STABILIZATION DISTANCE BOUNDS FROM LINK FLOER HOMOLOGY

ANDRAS JUHASZ AND IAN ZEMKE

ABSTRACT. We consider the set of connected surfaces in the 4-ball with boundary a fixed knot
in the 3-sphere. We define the stabilization distance between two surfaces as the minimal g such
that we can get from one to the other using stabilizations and destabilizations through surfaces
of genus at most g. Similarly, we consider a double point distance between two surfaces of the
same genus which is the minimum over all regular homotopies connecting the two surfaces of the
maximal number of double points appearing in the homotopy.

To many of the concordance invariants defined using Heegaard Floer homology, we construct an
analogous invariant for a pair of surfaces. We show that these give lower bounds on the stabilization
distance and the double point distance. We compute our invariants for some pairs of deform-spun
slice disks by proving a trace formula on the full infinity knot Floer complex, and by determining
the action on knot Floer homology of an automorphism of the connected sum of a knot with itself
that swaps the two summands. We use our invariants to find pairs of slice disks with arbitrarily
large distance with respect to many of the metrics we consider in this paper. We also answer a
slice-disk analogue of Problem 1.105 (B) from Kirby’s problem list by showing the existence of
non-0-cobordant slice disks.
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1. INTRODUCTION

There is a natural stabilization operation on smooth, oriented surfaces in 4-manifolds where one
attaches an embedded 1-handle to the surface. This operation was recently considered by Baykur
and Sunukjian [3]. When the 1-handle is unknotted, this does not change the fundamental group
of the surface complement. They asked the following question: If two surfaces are topologically
isotopic, then do they become smoothly isotopic after a single unknotted 1-handle stabilization?
They verified this for most known constructions of pairs of exotic surfaces, such as rim surgery. A
related question is how many stabilizations are required to make a given pair of surfaces isotopic.

There is a parallel notion of stabilization for 4-manifolds. A classical result of Wall [51] states that
if two smooth, simply-connected 4-manifolds are homeomorphic, then they become diffeomorphic
after taking connected sums with some number of copies of S% x S2. It is an open conjecture whether
a single copy of S? x S? always suffices. Recently, Lin and Mukherjee [25] constructed a pair of
surfaces-with-boundary in a punctured K3 that are topologically isotopic but not smoothly isotopic,
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and remain so after stabilizing their complements once with S? x S?. They showed this using family
Bauer—Furuta invariants.

In this paper, we construct invariants that provide lower bounds on the number of 1-handle
stabilizations required to make two surfaces isotopic. Using a generalization of 1-handle stabilization,
we endow the set of smooth, connected, oriented, and properly embedded surfaces in B* with
boundary a knot K with a type of metric that we call the stabilization distance. The stabilization
distance between two surfaces bounds from below the number of 1-handle stabilizations required to
make them isotopic. Using the link Floer TQFT, we define several invariants of pairs of surfaces
bounding K that give lower bounds on the stabilization distance. We compute these invariants for
certain pairs of slice disks arising from deform-spinning, and observe they often give non-trivial lower
bounds. Furthermore, we give examples in Section 10 where these lower bounds can be arbitrarily
large.

Throughout this paper, we work in the smooth category, and all manifolds are assumed to be
oriented, unless otherwise stated.

1.1. Metric filtrations on the set of surfaces bounding a knot. In Definition 2.9, we introduce
a very general type of stabilization operation for surfaces in 4-manifolds that extends the 1-handle
stabilization considered by Baykur and Sunukjian. Let S be a properly embedded surface in a
4-manifold W. To obtain the stabilization of S, we choose a 4-ball B C int(W) such that BN S
is a collection of disks that can be isotoped into B* relative to their boundaries. In particular,
OB N S is an unlink. We then replace S N B with a properly embedded surface Sy C B such that
0Syp = 0B NS. Any two surfaces in the same relative homology class can be related by a finite
sequence of such stabilizations and destabilizations (in fact, 1-handle stabilizations suffice).

