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Heegaard Floer homology, knotifications of links, and plane
curves with non-cuspidal singularities

MACIEJ BORODZIK
BEIBEI L1U
IAN ZEMKE

We describe a formula for the H; -action on the knot Floer homology of knotifications
of links in $3. Using our results about knotifications, we are able to study complex
curves with non-cuspidal singularities, which were inaccessible using previous
Heegaard Floer techniques. We focus on the case of a transverse double point,
and give examples of complex curves of genus g which cannot be topologically
deformed into a genus g — 1 surface with a single double point.

14H50; 57K 18, 14B05, 57TR58

1 Introduction

1.1 General context

Let C be a complex curve in CP?. The curve C is called rational, if C is irreducible
and there exists a continuous degree one map from S to C. The curve C is called
cuspidal, if all its singularities have one branch (i.e. their links have one component).

In [1], Fernandez de Bobadilla, Luengo, Melle-Hernandez and Némethi indicated
a connection between Seiberg—Witten invariants and rational cuspidal curves. As a
consequence of these connections, they stated a conjecture binding coefficients of
Alexander polynomials of singular points of a rational cuspidal curve. A variant of this
conjecture was proved in [4]; the proof used the relation of semigroups of singular points
with V;-invariants of knots together with the Ozsv4th—Szabé d-invariant inequality.

The methods of [4] were later generalized by Bodnar, Borodzik, Celoria, Golla, Hedden
and Livingston [2, 3] to the case of non-rational cuspidal curves. Their result does not
generalize immediately to the case where C has non-cuspidal singularities. In this case,
the boundary of a suitably defined tubular neighborhood of C can be presented as a
surgery on a connected sum of links of cuspidal singularities and knotifications of links
of non-cuspidal singularities of C.
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Knotification is an operation described by Ozsvéth and Szabd in [26], which transforms
an n-component link L in $° into a knot L C #7152 x S'. The knot Floer homology
HFK (L) admits an action of the exterior algebra over Z on n — 1 generators, which is
identified with A*H;(#'~'S? x S'). To apply the strategy of [2, 3, 4] to non-cuspidal
singularities, one must compute explicitly the action of A*H (#"~'S? x S') on the
knot Floer complex of the knotification. Performing explicit computations is often
challenging, since computing the action of A*H;#"~'S? x S') involves counting
pseudo-holomorphic curves in a symmetric product Sym?(X) of a surface ¥ in a
Heegaard decomposition of #'~1S? x S', which is used to compute the knot Floer
complex. In this paper, we prove a general result which relates the homology action
on the knotified link to counts of pseudo-holomorphic curves on a Heegaard diagram
for the original link in S®. In many cases, this is more practical, since it allows us to
compute pseudo-holomorphic curves in a symmetric product of lower index d. For
the links we consider in the present paper, we are able to reduce the computations to
Sym!($?), which is completely combinatorial.

1.2 Main results

Given an n-component link L C S we use Heegaard Floer TQFT to recover the knot
Floer complex of the knotification LofL together with the action of A*Hj(#'~15% x S')
on it. This result builds on recent developments in the Heegaard Floer TQFT due
to the third author as well as many others; see [9, 11, 32, 33, 36, 35]. Our main
result concerning knotifications is Proposition 2—10, which describes the action of
A*H (#'~1S? x S') on the knot Floer homology of a knotification in terms of a link
diagram for L.

Using this general result, we compute the knot Floer complexes of the knotifications
of the (2,2n)-torus link and of its mirror, as well as the action of H;(S* x S'). In
particular, we are able to compute the invariants V' and V% of these knots. To the
best of our knowledge, these computations have not appeared in the literature before.
For the reader’s convenience, we present the precise result for the knotification of the

torus link 77 »,. For more details about its mirror, see Proposition 2—41.

Proposition (see Proposition 2-40) let /7\"272,, be the knotification of the torus link
T>,. The pair (CFK~(S* x S', Tz,zn),Ay) has a model where CFIC™(S? x Sl,?un)
is equal to S"{}, 4} ® 8" 1{—1,—1} and A, maps S" to S"~! on the chain level.
Here, we recall that {i,j} denotes a shift in the (gr,,, gr.)-grading by (i,j), and 8" and
S"~! are the chain complexes in Definition 2-28.
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Our main application is concerned with general curves in CP?. To generalize results of
[2, 3] to the setting of complex curves C C CP? with non-cuspidal singularities, we
take a precisely defined ‘tubular’ neighborhood N of C. The boundary ¥ = ON can be
described as a surgery on a link L in #°5? x S!, where L is a suitable connected sum of
knotifications of links of singularities and Borromean knots, and p can be expressed
in terms of topology of C. As in [2, 3], the manifold Y bounds a four-manifold
X = CP?\ N, with trivial intersection form. Using Ozsvéith-Szabd’s d-invariant
inequality in the version proved by Levine and Ruberman [15], we obtain restrictions
on V;(L) and V*'(L).

The main case we focus on is curves C with some finite number of cuspidal singularities
as well as singularities whose links are (2, 2n)-torus links. We obtain the following
result.

Theorem (see Theorem 6—4) Let C be a reduced curve of degree d and genus g.
Suppose that C has cuspidal singular points py, . . .,p,, whose semigroup counting
functions are Ry, ...,R,,, respectively. Assume that apart from these v points, the
curve C has, for each n > 1, m,, > 0 singular points whose links are (2, 2n)-torus links
and no other singularities. Define

oo o0
Ny = Zmn and k4 = ann.
n=1 n=1

Forany k=1,...,d — 2, we have:
k+ 1)(k+2
M_’_

k+ Dk +2
min  (R(kd + 1 — 2j) +j) > ke Dk +2)
0<j<g+r4 2

i Rkd+1—ny —2i—2)+i+j) <
ogagxgost‘srw—m(( Tl =22 4i) <

Here R denotes the infimal convolution of the functions Ry, ... ,R,.

Although complex curves cannot have singularities whose links are (non-algebraic)
(2, —2n)-torus links, our techniques also obstruct smooth (non-algebraic) surfaces with
these singularities. See Theorem 6-8.

The technical statement in Theorem 6—4 is best understood by comparing the obstruction
in the case of a single transverse double point to the genus g = 1 obstruction from
[2, 3]. We do this in Proposition 6—14, which we now summarize. Let C be a degree d
curve, and define the quantity v, = %(k + D(k+2)fork=1,...,d —2. Write R for
the semigroup counting function. If C has genus 1, then the genus bound from [2, 3]
implies that for each k € {1,...,d — 2},

(1-1) Rtkd — 1) € {vg — 1,0} and Rekd + 1) € {vg, v + 1}
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In this case, the only constraint on R(kd) is that it lies between R(kd — 1) and R(kd + 1),
and hence R(kd) € {vr — 1, v, v + 1}.

On the other hand, our bounds from Theorems 6—4 and 6-8 give a slightly stronger
obstruction than the bound for genus 1 curves in Equation (1-1), based on the value of
R(kd). Since double points may be smoothed topologically, Equation (1-1) must also
hold for genus O curves C with a single double point. If C is a genus O curve with a
single positive double point, then our bound implies

R(kd) < v.

If instead C is a smooth curve with a negative double point, then we prove that
R(kd) > wvy.

We compare our obstruction with known examples, focusing on the question of
deforming a genus 1 surface into a surface with one double point. In Subsection 6.5 we
provide concrete obstructions. For existing curves (i.e. curves that we can construct),
there are obstructions for trading genus for negative double point, see Example 6-15.

We also compare our obstruction to the obstruction for genus 1 curves from [3]. In [3,
Theorem 9.1], there is a list of genus one curves with a singularity whose link is the
(p, g)-torus knot with p, g coprime. The curves in the list pass the obstruction provided
in [3], but it is not known whether these complex curves exist. We apply our bound to
this list of potential examples. There is a remarkable case of degree 27 curve with a
(10, 73) singularity, where the genus cannot be traded either for a positive or a negative
double point; see Table 1. While the curve passes all known criteria, we do not have a
recipe to construct it.

1.3 Further applications and perspectives

There has been recent interest in the question of “trading genus for double points".
To be more precise, given a surface of genus g, one can ask whether it is possible to
deform it to a genus g — 1 surface with an extra positive or negative double point. In
the context of the surfaces in a four-ball with fixed boundaries, this question is related
to studying the difference between the clasp number and the smooth four-ball genus;
see [5, 6, 12, 14, 20]. We deal with a variation of this question, which concerns trading
genus of a closed surface in CP? for double points, while preserving the remaining
singularities.

In Subsection 6.6, we consider another infinite family of higher genus curves constructed
by Bodhar, Celoria and Golla. We show that the genus cannot be traded for a negative
double point for any member of the family.
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As a perspective and a possibility for future research, we indicate that the methods
can be used to study line arrangements in CP?. The only missing ingredient is the
computation of Heegaard Floer chain complex of the (d, d)-torus link for d > 2, and
understanding the H-action on the knotification these links.

1.4 Organization

Section 2 reviews Heegaard Floer theory. After recalling variuous known definitions
and results, we show how to obtain the knot Floer chain complex of the knotification of
links, as well as the H;/ Tors action. A detailed construction of the Heegaard Floer
chain complex of the Hopf link is presented in Subsection 2.5. The generalization to
knotifications of arbitrary (2, 2n)-torus link is given in Subsection 2.6. We conclude
Section 2 with Subsection 2.7, where we recall the computations of the Heegaard Floer
chain complex of the Borromean knot B.

Section 3 is devoted to a detailed study of correction terms. We recall the Levine—
Ruberman versions of d-invariants and recall definitions of V, invariants.

Section 4 contains some important computations that happen behind a scene. We recall
the computation of the Heegaard Floer chain complex of L-space knots, in particular, of
algebraic knots in Subsection 4.2. We show how to recover the V; invariant of a product
of positive and negative staircases. A precise statement is given in Proposition 4—18.
We show that the assumptions in the second item of that proposition is necessary in
Subsection 4.4.

Next, we consider tensor products of knot Floer chain complexes in manifolds with
b1 > 0. It turns out that most of the knots that we encounter share a property, which
greatly facilitates our computations, namely they have split tfowers, see Definition 4-29.

Section 5 constructs a tubular neighborhood N of a singular curve and presents the
boundary Y of this neighborhood as a surgery on a link L in #°S> x S!, where p is
the first Betti number of C. We then compute homological invariants of ¥, N and
CP?\ N. In particular, we study which Spin® structures on Y extend over CP?> \ N.
These computations are slight generalizations of calculations of [2, 3, 4].

Section 6 contains the proofs of Theorems 6—4 and 6—8. The main technical result
is Proposition 6-3, which computes the d-invariants of Y in terms of the semigroup
counting functions of knots of cuspidal singularities. We also compare Theorems 6—4
and 6-8 with bounds for cuspidal curves of higher genus in Subsection 6.4. Subsec-
tions 6.5 and 6.6 provide explicit examples of curves for which our obstruction can be
applied.
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2 Review of Heegaard Floer theory

2.1 Heegaard Floer complexes with multiple basepoints

Definition 2—-1 A multi-pointed Heegaard diagram for a 3-manifold Y is a quadruple
(2, a, 3, w) where:
» > is agenus g surface, which splits Y into two genus g handlebodies, U, and
Ug,and w = (wy,--- ,w,) is a nonempty set of basepoints in 3.

e a=(ay,...,0g4p—1) and B = (Bi,...,Bgtn—1) are collections of simple
closed curves on ¥, where n = |w|. Each curve in « bounds a compressing disk
in Uy, and each curve in 3 bounds a compressing disk in Ug. Furthermore, the
curves in « are pairwise disjoint, and similarly for 3.

e The curves « and 3 are transverse.

* The curves in « are linearly independent in H; (3 \ w), and similarly for 3.

Let To, Tg C Symg+"_1(§]) be two half-dimensional tori
Ta:alx---xag+,,_1, and Tﬁzﬁlx"'xﬁg—kn—l-
Ozsviath and Szab6 [23, Section 2.6] describe a map

Sw: To NTg — Spin“(Y).

Given a Heegaard diagram of ¥ with a Spin® structure s, we define a Floer chain
complex CF~ (Y, w, s) over F[U,...,U,] where F = Z/27Z. The chain complex is
generated over F[Uy, ..., U,] by intersection points in T,, N Ty satisfying sw(X) = 5.
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For any x € T, N Tg, the differential is defined by

2-2) ox= 3 Y HME@RUMT Uy,
ye’ﬂ'arﬂl‘ﬁ peEMT(X,Y)
u(g)=1

Here, m(x,y) denotes the set of homotopy classes of maps of a complex unit disk
D to Sym$T"~1(2) such that point —i is mapped to x, the point i is mapped to y,
D N {Re(z) < 0} is mapped to T and 9D N {Re(z) > 0} is mapped to T,. The
quantity p(¢) is the Maslov index of the disk. The space M(¢) is the moduli space of
Jg-holomorphic disks representing ¢ (for some 1-parameter family of almost complex
structures J; on Symét"~!(2)). The condition that p(¢) = 1 implies that M(¢) /R
is generically a finite set of points. The integers n,,(¢) are intersection numbers of
{w;} x Sym$*t"=2(2) C Symé+"~1(X) with the image of ¢.

The homology group HF (Y, w, s) of the chain complex CF™ (Y, w, 5) has the structure
of F[Uy,...,U,]-module.

If ¢1(s) is torsion, then CF~ (Y, w, 5) admits an absolute Q-valued grading, which we
denote by gr,,. The differential decreases the grading by 1, so that the grading descends
to HF (Y, w,s). Multiplication by any of the U; decreases the grading by —2.

Formally inverting the variables Uy, ..., U, in CF~ (Y, w,s) gives a chain complex
CF>*(Y,w,s) over F[Uj, Ul_l, ..., Uy, U], The associated homology group is
denoted HF>°(Y, w, 5).

2.2 The link Floer complex

For links in S3, Ozsvéth and Szabé [26] introduced the link Floer homology, which
generalizes the knot Floer homology defined seperately by Rasmussen [28] and Ozsvath—
Szabd [22]. We presently recall their construction.

Definition 2-3 An oriented multi-pointed link I. = (L, w, z) in a closed 3-manifold
Y is an oriented link L with two disjoint collections of basepoints w = {wy,...,wy,}
and z = {z1,...,z,}, such that as one traverses L, the basepoints alternate between w
and z. Furthermore, each component of L has a positive (necessarily even) number of
basepoints, and each component of Y contains at least one component of L.

Analogously to Definition 2—1, we have the following:
Definition 2-4 A multi-pointed Heegaard link diagram for L. = (L,w,z) in Y is a

tuple (X, o, 3, w, z) satisfying the following:
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* ¥,a,83,w) and (X, o, 3,z) are embedded Heegaard diagrams for (¥, w) and
(Y, z), respectively, in the sense of Definition 2—1.

