(S2 × S1, T̂2,2n), where T̂2,2n is the knotification of T2,2n .

The Heegaard diagram of the link T2,2n in S3 is shown in Figure 4 and the Floer chain
complex is in Figure 6. The Heegaard diagram displayed therein is obtained from a
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x0

x1

x2

x3

x4

x5

x6

x7

w1 w2

Figure 4: A Heegaard diagram for T2,4 from a doubly pointed open book. The dashed line is an
arc λ connecting w1 and w2 .

doubly pointed open book whose page is a disk, and whose monodromy is γn , where γ
denotes a Dehn-twist parallel to the boundary.

It is easy to see that there are 4n generators y0, . . . , y4n−1 of the complex CFL−(T2,2n).
By counting bigons, one obtains the following formulas for the differential:

∂yi = ∂y4n−i = V (yi−1 + y4n−i+1) + U (yi+1 + y4n−i−1) if 2 ≤ i ≤ 2n− 2

∂y1 = ∂y4n−1 = V y0 + U (y2 + y4n−2),

∂y2n−1 = ∂y2n+1 = U y2n + V (y2n−2 + y2n+2),

∂y0 = ∂y2n = 0.

(2–30)

It is convenient to do the following bigraded change of basis to the complex CFL−(T2,2n).
Namely we consider the basis y1, . . . , y2n−1, x0, . . . , x2n , where

xi = yi + y4n−i

x0 = y0,

x2n = y2n.

if 1 ≤ i ≤ 2n− 1,

(2–31)
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y1 y2 y3

y0 y4

y7 y6 y5

V

U

U

V

V

U

U

V

V

U

U

V U
V

V

U

U
V

V

U

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

V

U

U

V

V

U

U

V

V

U

U

V

V

U

U

V

V

U

U

V U
V

U

V

U
V

U

V

U
V

U

V

U
V

V

U

Figure 5: The chain complexes for T2,4 (1st level from top) and T2,6 (2nd level)
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Aλ =

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

U
U U U U

U

V

U
U U U U

V

Φw2 =

y1 y2 y3 y4 y5

y0 y6

y11 y10 y9 y8 y7

1 1

1

1

1 1

1

1

1

Figure 6: Figure 5 continued. The map Aλ on the complex for T2,6 , and on the bottom is the
map Φw2 .
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With this change of basis, the differential takes the form

∂yi = V xi−1 + U xi+1 if 1 ≤ i ≤ 2n− 1

∂xi = 0.
(2–32)

The gradings of the generators in CFL−(T2,2n) are summarized in the following lemma:

Lemma 2–33 If 1 ≤ i ≤ 2n− 1, then(
grw(yi), grz(yi)

)
=
(
grw(xi), grz(xi)

)
=

(
1
2
− 2n + i,

1
2
− i
)
.

If i = 0 or i = 2n, then the same formula holds for xi .

Proof Recall that ∂ has (grw, grz)-bigrading of (−1,−1), and that U and V have
bigradings (−2, 0) and (0,−2), respectively. Using the description in Figure 6, it is
easy to check that the formula holds up to an overall additive constant. That is, the
formula holds for the relative grw and grz gradings. Hence, it is sufficient to show
the absolute grw grading is correct for one of the generators, and similarly for the grz
grading. To check the absolute gradings, we note that if we set V = 1 and U = 0,
then we recover the Heegaard Floer complex for ĈF(S3,w1,w2), which is homotopy
equivalent to F1/2 ⊕ F−1/2 , as a grw -graded chain complex. In this case, the complex
has generators x2n−1 and x2n , which pins down their grw -grading. A similar argument
computes the grz -gradings.

We now compute the homology action Aγ on the complex of the knotification of T2,2n .
In order to use Proposition 2–10, we need to compute Aλ and Φw2 . For a choice of arc
on the Heegaard surface as in Figure 4, by counting bigons we obtain that Aλ has the
form

Aλ(y0) = U (y1 + y4n−1),

Aλ(y2n) = V (y2n−1 + y2n+1)

Aλ(yi) = U yi+1

Aλ(yi) = U y4n−i+1

if 0 < i < 2n, and

if 2n + 1 < i < 4n.

(2–34)

By (2–31), we have

Aλ(x0) = U x1,

Aλ(x2n) = V x2n−1

Aλ(xi) = U xi+1

Aλ(x2n−1) = 0

if 0 < i < 2n− 1
(2–35)
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Next, we need to understand the map Φw2 . Counting bigons on diagrams like those
shown in Figure 4 implies that Φw2 takes the following form:

Φw2(y2i) = y2i+1

Φw2(y2i+1) = y2i + y4n−2i

Φw2(y2i) = y4n−2i+1

Φw2(y2n+1) = y2n,

if 0 < i < n,

if n < i < 2n,

if n < i < 2n,
(2–36)

and Φw2 vanishes on all other generators.

Finally, we combine Proposition 2–10 with (2–35) and (2–36) to obtain the following
formula for Aγ ' Aλ + U Φw2 on the knotified complex, which we write in terms of
the basis from (2–31):

Aγ(y2i+1) = U x2i+2 + U y2i+2

Aγ(y2i) = U x2i+1

Aγ(x2i) = U x2i+1

Aγ(x2n) = V x2n−1,

if 0 ≤ i < n− 1,

if 0 < i < n− 1

if 0 ≤ i < n,

(2–37)

and Aγ vanishes on all other generators. The example of T2,6 is shown below:
(2–38)

Aγ =

y1 y3 y5

x0 x2 x4 x6

y2 y4

x1 x3 x5

V U
U

U

V

U
U

U

V

U
U

U U U

V

V

U
U

V

U
U

The dashed lines denote the differential and the solid lines denote the Aγ action. It
is convenient to modify the map Aγ by a further chain homotopy, so that it takes one
staircase summand to the other, with no self arrows, as follows. Define a function
δ : N→ F by the formula

δ(n) = n(n− 1)/2 mod 2.

Conceptually, it is easier to think of δ(n) as the sequence 0, 0, 1, 1, 0, 0, 1, 1, . . . . We
define a homotopy F as follows. On the first staircase summand, we define F via the
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formula
F(x2i) = δ(2i) · x2i

F(y2i+1) = δ(2i + 1) · y2i+1

if 0 ≤ i ≤ n,

if 0 ≤ i < n.

On the second staircase summand, we define F via the formula

F(x2i+1) = δ(2i) · x2i+1

F(y2i) = δ(2i− 1) · y2i

if 0 ≤ i < n

if 0 < i < n.

Writing A′γ for Aγ + [∂,F], we compute that

A′γ(x2i) = U x2i+1

A′γ(y2i+1) = U y2i+2

Aγ′(x2n) = V x2n−1.

if 0 ≤ i < n,

if 0 ≤ i < n− 1,

Continuing our running example of T2,6 , equation (2–38) becomes the following
(2–39)

Aγ+[∂,F] =

y1 y3 y5

x0 x2 x4 x6

y2 y4

x1 x3 x5

V

U

U

V

U

U

V

U

U U U

V

V

U

V

U

We summarize the above computation as follows:

Proposition 2–40 The pair (CFK−(S2×S1, T̂2,2n),Aγ) has a model where CFK−(S2×
S1, T̂2,2n) is equal to Sn{ 1

2 ,
1
2}⊕S

n−1{− 1
2 ,−

1
2} and Aγ maps Sn to Sn−1 on the chain

level. Here, we recall that {i, j} denotes a shift in the (grw, grz)-grading by (i, j), and
Sn and Sn−1 are the chain complexes in Definition 2–28.

We now consider mirror of the (2, 2n)-torus link, which we denote by T2,−2n . We
denote its knotification by T̂2,−2n . On the level of Floer complexes, taking the mirror
amounts to replacing the link Floer complex by the dual complex over the ring R− . In
practice, this amounts to reversing all the arrows in the differential and multiplying the
(grw, grz)-bigrading by an overall factor of −1. The homology action on the mirror is
also the dual. We summarize this as follows:
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Proposition 2–41 The pair (CFK−(S2×S1, T̂2,−2n),Aγ) has a model where CFK−(S2×
S1, T̂2,−2n) is equal to S−n{− 1

2 ,−
1
2} ⊕ S

−(n−1){1
2 ,

1
2} and Aγ maps S−(n−1) to S−n

on the chain level.

2.7 The Borromean knot B0

Let B0 ⊂ #2S2 × S1 be the Borromean knot, that is, the knot obtained from the
Borromean rings by a zero-framed surgery on two of its components. The Heegaard
Floer chain complex of B0 is described in [22, Proposition 9.2]. We adapt the calculation
of [3, Section 5] and [2, Section 4] to the present context.

The chain complex CFK−(B0) is homotopy equivalent to F4 ⊗F R− , with vanishing
differential. We write 1, x, y, xy for the generators of F4 , which we can think of as
being generators of H∗(T2). The bigradings are as follows:

(grw(1), grz(1)) = (1,−1), (grw(x), grz(x)) = (grw(y), grz(y)) = (0, 0), and

(grw(xy), grz(xy)) = (−1, 1).

(2–42)

Up to an overall grading preserving isomorphism, the H1(#2S2 × S1) module structure
is uniquely determined by the formal properties of the action. In detail, if we write x∗

and y∗ for the two generators of H1(#2S2 × S1), then the module structure takes the
following form (up to overall isomorphism):

Ay∗ =

xy

x y

1

V U

VU

Ax∗ =

xy

x y

1

VU

V U

For the explicit description of the top and bottom towers of CFK−(B0), we refer the
readers to [3, Section 5].
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3 Correction terms

3.1 Generalized correction terms of Levine and Ruberman

Suppose Y is an oriented closed three-dimensional manifold. The module HF∞(Y) is
standard if for each torsion Spinc structure s,

HF∞(Y, s) ∼= Λ∗H1(Y;Z)⊗Z F[U,U−1]

as Λ∗(H1(Y;Z)/Tors) ⊗Z F[U]-modules. Any manifold Y for which the triple cup
product vanishes is standard, see [16] (and also [15, Theorem 3.2]). In particular, a
connected sum of finitely many copies of S1 × S2 has standard HF∞ . Hence, a large
surgery on a null-homologous knot in #S1 × S2 has standard HF∞ ; see [21]. This
means that essentially all 3-manifolds we are going to consider have standard HF∞ .

There is an action (up to homotopy) of Λ∗(H1(Y)/Tors) on CF−(Y, s). Expanding on
work of Ozsváth and Szabó [21], Levine and Ruberman [15] associate a d-invariant
to any primitive subspace G of H1(Y)/Tors (recall that a primitive subspace is a free
submodule whose quotient is free) and any Spinc structure s on Y whose first Chern
class is torsion as long as HF∞(Y) is standard. We denote this invariant by d(Y, s,G).
For our purposes, the two most important instances are the invariants

dbot(Y, s) := d(Y, s,H1(Y)/Tors), dtop(Y, s) := d(Y, s, {0}),

which correspond approximately to the kernel and cokernel, respectively of the
H1(Y)/Tors action.

The key property of these invariants is the following inequality, generalizing the
Ozsváth–Szabó inequality.

Theorem 3–1 (see [15, Theorem 4.7]) Suppose X is a connected four-manifold such
that b+

2 (X) = 0 and ∂X = Y . Suppose s is a Spinc structure on Y that extends to a
Spinc structure t on X . Then

d(Y, s,G) ≥ 1
4
(
c2

1(t) + b−2 (X)
)

+
1
2

b1(Y)− rk G,

if G contains the kernel of the inclusion map from H1(Y)/Tors to H1(X)/Tors.

3.2 V -invariants

The aim of this section is to gather several definitions of Vs -invariants. In the context of
Heegaard Floer theory, all these definitions lead to the same invariants.
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The first definition recalls the classical Vs -invariant for knots. The assumptions on C∗
in Definition 3–2 are modelled on a knot Floer complex CFK− .