Let K be a knot in S3. We denote by Surf(K) the set of isotopy classes of connected, properly
embedded surfaces in B* with boundary K. In Definition 2.14, we introduce the stabilization distance
st (S, S7) of a pair of surfaces S, S’ € Surf(K) to be the minimum of

max{g(S1),...,9(Sk)}

over sequences of connected, properly embedded surfaces Sy, ..., Sy in Surf(K) connecting S and S’
such that consecutive surfaces are related by a stabilization or a destabilization. Furthermore, if
K is slice and S € Surf(K), then we define the destabilizing genus gdest(S) to be the stabilization
distance of S from the subset of slice disks.

We also define the M-distance function Mg g/): [0,2] — RZ0 of a pair of surfaces S, S’ € Surf(K),
which is similar to the stabilization distance, but where the stabilization operation is allowed to
change the ambient 4-manifold. Instead of changing the surface in a 4-ball, one can glue in a pair
(Xo,50), where Xy = S* and 95 is an unlink, and b3 (Xg) = b;(Xo) = 0. The M-degree of a
pair (W, S), where W is a compact 4-manifold and S is a properly embedded surface, is defined in
Section 7. It is a function on [0, 2] that measures not only the genus of S, but also a homological
quantity depending on [S] € Ha(WW) and the intersection form Qw of W. The M-distance of a pair
of surfaces S, S’ € Surf(K) minimizes the maximal M-degree along sequences (W1,51) ..., (Wy,Sy)
connecting (B%,S) and (B*,S’) such that (W;, S;) and (W;11, Si+1) are related by the above stabi-
lization operation.

Another notion of distance we consider in this paper is the cobordism distance, which we denote
teob(S,87). It S, S € Surf(K), we set pcob(S,S’) to be the minimal g such that there is a
5-dimensional cobordism (I x B*)Y), where Y is a smoothly and properly embedded, oriented
3-manifold-with-corners such that

9y = —({0} x S)U ({1} x 8" YU (I x K),

projection of Y to I is Morse, and such that each regular level set of Y is a surface such that the
sum of the genera of its components is at most g. We say that S and S’ are strictly g-cobordant
if pcob(S,8") = g. Compare this to the notion of g-cobordism of 2-knots defined by Melvin [30],
where one requires every component of each level set to have genus at most g, and g-concordance,
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where, in addition, Y ~ I x S2. Two surfaces are strictly 0-cobordant if and only if they are O-
cobordant. In particular, pcop defines an ultrametric on the set of 0-cobordism classes of surfaces.
It is straightforward to see that

:U/Cob(Sy SI) S ,ust(Sa S/)

Note that Sunukjian showed that there are infinitely many distinct O-concordance classes of 2-
knots in S* [50]. Dai and Miller [6] improved this result to show that the 0-concordance monoid of
2-knots was infinitely generated.

For g € N, let Surf,(K) denote the subset of Surf(K) consisting of genus g surfaces. If S,
S" € Surfy(K), then they are regularly homotopic relative to K. We define the double point distance
Using (S, S") as fsing (S, S")+g, where [iging (S, S7) is obtained by minimizing half the maximal number
of double points that appear during a regular homotopy from S to S’; see Definition 6.2. When
g(S) # g(5"), we set pging(S,S’) = co. Motivated by an earlier version of this paper, Singh [48]
showed that

,U/st(S; Sl) < /J/Sing<57 Sl) +1
using techniques from Gabai’s proof [10] of the 4-dimensional light bulb theorem. It is an open
problem whether the +1 is necessary in the above formula.

Both g and psing are metric filtrations on Surf(K); i.e., they are nonnegative, symmetric, and
satisfy the ultrametric inequality

(S, 8") < max{ u(S, "), (S, 5") }

for any S, §’, S” € Surf(K); see Section 2.2. Furthermore, Mg g/(t) is also a metric filtration for
every ¢t € [0,2]. If S, S’ € Surfy(K), then ug(S,S’) = 0 if and only if S and S’ are related by
genus zero stabilizations, hence Surfo(K)/{2-knots} is an ultrametric space. However, in general,
1st(S,8) = g(9), and if ug(S,S5") = g(S) = g(9'), it is possible that S and S’ are not related by

genus zero stabilizations.