* LN =wUz,and furthermore L intersects X positively at z and negatively at
w.

LN U, (resp. LN Ug) is a boundary-parallel tangle in U, (resp. Up).

Given a multi-pointed Heegaard link diagram (X, o, 3, w, z) for (Y, L), the link Floer
chain complex is defined as follows. Let

R~ =F(U.,V], #<=Flw, % ",v,v.

Let s be a Spin€ structure on Y. We define the chain complex CFL™ (X, @, 3, W, Z, 5)
to be the free %~ -module generated by x € T, N Tz with sy(x) = 5. The differential
is given by the formula

25 ax= > 3 HM@)/RY MOy Ot @)y
YETaNT g pema(x,y)
(=1

extended #~ -equivariantly. The differential O squares to 0.

There is a larger version of the link Floer complex, which we call the full link Floer
complex, denoted by CFL; (Y, 1L, s). As a module, CFL; (Y, L, 5) is freely generated
over the ring F[%1, ... %, "1, - .., Vu] by To NTa. The differential is similar to (2-5),
except we use the weight n,,(¢) for the variable %;, and the weight of n_(¢) for the
variable 7;. In general, CFLg, (Y, 1L, 5) is a curved chain complex, i.e. 0* = wy, -id,
for some wy, € F[%, ..., %, ",...,V,l; see [33, Lemma 2.1].

2.3 Homological actions

Ozsvith and Szab6 describe an action of A*(H(Y)/Tors) on the homology group
HF (Y, w,s); see [23, Section 4.2.5]. For a multi-pointed 3-manifold (Y, w), there is
an analogous action of the relative homology group Hi(Y,w) on CF (Y, w,s) [32].
In this section, we recall the construction and describe some analogs on link Floer
homology.

If (&, o, 3, w) is a multi-pointed Heegaard diagram, and X is a path which connects
two distinct basepoints wy, wy € w, then there is a relative homology action Ay, which
is an endomorphism of CF~ (Y, w, 5) and satisfies

(2-6) A\O + 0A\ = Uy + Us.

Algebraic & Geometric Topology XX (20XX)



Curves in the projective plane 1009

See [32, Lemma 5.1].

The map A is defined via the formula

(2-7) A= 3 Y a oEM@/RUM U@y,

yETaNT g pem(x,y)
me)=1

Here a()\, ¢) € F is a quantity determined as follows. Homotope the path A so that it
is an immersed curve in X, transverse to the a and 3 curves. We write D(¢) for the
domain of the class ¢, which is a 2-chain on > with boundary in c U 3. We write
OD(¢) = 0a(¢) + 0p(¢). Then we set a(X, @) = #(0(¢) N X). Compare [32, Section
5.1]. Up to chain homotopy, the map A only depends on the relative homology class
of A in Y, relative to its boundary. In particular, the map A, does not depend on the
choice of representative on the surface 3. See [18, Lemma 2.4] for a proof in a related
context, or [32, Lemma 5.6] for a similar proof in the present context.

If 3, a,B,w,z) is a multi-pointed Heegaard link diagram, and A connects two
basepoints wy and wy, there is an analogous map Ay on the link Floer homology. In
contrast to (2-6), we have

(2-8) ANOD + OA\ = U + U3,

where 7] denotes the variable for the basepoint z; which immediately follows w; with
respect to the ordering of basepoints on the link, and similarly 73 is the variable for
the basepoint z, which immediately follows w,. The proof follows from the same
strategy as [32, Lemma 5.1]: one counts the ends of index 2 families of holomorphic
disks. There are two types of ends, pairs of index 1 holomorphic disks as well as
index 2 boundary degenerations. Pairs of index 1 holomorphic disks contribute the
left-hand side of (2—8), while the count of boundary degenerations, weighted by a(A, ¢),
contributes the right-hand side.

If z; € z, then there is an endomorphism of CFL; (Y, L, 5) defined by the formula
- wi (@) wn 4 (@) n
=% Y Y n@HM@/R D 2y Oy g @y,

yeTaNTs pem(x,y)
me)=1

We call ¥, the basepoint action of z;. Note that since the contribution of each disk
class ¢ is multiplied by n,(¢) in the sum, the additional factor of #;~! never results in
negative powers of 7;, and hence the formula induces a well-defined endomorphism of
CFLi (Y, L, s).

Given w; € w, there is an analogous endomorphism ®,,,. The map VU, satisfies

U0+ 0V, = U+ U,
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where w; and w; are the w basepoints adjacent to z; on the link. In particular, if
we identify all of the %; variables to a single %, then ¥, is a chain map. See [29,
Lemma 4.1] or [33, Lemma 3.1]. Similarly, if z; is on a link component which has only
one other basepoint, then W, is also a chain map.

2.4 Heegaard Floer homology of a kneotification

Definition 2-9 (Knotification) Let £L = L; U---U L, be a null-homologous link in a
3-manifold Y.

(1) A partial knotification of L with respect to components L;,L; is a (n — 1)-
component null-homologous link £;; in Y- #52 x S! obtained by connecting L;
and L; with an oriented band going across the 52 x S summand.

(2) A knotification of L is a knot L in Y#~152 x S! obtained by consecutive partial
knotifications.

The isotopy type L does not depend on the feet of the bands; see [22, Propostion 2.1].

Suppose L. = (£, w,z) is an n-component link in #"5? x S', equipped with 2n
basepoints, and I” is a multi-pointed link in #"71S? x S', obtained by knotifying the
components L, | and L, of £. Furthermore, we assume that the basepoints on the
link components Ly, ..., L, » are unchanged in L, and on L/, we have only the two
basepoints w,, and z,_. There are two natural maps

F: CFL™(#"S? x S', L) — CFL~#" 152 x s' L))
G: CFL~#"H18? x ' L)) = CFL~#"S? x S'. ).

The map F is the link cobordism map for a 4-dimensional 1-handle, followed by a
saddle which crosses over the 1-handle. The decoration on the saddle consists of an
arc, which connects the two link components of L. Outside of the saddle region, the
decoration consists of “vertical” arcs which connect IL to I”. See the left-hand side of
[34, Figure 5.1]. The map G is the map for the link cobordism obtained by reversing
the orientation and turning around the above cobordism for F.

The following is a key lemma which we use to compute the H; action for knotified
links:

Proposition 2-10 Suppose L, I’, F and G are as above. Let X be an arc in #"5* x !
which connects the w basepoints of L,_; and L,. Let vy be the unique element
of Hi(#"18? x S') obtained by joining the ends of \ across the 1-handle used in
knotification. We have the following:
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(a) F and G are homogeneously graded chain homotopy inverses.
(b) The map F satisfies

F(Ay+ U ®,,) ~ F(Ay + ¥ U,) ~ A,F.

Proof To simplify the notation, we will describe the case when L is a link in S with
two components L; and L,. We begin with claim (a). The proof is formally identical to
the proof of [34, Proposition 5.1] and follows from two 4-dimensional surgery relations
[34, Propositions 5.2 and 5.4].

We now move onto claim (b). We first show that

(2-11) F(Ay+7V,,) ~ A F.

By definition, we may take

(2-12) F=S, . FYF,

w2,21
where F is the 1-handle map, S, . is a quasi-destabilization map, and Fy is a type-w
saddle map; see [36] for precise definitions of the relevant maps. Here B denotes the
band (i.e. saddle) which crossed over the 1-handle used in the knotification operation.

We have now
(2-13) Fi(Ay +7VV,,) = A\ + VV,,)F;

by the same argument that the 1-handle is a chain map [25, Section 4.3] (see also [32,
Lemma 8.11]). Analogously, the computation of the quasi-stabilized differential in [33,
Proposition 5.3] implies that

ASy . = Su

w2,21 w2,21

A,.
Hence, it is sufficient to show that
BAN+ TV O,)=AFp.

We recall the definition of the map F}j. We pick a Heegaard triple (3, o, 3, 3, w, z)
subordinate to the band [36, Defintion 6.2]. The diagram (X, 3, 3', w, z) contains two
canonical intersection points, @g’ g and @/137 4> Where @%7 5 1s the top degree generator
with respect to the gr,-grading, where o € {w,z}. By definition

Fg(x) = Foé”gﬁ/(x, @,ZB,B/)'

Counting the ends of Maslov index 1 families of holomorphic triangles, weighted by
a(\, 1)), we obtain the relation
Fop.5(ANX), OF 5) + Ax(Fo g5/ (X, OF 5)
=F\(0x, 0% 3) + F5(x,00% 3) + OF3(x, 0% 4);

Algebraic & Geometric Topology XX (20XX)
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see [32, Lemma 5.2]. Here F f\‘ counts index 0 holomorphic triangles with an extra factor
of a()\, ). Note that one might expect an extra term involving F, g g/(x,A ,\(62, ﬂ,)),
however this term vanishes since Ay weights disks based on their changes across the «
curves and @%, g € TgNTg . Since 86257 g = 0, we obtain that

(2-14) FY oAy +AyoF} ~0.

Similarly, counting the ends of index 1 families of holomorphic triangles, weighted by
n,, (1), we obtain

Fa,p,5(V V5 (), 0f 5) + Fa,5,5/(X, VU5, (0 5)) + VW, (Fa 5,6 (X, O 1))
=F'(0x, 0% 5) + F'(x,00% 5) + OF' (x,0% 5,),

where F’ counts index O triangles weighted by a factor of n; (). The above equation
implies that

(2-15) FY oV Wy + VW, 0 Ff = Fopp(—, 7V U,(05 5)).

We claim now that the map F,, g 5/(—, V' \PZZ(@% 5,)) is null-homotopic. To establish
this, it is sufficient to show that

(2-16) [V W2,(0% )] =0,

where the brackets denote the induced element of homology. Indeed, assuming the
existence of an ) € CFL™ (X, 3,3, w,z) such that On = ¥ \I/ZZ(@/Z8 5> associativity
of holomorphic triangles implies that

Fopp X VV,(0F 5)) = OF o 55(X,1m) + Fap5(0x,1),
SO

(2—17) Fa,ﬂﬂ/(_, 4/\1’22(926,,8’)) ~ 0.

We will now demonstrate Equation (2-16). We observe that the map ¥, commutes
with the homotopy equivalences associated to changing Heegaard diagrams by [33,
Lemma 3.2]. Furthermore, the homology class [@%7 1 1s also preserved by these
homotopy equivalences by [36, Lemma 3.7], since it is the unique generator in its grading.
In particular, we may verify Equation (2—-16) for any convenient choice of Heegaard
diagram for an unknot with four basepoints. We perform the computation using the
genus 0 Heegaard diagram shown in Figure 1. On this diagram, ‘1112(6151 g) = 0.
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w

B8

21

z
8.8’

Figure 1: An unkot with 4 basepoints. The dashed arc is A.

Combining (2-14), (2-15) with (2-17), we obtain
(2-18) FR(Ax+7V,,) >~ (Ax+ VV,,)Fy.

Next, consider a path \' from w; to wy, which is a subarc of I.”. We choose X\’ so that
it is oriented from wy to w,. There are two such subarcs of IL’, and we pick the one so
that the portion of )\’ nearest to w; is in the beta-handlebody (equivalently, we pick
the one which goes over the band B before arriving at a z basepoint). Without loss of
generality, we may assume that A\’ crosses over z. See Figure 2. We define

vi= AN,

where x denotes concatenation.

Figure 2: The configuration of the band B, the basepoints, and the arc A C I”.

On the Heegaard diagram, we may choose )’ to cross only the alpha curves between
wi and 7o, and only the beta curves between z; and w,. Clearly,

Cl()\,, QS) — nW2(¢) - nzz(¢)'
Hence, Ay = % ®,,, + V¥, or equivalently
(2-19) VYV, =Axy +UD,,.
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Combining (2-18) and (2-19), we obtain

FA + 7/\IJZ2) ~ SV;2,2| Ay +Ay + %(I)Wz)FgFl
(2-20) ~ S (A7 + %(I)WZ)F;;Fl

w2,21

~A,S, . FyF|.

w2,21

The second line of (2-20) follows from the relation A, ~ Ay + Ay/. The final line
follows from (2-13), as well as the relation that S;, . ®,, ~ S, .S} S, . ~0by

w2,z21 =~ W W2,215 W2,21 7 W2,21

[36, Lemmas 4.11 and 4.13], completing the proof of (2-11).

Finally, to see that
F(A\ + % ®,,) ~ AF,

it is sufficient to show that ¥ ¥, ~ % ®,,, on CFL (L). To see this, we note that
on a diagram for IL, we can consider a shadow of the link component L,. The arc
L \ {w2,z2} contains two subarcs, one of which intersects only the alpha curves, and
one of which intersects only the beta curves. Hence a(L, ¢) = n,,(¢) — n;,(¢) for any
class of disks ¢. On the other hand, this implies that the homology action associated to
0 = [L»] € H,(S?) satisfies

0~ AL, =UDy, + VT,

completing the proof. a

The homology action on full knotifications may be computed by iterating the above
result, via the following lemma:

Lemma 2-21 Let L, L', F and G be as in Proposition 2—-10.

(1) Suppose that v € H{(#"S? x S'). Write v also for the induced element of
H (#1182 x S'). Then A, commutes with F' and G up to chain homotopy.

(2) If X isanarcin #"S* x S' which connects two componentsof Ly, ...,L,_», then
the relative homology map A, commutes with F and G up to chain homotopy.

(3) Ifw and z are basepoints on one of the link components Ly, ...,L, 5, then ®,
and VU, commute with F and G up to chain homotopy.

The proof of Lemma 2-21 is similar to the proof of Proposition 2-10 (though strictly
easier), and hence we omit it. We refer the reader to [32, Section 5] and [36, Section 4]
for related results.
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Figure 3: A genus 0 Heegaard diagram for the Hopf link. The thick (red) curve is the a-curve,
the thin (blue) curve is the B-curve. The dotted curve is used to compute the action of
H,(S% x S';Z) on the knotification of the Hopf link.

2.5 The Hopf link

Our next goal is to describe the CFL™ complexes for the (2, 2n)-torus links, denoted by
T> 5, their mirrors and their knotifications. As the calculations are rather involved, we
begin with describing the Floer chain complex for the link 75> (ie. the positive Hopf
link), leaving the general case to Subsection 2.6. While the complex CFL™ (T>>) is
well known (it can be computed explicitly using a very simple diagram), to the best of
our knowledge, the calculation of the action of H (5% x S") on the knot Floer chain
complex of the knotification of 73 > is new.

As our main focus will be eventually the knotification of 75 5, we restrict our attention
to the link Floer complex over the ring Z~ = F[% , V'], as opposed to the version with
a variable for each basepoint.