Definition 3–2 (Vs -invariants for complexes over F[U,U−1]) Suppose C∗ is a
filtered chain complex of free F[U] modules (with multiplication by U decreasing
the filtration level by 1 and the grading by 2) such that the homology of the localized
complex U−1C∗ is equal to F[U,U−1]. For s ∈ Z the invariant Vs(C∗) is such that
−2Vs(C∗) is the maximal grading of an element x ∈ C∗ at filtration level at most s such
that the class of Ukx is non-zero in H∗(C∗) for all k ≥ 0.

Next, we define the Vs -invariants of a bigraded R− -module where R− = F[U ,V ].
The definition is essentially taken from [35, Equation (10.3)]. Suppose C∗ is a bigraded
chain complex over R− such that multiplication by U changes the grading by (−2, 0),
multiplication by V changes the grading by (0,−2), and the differential changes the
grading by (−1,−1). Let (grw, grz) denoting the bigrading. It is not hard to see that
the differential and multiplication by U V preserves the difference grw− grz .

Definition 3–3 (Vs -invariants over R− ) Suppose C∗ is a chain complex over R−

such that

(3–4) (U ,V )−1 · H∗(C∗) ∼= R∞ = F[U ,V ,U −1,V −1],

as bigraded groups. (Here (U ,V )−1· denotes localization at the non-zero monomials
of R− ). We write As(C∗) for the subcomplex of C∗ which has grw− grz = 2s. We
can view As(C∗) as a complex over F[U], where U acts by U V . We define d(As(C∗))
for the maximal grw -grading of a homogeneously graded, F[U]-non-torsion element of
H∗(As(C∗)). We define

Vs(C∗) = −1
2

d(As(C∗)).

Remark 3–5 Suppose M is a graded module over R− such that (U −1,V −1) ·M ∼=
R∞ as bigraded groups. We define Vs(M) to be the Vs(C∗) with C∗ being the chain
complex with the same underlying module structure as M but trivial differential.

Remark 3–6 If C∗ is the chain complex CFL−(S3,K) for a knot K ⊂ S3 , Vs(C∗) is
the classical V -function of the knot K . In this case, we also denote it by Vs(K) if the
context is clear. We refer the readers to [35, Section 1.5] for translating between the
chain complex CFL−(S3,K) and CFK−(S3,K).

Suppose C∗ is as in Definition 3–3. Let a, b ∈ Z. The chain complex C∗{a, b} is
defined as the chain complex equal to C∗ , but with grading shifted by (a, b). That is, if
x ∈ C∗ has bigrading (c, d), then x ∈ C∗{a, b} has bigrading (a + c, b + d).
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Lemma 3–7 Suppose C∗ is a bigraded chain complex over R− and let D∗ = C∗{a, b}
be the chain complex with shifted grading. Then Vs+(a−b)/2(D∗) = Vs(C∗)− a/2.

Proof We use the fact that As(C∗) = As+(a−b)/2(D∗).

In our computations, we will need to show that Vs -invariants of locally equivalent
complexes are the same. We recall the relevant definition.

Definition 3–8 Two chain complexes C∗ and D∗ are locally equivalent, if there exist
grading preserving, R− -equivariant chain maps f : C∗ → D∗ , g : D∗ → C∗ such that
both f and g induce the identity map on (U ,V )−1 · C∗ ∼= (U ,V )−1 · D∗ .

As an example, we quote the following result of Hedden, Kim and Livingston, see [8,
Theorem B.1]. (Note that ν+ -equivalence is equivalent to local equivalence; cf. [10,
Proposition 3.11].)

Proposition 3–9 The tensor product Sk ⊗ S` is locally equivalent to Sk+` for any
integers k, l.

We have the following result (see [34, Section 2], [10] or [13, Section 3]):

Proposition 3–10

(a) If C∗ is locally equivalent to D∗ , then Vs(C∗) = Vs(D∗) for all s.

(b) If C∗ is locally equivalent to D∗ and E∗ is locally equivalent to F∗ , then C∗⊗E∗
is locally equivalent to D∗ ⊗ F∗ .

We now extend Definition 3–3 to the case of chain complexes with a group action.
Suppose C∗ is a bigraded chain complex over R− and H is a free abelian group such
that the ring Λ∗H acts on H∗(C∗), and the action of H has degree (−1,−1). Let
Tors ⊂ H∗(C∗) denote the R− -torsion submodule. Define

Htop = coker
(
H ⊗ (H∗(C∗)/Tors)→ (H∗(C∗)/Tors)

)
Hbot =

⋂
γ∈H

ker(γ : (H∗(C∗)/Tors)→ (H∗(C∗)/Tors)).

By analogy of (3–4) we require that

(U ,V )−1 · Htop ∼= R∞ ∼= (U ,V )−1 · Hbot
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as relatively bigraded R− -modules. Let Htop
s (resp. Hbot

s ) denote the F[U]-submodule
generated by homogeneously graded elements x ∈ Htop (resp. x ∈ Hbot) such that
grw(x)− grz(x) = 2s (recall U acts by U V ). We define dtop

s (C∗) to be the maximal
grw -grading of a homogeneously graded, F[U] non-torsion element of Htop

s , and we
define dbot

s (C∗) analogously.

Definition 3–11 We set

V top
s (C∗) := −1

2
dtop

s (C∗) and Vbot
s (C∗) = −1

2
dbot

s (C∗).

Remark 3–12 If K is a null-homologous knot in a closed, oriented connected
3-manifold Y with standard HF∞(Y), for simplicity, we use As(K) to denote

As(CFL−(Y,K)), and use V top
s (K) = −1

2
dtop

s (K),Vbot
s (K) = −1

2
dbot

s (K) to denote

V top
s (CFL−(Y,K)) and Vbot

s (CFL−(Y,K)), repsectively.

3.3 Large surgery formula

To set up the notation, we recall the large surgery formula [23, Section 4] and relate the
d -invariants of the surgery on a knot to its Vs -invariants. We first recall the description
of Spinc structures on a surgery.

Definition 3–13 Suppose Y is a closed 3-manifold and K ⊂ Y is a null-homologous
knot. Let s ∈ Spinc(Y), and q ∈ Z>0 . For any m ∈ [−q/2, q/2) ∩ Z we denote by sm

the unique Spinc structure on Yq(K) such that sm extends to a Spinc structure tm on
W uniquely characterized by the properties that tm|Y = s and 〈c1(tm),F〉+ q = 2m,
where W is the trace of the surgery on K and F is the generator of H2(W) obtained by
gluing a Seifert surface for K with the core of the two-handle.

With this notation, we state Ozsváth and Szabó’s large surgery theorem [23, Theo-
rem 4.1]:

Theorem 3–14 Suppose K ⊂ Y is a null-homologous knot in a closed 3-manifold.
Suppose q > 2g3(K) is an integer. For a Spinc structure sm on Y as in Definition 3–13,
there exists a quasi-isomorphism between CF−(Yq(K), sm) and Am , where Am is a
F[U] subcomplex of CFL−(Y,K, s) of elements x with grading grw(x)− grz(x) = 2m.
If s is torsion, then the quasi-isomorphism shifts the grading (Maslov grading on
CF−(Yq(K), sm) and grw -grading on Am ) by (q−2m)2−q

4q .
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From this theorem we obtain the following well-known equalities.

Theorem 3–15 Suppose K ⊂ Y is as in Theorem 3–14 and q > 2g3(K).

(a) If Y is a rational homology sphere, then d(Yq(K), sm) = (q−2m)2−q
4q − 2Vm(K);

(b) If b1(Y) > 0 and HF∞(Y) is standard, then dtop(Yq(K), sm) = (q−2m)2−q
4q −

2V top
m (K) and dbot(Yq(K), sm) = (q−2m)2−q

4q − 2Vbot
m (K).

4 Staircase complexes and their tensor products

In this section, we introduce staircase complexes. Next, we compute the correction
terms of certain tensor products of staircase complexes.

4.1 Staircase complexes

A positive staircase complex P is a bigraded chain complex over R− with generators
x0, y1, x2, . . . , y2n−1, x2n for some n > 0 with differential given by ∂y2i+1 = U αi · x2i +

V βi · x2i+2 , ∂x2j = 0, extended equivariantly over R− , for some positive integers αi

and βi . We assume that ∂ , U and V are (−1,−1), (−2, 0) and (0,−2) bigraded,
respectively. We assume that αi = βn−i−1 . Furthermore, we assume the gradings
are normalized so that H∗(P/(U − 1)) ∼= F[V ] has generator with grz -grading 0,
and H∗(P/(V − 1)) ∼= F[U ] has generator with grw -grading 0. A negative staircase
complex is the dual complex of a positive staircase complex.

Example 4–1 The complex Sn of Definition 2–28 is a positive staircase complex for
all n > 0. It is a negative staircase complex if n < 0.

Lemma 4–2 Suppose that P = (P1 → P0) is a positive staircase complex, viewed as
a complex of free R− modules, where P1 is spanned by yi and P0 is spanned by xi .

(1) H∗(P) is torsion free as an R− -module.

(2) There is a (grw, grz)-grading preserving chain map

F : P → R−,

which sends R− -non-torsion cycles to R− -non-torsion cycles. Furthermore F
may be taken to map each generator of P0 to a non-zero monomial in R− , and
vanish on P1 .
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Proof For the first claim, using the grading properties of P it is sufficient to show
that U iV j · [x] 6= 0 if [x] 6= 0 ∈ H∗(P) when x is a homogeneously graded cycle
in P . Since the map from P1 to P0 is injective, there are no cycles with a non-zero
summand in P1 . Hence, it is sufficient to see that if x ∈ P0 and U iV j · x ∈ im(P1),
then x ∈ im(P1). To see this, suppose that y ∈ P1 is homogeneously graded and not a
multiple of U or V . We may write y as an R− linear combination of y1, . . . , y2n−1 .
Let m (resp. M ) be the minimal (resp. maximal) index which is supported by y. Hence,
we may write y = amym + · · ·+ aMyM for am, . . . , aM ∈ R− . We observe that

(4–3) grw(yi) ≥ grw(yi+2) and grz(yi) ≤ grz(yi+2)

for all i. Since y is homogeneously graded, it follows that am is not a multiple of V . If
it were, then all other ai would need to be a multiple of V for y to be homogeneously
graded, which contradicts our assumption. Similarly aM is not a multiple of U . We
write am = U jm and aM = V jM for some jm, jM ∈ N. Then ∂(y) has summands of
U jm+α(m−1)/2xm−1 and V jM+β(M+1)/2xM+1 , and hence is not a multiple of any element of
R− .

For the second claim, if xi ∈ P0 is a generator, we define F(xi) to be the unique
non-zero element of R− in the same homogeneous grading as x . It follows from our
normalization of the gradings of H∗(P/(U −1)) ∼= F[V ] and H∗(P/(V −1)) ∼= F[U ]
as well as Equation (4–3) that each generator of P has (grw, grz)-bigrading in Z≤0×Z≤0 ,
so this map is well-defined. We leave it to the reader to verify that this map is a chain
map and sends R− -non-torsion cycles to R− -non-torsion cyles.

Definition 4–4 We call a complex P a positive multi-staircase if it is the tensor
product of a nonzero number of positive staircase complexes. We call N a negative
multi-staircase if it is the tensor product of a nonzero number of negative staircases.

The dual of a positive multi-staircase is a negative multi-staircase, and vice-versa.

By construction, a positive staircase P has a Z-filtration with two levels, and we write
P = (P1 → P0). Hence, a positive multi-staircase with n factors has a Z-filtration with
n + 1 non-trivial levels, for which we denote

(4–5) P = (Pn → Pn−1 → · · · → P1 → P0).