1.2. Lower bounds from Heegaard Floer homology. Our aim is to provide computable lower
bounds on the stabilization distance, the double point distance, the destabilizing genus, and the
cobordism distance using the link Floer TQFT of the second author [58], which extends the TQFT
of the first author [18] from HFL to the full infinity complex CFL™. If K = (K, w, z) is a doubly-
based knot in S3, then CFL>(K) is a Z @ Z filtered chain complex over the two-variable Laurent
polynomial ring

R>® =T, [U, V,U L, V1.

We give an overview of CFL*(K) in Section 3.1. There is a variation, denoted CFL™ (K), correspond-
ing to the subspace of CFL*(K) in nonnegative bi-filtration, which is a module over the ring

R™ = FQ[U, V]

Knot Floer homology has been used by many authors to provide numerical concordance invariants
that provide deep geometric information. Important examples are the knot invariants 7, v, Vj, for
k € N, and T, introduced by Ozsvéth-Szabé [36,42], Hom—Wu [17], Rasmussen [44], and Ozsvéth—
Stipsicz—Szabd [34], respectively. Since 7, v, Vi, and T are concordance invariants, they all vanish
when the knot is slice.

It is well known that the knot invariants 7, v, and V}, give lower bounds on the 4-ball genus g4(K):

7(K) < v(K) < ga(K) and Vi, (K) < {M;_ﬂ

whenever k < g4(K); see [36, Theorem 1.1], [17, Section 2], and [45, Theorem 2.3]. The invariant Y
also gives lower bounds on the 4-ball genus; see [34, Theorem 1.11]. The invariants 7 and T satisfy
more general versions of the genus bound involving surfaces in negative definite 4-manifolds W with
bi(W) = by (W) = 0; see [36, Theorem 1.1] and [57, Theorem 1.1].

In Section 4, we show that, by mirroring their constructions, we can define secondary versions of
all of the above knot invariants for a pair of surfaces S, S’ € Surf(K) in B* with boundary a knot
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K in S?. We show that these give formally analogous lower bounds on the metric filtrations pug,
ising, and M:

Theorem 1.1. Let S, S’ € Swrf(K). Then
7(5,8") < v(S,8") < min{ p (S, S"), psing(S,5") }.
Furthermore,

Y(s,51(t) < M(s,51()
for every t € [0,2]. Finally, for every k € N,

2
If S and S’ are disks, then Equation (1.1) also holds with ps in place of Using.

(1.1) Vi(S,8) < PLSIH%(S’S/)_IC—‘ )

The bounds stated in Theorem 1.1 are proven separately throughout the paper; see Theorems 5.13,
5.14, 6.7, 6.14, and 7.5, as well as Proposition 6.8. In Section 4.7, we introduce a novel invariant
(S, S”) that does not have an analogue for knots, and which only gives a lower bound on piging (S, S");
see Theorem 6.9.

Using the link Floer TQFT, we also introduce another integer invariant Z(S) of a surface S which
has ¢(S) > 0 and has boundary a slice knot K see Definition 5.6. In Theorem 5.10, we prove that
Z(S) bounds the stabilization distance between S and the subset of slice disks:

I(S) < gdest(S)'

However, Z(.5) is in general difficult to compute, as it involves determining the link cobordism maps
for infinitely many decorations on the surface S. Giving a lower bound on Z(S) is theoretically
feasible, since it only involves finding two decorations on S satisfying a simple condition, whose
induced cobordism maps disagree. We define an analogue of x(S,S’) for a single surface, ko(S),
which gives a computable lower bound on gqes;(S); see Theorem 5.11.1

The invariants 7, x, and kg can all be derived from Y. As opposed to the case of knots, T (g g/)(t)
is not a symmetric function. We will see in Theorem 4.20 that, for all ¢t € [0,2] sufficiently close
to 0, we have

T(S,S’)(t) = T(S, Sl) - t.