Consider the diagram for the Hopf link, as in Figure 3. The complex CFL™ (T3 >) is
generated over %~ by four elements, h,, h,, h. and h,, which correspond to the
intersections of the v and 3 curves in Figure 3. The gradings are as follows:

1 3 11
(gr,,(ha), gr (ha)) = (2,—2> (gr,,(hy), gr (hy)) = (—2,—2>

1 1

(2-22) 3
(g, (ho). gr.(he)) = <2, 2) (g, (ha), gr.(ha) = (2,2)

The differential in the complex is computed by counting holomorphic disks of Maslov
index 1. Counting bigons shows that

(2-23) Oh, = Oh. = 0, dhy = Ohy = Wh, + Vh,.
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The homology of CFL>(T,>) is a direct sum of two copies of #Z°°. One copy is
spanned by [hj; + h,], the other copy is spanned by h, or h,.

We now describe the homology action A, on C]-"IC_(?M), where ?272 denotes the
knotification of 7> >, and -y is a generator of H; (5% x S1). We will use Proposition 2-10.
The formula therein involves the relative homology action Ay on CFL™ (T>), which
we compute presently. In our present case, the arc A has only one intersection with
an alpha curve, which occurs at a point labeled e in Figure 3. The map A, counts
holomorphic disks of Maslov index 1, with weights corresponding to changes along the
alpha boundary of a disk; see (2-7). Counting bigons with these weights, we obtain:

(2-24) Ax(ho) = V(b +hg), Ax(hy) = 0, Ax(he) = % (hy + hg), Ax(hg) = % hg.

We recall that in Section 2.4 we defined a knotification map
F: CFL™(T») — CFK™(Tay),
which is a homotopy equivalence. In Proposition 2—-10, we showed that
F(A\ + % ®,,) ~A,F.

Hence, as a model for the pair (CFIC™ (7’2,2), A,), wemay use (CFL (T22),A\+U ®,).
Hereafter, by a model for a chain complex (possibly with an extra structure) defined up
to chain homotopy equivalence, we mean a concrete chain complex in the class of an
appropriate (usually: bifiltered) chain homotopy equivalence. Abusing notation slightly,
we will write A, for the endomorphism of CFL™ (T>) givenby Ay := A\ + % ®,,,.
One easily computes

®,,,(hg) = hy,

and ®,,, vanishes on the other generators. Hence,

(2-25) Ay(hg) = ¥ (hp+hg), Ay(hy) = %hg, Ay(he) = U (hp+ha), Ay(hg) = % h,.

With a change of basis h/, = h;, + h;, we obtain the following presentation of
(CFK™(T2),A5):

TN
h, < e h‘b

(2-26) % i
hﬁj 7 h.

In (2-26), the dashed arrows denote differentials, and the solid arrows denote the action
of A,.
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We may obtain a simpler model of the homology action by replacing A, with A, +[0, F],
where F is the %~ -equivariant map which satisfies

F(hy) =h,, and F(hy) = F(h:) = F(hg) = 0.
The resulting model for (C}"ICf(f"m),Av) is shown in (2-27).

hy <= b
2-27 ¥
(2-27) / i

I, — he

2.6 The torus link 755,

Before we start computation of Floer chain complex of the (2, 2n)-torus link and its
knotification, we introduce a family of complexes S,,, n € Z, which play a prominent
role in the present paper.

Definition 2-28 Suppose n > 1. We write S" for the complex generated by elements
X0, V1, - - -5 Yon—1, X2, With differential O(xp;) = 0 and

0O2it1) = U x2i + VX2i42.

The bigradings are given by (gr, (x)), gr(x;)) = (—j,j — 2n), if j is even. The same
formula holds for y;, if j is odd.

The complex S™" is defined as the dual complex to &". More specifically, it is
generated by elements xo,y ,...,y, |,X, with differential d(y,. =0 0(xy;) =
4 Yoiig T /4 Yoit1 and the convention that y LT Vo1 = 0. For j even, the grading
of x; is (j, 2n — j), and an analogous formula holds for the grading of Y, if j is odd.

Remark 2-29 The complex S” is the CFKX~ complex of the positive torus knot
T5 441, while S7" is the complex for the negative torus knot 7> _2,+1). Hence, we
also call 8" a staircase complex. For details of staircase complexes, see Section 4.1.

Recall that 755, C $3 denote a 2-component (2, 2n)-torus link. In this subsection, we
study the Floer chain complex CFL™ (T>2,) as an %~ -module. This gives the Floer
chain complex CFK ™ (S? x S!, T2,), where T5 5, is the knotification of 7> 5.

The Heegaard diagram of the link 73, in §? is shown in Figure 4 and the Floer chain
complex is in Figure 6. The Heegaard diagram displayed therein is obtained from a
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Figure 4: A Heegaard diagram for 7, 4 from a doubly pointed open book. The dashed line is an
arc A connecting wy and w,.

doubly pointed open book whose page is a disk, and whose monodromy is ", where ~
denotes a Dehn-twist parallel to the boundary.

It is easy to see that there are 4n generators yj,

..y Yan—1 of the complex CFL™ (T2 2,).
By counting bigons, one obtains the following formulas for the differential:

(2-30)
0yi = OVan—i = V Vi1 + Yan—it+1) + % Qit1 + Yan—i—1)
Oy1 = Oyan—1 = Vyo + U (y2 + yan—2),

OYon—1 = OVant1 = Uy + V on—2 + Yont2)s
8)70 = 5Y2n =0.

f2<i<2n-2

Itis convenient to do the following bigraded change of basis to the complex CFL™ (T3 2,).
Namely we consider the basis yi, ..., y,—1, X0, . . . , X2, Where

Xi = Vi + Yan—i if 1<i<2n-—1,

X0 = Y0,

Xon = Y2n-

(2-31)
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Y6

K4

Figure 5: The chain complexes for T 4 (1st level from top) and 75 ¢ (2nd level)

Algebraic & Geometric Topology XX (20XX)



1020 Maciej Borodzik, Beibei Liu and lan Zemke

1 2 V3 ya s
w w
w w w w v
Ax= yo Y6
w w w w

Y11 Y10 Yo s y7

Y1 y2 —L 3 y4 —L Y5
(I)Wz =y 1 1 / /

Yir ——— Y10 Y9 —L 8

Figure 6: Figure 5 continued. The map A, on the complex for 7, ¢, and on the bottom is the
map P,,,.
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With this change of basis, the differential takes the form
Oyi = Vxi—1 + Ux; if 1<i<2n-1
(2-32) Vi i—1 i+1 SUs
8x,- =0.

The gradings of the generators in CFL™ (T2 ,) are summarized in the following lemma:
Lemma2-33 If1 <i<2n-—1, then

1 1
(grw(yi)> grz(yi)) = (ng(xi)7 grz(xi)) = (2 —2n+ i7 5 - l) .

If i = 0 or i = 2n, then the same formula holds for x;.

Proof Recall that 0 has (gr,,, gr,)-bigrading of (—1,—1), and that %/ and 7 have
bigradings (—2,0) and (0, —2), respectively. Using the description in Figure 6, it is
easy to check that the formula holds up to an overall additive constant. That is, the
formula holds for the relative gr,, and gr, gradings. Hence, it is sufficient to show
the absolute gr,, grading is correct for one of the generators, and similarly for the gr,
grading. To check the absolute gradings, we note that if we set ¥ = 1 and Z = 0,
then we recover the Heegaard Floer complex for (/ZF(S3, w1, wz), which is homotopy
equivalent to 'y, @ F_y 5, as a gr,, -graded chain complex. In this case, the complex
has generators x»,—1 and xy,, which pins down their gr, -grading. A similar argument
computes the gr_-gradings. O

We now compute the homology action A, on the complex of the knotification of 77 ,.
In order to use Proposition 2-10, we need to compute Ay and ®,,,. For a choice of arc
on the Heegaard surface as in Figure 4, by counting bigons we obtain that Ay has the

form
A\Oo) = U (1 + Yan—1),
A =Y u—1 +
(2-34) A(20) (van—1 + y2n+t1) '
ANOi) = Uyiq ifO0<i<2n, and
A\ = U Yan—ir1 if2n+1<i<4n.

By (2-31), we have
Ax(x0) = U x1,
Ax(2n) = PV xXon—1
Ax) =Uxi if0<i<2n—1
Ax(x2p-1) =0

(2-35)
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Next, we need to understand the map ®,,,. Counting bigons on diagrams like those
shown in Figure 4 implies that ®,,, takes the following form:

Dy, (y2i) = Y2it1 if0<i<n,
(2-36) (I)wz(yZi-H) = Y2i + Yan—2i 1fn < l < 2n,
Dy, (¥2i) = Yan—2i+1 ifn<i<2n,

q)wz(y2n+l) = Y2n,

and ®,,, vanishes on all other generators.

Finally, we combine Proposition 2—10 with (2-35) and (2—-36) to obtain the following
formula for A, ~ Ay + % ®,,, on the knotified complex, which we write in terms of
the basis from (2-31):

Ay (i) = U x2i2 + Uyrit2

o f0<i<n—1,
N — Yo
(2-37) AV(y 2’) Y 201 if0<i<n—1
x2i) = U X2
\A2i 2i+1 lf0§l<l’l,

A'y(x2n) = VX1,

and A, vanishes on all other generators. The example of T5 g is shown below:
(2-38)

4

The dashed lines denote the differential and the solid lines denote the A, action. It
is convenient to modify the map A., by a further chain homotopy, so that it takes one
staircase summand to the other, with no self arrows, as follows. Define a function
d: N — F by the formula

d(n) =nn—1)/2 mod 2.

Conceptually, it is easier to think of d(n) as the sequence 0,0,1,1,0,0,1,1,.... We
define a homotopy F as follows. On the first staircase summand, we define F via the
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formula
F(x2;) = 6(20) - x2; if 0<i<n,
F(y2it1) = 0Q2i+ 1) - y2ip1 if 0<i<n
On the second staircase summand, we define F' via the formula
F(x2i41) = 0(2i) - x2i41 if 0<i<n
F(y2) =0Q2i — 1) - yo if 0<i<n.
Writing AQY for A, + [0, F], we compute that
AL () = Uxzie if 0<i<n,
AL (it1) = U a2 if 0<i<n-—1,
Ay (x2n) = Vxop—1.

Continuing our running example of 7, ¢, equation (2-38) becomes the following
(2-39)

A+, F] =

We summarize the above computation as follows:

Proposition 2-40 The pair (CFK (8> x ', T2 2,), A~) has amodel where CFIC™(S> x
S', Tr,) is equal to S"{1, 1y @ §"~1{~1 1} and A, maps S" to "' on the chain
level. Here, we recall that {i,j} denotes a shift in the (gr,,, gr,)-grading by (i, /), and
S" and S"~! are the chain complexes in Definition 2-28.

We now consider mirror of the (2,2n)-torus link, which we denote by 7> _,,. We
denote its knotification by T27,2n. On the level of Floer complexes, taking the mirror
amounts to replacing the link Floer complex by the dual complex over the ring Z~ . In
practice, this amounts to reversing all the arrows in the differential and multiplying the
(gr,,, gr,)-bigrading by an overall factor of —1. The homology action on the mirror is
also the dual. We summarize this as follows:
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Proposition 2-41  The pair (CFK ™ (S?>xS", T5,_4), A-) has amodel where CFK ™~ (5> x
S', To,—on) is equal to S™"{—1, -3} & S""D{1 1} and A, maps S~V to S~
on the chain level.

2.7 The Borromean knot 3,

Let By C #252 x S! be the Borromean knot, that is, the knot obtained from the
Borromean rings by a zero-framed surgery on two of its components. The Heegaard
Floer chain complex of By is described in [22, Proposition 9.2]. We adapt the calculation
of [3, Section 5] and [2, Section 4] to the present context.

The chain complex CFK~(By) is homotopy equivalent to F* ®r %~ , with vanishing
differential. We write 1,x,y,xy for the generators of F*, which we can think of as
being generators of H*(T?). The bigradings are as follows:

(2-42)
(gr,, (D), gr, (1) =(1,-1), (gr,(0),gr,(x) = (gr,O),gr, () =(0,0), and
(gr, (xy), gr(xy)) = (=1, 1).

Up to an overall grading preserving isomorphism, the H;(#25> x S') module structure
is uniquely determined by the formal properties of the action. In detail, if we write x*
and y* for the two generators of H; (#25% x S1), then the module structure takes the
following form (up to overall isomorphism):

Ay*: X Ax*: X

Xy
y
NS
1
For the explicit description of the top and bottom towers of CFK™ (Bp), we refer the

readers to [3, Section 5].
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3 Correction terms

3.1 Generalized correction terms of Levine and Ruberman

Suppose Y is an oriented closed three-dimensional manifold. The module HF*°(Y) is
standard if for each torsion Spin® structure s,

HF>®(Y,s) = A*H'(Y;Z) @7 FIU, U]

as A*(H,(Y;Z)/Tors) ®yz F[U]-modules. Any manifold Y for which the triple cup
product vanishes is standard, see [16] (and also [15, Theorem 3.2]). In particular, a
connected sum of finitely many copies of S' x $? has standard HF>. Hence, a large
surgery on a null-homologous knot in #S' x S? has standard HF*>°; see [21]. This
means that essentially all 3-manifolds we are going to consider have standard HF*°.

There is an action (up to homotopy) of A*(H;(Y)/ Tors) on CF~(Y,s). Expanding on
work of Ozsvath and Szabé [21], Levine and Ruberman [15] associate a d-invariant
to any primitive subspace G of H;(Y)/ Tors (recall that a primitive subspace is a free
submodule whose quotient is free) and any Spin® structure s on Y whose first Chern
class is torsion as long as HF*(Y) is standard. We denote this invariant by d(Y, s, G).
For our purposes, the two most important instances are the invariants

dbot(Y7 5) = d(Y,ﬁ,Hl(Y)/ TOI'S), dtOp(Y) 5) = d(Y757 {0})7

which correspond approximately to the kernel and cokernel, respectively of the
H,(Y)/ Tors action.

The key property of these invariants is the following inequality, generalizing the
Ozsvath—Szabé inequality.

Theorem 3-1 (see [15, Theorem 4.7]) Suppose X is a connected four-manifold such
that b;r(X) = 0 and 0X = Y. Suppose s is a Spin° structure on Y that extends to a
Spin® structure t on X. Then

d(Y,5,G) > 7 (0 + b5 00) + 2511~ 1kG,

if G contains the kernel of the inclusion map from H,(Y)/Tors to H;(X)/Tors.

3.2 V-invariants

The aim of this section is to gather several definitions of Vj-invariants. In the context of
Heegaard Floer theory, all these definitions lead to the same invariants.
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The first definition recalls the classical Vs-invariant for knots. The assumptions on C,
in Definition 3-2 are modelled on a knot Floer complex CFK™.