If P = (Pn → · · · → P0) is a positive multi-staircase, we say that P is an exact
multi-staircase if the following sequence is exact:

0→ Pn → · · · → P0.

In particular, an exact multi-staircase is a free resolution of its homology.
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Remark 4–6 In general, the sequence in equation (4–5) will not be exact. As a
concrete example, consider C = CFK−(T2,3), and the tensor product P = C ⊗ C ⊗ C .
Write P = (P3 → P2 → P1 → P0). Following our conventions, write x0, y1, x2 for
the generators of the left-most factor of C , where ∂(y1) = U x0 + V x2 . One easily
computes that

y1|x2|x0 + x2|y1|x0 + x2|x0|y1 + x0|x2|y1 + y1|x0|x2 + x0|y1|x2 ∈ P1

is a cycle. In the above, bars denote tensor products. It is not a boundary, since the
differential has image in im(U ) + im(V ).

Lemma 4–7

(1) Every positive staircase is exact.

(2) The tensor product of two positive staircases is exact.

Proof Exactness of a positive staircase P = (P1 → P0) amounts to the claim that the
map P1 → P0 is injective, which is easy to verify.

Next, suppose P = (P1 → P0) and D = (D1 → D0) are staircases. We claim that
their tensor product is also exact. Let E = (E2 → E1 → E0) denote this tensor product.
Clearly the map E2 → E1 is injective, so it is sufficient to show that H1(E) = 0.
The homology H∗(E) decomposes as the direct sum H2(E)⊕ H1(E)⊕ H0(E). Since
every R− -non-torsion element contains a non-zero summand of H0(E), it follows
that H1(E) consists only of R− -torsion elements. Since E is bigraded, it follows that
each element [x] ∈ H1(E) satisfies U iV j · [x] = 0 for some i and j. In particular,
if x ∈ E1 is a cycle, then U iV j · x ∈ im(E2 → E1) for some i, j. In order to
show that H1(E) = 0 it is sufficient to show that if U iV j · x ∈ im(E2 → E1), then
x ∈ im(E2 → E1). We argue as follows. Note first that the map from E2 to E1

is the sum of the maps P1 ⊗ D1 → P1 ⊗ D0 and P1 ⊗ D1 → P0 ⊗ D1 . Suppose
that U iV j · x ∈ im(E2 → E1). Write U iV j · x = ∂(y). We may assume that x
and y are homogeneously graded. Write x = x0,1 + x1,0 where x1,0 ∈ P1 ⊗ D0 and
x0,1 ∈ P0 ⊗ D1 . Then U iV j · x0,1 ∈ im(P1 → P0)⊗ D1 . Since P is exact and D1 is
free, we conclude that x0,1 ∈ im(P1 → P0)⊗ D1 . Hence there is some y′ ∈ P1 ⊗ D1

such that the map from P1 ⊗ D1 to P0 ⊗ D1 maps y′ to x0,1 . Since the map from
P1 ⊗ D1 to P0 ⊗ D1 is injective, we conclude that U iV jy′ = y, so ∂(y′) = x0,1 + x1,0

and x0,1 + x1,0 ∈ im(E2 → E1). This completes the proof.
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4.2 The staircase complexes for L-space knots

A knot K ⊂ S3 is called an L-space knot if there is a positive integer q such that S3
q(K)

is an L-space, i.e. HF−(S3
q(K), s) ∼= F[U] for each s ∈ Spinc(S3

q(K)). All algebraic
knots are L-space knots; see [7, Theorem 1.10].

There is a simple description of Floer chain complexes of L-space knots, due to Ozsváth
and Szabó [24, Theorem 1.2]. (Note that therein, only ĤFK(K) is described, but the
algorithm actually produces a description of CFK∞(K).) We describe their algorithm
presently. Let K be an L-space knot. Ozsváth and Szabó prove that the Alexander
polynomial of K , which we denote ∆K(t) has the following form:

(4–8) ∆K(t) = ta0 − ta1 + · · ·+ ta2r ,

where 0 = a0 < a1 < · · · < a2r , that is, we use the normalization of ∆ starting at
degree 0. Define the gap function

βi := ai − ai−1,

for 1 ≤ i ≤ 2r .

We now describe the complex CFK−(K) over the ring R− . The complex CFK−(K) is
freely generated over R− by elements

x0, y1, x2, · · · , y2r−1, x2r.

The differential takes the following form

(4–9) ∂(x2i) = 0 and ∂(y2i+1) = U β2i+1x2i + V β2i+2x2i+2.

The (grw, grz)-bigradings are determined by the normalization that grw(x0) = 0 and
grz(x2r) = 0. Recall that the variable U has bigrading (−2, 0), and the variable V has
bigrading (0,−2).

The gradings can be expressed in the following way. Write

∆K = 1 + (t − 1)(tm1 + · · ·+ tms)

for some positive integers m1 < · · · < ms . Note that the integers βi compute the
number of consecutive integers or consecutive gaps (depending on i) of the sequence
m1, . . . ,ms , see [4, Lemma 4.2]. Define SK = Z≥0 \ {m1, . . . ,ms}, and

(4–10) RK(t) = #SK ∩ [0, t), if t ∈ Z.

With this notation, the gradings of the x2i generator are grw(x2i) = −2RK(a2i) and
grz(x2i) = 2RK(a2i)− 2g3(K); compare [4, Section 4]. Note that with our normalization
2g3(K) = a2r = ms + 1. If the context is clear, we somtimes write R instead of RK to
simplify the notation.
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Example 4–11 If K is the (2, 2n + 1)-torus knot, then the above procedure produces
the complex Sn of Definition 2–28.

Remark 4–12 If K is an algebraic knot, the set SK turns out to be a semigroup (note
that if K is only an L-space knot, SK need not be a semigroup). In fact, this is the
semigroup of that singular point. The function RK is the semigroup counting function.
Refer to [30, Section 4] for details on semigroups.

The following corollary is a compilation of [4, Proposition 5.6 and Lemma 6.2].

Corollary 4–13 The Vs -invariants of an L–space knot satisfy that V−g3(K)+j(K) =

RK(j)− j + g3(K).

The Künneth formula for the knot Floer chain complex allows us to compute the
Vj -invariants of a connected sum of L-space knots. The following result is given in [4,
Formula (6.3)].

Proposition 4–14 Let K1, . . . ,Kn be L–space knots. Set K = K1# . . . #Kn and let
g = g3(K). Then:

Vj(K) + j = RK(g + j),

where RK = RK1 � · · · � RKn is the infimal convolution of RK1 , . . . ,RKn .

We recall that if I, J : Z → Z are two functions bounded from above, their infimal
convolution is given by I � J(m) = mini+j=m I(i) + J(j).

4.3 Vs -invariants of tensor products of staircases

In this subsection, we compute the Vs -invariants of certain tensor products of staircases.
We wish to understand the Vs -invariants of tensor products of staircases where some
factors are positive and some negative. Of course, we may group factors and write such
a complex as a tensor product of N ⊗P , where N is a negative multi-staircase, and P
is a positive multi-staircase. Clearly,

N ⊗P ∼= HomR−(N∨,P),

where HomR−(N∨,P) denotes the chain complex of R− -module homomorphisms
from N∨ to P . In particular, to understand the Vs -invariants of arbitrary tensor products
of positive and negative staircases, it is sufficient to understand the morphism complex
between two positive multi-staircases.
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It is also helpful to note that if N and P are multi-staircases (of either sign), then a
cycle φ ∈ HomR−(N∨,P) is R− -non-torsion as a morphism if and only if φ maps
R− -non-torsion cycles to R− -non-torsion cycles.

The following result is by now classical. (See [4, Proposition 5.1]).

Proposition 4–15 Let P = (Pn → · · · → P0) be a positive multi-staircase and let
s ∈ Z. Then

Vs(P) = min
x∈G(P0)

max(α(x), β(x)− s),

where α(x) = − 1
2 grw(x), β(x) = − 1

2 grz(x), and G(P0) denotes the set of homoge-
neously graded generators of P0 .

Proof Lemma 4–2 implies that a homogenously graded element x ∈ P is an R− -
non-torsion cycle if and only if its summand in P0 may be written as an R− -linear
combination of an odd number of distinct elements in the generating set G(P0), with non-
zero, homogeneously graded coefficients in R− . In particular, the individual elements
of G(P0) determine the correction terms Vs . The expression −2 max(α(x), β(x)− s) is
the maximal grw -grading of an element of the form U mV nx such that m, n ≥ 0 and
x ∈ As . Taking the minimum over all x ∈ G(P0) gives the result.

We now pass to studying Vs invariants of products of positive and negative multi-
staircases. We begin with the following statement, where we use H0(P) to denote
P0/ im P1 for a multi-staircases.

Proposition 4–16 Suppose that P = (Pm → · · · → P0) and Q = (Qn → · · · → Q0)
are two positive multi-staircases.

(1) In general,

Vs(HomR−(P,Q)) ≥ Vs(HomR−(H∗(P),H∗(Q)) = Vs(HomR−(H0(P),H0(Q)).

(2) If Q is exact, then Vs(HomR−(P,Q)) = Vs(HomR−(H∗(P),H∗(Q)).

Proof There is a grading preserving map of R− modules

H∗HomR−(P,Q)→ HomR−(H0(P),H0(Q)),

which sends R− -non-torsion elements to R− -non-torsion elements. Then the inequality
of part (1) follows since the map sends R− -non-torsion elements in As(HomR−(P,Q))
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to R− -non-torsion elements in As(HomR−(H0(P),H0(Q))). The equality in part (1)
follows since H∗(P) decomposes as a direct sum

n⊕
s=0

(
ker(Pi → Pi−1)/ im(Pi+1 → Pi)

)
,

and H0(P) = P0/ im P1 is the only summand which contains R− -non-torsion elements.

We now consider the second claim. Suppose that Q is exact. We will show

(4–17) Vs(HomR−(H0(P),H0(Q))) ≥ Vs(HomR−(P,Q)).

Suppose φ : H0(P) → H0(Q) is an R− -module homomorphism which maps R− -
non-torsion elements to R− -non-torsion elements. It suffices to extend φ to obtain a
commutative diagram

Pm · · · P2 P1 P0 H0(P)

· · · Q2 Q1 Q0 H0(Q),

φ2 φ1 φ0 φ

since this extension gives an R− -non-torsion element in As(HomR−(P,Q)) cor-
responding to any R− -non-torsion element in As(HomR−(H0(P),H0(Q))). The
construction of the maps φi follows from the same procedure as in [31, Theorem 2.2.6
and the discussion below it]. We briefly summarize the construction. The map φ0

may be chosen since P0 is free, and hence projective, and Q0 → H0(Q) is surjec-
tive. Having constructed φ0 , we next construct φ1 . Using exactness of Q, we may
factor φ0 ◦ (P1 → P0) into im(Q1 → Q0). Using the fact that P1 is projective and
Q1 → im(Q1 → Q0) is surjective, we obtain a map φ1 . We repeat this process until we
exhaust P . This gives (4–17), completing the proof.

Proposition 4–18 Suppose that N = (N0 → · · · → Nn) is a negative multi-staircase,
and P = (Pm → · · · → P0) is a positive multi-staircase. Write G(Pi) for the generators
of Pi , and similarly for G(Ni).

(1) In general
(4–19)

Vs(N ⊗P) ≥ −1
2

min
x∈G(N0)

max
y∈G(P0)

min
(

grw(x) + grw(y), grz(x) + grz(y) + 2s
)
.

(2) If P = (P1 → P0) is a positive staircase, then (4–19) is an equality.