However, for t sufficiently close to 2, we have

Teaan(t) = { (005 —9(8) - 2=0)+g(S)t i o(S) > g(S"),
(557 (k(5,5") = g(S)) - (2= 1) +g(S) -t it g(S) = g().

We now review the construction of the invariants. If S € Surf(K), then it can be viewed as a
link cobordism from @ to (S*, K). If we decorate it such that the type-w region is a bigon, then it
induces a filtered chain map

Szt R — CFL™(K),
well-defined up to filtered chain homotopy; see Section 4.2. If instead the type-z region is a bigon,
we obtain a map t3’,. We call t3°, and t3, the extremal principal invariants of the surface S.
Given surfaces S, S’ € Swrf(K), the invariants

T(S, S/), V(Sa Sl)? Vk(Sv S/)7 and TS,S'(t)

are all extracted from the pair of maps (tg‘fz, go,z) by algebraically mirroring the construction of
their knot invariant counterparts. Hence, we think of our invariants as secondary versions of the
knot invariants. The invariant #o(S) is derived from tZ°,, and we obtain x(S5,S’) from the pair

(5w 657 w)-

n subsequent work [21], we show that Z(S), ko(S) € {g(S),9(S) + 1}, and hence Z(S) and ko (S) give potential
obstructions to surfaces being stabilized (cf. Proposition 5.5 therein). By analyzing the proof of [21, Theorem 1.7]
and by considering cases where the bound is sharp, one may find surfaces where Z(S) = ¢(S) + 1. For example, any
genus 2 slice surface for Ty 3#7T5 3 has Z(S) = 3.
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For example, to obtain 7, we set U = 0 and V = 1 in the R-module CFL™ (K), and obtain
the Z-filtered complex CFK#"*(K) whose homology is HF(S®) = F,. Given a pair of surfaces S,
S’ € Swrf(K), the elements tg (1) and tg, ,(1) of CFL™ (K) give rise to elements t5,(1) and ts 5(1)

of CFK filZ(K). We define the invariant
7(S,8’) := min{n > max{g, g'} : [ts,(1)] = [ts'4(1)] as elements of H*(C/'F’?('J;?’ZUK))}7
where @ﬁlvz(K) is the part of @(ﬁl’z(K) in filtration at most n.

1.3. Computing the invariants for deform-spun disks using the trace formula. In Sec-
tion 10, we compute the secondary invariants for several pairs of deform-spun slice disks, using the
computer algebra software SageMath [46]. We exhibit several examples where the lower bound on
the stabilization distance is 2 or 3, and a family with arbitrarily large distance. We note that, in
our examples, the pairs of slice disks are not topologically isotopic relative to their boundaries.

Let K be a knot in S?, and suppose that the 3-ball B intersects K in an unknotted arc. Then
(S3\int(B), K \int(B)) is a ball-arc pair (B3, a). Suppose that we are given an isotopy ¢: I xS? — §3
of S? that is the identity on B, and such that ¢ = Idss and ¢1(K) = K, where ¢;(z) := ¢(t,z) for
every t € I and = € S3. Then the deform-spun slice disk Dr ¢ C B* is defined by taking

{8} x du(a) € T x B2,

tel
and rounding the corners along {0,1} x dB3. This is a slice disk of —K#K. The isotopy class of
Dk 4, relative to —K# K, only depends on the diffeomorphism ¢, so we will write Dg 4, instead
of DK7¢.

In this paper, we consider three automorphisms of a ball-arc pair. The first is the roll-spinning
automorphism 7, which corresponds to a positive Dehn twist in the longitudinal direction of the knot
K. The automorphism r is supported in a neighborhood of K. The second is the twist-spinning
automorphism ¢, which is similar to roll-spinning, but instead twists in the meridional direction.
The third automorphism R™ that we consider is specific to knots of the form K#K. The summand-
swapping automorphism R”™ of K#K is the composition of an isometry of R? that swaps the two
copies of K, and a half Dehn twist that ensures R” fixes K# K pointwise.