Definition 3-2 (V;-invariants for complexes over F[U,U~!]) Suppose C, is a
filtered chain complex of free F[U] modules (with multiplication by U decreasing
the filtration level by 1 and the grading by 2) such that the homology of the localized
complex U-'c, is equal to F[U, U~'1. For s € Z the invariant V,(C,) is such that
—2V,(Cy) is the maximal grading of an element x € C, at filtration level at most s such
that the class of U¥x is non-zero in H.(C,) forall £k > 0.

Next, we define the V-invariants of a bigraded #Z~ -module where Z#~ = F[%Z, V].
The definition is essentially taken from [35, Equation (10.3)]. Suppose C. is a bigraded
chain complex over Z~ such that multiplication by %/ changes the grading by (—2,0),
multiplication by ¥ changes the grading by (0, —2), and the differential changes the
grading by (-1, —1). Let (gr,, gr,) denoting the bigrading. It is not hard to see that
the differential and multiplication by %/ ¥ preserves the difference gr, — gr..

Definition 3-3 (V;-invariants over %~ ) Suppose C, is a chain complex over %~
such that

(3-4) U, V)"V H(CHZR>® =Flw, v, ", v,

as bigraded groups. (Here (%, 7))~ ! denotes localization at the non-zero monomials
of Z7). We write 2/(C,) for the subcomplex of C, which has gr,, —gr, = 25. We
can view 27(C,) as a complex over F[U], where U acts by % V. We define d(<7(C,))

for the maximal gr, -grading of a homogeneously graded, F[U]-non-torsion element of
H.(o7,(C,)). We define

1

Remark 3-5 Suppose M is a graded module over Z~ such that (% ', 7). M =
X as bigraded groups. We define V(M) to be the Vi (C,) with C, being the chain
complex with the same underlying module structure as M but trivial differential.

Remark 3-6 If C, is the chain complex CFL=(S3,K) foraknot K C S, Vi(C,) is
the classical V-function of the knot K. In this case, we also denote it by V(K) if the
context is clear. We refer the readers to [35, Section 1.5] for translating between the
chain complex CFL™ (S, K) and CFK~(S3, K).

Suppose C. is as in Definition 3-3. Let a,b € Z. The chain complex C.{a,b} is
defined as the chain complex equal to C,, but with grading shifted by (a, b). That is, if
x € C, has bigrading (c,d), then x € C.{a, b} has bigrading (a + ¢, b + d).
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Lemma 3-7 Suppose C, is a bigraded chain complex over #~ and let D, = C.{a, b}
be the chain complex with shifted grading. Then Vi (,_p)/»(Ds) = Vi(Cy) — a/2.

Proof We use the fact that < (Cy) = F i (4—p)/2(Ds). O

In our computations, we will need to show that Vi-invariants of locally equivalent
complexes are the same. We recall the relevant definition.

Definition 3-8 Two chain complexes C,. and D, are locally equivalent, if there exist
grading preserving, %~ -equivariant chain maps f: C, — D,, g: D, — C, such that
both f and g induce the identity map on (%, #)~!- C, = (%, )~ - D..

As an example, we quote the following result of Hedden, Kim and Livingston, see [8,
Theorem B.1]. (Note that vt -equivalence is equivalent to local equivalence; cf. [10,
Proposition 3.11].)

Proposition 3-9 The tensor product S* @ S’ is locally equivalent to S*t* for any
integers k, [.

We have the following result (see [34, Section 2], [10] or [13, Section 3]):

Proposition 3-10

(a) If C, is locally equivalent to D, then V,(C.) = V(D,) for all s.

(b) If C, islocally equivalent to D, and E, is locally equivalent to F ., then C, Q E,
is locally equivalent to D, ® F.

We now extend Definition 3-3 to the case of chain complexes with a group action.
Suppose C, is a bigraded chain complex over Z~ and H is a free abelian group such
that the ring A*H acts on H,(C,), and the action of H has degree (—1,—1). Let
Tors C H,(C,) denote the #~ -torsion submodule. Define

H'P = coker (H ® (H.(Cy)/ Tors) — (H.(C,)/ Tors))

ot — ﬂ ker(vy: (H«(Cy)/ Tors) — (H.(Cy)/ Tors)).
YEH

By analogy of (3—4) we require that
(02/7 a//)—l . Htop o gpo o (%’ 7/)—1 X beot
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as relatively bigraded %~ -modules. Let H;Op (resp. ’HEOI) denote the [F[U]-submodule
generated by homogeneously graded elements x € H'°P (resp. x € H®) such that
gr,,(x) — gr,(x) = 2s (recall U acts by % ¥). We define d;”(C,) to be the maximal
gr, -grading of a homogeneously graded, F[U] non-torsion element of H,P, and we
define d*°'(C,) analogously.

Definition 3-11 We set

1 1
VPG = —5dP(C) and VNG = —5d*(C).

Remark 3-12 If K is a null-homologous knot in a closed, oriented connected
3-manifold Y with standard HF*°(Y), for simplicity, we use 2%(K) to denote

1 1
A(CFL™(Y,K)), and use V,P(K) = —§d§°p(K), VUK = —Ed?O‘(K) to denote
VP(CFL™ (Y, K)) and VPUCFL™ (Y, K)), repsectively.

3.3 Large surgery formula

To set up the notation, we recall the large surgery formula [23, Section 4] and relate the
d-invariants of the surgery on a knot to its V-invariants. We first recall the description
of Spin¢ structures on a surgery.

Definition 3-13 Suppose Y is a closed 3-manifold and K C Y is a null-homologous
knot. Let s € Spin(Y), and g € Z~¢. For any m € [—¢/2,q/2) N Z we denote by s,,
the unique Spin¢ structure on Y,(K) such that s, extends to a Spin® structure t,, on
W uniquely characterized by the properties that t,|y = s and (c¢i(t), F) + g = 2m,
where W is the trace of the surgery on K and F is the generator of H,(W) obtained by
gluing a Seifert surface for K with the core of the two-handle.

With this notation, we state Ozsvath and Szabd’s large surgery theorem [23, Theo-
rem 4.1]:

Theorem 3-14 Suppose K C Y is a null-homologous knot in a closed 3-manifold.
Suppose g > 2g3(K) is an integer. For a Spin® structure s,, on Y as in Definition 3—13,
there exists a quasi-isomorphism between CF™ (Y,(K),s,,) and <7,,, where </, is a
F[U] subcomplex of CFL™ (Y, K, s) of elements x with grading gr,,(x) — gr(x) = 2m.
If s is torsion, then the quasi-isomorphism shifts the grading (Maslov grading on
CF (Y,(K),s,,) and gr,,-grading on </,,) by %.
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From this theorem we obtain the following well-known equalities.

Theorem 3-15 Suppose K C Y is as in Theorem 3—14 and q > 2g3(K).

(a) If'Y is arational homology sphere, then d(Y,(K), $,) = % —2V,(K);

(b) If by(Y) > 0 and HF®(Y) is standard, then d'P(Y,(K),5,) = (‘1—24% —

q
2V,P(K) and d*!(Y,(K), 5) = 21— 2VN(K)

4 Staircase complexes and their tensor products

In this section, we introduce staircase complexes. Next, we compute the correction
terms of certain tensor products of staircase complexes.

4.1 Staircase complexes

A positive staircase complex P is a bigraded chain complex over %~ with generators
X0, Y1,X2, - - - s Yon—1, X2, for some n > 0 with differential given by Oyyip1 = % - x; +
o Bi . X2i42, Oxz; = 0, extended equivariantly over %, for some positive integers c;
and §;. We assume that 0, % and ¥ are (—1,—1), (—2,0) and (0, —2) bigraded,
respectively. We assume that a; = [3,—;—1. Furthermore, we assume the gradings
are normalized so that H.(P/(% — 1)) = F[/] has generator with gr_-grading 0,
and H.(P /(¥ — 1)) = F[%] has generator with gr,, -grading 0. A negative staircase
complex is the dual complex of a positive staircase complex.

Example 4-1 The complex S” of Definition 2-28 is a positive staircase complex for
all n > 0. Itis a negative staircase complex if n < 0.

Lemma 4-2 Suppose that P = (P — Py) is a positive staircase complex, viewed as
a complex of free #~ modules, where P is spanned by y; and Py is spanned by x;.
(1) H.(P) is torsion free as an #~ -module.
(2) Thereis a (gr,,, gr,)-grading preserving chain map
F:P—>%,

which sends %~ -non-torsion cycles to %~ -non-torsion cycles. Furthermore F
may be taken to map each generator of Py to a non-zero monomial in %~ , and
vanish on P;.
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Proof For the first claim, using the grading properties of P it is sufficient to show
that %7 - [x] # 0 if [x] # 0 € H,(P) when x is a homogeneously graded cycle
in P. Since the map from P; to Py is injective, there are no cycles with a non-zero
summand in P;. Hence, it is sufficient to see that if x € Py and %7 - x € im(P)),
then x € im(Pp). To see this, suppose that y € P; is homogeneously graded and not a

multiple of % or ¥'. We may write y as an &%~ linear combination of y;,...,y2,—1.
Let m (resp. M) be the minimal (resp. maximal) index which is supported by y. Hence,
we may write y = @y, + - - - + ayym for ay,, ... ay € £~ . We observe that

(4-3) gr,(vi) > gr,(vi+2) and  gr.(yv) < gr.(yit2)

for all i. Since y is homogeneously graded, it follows that a,, is not a multiple of #". If
it were, then all other a; would need to be a multiple of ¥ for y to be homogeneously
graded, which contradicts our assumption. Similarly a,; is not a multiple of 7. We
write a,, = %’/ and ay = ¥ for some j,,jy € N. Then 9(y) has summands of
YImtam-nry, | and ”//jM+ﬁ(M+1>/2xM+1 , and hence is not a multiple of any element of
X~

For the second claim, if x; € Py is a generator, we define F(x;) to be the unique
non-zero element of %~ in the same homogeneous grading as x. It follows from our
normalization of the gradings of H.(P /(% — 1)) 2 F[¥] and H.(P/(¥V — 1)) 2 F[%]
as well as Equation (4-3) that each generator of P has (gr,,, gr,)-bigrading in VANV
so this map is well-defined. We leave it to the reader to verify that this map is a chain
map and sends %~ -non-torsion cycles to %~ -non-torsion cyles. a

Definition 4-4 We call a complex P a positive multi-staircase if it is the tensor
product of a nonzero number of positive staircase complexes. We call N a negative
multi-staircase if it is the tensor product of a nonzero number of negative staircases.

The dual of a positive multi-staircase is a negative multi-staircase, and vice-versa.

By construction, a positive staircase P has a Z-filtration with two levels, and we write
P = (P1 — Py). Hence, a positive multi-staircase with n factors has a Z-filtration with
n + 1 non-trivial levels, for which we denote

(4-5) P=@P,— P — - — P — Py).

IfP =P, — --- — Ppy) is a positive multi-staircase, we say that P is an exact
multi-staircase if the following sequence is exact:

0—P,— - — Py

In particular, an exact multi-staircase is a free resolution of its homology.
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Remark 4-6 In general, the sequence in equation (4-5) will not be exact. As a
concrete example, consider C = CFK™ (T, 3), and the tensor product P =C®C ® C.
Write P = (P3 — P, — Py — Py). Following our conventions, write xg, y;,x for
the generators of the left-most factor of C, where d(y;) = % xo + 7 x;. One easily
computes that

yilx2|xo + x2|y1|x0 + x2]x0]y1 + xolx2|y1 + yi|xo|x2 + xo[y1|x2 € Py

is a cycle. In the above, bars denote tensor products. It is not a boundary, since the
differential has image in im(%) + im(%).

Lemma 4-7
(1) Every positive staircase is exact.

(2) The tensor product of two positive staircases is exact.

Proof Exactness of a positive staircase P = (P; — Py) amounts to the claim that the
map Py — Py is injective, which is easy to verify.

Next, suppose P = (P; — Py) and D = (D — Dy) are staircases. We claim that
their tensor product is also exact. Let £ = (Ey — E1 — Ej) denote this tensor product.
Clearly the map E, — Ej is injective, so it is sufficient to show that H{(£) = 0.
The homology H,.(£) decomposes as the direct sum H>(E) © H(E) ® Hy(E). Since
every #~ -non-torsion element contains a non-zero summand of Hy(E), it follows
that H;(&) consists only of %~ -torsion elements. Since £ is bigraded, it follows that
each element [x] € H;(€) satisfies ¥/ - [x] = 0 for some i and j. In particular,
if x € E; is a cycle, then Z'#7 - x € im(E, — E;) for some i,j. In order to
show that H;(£) = 0 it is sufficient to show that if Z#7 - x € im(E, — E;), then
x € im(E, — Ep). We argue as follows. Note first that the map from E> to E;
is the sum of the maps Py ® D; — Py ® Dy and P; ® D; — Py ® D;. Suppose
that %'¥7 - x € im(E, — E;). Write 77 - x = 0(y). We may assume that x
and y are homogeneously graded. Write x = xo,1 + x1,0 Where x1 o € P; ® Dy and
X0,1 € Po ® D1. Then UiYi - Xo,1 € im(P; — Po) ® Dy. Since P is exact and Dy is
free, we conclude that xo ; € im(P; — Py) ® D;. Hence there is some y' € P; ® D
such that the map from P; ® D; to Py ® Dy maps y' to xp;. Since the map from
Py ® Dy to Py @ Dy is injective, we conclude that 2 #7y =y, so d(y') = x0,1 + *1,0
and xo 1 + x1,0 € im(E> — Ej). This completes the proof. O
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4.2 The staircase complexes for L-space knots

Aknot K C $? is called an L-space knot if there is a positive integer ¢ such that SfI(K )
is an L-space, i.e. HF_(S?I(K),E) = F[U] for each s € Spinc(S;j(K)). All algebraic
knots are L-space knots; see [7, Theorem 1.10].

There is a simple description of Floer chain complexes of L-space knots, due to Ozsvath
and Szabé [24, Theorem 1.2]. (Note that therein, only HFK(K) is described, but the
algorithm actually produces a description of CFK*°(K).) We describe their algorithm
presently. Let K be an L-space knot. Ozsvath and Szab6 prove that the Alexander
polynomial of K, which we denote Ak(¢) has the following form:
(4-8) Ag(t) =19 — Y + - 4 7,
where 0 = ag < a; < --- < ay,, that is, we use the normalization of A starting at
degree 0. Define the gap function
Bi := a; — ai—1,

for 1 <i<2r.
We now describe the complex CFK ™ (K) over the ring %~ . The complex CFK ™ (K) is
freely generated over Z~ by elements

X05 Y15 X25**+ 5 Y2r—1,X2r

The differential takes the following form
(4-9) Ox) =0 and  0aip1) = %™y + V0.