Proof We dualize, and consider the isomorphism N ⊗P ∼= Hom(N∨,P). For the first
claim, suppose φ ∈ Hom(N∨,P) is an R− -non-torsion cycle which is of homogeneous
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grading (d, d − 2s), where d = d(As(Hom(N∨,P)). Note φ ∈ As(Hom(N∨,P)).
For each x∨ ∈ G(N∨0 ), φ(x∨) is a R− -non-torsion cycle, and hence must contain a
summand of the form f · y, for some non-zero monomial f ∈ R− and y ∈ G(P0). By
the definition of the grading of a morphism, we have

grw(y)− grw(x∨) + grw(f ) = d and grz(y)− grz(x
∨) + grz(f ) = d − 2s.

Since grw(f ) ≤ 0 and grz(f ) ≤ 0, and (grw(x∨), grz(x
∨) = (− grw(x),− grz(x)), we

have that for each x

d(As(Hom(N∨,P)) ≤ max
y∈G(P0)

min(grw(x) + grw(y), grz(x) + grz(y) + 2s).

Taking the minimum over x ∈ G(N0) gives the statement.

We now consider the second claim. Suppose that P = (P1 → P0) is a positive staircase.
Using Lemma 4–7 and Proposition 4–16, we know that

Vs(N ⊗P) = Vs(HomR−(H0(N∨),H0(P)).

Fix s ≥ 0. Let δs denote the right-hand side of (4–19), without the factor of −1/2.
For each x∨ in G(N∨0 ), we pick a yx ∈ G(P0) so that

grw(yx)− grw(x∨) ≥ d and grz(yx)− grz(x
∨) ≥ d − 2s.

We set φ0 : N∨0 → P0 to be the map which takes x∨ to fx · yx , where fx ∈ R− is the
unique monomial so that φ0 has bigrading (d, d − 2s). By composition, we obtain a
map φ′ : N∨0 → H0(P).

Claim. The map φ′ vanishes on im(N∨1 ).

Given the claim, we quickly conclude the proof. In fact, we obtain a map φ from H0(N )
to H0(P). Hence, we may use the second part of Proposition 4–16 to conclude that

d(As(Hom(N∨,P))) ≥ δs,

which completes the proof modulo the claim.

It remains to prove the claim. Let y1 ∈ N∨1 . We consider the element v = ∂(y1) ∈ N∨0 .
We can write v as a sum

∑
x∨∈G(N∨0 ) fx · x∨ , where each fx is a monomial. Tensoring

the maps from the second part of Lemma 4–2, we obtain a chain map from N∨ to
R− , which is non-zero only on N∨0 , and furthermore maps each generator of N∨0 to
a monomial. Using the fact that this map is a chain map, we see that the number
of x∨ ∈ G(N∨0 ) where fx is non-zero is even. It follows immediately that φ0(v)
is an R− -torsion cycle. By Lemma 4–2, H∗(P) is torsion free, so it follows that
[φ0(v)] = 0 ∈ H∗(P) = P0/ im(P1). This proves the claim and completes the proof of
Proposition 4–18.
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4.4 A counterexample

We give an example indictating that the second statement of Proposition 4–18 need not
hold if P is a product of more than one positive staircase, even if P is exact.

Let P1 , P2 be the staircases of torus knots T6,7 and T4,5 , respectively. As described in
Subsection 4.2, the generators of P1 are at bigradings (−30, 0), (−30,−2), (−20,−2),
(−20,−6), (−12,−6), (−12,−12), (−6,−12), (−6,−20), (−2,−20), (−2,−30),
(0,−30). We denote these generators by x0, y1 . . . , x10 . We have ∂x2i = 0 and
∂y2i+1 = U αix2i+2 + V βix2i , where αi, βi are non-negative integers determined by
the condition that ∂ preserve the grading. In particular, the generators with odd index
generate P1

1 , while the generators with even index span P1
0 .

Likewise, there are generators x′0, y
′
1 . . . , x

′
6 for P2 with bigradings (−12, 0), (−12,−2),

(−6,−2), (−6,−6), (−2,−6), (−2,−12), (0,−12).

Lemma 4–20 Let P = P1 ⊗ P2 . The only elements x in P such that grw(x) =

grz(x) > −18 are linear combinations of U iV jx4 ⊗ x′4 with (i, j) = (0, 1), (1, 2) and
U i′V j′x6 ⊗ x′2 with (i′, j′) = (1, 0), (2, 1).

Proof Direct inspection.

Let now N be the negative staircase complex of the mirror of the trefoil. It is generated
by elements c0, c1, c2 at bigradings (2, 0), (2, 2), (0, 2), respectively. The differential is
∂c0 = V c1 , ∂c2 = U c1 , ∂c1 = 0. That is, c0, c2 ∈ N0 , c1 ∈ N−1 .

Lemma 4–21 There is no cycle z ∈ A0(N ⊗P) such that grw(z) ≥ −12 and z 6= 0.

Proof Any such cycle would be a linear combination of elements of type U iV j · xk ⊗
x′` ⊗ cm . By Lemma 4–20, unless (k, `) = (4, 4) or (6, 2), the grw -grading of such
combination is at most −14. Hence, if z ∈ A0(N ⊗P) and z 6= 0 has grw(z) ≥ −12,
then z has to be a linear combination of elements of the two-element set

x4 ⊗4 ⊗c0, x6 ⊗ x′2 ⊗ c2.

But then, z is not a cycle.

Corollary 4–22 We have V0(N ⊗P) ≥ 7.

The following result shows that the right-hand side of (4–19) is strictly smaller than 7.
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Lemma 4–23 The expression

−1
2

min
x∈G(N0)

max
y∈G(P0)

min(grw(x) + grw(y), grz(x) + grz(y))

is equal to 6.

Proof For x = c0 , the expression

(4–24) max
y∈G(P0)

min(grw(x) + grw(y), grz(x) + grz(y))

is equal to −12 with the equality attained at y = x4 ⊗ x′4 . For x = c2 , (4–24) attains its
maximal value −12 for y = x6 ⊗ x′2 .

4.5 More on the Vs -invariants of tensor products of staircases

In this subsection, we highlight some special cases of Proposition 4–15 and Proposi-
tion 4–18 which will be useful for our purposes.

Corollary 4–25 Suppose P is a positive multi-staircase, and for i ∈ {1, . . . , r}, let
Sni denote the staircase complex of Definition 2–28 with

∑
ni ≥ 0. Then

Vs(P ⊗ Sn1 ⊗ · · · ⊗ Snr ) = min
0≤j≤

∑
ni

(
Vs+2j−

∑
ni(P) + j

)
.

Proof By Proposition 3–9, we know that Sn1 ⊗ · · · ⊗ Snr is locally equivalent to Sn ,
where n =

∑
ni , so by Proposition 3–10 it suffices to prove the result when i = 1.

Write a1, . . . , am for the generators of C0 , and write x0, x2, . . . , x2n for the generators
of Sn

0 . Then ai ⊗ x2j forms a basis of homogeneously graded elements of (P ⊗ Sn)0 .
By Proposition 4–16, we have

Vs(P ⊗ Sn) = min
1≤i≤m
0≤j≤n

max(α(ai) + α(x2j), β(ai) + β(x2j)− s).

We note that α(x2j) = j and β(x2j) = n− j, so we conclude that

Vs(P ⊗ Sn) = min
1≤i≤m
0≤j≤n

max(α(ai) + j, β(ai) + n− j− s)

= min
0≤j≤n

min
1≤i≤m

(max(α(ai), β(ai) + n− 2j− s) + j)

= min
0≤j≤n

(
Vs+2j−n(P) + j

)
,

completing the proof.
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We have the following corollary of Proposition 4–18:

Corollary 4–26 Suppose P is a positive staircase, and for i ∈ {1, . . . , r}, let Sni

denote the staircase complexes of Definition 2–28. Assume
∑

ni < 0. Then

Vs(P ⊗ Sn1 ⊗ · · · ⊗ Snr ) = max
0≤j≤n

(
Vs−2j+n(P)− j

)
,

where n = −
∑

ni .

Remark 4–27 In contrast to Corollary 4–25, where P was allowed to be a positive
multi-staircase (i.e., a tensor product of positive staircases), in Corollary 4–26 we require
that P be a positive staircase.

Proof of Corollary 4–26: As in the proof of Corollary 4–25, Sn1 ⊗ · · · ⊗ Snr is
locally equivalent to S−n for some n > 0, so it is sufficient to consider the case when
i = 1. Write a1, . . . , aq for the generators of C0 , and x̄0, x̄2, . . . , x̄2n for the generators
of the 0-level of S−n . According to Proposition 4–18:

Vs(P ⊗ S−n) = max
0≤i≤n

min
1≤j≤q

max(α(aj) + α(x̄2i), β(aj) + β(x̄2i)− s)

= max
0≤i≤n

min
1≤j≤q

max(α(aj)− i, β(aj)− n + i− s)

= max
0≤i≤n

min
1≤j≤q

(
max(α(aj), β(aj)− n + 2i− s)− i

)
= max

0≤i≤n

(
Vs−2i+n(P)− i

)
.

(4–28)

4.6 Knots with split towers

We now introduce the notion of a knot complex with split towers. The correction
terms of a knot complex with split towers have a relatively simple form. An important
example of a knot with split towers are connected sums of knotifications of positive and
negative (2, 2n)-torus links.

Definition 4–29 (Split towers) Let K be a knot in Y = #mS2 × S1 , and let C be a
chain complex which is free and finitely generated over R− and is homotopy equivalent
to CFK−(Y,K, s0) where s0 is the trivial Spinc structure on Y . We say that C has
split towers if there exists a basis γ1, . . . , γm of H1(#mS2 × S1;Z) and subcomplexes
CI
∗ ⊂ C , indexed over subsets I ⊂ {γ1, . . . , γm}, such that the following are satisfied:
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(a) C =
⊕

I⊂{γ1,...,γm} C
I ;

(b) If γi 6∈ I , then Aγi takes H∗(CI) to H∗(CI∪{γi}), and becomes an isomorphism
after inverting U ,V . If γi ∈ I , then Aγi vanishes on H∗(CI), after inverting
U ,V .

Abusing notation slightly, we say a knot K has split towers if there is a representative of
CFK−(Y,K) which has split towers. Note that in many of our examples, the homology
action actually respects the splitting on the chain level, i.e. Aγi maps CI to CI∪{γi} if
γi 6∈ I , and Aγi vanishes on CI if γi ∈ I .

Example 4–30

• Any knot K in S3 has split towers (trivially).

• The knotification of the (2, 2n)-torus link has split towers. See Proposition 2–40.

• The Borromean knot does not have split towers.

Lemma 4–31 If K and K′ have split towers, then K#K′ has split towers.

Proof This is a direct consequence of the Künneth formula.

Proposition 4–32 Suppose K is a knot in #mS2 × S1 with split towers. Write

Ctop = C∅ and Cbot = Cγ1,...,γm .

Then
V top

s (K) = Vs(Ctop) and Vbot
s (K) = Vs(Cbot).

Suppose, additionally, that n > 0 and B0 is the Borromean knot. Then

V top
s (K#nB0) =− n

2
+ min

0≤j≤n

(
Vs+2j−n(Ctop) + j

)
Vbot

s (K#nB0) =− n
2

+ max
0≤j≤n

(
Vs+2j−n(Cbot) + j

)
.

Proof We consider first the proof that V top
s (K) = Vs(Ctop). It is sufficient to show that

(4–33) dtop
s (K) = d(Ctop

s ),

where Ctop
s denotes the subcomplex of Ctop in Alexander grading s, and these d

invariants are defined in Definition 3–3 and Definition 3–11. By definition, dtop
s (K) is

the maximal grading of a homogeneously graded element of H∗(As(K)) which maps
to an element of U−1H∗(As(K)) having non-trivial image in Htop . Since K has split
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towers, by Definition 4–29, the cokernel Htop is spanned by U−1H∗(Ctop
s ), and H∗(CI

s )
has trivial image for I 6= ∅, equation (4–33) follows.