We show that, if K is a knot in S?, then the roll-spun and twist-spun slice disks D K, Dryt €
Surfo(—K#K) satisty

,LLSt(DK,Tv-DK,t) <2

see Proposition 2.21. We conjecture that the upper bound can be improved to 1.

We obtain lower bounds on the stabilization distance and the double point distance using our
secondary invariants. For this end, we first compute the extremal principal invariant t75, (1) €
CFL>® (—K#K) of a deform-spun slice disk. We define the canonical cotrace map

cotr: R® — CFL™(Y,L,s) @re CFL™(-Y,—L,s)
as the dual of the trace pairing.

Theorem 1.2. Let Di , be a slice disk of the doubly-based knot —K#K = (—K#K,w, z), obtained
by deform-spinning a doubly-based knot K = (K,w, z) in S* using an automorphism ¢ of (S3, K).
If we write C := CFL™(K), then

Fo toDoKw ~ (id ®p4) o cotr € Homp (R, oV ® o),

where E: CFL®(—K#K) — CV ® C is the chain homotopy equivalence induced by a pair-of-pants
link cobordism.

Our proof of Theorem 1.2 uses a much more general trace formula for the full link Floer TQFT,
Theorem 9.3, extending a result from our earlier work [22, Theorem 1.1] for sutured Floer homology,
as well as a result of the second author for the graph TQFT [55, Theorem 1.6].
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Hence, to compute the secondary invariants of deform-spun slice disks, it remains to determine
the induced diffeomorphism map ¢, in specific examples. The map r, induced by the basepoint
moving diffeomorphism is well-known, and is given by the formula

re >~ id+® o U,

which was proven on HFK ~ (K) by Sarkar [47], and extended to CFL™ (K) by the second author [54].
The maps ® and ¥ are two special endomorphisms of knot Floer homology, which we describe in
Section 3.2. It turns out that 7(Dxk iq, Dk,) < 1 for the canonical deform-spun slice disks Dy iq
and the roll-spun slice disks Dk ,; see Proposition 10.1 .

To provide more interesting examples beyond roll-spinning, we compute a formula for the map
induced by the summand-swapping automorphism R™ on CFL™ (K#K) in Theorem 8.2. We prove
that there is a chain homotopy equivalence identifying CFL* (K#K) and CFL™ (K) @ CFL* (K) under
which

R ~Swo(id®id+(Po V) ®id+P @ V),
where Sw is the map that swaps the two tensor factors. To our knowledge, after Sarkar’s formula,
this is the only other known formula for a mapping class group action on the knot Floer complexes
of a family of knots in S3.

1.4. Families with large distance. Using the trace formula and our invariants, we prove the
following:

Theorem 1.3. Given n > 0, there is a knot K,, and a pair of slice disks Dy, and Dy for K, , such
that 7(D1, D) > n. In particular w(D1, D2) > n for w € {jst, fiSing, LCob }-

The slice disks appearing in our proof of Theorem 1.3 are deform spun slice disks of

Ty Tp.a# 1p,q 7 Tp.q
for various p and q.

We note that the above results appeared after the work of Miller and Powell [31], who constructed
for each n a pair of slice disks such that any stabilization sequence between D; and Ds required
at least n stabilizations. Their result does not imply ours, since it focuses on the total number
of stabilizations, as opposed to the maximal genus. Hence it does not give a lower bound on the
cobordism distance. See also work of Miyazaki [33].

Theorem 1.3 gives an answer to a slice disk analogue of Problem 1.105 (B) of Kirby’s Problem
List [1] that asks whether every 2-knot is O-null-cobordant:

Corollary 1.4. For every g, there is a knot K, and a pair of slice disks that are not strictly
g-cobordant. In particular, there are slice disks that are not 0-cobordant in the sense of Melvin [30)].