The (gr,, gr,)-bigradings are determined by the normalization that gr,(xo) = 0 and
gr.(xa,) = 0. Recall that the variable %/ has bigrading (-2, 0), and the variable #" has
bigrading (0, —2).

The gradings can be expressed in the following way. Write
Ag =14+0¢—DE™ +---+1™)

for some positive integers m; < --- < my. Note that the integers 3; compute the
number of consecutive integers or consecutive gaps (depending on i) of the sequence
mi,...,ms, see [4, Lemma 4.2]. Define Sk = Z>o \ {mi,...,ms}, and

(4-10) Rix(t) =#Sx N [0,1), if t € Z.
With this notation, the gradings of the xy; generator are gr, (x2;) = —2Rg(ay;) and
gr (x2;) = 2Rg(az;) — 2g3(K); compare [4, Section 4]. Note that with our normalization

223(K) = ap, = my + 1. If the context is clear, we somtimes write R instead of Rk to
simplify the notation.
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Example 4-11 If K is the (2,2n + 1)-torus knot, then the above procedure produces
the complex &” of Definition 2-28.

Remark 4-12 If X is an algebraic knot, the set Sk turns out to be a semigroup (note
that if K is only an L-space knot, Sx need not be a semigroup). In fact, this is the
semigroup of that singular point. The function Rk is the semigroup counting function.
Refer to [30, Section 4] for details on semigroups.

The following corollary is a compilation of [4, Proposition 5.6 and Lemma 6.2].

Corollary 4-13 The V;-invariants of an L—space knot satisfy that V_,,k)4,(K) =
Rk () —J + g3(K).

The Kiinneth formula for the knot Floer chain complex allows us to compute the
V;-invariants of a connected sum of L-space knots. The following result is given in [4,
Formula (6.3)].

Proposition 4-14 Let Kj,...,K, be L-space knots. Set K = K #...#K, and let
g = g3(K). Then:
Vi(K) +j = Rx(g +)),

where Rk = Rk, ¢ - - - ¢ Rk, is the infimal convolution of Rk, ..., Rk, .

We recall that if I,J: Z — Z are two functions bounded from above, their infimal
convolution is given by I ¢ J(m) = min;j—, I(i) + J(j).

4.3 V,-invariants of tensor products of staircases

In this subsection, we compute the V-invariants of certain tensor products of staircases.
We wish to understand the V;-invariants of tensor products of staircases where some
factors are positive and some negative. Of course, we may group factors and write such
a complex as a tensor product of ' ® P, where N is a negative multi-staircase, and P
is a positive multi-staircase. Clearly,

N ® P = Homy- (N, P),

where Homg,— (N, P) denotes the chain complex of %Z~ -module homomorphisms
from AV to P. In particular, to understand the Vy-invariants of arbitrary tensor products
of positive and negative staircases, it is sufficient to understand the morphism complex
between two positive multi-staircases.
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It is also helpful to note that if A/ and P are multi-staircases (of either sign), then a
cycle ¢ € Homg— (N, P) is Z~ -non-torsion as a morphism if and only if ¢ maps
%~ -non-torsion cycles to %~ -non-torsion cycles.

The following result is by now classical. (See [4, Proposition 5.1]).

Proposition 4-15 Let P = (P, — --- — Py) be a positive multi-staircase and let
s € Z.. Then
Vis(P) = min ma , —5),
s(P) i | x(au(x), B(x) — 5)

where a(x) = —% gr, (x), B(x) = —% gr.(x), and G(Pg) denotes the set of homoge-
neously graded generators of Py.

Proof Lemma 4-2 implies that a homogenously graded element x € P is an #Z~ -
non-torsion cycle if and only if its summand in Py may be written as an %~ -linear
combination of an odd number of distinct elements in the generating set G(Py), with non-
zero, homogeneously graded coefficients in %~ . In particular, the individual elements
of G(Py) determine the correction terms V. The expression —2 max(a(x), 5(x) — s) is
the maximal gr, -grading of an element of the form %" #"x such that m,n > 0 and
x € ;. Taking the minimum over all x € G(Py) gives the result. O

We now pass to studying V; invariants of products of positive and negative multi-
staircases. We begin with the following statement, where we use Hy(P) to denote
Py/im P; for a multi-staircases.

Proposition 4-16 Suppose that P = (P, — --- — Py) and Q = (0, — -+ — Qo)
are two positive multi-staircases.
(1) In general,
Vs(Homg- (P, Q)) = Vi(Homg- (H.(P), H.(Q)) = Vs(Homg- (Ho(P), Hy(Q)).
(2) If Q is exact, then Vs(Homg- (P, Q)) = Vi(Homy- (H.(P), H.(Q)).

Proof There is a grading preserving map of %~ modules
H, Homg- (P, Q) — Homy- (Ho(P), Ho(Q)),

which sends %~ -non-torsion elements to %~ -non-torsion elements. Then the inequality
of part (1) follows since the map sends %~ -non-torsion elements in .27 (Homg- (P, Q))
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to Z~ -non-torsion elements in o/;(Homg,- (Hy(P), Hy(Q))). The equality in part (1)
follows since H,.(P) decomposes as a direct sum

n

P (ker(Pi — Pi_y)/im(Pir1 — Py)),
s=0

and Hy(P) = Py/im Py is the only summand which contains %~ -non-torsion elements.
We now consider the second claim. Suppose that Q is exact. We will show
(4-17) Vs(Homg- (Ho(P), Ho(Q))) > Vs(Homg- (P, Q)).

Suppose ¢: Hy(P) — Hp(Q) is an %~ -module homomorphism which maps &%~ -
non-torsion elements to %~ -non-torsion elements. It suffices to extend ¢ to obtain a
commutative diagram

P e P> Py Py Hy(P)
% ?2 % ol % o l¢>
O 01 Qo Hy(9Q),

since this extension gives an &% -non-torsion element in o7 (Homg- (P, Q)) cor-
responding to any Z%~ -non-torsion element in o (Homg- (Hy(P), Ho(Q))). The
construction of the maps ¢; follows from the same procedure as in [31, Theorem 2.2.6
and the discussion below it]. We briefly summarize the construction. The map ¢¢
may be chosen since Py is free, and hence projective, and Qg — Ho(Q) is surjec-
tive. Having constructed ¢, we next construct ¢;. Using exactness of Q, we may
factor ¢y o (P; — Py) into im(Q; — Qg). Using the fact that P; is projective and
01 — im(Q; — Qp) is surjective, we obtain a map ¢;. We repeat this process until we
exhaust P. This gives (4-17), completing the proof. |

Proposition 4-18 Suppose that N' = (Ny — --- — N,,) is a negative multi-staircase,
and P = (P,, — -+ - — Py) is a positive multi-staircase. Write G(P;) for the generators
of P;, and similarly for G(N;).

(1) In general
(4-19)

1
‘} Py > — _ 1 i + + ‘I‘ 2 .
W @P) 2 xenglg\lfo) yéng%;’(o) i ( g, () + 25,00, 810 + £r.0) S)

(2) If'P = (Py — Py) is a positive staircase, then (4—19) is an equality.

Proof We dualize, and consider the isomorphism N ® P =2 Hom(N "V, P). For the first
claim, suppose ¢ € Hom(N"V, P) is an %~ -non-torsion cycle which is of homogeneous
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grading (d,d — 2s), where d = d(</;(Hom(N",P)). Note ¢ € o/;(Hom(N",P)).
For each x¥ € G(Ny), ¢(x¥) is a #Z~ -non-torsion cycle, and hence must contain a
summand of the form f - y, for some non-zero monomial f € #Z~ and y € G(Py). By
the definition of the grading of a morphism, we have

gr,,(») — gr,,(x") + gr,(f) =d and gr.(y) — grz(xv) +gr.(f) =d — 2s.
Since gr,,(f) < 0 and gr.(f) < 0, and (gr,,(x¥), gr,(x¥) = (— gr, (), — gr.(x)), we
have that for each x

d(es(Hom(N"Y, P)) < max min(gr,,(x) + gr,,(v), gr,(x) + gr,(y) + 2s).
y 0

Taking the minimum over x € G(Ny) gives the statement.

We now consider the second claim. Suppose that P = (P; — Py) is a positive staircase.
Using Lemma 4—7 and Proposition 4-16, we know that

Vs(NW @ P) = V(Homg— (HoN™), Ho(P)).

Fix s > 0. Let J, denote the right-hand side of (4-19), without the factor of —1/2.
For each x" in G(Ny), we pick a y, € G(Py) so that

gr,, (vx) — grw(xv) >d and gr(y.) — grz(xv) >d — 2s.

We set ¢o: N — Py to be the map which takes x" to f; - yx, where f, € Z~ is the
unique monomial so that ¢y has bigrading (d,d — 2s). By composition, we obtain a
map ¢': Ny — Ho(P).

Claim. The map ¢’ vanishes on im(N}).

Given the claim, we quickly conclude the proof. In fact, we obtain a map ¢ from Hy(N)
to Hyp(P). Hence, we may use the second part of Proposition 4—16 to conclude that

d((HomN™, P))) > 4,
which completes the proof modulo the claim.

It remains to prove the claim. Let y; € Ny’. We consider the element v = d(y;) € N .
We can write v as a sum ) _ v oY) f« - x¥, where each f, is a monomial. Tensoring
the maps from the second part of Lemma 4-2, we obtain a chain map from NV to
%~ , which is non-zero only on N/, and furthermore maps each generator of Ny to
a monomial. Using the fact that this map is a chain map, we see that the number
of x € G(NJ) where f, is non-zero is even. It follows immediately that ¢o(v)
is an Z~ -torsion cycle. By Lemma 4-2, H,(P) is torsion free, so it follows that
[¢po(v)] = 0 € H.(P) = Py/im(P;). This proves the claim and completes the proof of
Proposition 4-18. |
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4.4 A counterexample

We give an example indictating that the second statement of Proposition 4—-18 need not
hold if P is a product of more than one positive staircase, even if P is exact.

Let P!, P? be the staircases of torus knots Te7 and Ty 5, respectively. As described in
Subsection 4.2, the generators of P! are at bigradings (—30, 0), (—30, —2), (—20, —2),
(=20, -6), (—12,—-6), (—12,—12), (—6,—12), (-6, —20), (—2,—-20), (—2,—-30),
(0,—-30). We denote these generators by xp,y;...,x;0. We have 9xp; = 0 and
Oyaip1 = U “ixziyr + ¥ Pixa;, where a;, 3 are non-negative integers determined by
the condition that O preserve the grading. In particular, the generators with odd index
generate 7311 , while the generators with even index span Pé.

Likewise, there are generators xj, Y] . . . , x, for P? with bigradings (—12,0), (—12, —2),
(_67 _2)’ (_67 _6)’ (_27 _6)’ (_27 _12)7 (07 _12)

Lemma 4-20 Let P = P! @ P2. The only elements x in P such that gr, (x) =
gr.(x) > —18 are linear combinations of % "¥/x4 ® x}y with (i,j) = (0,1),(1,2) and
UV x6 @ Xy with (7,7) = (1,0), (2, 1).

Proof Direct inspection. |

Let now N be the negative staircase complex of the mirror of the trefoil. It is generated
by elements cg, c1, c> at bigradings (2, 0), (2,2), (0, 2), respectively. The differential is
Ocy = Vei, Ocy = Ucy, Ocy = 0. That s, ¢y, cr € No, cl € N_l .

Lemma 4-21 There is no cycle z € “(N ® P) such that gr,(z) > —12 and z # 0.

Proof Any such cycle would be a linear combination of elements of type %77 - x; ®
x2 ® ¢. By Lemma 4-20, unless (k, ¢) = (4,4) or (6,2), the gr, -grading of such
combination is at most —14. Hence, if z € (N @ P) and z # 0 has gr,,(z) > —12,
then z has to be a linear combination of elements of the two-element set

X4 Q4 Ko, X6 Q xlz ® cs.

But then, z is not a cycle. O
Corollary 4-22 We have Vo(N @ P) > 7.

The following result shows that the right-hand side of (4-19) is strictly smaller than 7.
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Lemma 4-23 The expression

1 . )
) xergbr\lfo . Err(l%o) min(gr,,(x) + gr,, (), gr,(x) + gr,(y))

is equal to 6.

Proof For x = ¢g, the expression

(4-24) max min(gr, (x) + gr,(v), gr,(x) + gr,(y))
yEG(Po)

is equal to —12 with the equality attained at y = x4 ® x};. For x = ¢, (4-24) attains its

maximal value —12 for y = x¢ ® x}.

O

4.5 More on the V -invariants of tensor products of staircases

In this subsection, we highlight some special cases of Proposition 4-15 and Proposi-
tion 4-18 which will be useful for our purposes.

Corollary 4-25 Suppose P is a positive multi-staircase, and for i € {1,...,r}, let
S" denote the staircase complex of Definition 2-28 with > n; > 0. Then

n ... nry — i . i
VPRS"®---@8™) ,Jun (Vesrojosm(P) +) -

Proof By Proposition 3-9, we know that ™' ® - -- ® §™ is locally equivalent to S",
where n = > n;, so by Proposition 3-10 it suffices to prove the result when i = 1.
Write ay, . .., a,, for the generators of Cy, and write xg, X2, . . . , xp, for the generators
of §;. Then a; ® x,; forms a basis of homogeneously graded elements of (P ® S")o.
By Proposition 4-16, we have

V(P @ S8") = 1I<1f1ii<nm max(a(a;) + a(xy)), Blai) + Blxa)) — ).
0<j<n
We note that a(xy;) = j and 5(xp;) = n — j, so we conclude that
V(P ®S8") = min max(a(a;) +j, B(a;) +n—j—s)
1<i<m
0<j<n

= Din  min (max(ca;), B(a;) +n—2j —5) +))

= Join (Vsgaj—n(P) + ) ,

completing the proof. a
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We have the following corollary of Proposition 4—18:

Corollary 4-26 Suppose P is a positive staircase, and for i € {1,...,r}, let 8"
denote the staircase complexes of Definition 2-28. Assume » n; < 0. Then

n . Yy — ; —7
V(PRS" @@ 8™ Jmax (Vsmajtn(P) —j)

where n = — Y n;.

Remark 4-27 In contrast to Corollary 4-25, where P was allowed to be a positive
multi-staircase (i.e., a tensor product of positive staircases), in Corollary 4-26 we require
that P be a positive staircase.