The claim about dbot is similar. In this case, dbot
s (K) is defined as the maximal grading

of a homogeneous element in H∗(As(K))/Tors which is in the image of Hbot . This is
clearly d(Cbot

s ).

We pass now to the second part of the proof. An analogous argument appeared in [2, 3];
we recall it for completeness. The complex CFK−(B0) is described in Section 2.7.
Since CFK−(B0) has vanishing differential, we obtain

H∗(CFK−(K)⊗ CFK−(B0)⊗n) ∼= HFK−(K)⊗F B⊗n,

where B is the 4-dimensional vector space spanned by 1, x , y and xy, whose bigradings
are shown in equation (2–42).

We first consider the claim about Vbot
s . Using the H1 -action on CFK−(B0) described

in Section 2.7, one easily obtains the following: a cycle x ∈ As(K#nB0) is of
homogeneous grw -grading d , is F[U]-non-torsion, and maps to the kernel of the H1

action in U−1H∗(As(K#B#n)) if and only if it has the form∑
{a1,...,an}∈{−1,1}n

xa1,...,an ⊗ εa1 ⊗ · · · ⊗ εan ,

where ε−1 = 1 ∈ B and ε1 = xy ∈ B with grw = 1 and −1 respectively. Moreover,
each

xa1,...,an ∈ Cbot
s+

∑
ai

(K)

is an F[U]-non-torsion cycle of homogeneous grw -grading d +
∑

ai . Noting that
∑

ai

can be any integer of the form n− 2j for 0 ≤ j ≤ n, we obtain that

dbot(As(K#nB0)) = min
0≤j≤n

(
d(Cbot

s+n−2j)− n + 2j
)
.

Multiplying by − 1
2 and switching j to n− j yields the statement.

The proof for dtop is analogous. The cokernel of the H1 -action on U−1H∗(As(K#nB0))
is spanned by any element of the form x⊗ εa1 ⊗ · · · ⊗ εan where εai are as above, and
x ∈ Ctop

s+
∑

ai
(K) is a homogeneously graded, F[U]-non-torsion element. Furthermore,

any homogeneous element generating U−1H∗(As(K#nB0) is a sum of an odd number
of such elements. The same argument as before shows that

dtop(As(K#nB0)) = max
0≤j≤n

(
d(Ctop

s+n−2j)− n + 2j
)
.

Multiplying by − 1
2 and switching j to n− j yields the statement.
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5 Topology of complex curves and their neighborhoods

In this section we give a precise definition of the notion of a tubular neighborhood of a
possibly singular curve in CP2 . We describe the boundary of this neighborhood in terms
of the surgery on a link. We perform several helpful algebro-topological computations.

As the main focus of our article is on algebraic curves, we present the construction using
the language of complex geometry. In Subsection 5.4 we will show how to generalize
our results to the smooth category.

5.1 ‘Tubular’ neighborhood of a complex curve

Let C ⊂ CP2 be a reduced complex curve of degree d . We do not insist that C is
irreducible. We write C1, . . . ,Ce for the irreducible components of C and let d1, . . . , de

(resp. g1, . . . , ge ) denote their degrees (resp. genera). Hereafter by the genus g(C) of
a complex curve we understand the genus of its normalization, that is, the geometric
genus. From the topological perspective, the geometric genus of a singular curve is the
sum of genera of connected components of the smooth locus of the curve, regarded as
an open surface. We set g = g1 + · · ·+ ge .

We denote by p1, . . . , pu the singular points of C . For each such singular point pi we
denote by ri the number of branches. Here, recall that a branch of C at pi is a connected
component of Bi ∩ (C \ {pi}) for a sufficiently small ball Bi ⊂ C2 centered at pi . We
write Li for the link of singularity at pi , whose components are Li1, . . . , Liri . We choose
once and for all pairwise disjoint closed balls B1, . . . ,Bu with centers respectively
p1, . . . , pu and such that C ∩ ∂Bi is the link Li and C ∩ Bi is homeomorphic to a cone
over Li .

As the curve C is not smoothly embedded at its singular points, the notion of a tubular
neighborhood of C requires some clarification. The following is an extension of the
construction of [4].

Take a tubular neighborhood N0 in CP2 \ (B1 ∪ · · · ∪ Bu) of the smooth part C0 :=
C \ (B1 ∪ · · · ∪ Bu). Note that all components C1, . . . ,Ce intersect each other, hence C
is connected. On the contrary, the balls B1, . . . ,Bu contain all the intersection points
between various curves C1, . . . ,Ce . Hence, C0 has e connected components, which are
Ci \ (B1 ∪ · · · ∪ Bu), i = 1, . . . , e. We define N to be the union of N0 and B1, . . . ,Bu .
With g = g1 + · · ·+ ge , set

(5–1) ρ = 2g− e + 1 +

u∑
i=1

(ri − 1) = b1(C) = dim H1(C;Q).
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To see that dim H1(C;Q) = ρ, we consider the normalization C′ of C . It is a surface
of genus g with e connected components. So χ(C′) = 2e− 2g. Next, C arises from
C′ by gluing ri -tuples of points (corresponding to singular points of C), i = 1, . . . , u.
Hence χ(C) = 2e − 2g −

∑
(ri − 1). Now C is connected, and dim H2(C;Q) = e.

From this, we recover the formula for dim H1(C;Q).

Observe that C0 arises from the normalization C′ by removing
∑

ri disks. The first disk
for each connected component of C′ kills an element in H2 , and all of the subsequent
create a basis element in H1 . That is to say, dim H1(C0;Q) = 2g+

∑
ri−e = ρ+u−1.

By duality, dim H1(C0, ∂C0;Q) = ρ+ u− 1.

We now provide a surgery theoretical description of N and its boundary Y . We first
define a 3-manifold Z containing a link L , as follows. We begin with the disjoint union
L0 := L1 t · · · t Lu in Z0 := S3 t · · · t S3 . Next, we pick a collection of pairwise
disjoint and properly embedded arcs λ1, . . . , λρ+u−1 on C0 which form a basis of
H1(C0, ∂C0). Such a collection of arcs cuts C0 into a union of e disks, one for every
connected component of C0 . We let Z = #ρS2 × S1 be the boundary of the 4-manifold
Γ obtained by attaching ρ+ u− 1 4-dimensional 1-handles to ∂(B1 ∪ · · · ∪ Bu) = Z0 ,
each containing a 2-dimensional band (corresponding to a λi ), which we attach to L0 .
We let L ⊂ Z be the resulting link. By construction, L is a link inside of the connected
sum of ρ copies of S1 × S2 . Furthermore, each component of L is null-homologous.
The number of components of L is the number of disks C0 \ (λ1 ∪ · · · ∪ λρ+u−1). That
is, L has e components, denoted henceforth L1, . . . , Le , corresponding to connected
components of C0 , i.e. to irreducible components of the complex curve C .

We have the following (compare [3, Theorem 3.1] and [2, Lemma 3.1]):

Proposition 5–2 The 3-manifold Y = ∂N is the surgery on L ⊂ Z with surgery
coefficients (d2

1, . . . , d
2
e ). The 4-manifold N is obtained by attaching e 2-handles to the

boundary connected sum of ρ copies of D3 × S1 .

Proof The fact that N is obtained by attaching e 2-handles to Γ along L follows from
the fact that the complement C0 \ (λ1, . . . , λρ+u−1) is a collection of disks C′1, . . . ,C

′
e

(we know that this complement has e components). The thickening of C′i is a 2-handle
in N . Upon renumerating, we might and will assume that C′i is a subset of Ci and
∂C′i = Li , the component of L. In particular, we know that N is the effect of a surgery
on L. It remains to determine the framing.

In order to do this, we recall that if a 2-handle A is attached to B4 along a knot
K ⊂ S3 = ∂B4 , the framing of the 2-handle is determined as a self-intersection number
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of the surface F obtained by capping the core C of the 2-handle with a Seifert surface
for K . We note that the self-intersection does not depend on the choice of the Seifert
surface. Moreover, instead of a Seifert surface, we can take any smooth compact surface
in B4 whose boundary is K .

The same procedure applies for surgeries on null-homologous knots in #ρS2 × S1 . In
the present context, when we calculate the surgery coefficient at Li , the role of the
surface F is played by the union of C′i and a surface in Γ = #ρB3 × S1 bounding Li . A
possible choice for F is then a smoothing of Ci , which essentially replaces Ci ∩ Γ by a
smooth compact surface in Γ with boundary Li . That is to say, the self-intersection
number of F is exactly the self-intersection number of Ci , which is d2

i .

Remark 5–3 If e = 1, L is a knot. This knot can be obtained as a connected sum of
L̂1, . . . , L̂u and g copies of the Borromean knot. Here the hat denotes knotification.

5.2 Algebraic topology

In this section, we describe some basic algebro-topological facts about the tubular
neighborhood N , and its boundary Y . Our description of Spinc structures is similar to
the one described in [17, Section 11.1].

Recall that if N is a manifold obtained by gluing e handles along a null-homologous
link to a four manifold Γ with H2(Γ;Z) = 0, we can speak not only of a framing of
handles, but of a framing matrix. An argument using Mayer-Vietoris sequence reveals
that H2(N;Z) = Ze is generated by the cores of the handles capped by Seifert surfaces
of the components of the link. The framing matrix, denoted by Ξ, is the matrix of the
intersection form H2(N;Z) × H2(N;Z) → Z. In particular, the diagonal entries are
surgery coefficients. The off-diagonal terms are linking numbers of the corresponding
links (these are well-defined as long as the components are null-homologous).

In the present situation, by Proposition 5–2, the surgery coefficients are (d2
1, . . . , d

2
e ).

The same argument shows that the off-diagonal terms are given by the intersection
number of Ci with Cj . That is, the framing matrix has the form.

Ξ = {didj}e
i,j=1.

Note that this construction in particular reveals that lk(Li,Lj) = didj . We let WΛ(L)
denote the 2-handle cobordism from Z to Y . Recall that N is the union of the
1-handlebody Γ and WΛ(L).
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There is a map

(5–4) F : H2(WΛ(L))→ Ze ⊕ H2(Z),

given by
F (c) = (〈c, [F̂1]〉, . . . , 〈c, [F̂e]〉, c|Z).

Here F̂i is the surface obtained by capping a Seifert surface for Li in Z with the core
of the 2-handle. An easy argument involving Mayer-Vietoris sequence on the handle
attachement regions in Z shows that F is an isomorphism.

Dually, we may view WΛ(L) as being obtained by attaching 2-handles to a link L∗ in
Y . We consider the Mayer-Vietoris sequence obtained by viewing WΛ as the union of
[0, 1]× Y and e 2-handles. A portion of this exact sequence reads

H1(L∗)→ H2(WΛ(Y))→ H2(Y)→ 0.

In particular, H2(Y) is the quotient of H2(WΛ(Y)) by the image of H1(L∗). Furthermore,
from the definition of the coboundary map in the Mayer-Vietoris exact sequence, an
element of H1(L∗) acts by the Poincaré duals of the cores of the 2-handles attached
along L. Using the isomorphism F from (5–4), we thus obtain

(5–5) H2(Y) ∼= (Ze/ im(Ξ))⊕ H2(Z).