Proof of Corollary 4-26: As in the proof of Corollary 4-25, 8" ® --- ® 8™ is
locally equivalent to S™" for some n > 0, so it is sufficient to consider the case when
i = 1. Write ay, ..., a4 for the generators of Cop, and Xo, X, . .., X2, for the generators
of the O-level of S™". According to Proposition 4—18:
—n — 1 . XA . Y . J—
V(PoS™) = [oax min max(a(a)) + oX2), B(aj) + f(X2i) — 5)
= Oygl%xn ll‘éljlélq max(a(aj) — i, B(aj)) —n+1i—s)
(4-28)

= Org?gxn lg_lélq (max(a(aj), B(aj) —n+2i—s) — z)

= max (Vs—aign(P) — i) .

4.6 Knots with split towers

We now introduce the notion of a knot complex with split towers. The correction
terms of a knot complex with split towers have a relatively simple form. An important
example of a knot with split towers are connected sums of knotifications of positive and
negative (2, 2n)-torus links.

Definition 4-29 (Split towers) Let K be a knotin ¥ = #7"52 x S', and let C be a
chain complex which is free and finitely generated over %~ and is homotopy equivalent
to CFK™(Y,K,sg) where s is the trivial Spin¢ structure on Y. We say that C has
split towers if there exists a basis 71, ..., v, of Hi#"S? x S';7Z) and subcomplexes
Cl c C, indexed over subsets I C {71, ...,7Ym}, such that the following are satisfied:
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77777

(b) If 7; €1, then A, takes H.(Ch to H.(C'Y1"}), and becomes an isomorphism
after inverting % ,7 . If ; € I, then A, vanishes on H, (C!), after inverting
v,V .

Abusing notation slightly, we say a knot K has split towers if there is a representative of
CFK™ (Y, K) which has split towers. Note that in many of our examples, the homology
action actually respects the splitting on the chain level, i.e. A, maps C! to CMVnb if
i ¢ 1, and A, vanishes on C! if ~; € I.

Example 4-30

 Any knot K in S? has split towers (trivially).
* The knotification of the (2, 2n)-torus link has split towers. See Proposition 2—40.

* The Borromean knot does not have split towers.

Lemma 4-31 If K and K’ have split towers, then K#K' has split towers.

Proof This is a direct consequence of the Kiinneth formula. |

Proposition 4-32 Suppose K is a knot in #"S? x S' with split towers. Write
CP =" and C*'=Crm,

Then
ViP(K) = Vi(C'*™)  and  VU(K) = Vi(C*).

Suppose, additionally, that n > 0 and By is the Borromean knot. Then

n . :
ViPE# B) = — 5 + oin (Vasgin(C) +)

n .
VOUKH By) = — >+ fmax (Vis2j—n(C™) +) .

Proof We consider first the proof that yop (K) = Vi(C'P). It is sufficient to show that
(4-33) dP(K) = d(C{™),

where CP denotes the subcomplex of C'P in Alexander grading s, and these d
invariants are defined in Definition 3-3 and Definition 3—11. By definition, d;OP(K ) is
the maximal grading of a homogeneously graded element of H,(<7%(K)) which maps
to an element of U~'H,(#(K)) having non-trivial image in H'°P. Since K has split
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towers, by Definition 4-29, the cokernel H'°P is spanned by U~'H,(C:*®), and H, ()
has trivial image for I # (3, equation (4-33) follows.

The claim about d°® is similar. In this case, d°°'(K) is defined as the maximal grading
of a homogeneous element in H,(<7(K))/ Tors which is in the image of P This is
clearly d(C).

We pass now to the second part of the proof. An analogous argument appeared in [2, 3];
we recall it for completeness. The complex CFK ™ (By) is described in Section 2.7.
Since CFK™ (By) has vanishing differential, we obtain

H.(CFK™(K) ® CFK™(By)®") = HFK ™ (K) @p B®",

where B is the 4-dimensional vector space spanned by 1, x, y and xy, whose bigradings
are shown in equation (2—42).

We first consider the claim about V},’O‘. Using the Hj-action on CFK ™ (By) described
in Section 2.7, one easily obtains the following: a cycle x € A (K#'By) is of
homogeneous gr,, -grading d, is F[U]-non-torsion, and maps to the kernel of the H;
action in U~ 'H, (<7, (K#B™)) if and only if it has the form

Z xalv---aan ® 6al ® e ® 6“}17
{al,...,a,,}e{—l,l}"
where e_1 =1 € B and ¢; = xy € B with gr,, = 1 and —1 respectively. Moreover,

each
bot

‘xalv---aan € CS—}-Z u,'(K)
is an F[U]-non-torsion cycle of homogeneous gr,, -grading d + > _ a;. Noting that > a;

can be any integer of the form n — 2j for 0 < j < n, we obtain that

d*!(A(K#' Bo)) = min (d(C)Y ) —n+2j).

Multiplying by —% and switching j to n — j yields the statement.

The proof for d'°P is analogous. The cokernel of the H;-action on U~'H,(aZ,(K#'By))
is spanned by any element of the form x ® ¢,, ® - - - ® ¢,, where ¢,, are as above, and
X € C;(fza(K) is a homogeneously graded, F[U]-non-torsion element. Furthermore,

1

any homogeneous element generating U~ ! H,(<7;(K#'By) is a sum of an odd number
of such elements. The same argument as before shows that

top n _ top - .
dP(A(K#'Bo) = max. (@, —n+2j).

Multiplying by —% and switching j to n — j yields the statement. |
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S Topology of complex curves and their neighborhoods

In this section we give a precise definition of the notion of a tubular neighborhood of a
possibly singular curve in CP?. We describe the boundary of this neighborhood in terms
of the surgery on a link. We perform several helpful algebro-topological computations.

As the main focus of our article is on algebraic curves, we present the construction using
the language of complex geometry. In Subsection 5.4 we will show how to generalize
our results to the smooth category.

5.1 ‘Tubular’ neighborhood of a complex curve

Let C C CP? be a reduced complex curve of degree d. We do not insist that C is
irreducible. We write Cy, . . ., C, for the irreducible components of C and let dy, . .., d,
(resp. g1, ..., &) denote their degrees (resp. genera). Hereafter by the genus g(C) of
a complex curve we understand the genus of its normalization, that is, the geometric
genus. From the topological perspective, the geometric genus of a singular curve is the
sum of genera of connected components of the smooth locus of the curve, regarded as
an open surface. Weset g = g1 + - - - + &e.

We denote by py, ..., p, the singular points of C. For each such singular point p; we
denote by r; the number of branches. Here, recall that a branch of C at p; is a connected
component of B; N (C \ {p;}) for a sufficiently small ball B; C C? centered at p;. We
write £; for the link of singularity at p;, whose components are L;j, . . . , L;,. We choose
once and for all pairwise disjoint closed balls By, ..., B, with centers respectively
p1, - - -, Py and such that C N OB; is the link £; and C N B; is homeomorphic to a cone
over L;.

As the curve C is not smoothly embedded at its singular points, the notion of a tubular
neighborhood of C requires some clarification. The following is an extension of the
construction of [4].

Take a tubular neighborhood Ny in CP? \ (B; U---UB,) of the smooth part Cy :=
C\ (B1U---UB,). Note that all components Cj, ..., C, intersect each other, hence C
is connected. On the contrary, the balls By, ..., B, contain all the intersection points
between various curves Cy, ..., C.. Hence, Cy has e connected components, which are
Ci\(ByU---UBy),i=1,...,e. Wedefine N to be the union of Ny and By, ...,B,.
With g = g1 +--- + g, set

u

(5-1) p=2g—et1+) (ri—1)=b1(C)=dimH(C:Q).

i=1
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To see that dim H{(C; Q) = p, we consider the normalization C’ of C. It is a surface
of genus g with e connected components. So x(C') = 2e — 2g. Next, C arises from
C’ by gluing r;-tuples of points (corresponding to singular points of C), i = 1,..., u.
Hence x(C) = 2e —2g — > (r; — 1). Now C is connected, and dim H,(C; Q) = e.
From this, we recover the formula for dim H;(C; Q).

Observe that C arises from the normalization C’ by removing > r; disks. The first disk
for each connected component of C’ kills an element in H;, and all of the subsequent
create a basis element in H; . Thatis to say, dim H{(Co; Q) = 2g+> ri—e=p+u—1.
By duality, dim H(Co, 0Cp; Q) =p +u — 1.

We now provide a surgery theoretical description of N and its boundary Y. We first
define a 3-manifold Z containing a link £, as follows. We begin with the disjoint union
Lo:=LU---UL,inZy:= S U---US>. Next, we pick a collection of pairwise
disjoint and properly embedded arcs Ap,...,A,1,—1 on Cy which form a basis of
H{(Cy, 0Cp). Such a collection of arcs cuts Cy into a union of e disks, one for every
connected component of Cy. We let Z = #°5? x S' be the boundary of the 4-manifold
I obtained by attaching p + u — 1 4-dimensional 1-handles to (B U --- U B,) = Zy,
each containing a 2-dimensional band (corresponding to a )\;), which we attach to L.
We let £ C Z be the resulting link. By construction, £ is a link inside of the connected
sum of p copies of S' x S?. Furthermore, each component of £ is null-homologous.
The number of components of £ is the number of disks Co \ (A\; U--- U Xp4,—1). That
is, £ has e components, denoted henceforth Ly, ..., L., corresponding to connected
components of Cy, i.e. to irreducible components of the complex curve C.

We have the following (compare [3, Theorem 3.1] and [2, Lemma 3.1]):

Proposition 5-2 The 3-manifold Y = ON is the surgery on L C Z with surgery
coefficients (d?, . ..,d?). The 4-manifold N is obtained by attaching e 2-handles to the
boundary connected sum of p copies of D* x S'.

Proof The fact that N is obtained by attaching e 2-handles to I" along £ follows from
the fact that the complement Co \ (A1, ..., A,4u—1) is a collection of disks Cf, ..., C,
(we know that this complement has e components). The thickening of C} is a 2-handle
in N. Upon renumerating, we might and will assume that C’ is a subset of C; and
OC} = L;, the component of L. In particular, we know that N is the effect of a surgery
on L. It remains to determine the framing.

In order to do this, we recall that if a 2-handle A is attached to B* along a knot
K C §* = OB*, the framing of the 2-handle is determined as a self-intersection number
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of the surface F obtained by capping the core C of the 2-handle with a Seifert surface
for K. We note that the self-intersection does not depend on the choice of the Seifert
surface. Moreover, instead of a Seifert surface, we can take any smooth compact surface
in B* whose boundary is K.

The same procedure applies for surgeries on null-homologous knots in #°5? x S'. In
the present context, when we calculate the surgery coefficient at L;, the role of the
surface F is played by the union of C/ and a surface in I' = #°B> x S' bounding L;. A
possible choice for F' is then a smoothing of C;, which essentially replaces C; N 1" by a
smooth compact surface in I' with boundary L;. That is to say, the self-intersection
number of F is exactly the self-intersection number of C;, which is dl-2. O

Remark 5-3 If e = 1, £ is a knot. This knot can be obtained as a connected sum of
Ly,..., L, and g copies of the Borromean knot. Here the hat denotes knotification.

5.2 Algebraic topology

In this section, we describe some basic algebro-topological facts about the tubular
neighborhood N, and its boundary Y. Our description of Spin® structures is similar to
the one described in [17, Section 11.1].

Recall that if N is a manifold obtained by gluing e handles along a null-homologous
link to a four manifold I' with Hy(I'; Z) = 0, we can speak not only of a framing of
handles, but of a framing matrix. An argument using Mayer-Vietoris sequence reveals
that Hy(N;7Z) = 7Z° is generated by the cores of the handles capped by Seifert surfaces
of the components of the link. The framing matrix, denoted by =, is the matrix of the
intersection form H>(N;Z) x Hy(N;Z) — 7Z. In particular, the diagonal entries are
surgery coefficients. The off-diagonal terms are linking numbers of the corresponding
links (these are well-defined as long as the components are null-homologous).

In the present situation, by Proposition 5-2, the surgery coefficients are (df, o, d?).
The same argument shows that the off-diagonal terms are given by the intersection
number of C; with C;. That is, the framing matrix has the form.

E={didj}i;—.

Note that this construction in particular reveals that 1k(L;, L;) = d;d;. We let WA (L)
denote the 2-handle cobordism from Z to Y. Recall that N is the union of the
1-handlebody I' and Wx(L).
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There is a map
(5-4) F: HA(WA(L) — Z¢ & H*(2),

given by
F©) = (¢, [F1]), ..., (e, [Fel) cl2).

Here F; is the surface obtained by capping a Seifert surface for L; in Z with the core
of the 2-handle. An easy argument involving Mayer-Vietoris sequence on the handle
attachement regions in Z shows that F is an isomorphism.

Dually, we may view Wy (L) as being obtained by attaching 2-handles to a link £* in
Y. We consider the Mayer-Vietoris sequence obtained by viewing W, as the union of
[0,1] x Y and e 2-handles. A portion of this exact sequence reads

HY(L*) — HX(WA(Y)) — HX(Y) = 0.

In particular, H*(Y) is the quotient of H*(W (Y)) by the image of H'(£*). Furthermore,
from the definition of the coboundary map in the Mayer-Vietoris exact sequence, an
element of H'(L*) acts by the Poincaré duals of the cores of the 2-handles attached
along L. Using the isomorphism F from (5-4), we thus obtain

(5-5) HX(Y) = (2¢) im(2)) & HX(Z).

There are analogous descriptions for Spin® structures on Y and Wx (L), as follows.
Consider the map

(5-6) Tw: Spin(Wx(L)) — Q¢ x Spin‘(Z),

given by

Tiv(s) = <<C‘(5)’ [F‘]>2_ LAULARR G ,s!z> ,

where [F] is the sum of the [F;]. Similar to the argument for cohomology, an easy
application of Mayer-Vietoris shows that Ty is an isomorphism onto its image. Since
c1(s) is a characteristic vector, (c;(s), (F i) — [F;]? is even as well. Using this, it is not
hard to identify the image of Ty as H(L) x Spin°(Z), where H(L) is affine lattice in
Q¢ generated by tuples (ay, .. .,a.) where

1
a; — 3 Ik(Li, £\ L;) € Z for all i.

The linking number is computed as follows:

(5-7) K(Li, £\ L) = di(dy +dr + -+ d,) — d-.
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A similar argument as for cohomology implies Spin°(Y) is isomorphic to the quotient of
Spin€(Wx (L)) by the action of the Poincaré duals of the cores of the 2-handles attached
to £. This translates into the isomorphism

(5-8) Ty: Spin“(Y) = (H(L)/im(Z)) x Spin‘(Z).

With respect to the isomorphisms F and 7Ty, the Chern class map takes a simple form:
Cl(sla s 7S€at) = (2S1 + [F] ) [Fl]a s 72Se =+ [F] ) [Fe],CI(t)).