There are analogous descriptions for Spinc structures on Y and WΛ(L), as follows.
Consider the map

(5–6) TW : Spinc(WΛ(L)) ↪→ Qe × Spinc(Z),

given by

TW(s) =

(
〈c1(s), [F̂1]〉 − [F̂] · [F̂1]

2
, . . . ,

〈c1(s), [F̂e]〉 − [F̂] · [F̂e]
2

, s|Z
)
,

where [F̂] is the sum of the [F̂i]. Similar to the argument for cohomology, an easy
application of Mayer-Vietoris shows that TW is an isomorphism onto its image. Since
c1(s) is a characteristic vector, 〈c1(s), [F̂i]〉 − [F̂i]2 is even as well. Using this, it is not
hard to identify the image of TW as H(L)× Spinc(Z), where H(L) is affine lattice in
Qe generated by tuples (a1, . . . , ae) where

ai −
1
2

lk(Li,L \ Li) ∈ Z for all i.

The linking number is computed as follows:

(5–7) lk(Li,L \ Li) = di(d1 + d2 + · · ·+ de)− d2
i .
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A similar argument as for cohomology implies Spinc(Y) is isomorphic to the quotient of
Spinc(WΛ(L)) by the action of the Poincaré duals of the cores of the 2-handles attached
to L. This translates into the isomorphism

(5–8) TY : Spinc(Y) ∼= (H(L)/ im(Ξ))× Spinc(Z).

With respect to the isomorphisms F and TW , the Chern class map takes a simple form:

c1(s1, . . . , se, t) = (2s1 + [F̂] · [F̂1], . . . , 2se + [F̂] · [F̂e], c1(t)).

Since Z = #ρS2 × S1 bounds the 1-handlebody Γ ⊂ N , we know that δ(H1(Z)) =

{0} ⊂ H2(N). Hence, a Mayer-Vietoris argument identifies Spinc(N) with the set of
Spinc structures on WΛ(L) which extend over Γ, or equivalently the ones which have
torsion restriction to Z . Hence,

Spinc(N) ∼= H(L).

The following is helpful for understanding H2(Y):

Lemma 5–9 Suppose Ξ = {aij}e
i,j=1 is a matrix such that aij = didj , for some non-zero

integers di . Then Ze/ im(Ξ) ∼= Ze−1 ⊕ Z/θ2 , where θ = gcd(d1, . . . , de). .

Proof Recall that

Ξ =


d1d1 d1d2 . . . d1de

d2d1 d2d2 . . . d2de
...

...
. . .

...
ded1 ded2 . . . dede

 .

It is clear that im(Ξ) is the span of θ(d1, . . . , de)T , by considering the image of the
standard basis in Rn . By module theory over a principal ideal domain, we have
Ze/ im(Ξ) ∼= Ze−1 ⊕ Tors(Ze/ im(Ξ)). By definition, Tors(Ze/ im(Ξ)) is generated by
the set of vectors v in Ze such that n[v] = m[θ(d1, . . . , de)T ] for some integers n and
m. Clearly, Tors(Ze/ im(Ξ)) is generated by the vector (d1/θ, . . . , de/θ)T , which has
order θ2 . The proof is complete.

Combining Lemma 5–9 with equation (5–5), we conclude that

(5–10) b1(Y) = e− 1 + b1(Z) = e− 1 + ρ.

If j ∈ 2Z + 1, let cj denote the Spinc structure on CP2 which satisfies

(5–11) 〈c1(cj),E〉 = j,
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where E is a complex line. In terms of the isomorphism in (5–8), we have

(5–12) TY (cj|Y ) =

(
jd1 − d1(d1 + · · ·+ de)

2
, . . . ,

jde − de(d1 + · · ·+ de)
2

, 0
)
.

We now let X denote the complement of the interior of N in CP2 .

Lemma 5–13
(1) X has trivial intersection form.

(2) Suppose s is a torsion Spinc structure on Y . Then s extends over X if and only
if it extends over CP2 .

Proof The proof follows identical arguments as in [3, Sections 3 and 4], therefore
we provide only a sketch. Claim (1) follows from the fact that the inclusion map
H2(X)→ H2(CP2) vanishes, since all elements of H2(X) are disjoint from C .

Claim (2) is proven as follows. A Spinc structure on Y always extends over WΛ(L).
Furthermore, the isomorphisms in (5–6) and (5–8) are clearly compatible with the natural
restriction maps from Spinc(WΛ(L)) to Spinc(Y) and Spinc(Z). A Spinc structure
on WΛ(L) extends over N if and only if it restricts to the torsion Spinc structure on
Z . Hence, a Spinc structure on Y extends over N if and only if the Spinc factor on
Spinc(Z) in (5–8) is torsion. In particular, any torsion Spinc structure on Y extends
over N . Since a Spinc structure on Y extends over CP2 if and only if it extends over
both X and N , the claim follows.

5.3 d-invariant inequalities for the neigborhood of C

We are now in position to prove an inequality for the d-invariants of boundaries of
neighborhoods of complex curves in CP2 as in Subsection 5.1. With the notation from
that subsection we have the following result.

Proposition 5–14 For any Spinc structure s on Y that extends over X and whose first
Chern class is torsion, we have:

dbot(Y, s) ≥ −ρ+ e− 1
2

, dtop(Y, s) ≤ ρ+ e− 1
2

.

Proof By equation (5–10), we know that b1(Y) = ρ+ e− 1. The intersection form on
X is trivial by Lemma 5–13. From Theorem 3–1, we obtain

dbot(Y, s) = d(Y, s,H1(Y)/Tors) ≥ −ρ+ e− 1
2

,
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since the terms involving c2
1 and b−2 (X) vanish.

Since the intersection form on X vanishes, we may reverse the orientation of X and Y
and apply to the same argument to get that

(5–15) dbot(−Y, s) = d(−Y, s,H1(Y)/Tors) ≥ −ρ+ e− 1
2

.

It follows from [15, Proposition 4.2] and the fact that d∗(Y, s,H1(Y)/Tors) = dtop(Y, s)
(see [15, pg. 6]) that:

dbot(−Y, s) = −dtop(Y, s).

Combining this with equation (5–15), we conclude that

dtop(Y, s) ≤ ρ+ e− 1
2

,

completing the proof.

5.4 Singular curves in smooth category

The methods we use in the present article work in a smooth category. A term
“smooth surface with singularities" might be misleading, therefore we make precise our
terminology. The definition we give is quite general.

Definition 5–16 A singular curve in the smooth category C ⊂ CP2 is a closed subset
of CP2 such that there exist finitely pairwise disjoint closed balls B1, . . . ,Bu in CP2

such that with C0 = C \ (B1 ∪ . . .Bu):

• C is connected;

• the subset C0 is a smoothly embedded surface whose boundary belongs to
B1 ∪ · · · ∪ Bu ;

• the intersection Bi ∩ C is a link (we call it Li ).

The definition means that we do not have to control any possible pathological behavior
of C inside balls. We let C01, . . . ,C0e be the connected components of C0 . The
quantity e plays the same role as the number of irreducible components of an algebraic
curve.

Choose j = 1, . . . , e. For any i = 1, . . . , u such that Lij := Bi ∩ C0j 6= ∅, let Sij be
a minimal genus surface in Bij whose boundary is Lij . Let C̃j be a closed surface
obtained by removing Bi ∩ C0j , gluing Sij and possibly smoothing corners. The surface
C̃j is called a smooth model of C0j .
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Note that C̃j determines a class in H2(CP2;Z). If Sij and S′ij are two choices of minimal
genus surfaces for Lij , then Sij ∪ −S′ij is homologically trivial (as a surface in the ball
Bij ). Hence, the class of C̃j does not depend on the particular choice of Sij . We let dj

be the integer such that [C̃j] = dj · 1 ∈ H2(CP2;Z), where we use 1 to denote the class
of a line. We call dj the smooth degree of Cj .

Definition 5–17 A singular curve is the smooth category is called adjunctive, if for all
j = 1, . . . , e, we have g(C̃j) = 1

2 (dj − 1)(dj − 2).

Definition 5–18 Let C be an adjunctive singular curve in the smooth category.

• C is of algebraic type if all links Li are algebraic links.

• C is of weakly algebraic type if all links Li are either algebraic links or their
mirrors.

Remark 5–19 The distinction between requirement that Li be an algebraic link or an
L-space link is motivated by applications in algebraic geometry. In our paper, we never
use the fact that the links Li are algebraic links, instead of merely L-space links. We
note that there are some non-trivial differences between L-space knots and algebraic
knots. For example, the set SK defined in Subsection 4.2 is not necessarily a semigroup
if K is merely an L-space knot. We recall that SK is used to define the function RK ,
which is referred to as the semigroup counting function. We observe that in our theory,
we never use the fact that SK is a semigroup, so the mathematical part of the theory
goes through.

We now define the analogs of ρ, Y and N from Subsection 5.1 in the case of a singular
curve in the smooth category. Set first gj to be the genus of C0j (not of C̃j ). Set
g = g1 + · · · + ge and ρ = 2g − e + 1 +

∑
(ri − 1), where ri is the number of

components of Li .

We repeat now the procedure from Subsection 5.1, omitting the proofs if they are the
same as in that subsection. We pick λ1, . . . , λρ+u−1 to be arcs on C0 which form a
basis of H1(C0, ∂C0;Z). We let Γ be the 4-manifold obtained by attaching ρ+ u− 1
4-dimensional 1-handles to ∂(B1 ∪ · · · ∪ Bu) as in Subsection 5.1. We set Z = ∂Γ, then
Z = #ρS2 × S1 . Finally, L = C ∩ Z . This is an e-component link. The set C \ Γ is a
disjoint union of e disks C′01, . . . ,C

′
0e . Reindexing these disks if necessary, we may

and will assume that C′0i is a subset of C0i . Let N be the handlebody Γ with attached
2-handles whose cores are C′01, . . . .C

′
0e . The manifold Y = ∂N is the surgery on L

with framings equal to d2
1, . . . , d

2
e .

With these definitions, the results of Subsections 5.2 and 5.3 hold for singular curves in
smooth category.
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6 Nonrational non-cuspidal complex curves

6.1 General estimates

We now pass to main applications of our paper. Suppose C ⊂ CP2 is a degree d curve.
We mostly focus on the case when C is complex curve, but also consider the case where
C is only a smooth surface, embedded away from a finite set of singular points, as in
Definition 5–16. We further assume that the singularities of C are restricted to the
following:

• There are ν cuspidal (unibranched) singular points p1, . . . , pν . We write
K1, . . . ,Kν for their links, and set K = K1# · · · #Kν .

• There are mn singular points whose link is T2,2n .

• There are mn singular points whose link is −T2,2n .

Define
κ+ =

∑
n

nmn, κ− =
∑

n

nmn, η+ =
∑

n

mn, η− =
∑

n

mn.

Additionally, we assume that the curve is adjunctive (see Definition 5–17), that is, its
genus g is given by the formula:

(6–1) g = g(C) =
(d − 1)(d − 2)

2
− g3(K)− (κ+ + κ−)

For algebraic curves, κ− = 0 and (6–1) is the adjunction formula. If C is a singular
curve in the smooth category of algebraic type (i.e. κ− = 0, see Definition 5–18),
the adjunction inequality implies that g(C) is greater or equal to the right-hand side
of (6–1). If C is of weak algebraic type (see Definition 5–18), the relation between
g(C) and the right-hand side of (6–1) can be more involved, so the condition (6–1) is a
significant restriction on g(C).

We define

K+ = K# #
n

mnT̂2,2n

K̃ = K+#K−

K− = #
n

mnT̂2,−2n

K̂ = K̃#gB0

(6–2)

where T̂2,2n denotes the knotification of the torus link T2,2n , and T̂2,−2n denotes the
knotification of its mirror.

Since the knots K1, . . . ,Kν are algebraic knots, in particular, L-space knots, their knot
Floer complexes are staircase complexes, which we denote by C(Ki). In particular,

CFK−(K) = C(K1)⊗ · · · ⊗ C(Kν)
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is a positive multi-staircase complex. Note that by Proposition 2–40 and Example 4–30,
the knots K+ , K− , and K̃ have split towers. The following relations follow from
Proposition 2–40, the Künneth theorem for connected sums, and Proposition 3–9. Here,
we write ∼= for homotopy equivalence of chain complexes, and '

loc
for local equivalence.

The brackets denote an overall grading shift.

Ctop(K+) ∼= Ctop(K)⊗
⊗

n

(Sn)⊗mn{η+2 ,
η+
2 }

Cbot(K+) ∼= Cbot(K)⊗
⊗

n

(Sn−1)⊗mn{−η+
2 ,−

η+
2 }

Ctop(K−) ∼=
⊗

n

(S−(n−1))⊗mn{η−2 ,
η−
2 }

Cbot(K−) ∼=
⊗

n

(S−n)⊗mn{−η−
2 ,−

η−
2 }

Ctop(K̃) ∼= Ctop(K+)⊗ Ctop(K−) '
loc
C(K)⊗ Sκ+−(κ−−η−){η++η−

2 , η++η−
2 }

Cbot(K̃) ∼= Cbot(K+)⊗ Cbot(K−) '
loc
C(K)⊗ Sκ+−η+−κ−{η++η−

2 , η++η−
2 }.

We set

δ1 := κ+ − (κ− − η−), δ2 := (κ+ − η+)− κ−.

Whether the staircases in Ctop(K̃) and Cbot(K̃) are positive or negative depends on the
signs of δ1, δ2 . The following proposition is the main tool towards Theorems 6–4
and 6–8.

Proposition 6–3 Suppose K , K̃ and K̂ are as above and let R = RK be the infimal
convolution of the semigroup counting functions for knots K1, . . . ,Kν .

(a) If δ1 ≥ 0, then

V top
s (K̃) = −η+ + η−

4
+ min

0≤j≤δ1
(Vs+2j−δ1(K) + j)

V top
s (K̂) = −g

2
− η+ + η−

4
+ min

0≤j≤δ1+g
(Vs+2j−δ1−g(K) + j)

= −g
2
− η+ + η−

4
+ min

0≤j≤δ1+g
(R(g3(K) + s + 2j− δ1 − g)− (s + j− δ1 − g)).

Algebraic & Geometric Topology XX (20XX)



1052 Maciej Borodzik, Beibei Liu and Ian Zemke

(b) If δ2 ≥ 0, then

Vbot
s (K̃) =

η+ + η−
4

+ min
0≤j≤δ2

(Vs+2j−δ2(K) + j)

Vbot
s (K̂) =

η+ + η−
4

− g
2

+ max
0≤i≤g

min
0≤j≤δ2

(Vs+2j+2i−g−δ2(K) + i + j)

=− g
2

+
η+ + η−

4
+ max

0≤i≤g
min

0≤j≤δ2
(R(g3(K) + s + 2j + 2i− g− δ2)− (s + i + j− g− δ2)).

(c) If δ1 < 0 and C(K) is a positive staircase (not just a positive multi-staircase),
then

V top
s (K̃) =− η+ + η−

4
+ max

0≤j≤−δ1
(Vs−2j−δ1(K)− j)

V top
s (K̂) =

g
2
− η+ + η−

4
+ min

0≤i≤g
max

0≤j≤−δ1
(Vs−2j−2i+g−δ1(K)− i− j)

=
g
2
− η+ + η−

4
+ min

0≤i≤g
max

0≤j≤−δ1
(R(g3(K) + s− 2j− 2i + g− δ1)− (s− i− j + g− δ1)).

(d) If δ2 < 0 and C(K) is a positive staircase, then

Vbot
s (K̃) =

η+ + η−
4

+ max
0≤j≤−δ2

(Vs−2j−δ2(K)− j)

Vbot
s (K̂) =

g
2

+
η+ + η−

4
+ max

0≤j≤g−δ2
(Vs−2j+g−δ2(K)− j)

=
g
2

+
η+ + η−

4
+ max

0≤j≤g−δ2
(R(g3(K) + s− 2j + g− δ2)− (s− j + g− δ2)).

Proof The proof is similar in all cases and consists of gathering Corollary 4–25,
Corollary 4–26, Proposition 4–32, Lemma 3–7, and Proposition 4–14. For the reader’s
convenience we present details of computations of V top for the case (a) and (c).

If δ1 ≥ 0, then by Corollary 4–25 and Lemma 3–7,

V top
s (K̃) = −η+ + η−

4
+ min

0≤j≤δ1
(Vs+2j−δ1(K) + j).

Combining this with Proposition 4–32, we obtain

V top
s (K̂) = −g

2
− η+ + η−

4
+ min

0≤j≤δ1+g
(Vs+2j−δ1−g(K) + j).

By Proposition 4–14,

V top
s (K̂) = −g

2
−η+ + η−

4
+ min

0≤i≤g
max

0≤j≤−δ1
(R(g3(K)+s−2j−2i+g−δ1)−(s−i−j+g−δ1)).
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This proves item (a). If δ1 < 0, and C(K) is a positive staircase, by Corollary 4–26,

V top
s (K̃) = −η+ + η−

4
+ max

0≤j≤−δ1
(Vs−2j−δ1(K)− j).

Combining Proposition 4–32 and Proposition 4–14, we have

V top
s (K̂) =

g
2
− η+ + η−

4
+ min

0≤i≤g
max

0≤j≤−δ1
(Vs−2j−2i+g−δ1(K)− i− j)

=
g
2
− η+ + η−

4
+ min

0≤i≤g
max

0≤j≤−δ1
(R(g3(K) + s− 2j− 2i + g− δ1)− (s− i− j + g− δ1)).

This proves item (c).

Proposition 6–3 allows us to express the d-invariants of the boundary Y = ∂N of the
tubular neighborhood of C in terms of the RK -functions of singular points. In our
applications, we will focus on two cases.

(1) Algebraic case. We assume that C has only algebraic singularities, that is,
mn = 0 for all n > 0. This corresponds to items (a) and (b) of Proposition 6–3.

(2) Single knot case. We assume that ν = 1, so K is a positive staircase and mn = 0
for all n > 0. We will use items (c) and (d) of Proposition 6–3.

The first case is considered in Subsection 6.2. The second is addressed in Subsection 6.3.

6.2 Curves with no negative double points

For the reader’s convenience we provide a full statement of the next result.

Theorem 6–4 Let C be a reduced curve with degree d and genus g. Suppose that
C has cuspidal singular points p1, . . . , pν , whose semigroup counting functions are
R1, . . . ,Rν , respectively. Assume that apart from these N points, the curve C has, for
each n ≥ 1, mn ≥ 0 singular points whose links are T2,2n (A2n−1 singular points) and
no other singularities. Define

η+ =
∑

n

mn and κ+ =
∑

n

nmn.
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For any k = 1, . . . , d − 2, we have:

max
0≤j≤g

min
0≤i≤κ+−η+

(
R(kd + 1− η+ − 2i− 2j) + i + j

)
≤ (k + 1)(k + 2)

2
+ g

min
0≤j≤g+κ+

(R(kd + 1− 2j) + j) ≥ (k + 1)(k + 2)
2

.

(6–5)

Here R denotes the infimal convolution of the functions R1, . . . ,Rν .

Proof Let Y be the boundary of a tubular neighborhood of C . Then Y is a result of a
d2 surgery on K̂ ⊂ #ρS2 × S1 obtained as in Subsection 6.2, where we readily compute
from (5–1) ρ = 2g + η+ . Note that by (6–1), the genus g3(K) is less than or equal to
1
2 (d − 1)(d − 2) < 1

2 d2 . Hence, the surgery coefficient is greater than twice the genus
of K . In particular, the large surgery formula can be applied [27, Theorem 4.10]

Let sj , for j ∈ [−d2/2, d2/2)∩Z denote the Spinc structures on Y as in Definition 3–13.
By Lemma 5–13, sj extends to CP2 \ N , if and only if sj is a restriction of ch for some
h, where ch is as in (5–11). By (5–12) we infer that this holds if and only if j = md for
m ∈ Z if d is odd and m ∈ 1

2 + Z if d is even. Compare with [4, Lemma 3.1].

By Proposition 5–14, for any md ∈ [−d2/2, d2/2) such that m + d−1
2 is an integer, we

have

(6–6) dbot(Y, smd) ≥ −η+

2
− g, dtop(Y, smd) ≤ η+

2
+ g.

By Theorem 3–15, (6–6) translates to the inequalities

V top
md (K̂) ≥ (d − 2m + 1)(d − 2m− 1)

8
− η+

4
− g

2

Vbot
md (K̂) ≤ (d − 2m + 1)(d − 2m− 1)

8
+
η+

4
+

g
2
.

(6–7)

We compute V top
md and Vbot

md from Proposition 6–3. Using g3(K) = 1
2 (d−1)(d−2)−g−κ+ ,

we rewrite the equations of Proposition 6–3 (a) and (b).

V top
md (K̂) = −g

2
− η+

4
+ min

0≤j≤κ++g
(R
(

(d−1)(d−2)
2 + md + 2j− 2κ+ − 2g

)
−

(md + j− κ+ − g))

Vbot
md (K̂) = −g

2
+
η+

4
+ max

0≤i≤g
min

0≤j≤κ+−η+

(R
(

(d−1)(d−2)
2 + md + 2j + 2i− 2g− 2κ+ + η+

)
− (md + i + j− g− κ+ + η+)).
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Comparing this with (6–7), we obtain:

min
0≤j≤κ++g

R
(

(d−1)(d−2)
2 + md + 2j− 2κ+ − 2g

)
−

− (md + j− κ+ − g) ≥ 1
8 (d − 2m + 1)(d − 2m− 1).

max
0≤i≤g

min
0≤j≤κ+−η+

R
(

(d−1)(d−2)
2 + md + 2i + 2j− 2(κ+ − η+)− η+ − 2g

)
−

− (md + j− κ+ + η+ − 2g)

≤ 1
8 (d − 2m + 1)(d − 2m− 1) + g.

With a change j 7→ κ+ + g− j in the first inequality and i 7→ g− i, j 7→ κ+ − η+ − j
in the second, we obtain.

min
0≤j≤κ++g

R
(

(d−1)(d−2)
2 + md − 2j

)
− md + j ≥ 1

8 (d − 2m + 1)(d − 2m− 1).

max
0≤i≤g

min
0≤j≤κ+−η+

R
(

(d−1)(d−2)
2 + md − 2i− 2j− η+

)
− md + j

≤ 1
8 (d − 2m + 1)(d − 2m− 1) + g.

With m = k − d−3
2 , after straightforward calculations we obtain

min
0≤j≤g+κ+

(R(kd + 1− 2j) + j) ≥ (k + 1)(k + 2)
2

,

max
0≤j≤g

min
0≤i≤κ+−η+

(
R(kd + 1− η+ − 2i− 2j) + i + j

)
≤ (k + 1)(k + 2)

2
+ g,

completing the proof.

6.3 Negative double points

We now specify to the case where C is a surface which has a single algebraic singularity
and mn ≥ 0 singular points whose links are (2,−2n)-torus links (which is not algebraic).

Theorem 6–8 Suppose C is a genus g degree d singular curve in the smooth category
as in Subsection 5.4 with a cuspidal singular point p, mn singularities whose link
is −T2,2n for each n ≥ 1, and no other singular points. Suppose further that C is
adjunctive.
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Then, for any k = 1, . . . , d − 2, we have

max
0≤j≤g+κ−

(R(kd + 1− 2j) + j) ≤ (k + 1)(k + 2)
2

+ g + κ−,

min
0≤i≤g

max
0≤j≤κ−−η−

(
R(kd + 1− 2i− 2j− η−) + i + j

)
≥ (k + 1)(k + 2)

2
+ κ− − η−,

where R is the semigroup counting function for the singular point p, and η− =∑
mn, κ− =

∑
mnn.