Since Z = #°S? x S! bounds the 1-handlebody I' C N, we know that 6(H'(Z)) =

{0} c H*(N). Hence, a Mayer-Vietoris argument identifies Spin°(NV) with the set of

Spin¢ structures on W (L) which extend over I', or equivalently the ones which have
torsion restriction to Z. Hence,

Spin“(N) = H(L).
The following is helpful for understanding H>(Y):

Lemma 5-9 Suppose = = {a;;}{,_, is amatrix such that a;; = d;dj, for some non-zero
integers d;. Then Z¢/im(Z) = Z¢~' © 7./6*, where § = ged(dy, ... ,d,). .

Proof Recall that

d]d] dldz d]de
_ dody dydy ... dod,
ded) dedy ... d.d,
It is clear that im(Z) is the span of 6(d,...,d,)", by considering the image of the

standard basis in R". By module theory over a principal ideal domain, we have
Z¢/im(Z) = Z¢~! @ Tors(Z¢/ im(Z)). By definition, Tors(Z¢/ im(Z)) is generated by

the set of vectors v in Z¢ such that n[v] = m[0(d}, . .., d,)"] for some integers n and
m. Clearly, Tors(Z¢/im(Z)) is generated by the vector (dy /0, .. .,d,/0)T, which has
order #%. The proof is complete. a

Combining Lemma 5-9 with equation (5-5), we conclude that

(5-10) bi(Y)=e—1+b(Z)=e—1+p.

If j € 2Z + 1, let ¢; denote the Spin® structure on CP? which satisfies

(5-11) (c1(¢)),E) = J,
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where E is a complex line. In terms of the isomorphism in (5-8), we have
jdi —di(di +--- +d.) Jjde —de(di + - - + de) 0)

(5_12) 7-Y(CJ‘Y) = ( 2 PR D) )

We now let X denote the complement of the interior of N in CP?.

Lemma 5-13
(1) X has trivial intersection form.

(2) Suppose s is a torsion Spin® structure on Y. Then s extends over X if and only
if it extends over CP2.

Proof The proof follows identical arguments as in [3, Sections 3 and 4], therefore
we provide only a sketch. Claim (1) follows from the fact that the inclusion map
H>(X) — H»(CP?) vanishes, since all elements of H»(X) are disjoint from C.

Claim (2) is proven as follows. A Spin® structure on Y always extends over W (L).
Furthermore, the isomorphisms in (5-6) and (5-8) are clearly compatible with the natural
restriction maps from Spin‘(Wx(£)) to Spin°(Y) and Spin“(Z). A Spin® structure
on Wx(L) extends over N if and only if it restricts to the torsion Spin structure on
Z. Hence, a Spin® structure on Y extends over N if and only if the Spin® factor on
Spin€(Z) in (5-8) is torsion. In particular, any torsion Spin‘ structure on Y extends
over N. Since a Spin® structure on Y extends over CP? if and only if it extends over
both X and N, the claim follows. O

5.3 d-invariant inequalities for the neighorhood of C

We are now in position to prove an inequality for the d-invariants of boundaries of
neighborhoods of complex curves in CP? as in Subsection 5.1. With the notation from
that subsection we have the following result.

Proposition 5-14 For any Spin® structure s on Y that extends over X and whose first
Chern class is torsion, we have:

+e—1 +e—1
doon(Y,8) > =L 2 digp(Y, ) < P
2 2
Proof By equation (5-10), we know that b;(Y) = p + e — 1. The intersection form on
X is trivial by Lemma 5-13. From Theorem 3-1, we obtain
—1
dyo(¥,5) = d(¥, 5, Hy (V) Tors) = ~22——,
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since the terms involving c% and b, (X) vanish.

Since the intersection form on X vanishes, we may reverse the orientation of X and Y
and apply to the same argument to get that

p+e—1

—

It follows from [15, Proposition 4.2] and the fact that d*(Y, s, H;(Y)/ Tors) = diop(Y, )
(see [15, pg. 6]) that:

(5-15) dvor(—Y,8) = d(=Y, s, H(Y)/ Tors) > —

dvoi(—Y,8) = —dip(Y, 9).
Combining this with equation (5-15), we conclude that
p+e—1
2 )
completing the proof. |

diop(Y, 5) <

5.4 Singular curves in smooth category

The methods we use in the present article work in a smooth category. A term
“smooth surface with singularities" might be misleading, therefore we make precise our
terminology. The definition we give is quite general.

Definition 5-16 A singular curve in the smooth category C C CP? is a closed subset
of CP? such that there exist finitely pairwise disjoint closed balls By, ..., B, in CP?
such that with Cp = C\ (B U...B,):

e ( is connected;

* the subset Cy is a smoothly embedded surface whose boundary belongs to
BiU---UBy;

* the intersection B; N C is a link (we call it £;).

The definition means that we do not have to control any possible pathological behavior
of C inside balls. We let Cyy, ..., Co. be the connected components of Cy. The
quantity e plays the same role as the number of irreducible components of an algebraic
curve.

Choose j = 1,...,e. Forany i = 1,...,u such that £;; := B; N Cp; # 0, let S; be
a minimal genus surface in B;; whose boundary is L£;;. Let C; be a closed surface

obtained by removing B; N Cy;, gluing S;; and possibly smoothing corners. The surface
C; is called a smooth model of Cy;.
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Note that Z’j determines a class in Ho(CP%;Z). If S;i and Sﬁj are two choices of minimal
genus surfaces for £;;, then S; U —ng is homologically trivial (as a surface in the ball
Bj;). Hence, the class of C ;7 does not depend on the particular choice of §;;. We let d;
be the integer such that [E'j] =di-1¢ H>(CP?%,7), where we use 1 to denote the class
of a line. We call d; the smooth degree of C;.

Definition 5-17 A singular curve is the smooth category is called adjunctive, if for all
j=1,...,e, wehave g(C) = 3(d; — D)(d; — 2).

Definition 5-18 Let C be an adjunctive singular curve in the smooth category.

* C isof algebraic type if all links L; are algebraic links.

* C is of weakly algebraic type if all links L; are either algebraic links or their
mirrors.

Remark 5-19 The distinction between requirement that £; be an algebraic link or an
L-space link is motivated by applications in algebraic geometry. In our paper, we never
use the fact that the links £; are algebraic links, instead of merely L-space links. We
note that there are some non-trivial differences between L-space knots and algebraic
knots. For example, the set Sk defined in Subsection 4.2 is not necessarily a semigroup
if K is merely an L-space knot. We recall that Sk is used to define the function Rk,
which is referred to as the semigroup counting function. We observe that in our theory,
we never use the fact that Sk is a semigroup, so the mathematical part of the theory
goes through.

We now define the analogs of p, ¥ and N from Subsection 5.1 in the case of a singular
curve in the smooth category. Set first g; to be the genus of Cy; (not of E'j). Set
g=8+ -+gand p=2g—e+ 1+ > (r; — 1), where r; is the number of
components of L;.

We repeat now the procedure from Subsection 5.1, omitting the proofs if they are the
same as in that subsection. We pick Ay,..., A,y to be arcs on Cy which form a
basis of H{(Cy, 0Cy;Z). We let I' be the 4-manifold obtained by attaching p +u — 1
4-dimensional 1-handles to 9(B; U - - - U B,,) as in Subsection 5.1. We set Z = JI', then
Z = #°S? x S'. Finally, £ = C N Z. This is an e-component link. The set C \ I is a
disjoint union of e disks Cj;, ..., Cj,. Reindexing these disks if necessary, we may
and will assume that C{)I- is a subset of Cp;. Let N be the handlebody I" with attached
2-handles whose cores are Cj;, . ...C{,. The manifold ¥ = ON is the surgery on £
with framings equal to d%, o d2

With these definitions, the results of Subsections 5.2 and 5.3 hold for singular curves in
smooth category.
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6 Nonrational non-cuspidal complex curves

6.1 General estimates

We now pass to main applications of our paper. Suppose C C CP? is a degree d curve.
We mostly focus on the case when C is complex curve, but also consider the case where
C is only a smooth surface, embedded away from a finite set of singular points, as in
Definition 5-16. We further assume that the singularities of C are restricted to the
following:

* There are v cuspidal (unibranched) singular points py,...,p,. We write
Ki,...,K, for their links, and set K = K #---#K,,.

* There are m, singular points whose link is 77 »,.

* There are m, singular points whose link is —77,,.

Ky = E nmp, k— = E nm,, 74 = E My, 71— = E m,.
n n n n

Additionally, we assume that the curve is adjunctive (see Definition 5-17), that is, its
genus g is given by the formula:

(6-1) g=g0) ===
For algebraic curves, k_ = 0 and (6-1) is the adjunction formula. If C is a singular
curve in the smooth category of algebraic type (i.e. x_ = 0, see Definition 5-18),
the adjunction inequality implies that g(C) is greater or equal to the right-hand side
of (6-1). If C is of weak algebraic type (see Definition 5-18), the relation between
g(C) and the right-hand side of (6—1) can be more involved, so the condition (6-1) is a
significant restriction on g(C).

Define

— 83(K) = (ky +K-)

We define

K+ = K##mnTz’zn K_ = #mnTZ,—Zn

(6-2) _ 8 .1
K=K #K_ K = K#,By

where T2,2n denotes the knotification of the torus link 75 ,,, and T2,72n denotes the

knotification of its mirror.

Since the knots K7, ..., K, are algebraic knots, in particular, L-space knots, their knot
Floer complexes are staircase complexes, which we denote by C(K;). In particular,

CFK™(K)=C(K)) ®---®C(K,)
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is a positive multi-staircase complex. Note that by Proposition 2—40 and Example 4-30,
the knots K, K_, and K have split towers. The following relations follow from
Proposition 2—40, the Kiinneth theorem for connected sums, and Proposition 3-9. Here,

~

we write = for homotopy equivalence of chain complexes, and 1: for local equivalence.
ocC

The brackets denote an overall grading shift.
CP(K ) 2 CP(K) © QS {5,
C*M(K 1) = C(K) ® (é)(S"l)@’"" 5, =5
cm%K'>9éQQQS*”*g®%{izﬂz}
C*(K ) = RSP~ —

CP(K) = CP(K 1) @ CP(K-) o C(K) @ 8§+~ (=) (e =y

Cbot(l?) oY) Cbot(K+) ® CbOt(K_) lo,.;:: C(K) ® S/{+—7Z+—Hf{7]+'§nf7 77+'577* }

We set

01:= Ky — (ko —1n-), 0= (Fp —1N3) — k.

Whether the staircases in C*°P(K) and C*'(K) are positive or negative depends on the
signs of d1,d,. The following proposition is the main tool towards Theorems 6—4
and 6-8.

Proposition 6-3 Suppose K, K and K are as above and let R = Ry be the infimal
convolution of the semigroup counting functions for knots Ky, ..., K, .

(a) If 61 > 0, then

> N+ - : j
V;OP(K) = i + Oglgl%l(vs-ﬂj—& (K) +J)

op Ry & Mt : L
VP (K) 5 T, Sn%gllﬂ(Vsz—al—g( )+

+n-
__&8_n+Tn _I_O

min  (R(g3(K) +s+2j— 01 —g — (s+j— 1 — 8)).
2 4 <o1+g

<j<é
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(b) If S, >0, then

bot T+ 11— . :
VoK) =T 4 min (Veyo-5,(K) +))
b n+tn- 8
VPUK) = ot 02}2‘% (Vst2j42i—g—5,(K) + i+ ))
8 | M +1-
2 + 4
R(g3(K 2j + 2i — ) — i +j—g— .
+011<151<><g0211n( (g3(K)+s+2j+2i—g—0)—(s+i+j—g—0d))
(c) If 6 < 0 and C(K) is a positive staircase (not just a positive multi-staircase),
then
= +
VIPE) = — T 4 max, (Vi (K) )
0<i<—
S8 Myt ;
VEP(K) =5 — =+ min | max (Vioj a5 (K) =i =)
_8 _ M+t
2 4
R(g3(K —2j—=2 o) —(s—i— )
+or513go§nf§ (Rgs(B) s =2/ =2i+8=0) = (s —i—j+8=0))

(d) If 65 < 0 and C(K) is a positive staircase, then

bot 7y _ T 71— :
VOUK) = T, Jnax 62(V372j762(K) —J)
bot /5> g N+ t+n-
VUK) 2T T (Vs—2j+g—5,(K) — J)
g M+t : .
=24 = R(g3(K) + 5 —2 —6) — (s — — ).
st +03n%ag§52( (83(K) +5=2j+g—02) —(s—j+g— )

Proof The proof is similar in all cases and consists of gathering Corollary 4-25,
Corollary 4-26, Proposition 4-32, Lemma 3-7, and Proposition 4—14. For the reader’s
convenience we present details of computations of VP for the case (a) and (c).

If §; > 0, then by Corollary 4-25 and Lemma 3-7,

= N+ +n- . .

VP(K) = -+ O%l_lgnél(Verzj_a1 (K) + ).
Combining this with Proposition 4-32, we obtain

o g N+ -

V;OP(K) = _E - T + 0§1H<n§n (Vs+2] ! g(K) +])
By Proposition 4-14,
= g N+ +1m-

ViP(K) = Ty 4 tmin o nax, (R(g3(K)+s—2j—2iFg— o)) —(s—i—j+g—01).
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This proves item (a). If §; < 0, and C(K) is a positive staircase, by Corollary 4-26,

+
e max (VS 2j—6,(K) — J).

VIPEK) = =+ ma

Combining Proposition 4-32 and Proposition 4-14, we have

S 8 My t1- ;
V;OP(K) :E — T +Olglgg0§1}1<a§ I(Vv 2j—2i+g—6; (K) —i—))
_8 Nyt
2 4
R(g3(K —2j—2 0)—(s—i— )
+01}1113g03r§1<a§ 1( (&3(K) +5—2j=2i+g—61)—(s—i—j+g—d)).

This proves item (c).

Proposition 6-3 allows us to express the d-invariants of the boundary ¥ = ON of the
tubular neighborhood of C in terms of the Rg-functions of singular points. In our
applications, we will focus on two cases.

(1) Algebraic case. We assume that C has only algebraic singularities, that is,
m, = 0 for all n > 0. This corresponds to items (a) and (b) of Proposition 6-3.
(2) Single knot case. We assume that v = 1, so K is a positive staircase and m, = 0

for all n > 0. We will use items (c) and (d) of Proposition 6-3.

The first case is considered in Subsection 6.2. The second is addressed in Subsection 6.3.