Remark 6–9 With the assumptions on singularities of C , the condition that C be
adjunctive (spelled out in Definition 5–17) is equivalent to saying that the genus of C is
given by (6–1).

Proof The beginning of the proof is exactly the same as in the proof of Theorem 6–4.
The boundary Y of the tubular neighborhood of C is a result of a surgery with coefficient
d2 on the knot K̂ in #2g+η−S2 × S1 . In particular, (6–7) holds with η− replacing η+ :

V top
md (K̂) ≥ (d − 2m + 1)(d − 2m− 1)

8
− η−

4
− g

2

Vbot
md (K̂) ≤ (d − 2m + 1)(d − 2m− 1)

8
+
η−
4

+
g
2
.

(6–10)

With g3(K) = 1
2 (d − 1)(d − 2)− g− κ− , equations of Proposition 6–3 (c) and (d) take

the form:

V top
md (K̂) =

g
2
− η−

4
+ min

0≤i≤g
max

0≤j≤κ−−η−

(
R
( (d−1)(d−2)

2 + md − 2j− 2i− η−
)

− (md − i− j + g + κ− − η−)
)

Vbot
md (K̂) =

g
2

+
η−
4

+ max
0≤j≤g+κ−

(
R
( (d−1)(d−2)

2 + md − 2j
)

− (md − j + g + κ−)
)
.

Comparing this with (6–10), after analogous changes as in Subsection 6.2, we arrive at

max
0≤j≤g+κ−

(R(kd + 1− 2j) + j) ≤ (k + 1)(k + 2)
2

+ g + κ−,

min
0≤i≤g

max
0≤j≤κ−−η−

(
R(kd + 1− 2i− 2j− η−) + i + j

)
≥ (k + 1)(k + 2)

2
+ κ− − η−,
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6.4 Special cases of Theorems 6–4 and 6–8

The bounds in Theorem 6–4 and 6–8 are fairly general, but clarity is the price. To
illustrate these bounds, we provide several specifications.

Corollary 6–11

(a) Suppose C is a genus g degree d curve with singular point p1, . . . , pν and η+

positive double points. Assume also that C has no other critical points. Then,
for k = 1, . . . , d − 2:

max
0≤j≤g

(
R(kd + 1− η+ − 2j) + j

)
≤ (k + 1)(k + 2)

2
+ g

min
0≤j≤g+η+

(R(kd + 1− 2j) + j) ≥ (k + 1)(k + 2)
2

,

where R denotes the infimal convolution of the functions RK1 , . . . ,RKν .

(b) Suppose C is a genus g degree d curve with a singular point p and η− negative
double points. Assume that C has genus as in (6–1). Then, for k = 1, . . . , d− 2:

max
0≤j≤g+η−

(R(kd + 1− 2j) + j) ≤ (k + 1)(k + 2)
2

+ g + η−

min
0≤j≤g

(R(kd + 1− η− − 2j) + j) ≥ (k + 1)(k + 2)
2

,

where R is the semigroup counting function for the singular point p.

Proof Both items follow from Theorem 6–4, respectively, Theorem 6–8, noting that
κ+ = η+ , respectively, κ− = η− .

Specifying further η+ = 0 in Corollary 6–11(a) recovers the following result of Bodnár,
Borodzik, Celoria, Golla, Hedden and Livingston [2, 3]:

Corollary 6–12 Suppose C is a cuspidal curve of genus g and degree d . Let R be the
convolution of semigroup counting functions of the singular points of C . Then

max
0≤j≤g

(R(kd + 1− 2j) + j) ≤ (k + 1)(k + 2)
2

+ g

min
0≤j≤g

(R(kd + 1− 2j) + j) ≥ (k + 1)(k + 2)
2

.

(6–13)

We now compare the cases g = 0, η+ = 1; g = 0, η− = 1; and g = 1, η+ = η− = 0.
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Proposition 6–14 Let C be a degree d curve with one cuspidal singular point, whose
semigroup counting function is denoted by R. Assume C has at most one ordinary
double point (η+ + η− ≤ 1) and no other singularities. For all k = 1, . . . , d − 2 set
υk = 1

2 (k + 1)(k + 2).

(a) If g = 1 and η+ = η− = 0, then R(kd − 1) ∈ {υk − 1, υk}, R(kd + 1) ∈
{υk, υk + 1};

(b) If g = 0, η+ = 1, then R(kd − 1) ∈ {υk − 1, υk}, R(kd + 1) ∈ {υk, υk + 1},
but also

R(kd) ≤ υk.

(c) If g = 0, η− = 1, then R(kd − 1) ∈ {υk − 1, υk}, R(kd + 1) ∈ {υk, υk + 1},
but also

R(kd) ≥ υk.

Proof Item (a) is an immediate consequence of (6–13).

For item (b) note that Corollary 6–11(a) implies that R(kd) ≤ υk and R(kd + 1) ≥ υk ,
R(kd − 1) ≥ υk − 1. Since R(j + 1) − R(j) ∈ {0, 1} for all j, the statement follows
trivially.

The proof of item (c) is analogous. Corollary 6–11(c) implies that R(kd + 1) ≤ υk + 1,
R(kd − 1) ≤ υk and R(kd) ≥ υk . Again, the statement follows trivially.

Proposition 6–14 can be interpreted as follows. Suppose C is a genus one curve with a
single cuspidal singular point. Then, the semigroup counting function R satisfies the
constraints of item (a) of Proposition 6–14. If for some k = 1, . . . , d − 2, we have
R(kd) = υk + 1, then the R function does not satisfy the constraints of item (b). That
is, C cannot be deformed to a curve with genus 0 and the same (topological type of)
cuspidal singularity. That is, we cannot “trade genus for a positive double point”.

If, for some k , we have R(kd) = υk − 1, then the same argument shows that we cannot
“trade genus for a negative double point”.

6.5 Unicuspidal curves of genus 1

We will now check on concrete examples whether the genus can be traded for double
points.
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Example 6–15 Let φ0 = 0, φ1 = 1, φn = φn−1 + φn−2 be the Fibonacci sequence.
In [3, Proposition 9.12], based on a construction of Orevkov [19] there was constructed
a family of genus 1 cuspidal curves Cn of degree φ4n with a single singularity whose
link is the (φ4n−2, φ4n+2)-torus knot (n = 2, 3, . . . ).

By Proposition 6–14(c) we deduce that the genus cannot be traded for negative
double points. Indeed, a classical identity on Fibonacci numbers φk−2 + φk+2 = 3φk

shows that the semigroup generated by φ4n−2 and φ4n+2 has precisely 9 elements
in the interval [0, 3φ4n): These are 0, φ4n−2, . . . , 7φ4n−2 and φ4n+2 . In fact, we
have that 7φ4n−2 < 3φ4n < 8φ4n−2 (we leave the proof of this to the reader) and
φ4n+2 + φ4n−2 = 3φ4n .

In particular R(3φ4n) = 9 < 10 = υ3 = (3+1)(3+2)
2 .

In [3, Theorem 9.1] there was given a complete list of candidates for curves of genus 1
with one singularity whose link is a torus link Tp,q . The list contains one infinite family
(Orevkov curves) and a finite list of special cases. We apply our obstructions to these
curves and obtain the following result.

Proposition 6–16 Suppose C is a genus one, degree d curve, having a single singularity,
whose link is a (p, q)-torus knot. Then either C is the Orevkov curve (of Example 6–15),
or the values of (p, q) and d are on the following list.

(a) d = 4, (p, q) = (2, 5);

(b) d = 5, (p, q) = (2, 11);

(c) d = 6, (p, q) = (3, 10);

(d) d = 15, (p, q) = (6, 37);

(e) d = 24, (p, q) = (9, 64);

(f) d = 27, (p, q) = (10, 73);

(g) d = 33, (p, q) = (12, 91);

(h) d = 3p, (p, q) = (p, 9p + 1), for p = 2, . . . , 11.

By definition, all cases satisfy the statement of Proposition 6–14(a). We applied the
criterion of Proposition 6–14 (b) and (c). The results are in Table 1. We indicate that
some of the examples predicted by Proposition 6–16 have not been either effectively
constructed or obstructed by other means.
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Case (d, p, q) Positive Negative Existence
(a) (4, 2, 5) Passes Passes Exists
(b) (5, 2, 11) Passes Passes Exists
(c) (6, 3, 10) Passes k = 1
(d) (15, 6, 37) Passes k = 2
(e) (24, 9, 64) Passes k = 3
(f) (27, 10, 73) k = 12 k = 8
(g) (33, 12, 91) k = 7 k = 8
(h) (3p, p, 9p + 1) Passes Fails if p ≥ 3

Table 1: Curves of Proposition 6–16 and the criterion of Proposition 6–14. “Positive” refers to
item (b) of the proposition, “negative” refers to item (c). If the curve does not pass the criterion,
we indicate the minimal k for which R(kd) > υk (case (b)) or R(kd) < υk (case (c)).

6.6 Generalized Orevkov curves

In [2] Bodnár, Celoria and Golla constructed a family of curves generalizing Orevkov’s
construction. Their work can be regarded as a generalization of the construction of [3,
Proposition 9.12]. To begin with, fix k ≥ 2. The Lucas sequence is the sequence Lk

i
defined recursively via Lk

0 = k − 1, Lk
1 = 1, Lk

i+1 = Lk
i + Lk

i−1 . Here i is allowed to
take all integer values.

Theorem 6–17 (BCG family, see [2, Theorem 1.7]) For any i ≥ 2, there exists a
genus k(k− 1)/2 curve of degree Lk

4i−1 with precisely one singularity whose link is the
(Lk

4i−3, L
k
4i+1)-torus knot.

For any j ≥ 1, there exists a genus k(k− 1)/2 curve of degree −Lk
−4j−1 with singularity

whose link is the (−Lk
−4j+1,−Lk

−4j−3)-torus knot.

Now we apply Corollary 6–11.

Proposition 6–18 None of the curves of the BCG family can be transformed into a
curve with genus one less and one negative double point.

Proof We follow the same strategy as in Example 6–15. We begin with the first family.
Suppose i ≥ 2. Let S be the semigroup associated with the (Lk

4i−3,L
k
4i+1)-torus knot,

and let R be the counting function for it. The recursive formula for Lucas numbers
implies that Lk

s + Lk
s+4 = 3Lk

s+2 for all s. Moreover,

(6–19) Lk
s+4 = Lk

s+3 + Lk
s+2 = 2Lk

s+2 + Lk
s+1 = 3Lk

s+1 + 2Lk
s = 5Lk

s + 3Lk
s−1 < 8Lk

s ,
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as long as s ≥ 0. In particular, 3Lk
s+1 < 9Lk

s . Therefore, all possible elements in
S∩ [0, 3Lk

4j−1] are 0, . . . , 8Lk
4j−3 and Lk

4j+1 . Hence, R(3Lk
4j−1) ≤ 9 violating the second

inequality in Corollary 6–11(b).

As for the second family, write L̃k
i = (−1)i+1Lk

−i for i > 0 and note that L̃k
i+1 =

L̃k
i + L̃k

i−1 . Moreover, for i > 0, L̃k
i is an increasing sequence of positive numbers.

We have L̃k
s+4 + L̃k

s = 3L̃k
s+2 and, for s odd, L̃k

s+4 < 8L̃k
s by the same argument as in

(6–19). We conclude as in the first case.

It is unknown whether it is possible to trade genus for positive double points in any
curves in the BCG family.
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