6.2 Curves with no negative double points
For the reader’s convenience we provide a full statement of the next result.

Theorem 6-4 Let C be a reduced curve with degree d and genus g. Suppose that
C has cuspidal singular points py, ..., p,, whose semigroup counting functions are
Ry, ...,R,, respectively. Assume that apart from these N points, the curve C has, for
eachn > 1, m, > 0 singular points whose links are T, >, (A2,—1 singular points) and
no other singularities. Define

77+:Zmn and /<;+:ann.
n n
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Forany k=1,...,d — 2, we have:

. oy o kD +2)
— — — <
Orgasxg Ogiggl—m (Rtkd + 1 —ny —2i —2) +i+j) < > +8

(6-5)
. N on o KD+ 2)
Rkd+1 -2 >
ogggn+( (kd + )+ = 5
Here R denotes the infimal convolution of the functions Ry, ..., R, .

Proof Let Y be the boundary of a tubular neighborhood of C. Then Y is a result of a
d? surgery on K C #°52 x S! obtained as in Subsection 6.2, where we readily compute
from (5-1) p = 2g + n4. Note that by (6-1), the genus g3(K) is less than or equal to
%(d —1Hd—-2) < %dz. Hence, the surgery coefficient is greater than twice the genus
of K. In particular, the large surgery formula can be applied [27, Theorem 4.10]

Let s;, forj € [—d?/2,d*/2)NZ denote the Spin® structures on Y as in Definition 3-13.
By Lemma 5-13, s; extends to CP?\ N, if and only if s; is a restriction of ¢ for some
h, where ¢, is as in (5-11). By (5-12) we infer that this holds if and only if j = md for
m € 7 if d isodd and m € % + Z if d is even. Compare with [4, Lemma 3.1].

By Proposition 514, for any md € [—d?/2,d?/2) such that m + d—gl is an integer, we
have

(6-6) dooi(Y s 5ma) > —% — g, diop(Y, 5ma) < % +g

By Theorem 3-15, (6-0) translates to the inequalities

~ d—?2 D —2m—1

yergy > dzmr d=am =) e g

6-7) (d—2m+1id—2m—1) e
Vol () < 3 + 242

We compute V:l)g and V% from Proposition 6-3. Using g3(K) = %(d —D(d—2)—g—~K4,

we rewrite the equations of Proposition 6-3 (a) and (b).
oppy— _8 _ T+ ; (W P _ >_
Voa(K) = 5 4 + Ogrél;ri+g(R > +md+2j — 2k — 28
(md +j— kit —8))
g | "+

VPOURY=—2 + 5 | max  min
md 2 4 0<i<g0<i<hi—ny

(R(W+md+2j+2i—2g—2n++n+) —(md +i+j—g— ki +np)
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Comparing this with (6-7), we obtain:
; (d—1)d-2) P _ _
Ogrgéri+gR ( 5 +md +2j — 2Kk 2g>
—(md +j— Ky —g) > +(d —2m+ 1)d —2m — 1).

i R(i(d*““’*” d+2i+2) =2y =0 =y —28) -
Jax _min >+ md+2i+ 2 — 2kt —1n4) =y — 28

—(md +j— Ky +ny —2¢)
< id-2m+1)d—2m—1)+g.

With a change j +— x4 + g —j in the first inequality and i — g — i, j — Ky — 14 —J
in the second, we obtain.

i R (@=be=2 _2->_ i > Ld—2m+1)d—2m—1).
pomin | R (5D b md = %) —md 42 {d = 2mo4 DA = 2m = )

max  min R(W d—2i—2i— )_ g
0<i<g 0<j<r|—nt 2 +m L= — 1+ md +j

< id-2m+1)d—2m—1)+g.
With m =k — % after straightforward calculations we obtain

min  (R(kd + 1 —2j) +j) > G+ Dk +2)

0<j<g+k 2 ’
. C ooy Dk 2)
_ _ 92— < X v =
ongl/?gg Ogér’lin_77+ (R(kd 41—y —2i=2)+i —I—J) < > + g,
completing the proof. a

6.3 Negative double points

We now specify to the case where C is a surface which has a single algebraic singularity
and m,, > 0 singular points whose links are (2, —2n)-torus links (which is not algebraic).

Theorem 6-8 Suppose C is a genus g degree d singular curve in the smooth category
as in Subsection 5.4 with a cuspidal singular point p, m, singularities whose link
is —T», for each n > 1, and no other singular points. Suppose further that C is
adjunctive.
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Then, forany k =1,...,d — 2, we have
(k+ 1)k +2)

Rkd +1 —2j)+j) < — 22T 2 _
Ogn;giﬁ_(( + j) +J) < > +g+k-,

. . . . (k+ 1)k +2)
R(kd +1 —2i —2j —n_ > T Lk
Oglggoﬁgﬁa}_m( (kd + i—2j—n)+i+j) > 5 + K=,

where R is the semigroup counting function for the singular point p, and n- =

dom, ko =) m,n.

Remark 6-9 With the assumptions on singularities of C, the condition that C be
adjunctive (spelled out in Definition 5-17) is equivalent to saying that the genus of C is
given by (6-1).

Proof The beginning of the proof is exactly the same as in the proof of Theorem 6—4.
The boundary Y of the tubular neighborhood of C is a result of a surgery with coefficient
d? on the knot K in #2¢17-52 x S'. In particular, (6-7) holds with 1_ replacing 7. :

- d—?2 D —2m—1 _

V:,fj,’(K)z( m + 1)( m—1) n- g

(6-10) (d—2m+1id—2m—1) N
VE(R) < < +%‘+§

With g3(K) = %(d — 1)(d — 2) — g — k_, equations of Proposition 6-3 (c) and (d) take
the form:

top, > 8 71— . (d—1)(d—2) . .
Ky==-— R(*—5—= —2j—2i—n_
Viad®) =5 =7+ min max (R(=572 +md —2j—2i—n-)

—(md—i—j—{—g—i—/i,—n,))

bot, >y _ 8 | TI- (d—1)(d—2) .
Via(K) =75 + 7+ _max (R(“=22 + md — 2j)

—(md —j+g+k)).
Comparing this with (6-10), after analogous changes as in Subsection 6.2, we arrive at

k+ Dk +2)

— 27 N < -— - 7 _
0<,r2ga>+<ﬁ_ (Rtkd +1=2j)+j) < > +g+ kK-,
. . oy o K+ D(k+2)
— — — > - - @z —
Orgglg 0<'£;13_an_ (R(kd +1-2i—-2j—n_)+i +J) > + Ko —1_,
O
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6.4 Special cases of Theorems 6—4 and 6-8

The bounds in Theorem 6—4 and 6-8 are fairly general, but clarity is the price. To
illustrate these bounds, we provide several specifications.

Corollary 6-11

(a) Suppose C is a genus g degree d curve with singular point py, . ..,p, and 14
positive double points. Assume also that C has no other critical points. Then,
fork=1,...,d —2:

Ny Dk +2)
max (Rtkd +1—ny —2)+j) < ————+3

. oo (K Dk+2)
Rkd +1 -2 > 7
Ogyggm( (kd + J) +J) > > ;

where R denotes the infimal convolution of the functions Rg,, ..., Rk, .

v

(b) Suppose C is a genus g degree d curve with a singular point p and 1n_ negative
double points. Assume that C has genus as in (6—1). Then, fork =1,...,d —2:

o k+Dk+2

max (R(kd+1—2])+])§¢+g+n_
0<j<g+n- 2

_ ok DEk+2)

R 1—n_—2 >
o@’é‘g( (kd + n J) +J) = > ;

where R is the semigroup counting function for the singular point p.

Proof Both items follow from Theorem 6—4, respectively, Theorem 6-8, noting that
K4 = 14, respectively, k_ =n_. a

Specifying further 14 = 0 in Corollary 6—11(a) recovers the following result of Bodndr,
Borodzik, Celoria, Golla, Hedden and Livingston [2, 3]:

Corollary 6-12 Suppose C is a cuspidal curve of genus g and degree d. Let R be the
convolution of semigroup counting functions of the singular points of C. Then

) ) (k+ 1(k+2)
— < -7 7
Orglagxg Rtkd+1—-2))+)) < 2 + g

. N K+ Dk +2)
m — > - 7.
J ;gg (Rtkd+1-=2))+j) > >

(6-13)

We now compare the cases g =0,7y =1; ¢ =0,7_ =1;and g=1,7 =n_ =0.
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Proposition 6-14 Let C be a degree d curve with one cuspidal singular point, whose
semigroup counting function is denoted by R. Assume C has at most one ordinary
double point (n4+ + n— < 1) and no other singularities. For all k = 1,...,d — 2 set
v = 3k + Dk +2).

(a) If g =1 and ny = n— = 0, then R(kd — 1) € {vx — 1,v}, R(kd + 1) €
{vk, v + 1}
(b) If g=0,ny =1, then R(kd — 1) € {vx — 1, v}, Rtkd + 1) € {vg, v + 1},
but also
R(kd) < vy.

(¢c) If g=0,n_ =1, then R(kd — 1) € {vx — 1, v}, R(kd + 1) € {v, v + 1},
but also
R(kd) > (S

Proof Item (a) is an immediate consequence of (6—13).

For item (b) note that Corollary 6-11(a) implies that R(kd) < v and R(kd + 1) > vy,
R(kd — 1) > v — 1. Since R(j + 1) — R(j) € {0, 1} for all j, the statement follows
trivially.

The proof of item (c) is analogous. Corollary 6-11(c) implies that R(kd + 1) < vy + 1,
R(kd — 1) < vy and R(kd) > vy. Again, the statement follows trivially. O

Proposition 6-14 can be interpreted as follows. Suppose C is a genus one curve with a
single cuspidal singular point. Then, the semigroup counting function R satisfies the
constraints of item (a) of Proposition 6-14. If for some k = 1,...,d — 2, we have
R(kd) = v + 1, then the R function does not satisfy the constraints of item (b). That
is, C cannot be deformed to a curve with genus 0 and the same (topological type of)
cuspidal singularity. That is, we cannot “trade genus for a positive double point”.

If, for some k, we have R(kd) = vy — 1, then the same argument shows that we cannot
“trade genus for a negative double point”.

6.5 Unicuspidal curves of genus 1

We will now check on concrete examples whether the genus can be traded for double
points.
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Example 6-15 Let ¢9 = 0,¢1 = 1, ¢ = ¢y—1 + ¢n—2 be the Fibonacci sequence.
In [3, Proposition 9.12], based on a construction of Orevkov [19] there was constructed
a family of genus 1 cuspidal curves C, of degree ¢4, with a single singularity whose
link is the (¢4,—2, P4n+2)-torus knot (n = 2,3,...).

By Proposition 6-14(c) we deduce that the genus cannot be traded for negative
double points. Indeed, a classical identity on Fibonacci numbers ¢y—» + ¢p12 = 3¢
shows that the semigroup generated by ¢4,—2 and ¢4, has precisely 9 elements
in the interval [0,3¢4,): These are O, pap—2,...,7¢4,—2 and @4,42. In fact, we
have that 7¢4,_2 < 3¢an < 8pan_» (We leave the proof of this to the reader) and

Gant2 + Gan—2 = 3Pan.

In particular R(3¢4,) =9 < 10 =v3 = W

In [3, Theorem 9.1] there was given a complete list of candidates for curves of genus 1
with one singularity whose link is a torus link 7, ,. The list contains one infinite family
(Orevkov curves) and a finite list of special cases. We apply our obstructions to these
curves and obtain the following result.

Proposition 6-16 Suppose C is a genus one, degree d curve, having a single singularity,
whose link is a (p, q)-torus knot. Then either C is the Orevkov curve (of Example 6-15),
or the values of (p,q) and d are on the following list.

(@ d=4,(p,q =2,5);

(b) d=5,p,q=2,11);

() d=6,({p,q) =(3,10);

(d) d=15,(p,q) =(6,37);

() d=24,(p,q) = (9,64);

® d=27,(p,q) = (10,73);

(g d=33,(p,q = (12,91);

(h) d=3p, (p,q9) =P, +1),forp=2,...,11.
By definition, all cases satisfy the statement of Proposition 6-14(a). We applied the
criterion of Proposition 6-14 (b) and (c). The results are in Table 1. We indicate that

some of the examples predicted by Proposition 6-16 have not been either effectively
constructed or obstructed by other means.
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Case d,p,q) Positive Negative Existence
(a) 4,2,5) Passes Passes Exists
(b) (5,2,11) Passes Passes Exists
(©) (6,3,10) Passes k=1
(d) (15,6,37) Passes k=2
(e) (24,9, 64) Passes k=3
® (27,10,73) k=12 k=38
(2) (33,12,91) k=17 k=38
(h) | Bp,p,9+ 1) | Passes | Failsifp > 3

Table 1: Curves of Proposition 6—16 and the criterion of Proposition 6-14. “Positive” refers to
item (b) of the proposition, “negative” refers to item (c). If the curve does not pass the criterion,
we indicate the minimal & for which R(kd) > vy (case (b)) or R(kd) < v (case (¢)).

6.6 Generalized Orevkov curves

In [2] Bodnér, Celoria and Golla constructed a family of curves generalizing Orevkov’s
construction. Their work can be regarded as a generalization of the construction of [3,
Proposition 9.12]. To begin with, fix k > 2. The Lucas sequence is the sequence L¥
defined recursively via L§ =k — 1, LY = 1, LY, | = Lf + L} |. Here i is allowed to
take all integer values.

Theorem 6-17 (BCG family, see [2, Theorem 1.7]) For any i > 2, there exists a
genus k(k — 1)/2 curve of degree L’ji_l with precisely one singularity whose link is the
(L4;_5, Lk, ) -torus knot.

For any j > 1, there exists a genus k(k — 1)/2 curve of degree —L* 4j—1 With singularity
whose link is the (—L* |, —L* ,;_3)-torus knot.
Now we apply Corollary 6-11.

Proposition 6-18 None of the curves of the BCG family can be transformed into a
curve with genus one less and one negative double point.

Proof We follow the same strategy as in Example 6—-15. We begin with the first family.
Suppose i > 2. Let S be the semigroup associated with the (L’jl._37 Lﬁi 1)-torus knot,
and let R be the counting function for it. The recursive formula for Lucas numbers
implies that LY + L* , = 31X, for all 5. Moreover,

(6-19) L{ 4 = L{,3 + Liyy = 2L + Ly = 3L{, + 21§ = 5L + 3Ly < 8L,
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as long as s > 0. In particular, 3Lf 11 < 9Lk. Therefore, all possible elements in
SN0, 3L§j_1] are 0,..., 8L§j_3 and L’jj 1~ Hence, R(3L§j_ 1) < 9 violating the second
inequality in Corollary 6-11(b).

As for the second family, write Zf = (=LK, for i > 0 and note that Z§+1 =
Z{‘ + Zf.‘_l. Moreover, for i > 0, Zf‘ is an increasing sequence of positive numbers.
We have L 4t ¥ =3[k 1, and, for s odd, X g < 8LX by the same argument as in
(6-19). We conclude as in the first case. O

It is unknown whether it is possible to trade genus for positive double points in any
curves in the BCG family.
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