Remark 1.5. We note that Dai, Mallick and Stoffregen have independently found examples of slice
disks with large stabilization distance [5]. Additionally, they use some of the techniques of this paper
in their work to study equivariant knots.

Acknowledgements. We would like to thank David Gabai and Maggie Miller for helpful conver-
sations. The first author was supported by a Royal Society Research Fellowship, and the second
author by an NSF Postdoctoral Research Fellowship (DMS-1703685). This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 674978). We also thank an anonymous
referee for feedback on an earlier draft.

2. THE STABILIZATION DISTANCE OF A PAIR OF SURFACES

In this section, we first review deform-spun slice disks. We then introduce the notion of a metric
filtration, which is a generalization of an ultrametric, but where the distance of a point from itself
can be nonzero. We proceed to define the stabilization distance of a pair of surfaces with boundary
a given knot, which is an instance of a metric filtration. Finally, we show that the stabilization
distance of a 1-roll-spun and a 1-twist-spun slice disk is always at most two.
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2.1. Deform-spun slice disks. We review the definitions of deform-spun slice disks [23, Section 3].
Originally, Litherland [27] introduced deform-spinning to construct 2-knots in R?*, generalizing twist-
spinning, due to Zeeman [52], and roll-spinning, due to Fox [7]. An analogous construction can be
used to obtain slice disks in B%. The following is [23, Definition 3.1]:

Definition 2.1. Let K be a knot in S? = —B3 U B? such that K intersects —B? in an unknotted
arc, and write a = K N B3. Furthermore, let ¢: I x S? — S? be an isotopy of S such that ¢¢ = Idgs,
¢¢|_ps =1d_ps for every t € I, and ¢1(K) = K. The deform-spun slice disk D 4 C B* is defined
by taking

J{t} x ¢e(a) € T x B2,

terl
and rounding the corners along {0,1} x 9B3. The surface Dy 4 is a slice disk for —K# K, where
—K stands for (—=S3, —K).

Note that 3Ri =R3= Rﬁ_ UR? . Intuitively, we consider the arc a in R? , which we rotate about
the plane R? = Ri NR3 in Ri, while applying the isotopy ¢, until we reach Ri. The following
result is [23, Lemma 3.3], which immediately follows from the work of Hatcher [12].

Lemma 2.2. Let ¢ be an automorphism of (S*, K) such that ¢|_ps = Id_pgs. Then there is an
isotopy ¢: I x S* — S? as in Definition 2.1, such that ¢, = . Furthermore, the isotopy class of the
deform-spun disk D ¢ only depends on ¢, which we denote by D .

We now recall the definition of roll-spinning, based on the description of Litherland [27, Exam-
ple 2.2]. The following is [23, Definition 3.5]:

Definition 2.3. Let K be a knot in S3. Choose a tubular neighborhood N(K) of K as well as an
identification N(K) ~ K x B? which induces the Seifert framing of K. Let X = S§%\ int(N(K))
be the knot exterior. Furthermore, let 9X x I be a collar of 90X in X, with X x {0} be identified
with 90X C X. We identify K with R/Z. Choose a smooth monotonic function ¢: R — I such that
¢(s) =0for s < 0and p(s) =1 for s > 1. We define the rolling diffeomorphism r: (S*, K) — (S3, K)
by the formula

r(z,0,s) = ($+<p(s),§,s) for (z,0,s) € K x 0B* x I ~ 0X x I,

and let r(p) = p for p € $*\ (0X x I).
Similarly, we define the twisting diffeomorphism t: (S*, K) — (S, K) by the formula

t(z,0,s) = (E,G—i—gp(s),s) for (z,0,s) € K x 0B* x I ~ 0X x I,

and let t(p) = p for p € 3\ (0X x I).
Let B C N(K) be an open ball that intersects K in an arc. Then (S*\ B, K \ B) is diffeomorphic
to a ball-arc pair (B*,a), and r|g = idg. We define the (k,l)-twist-roll-spin of K to be Dy tx 1.

Note that D iq is simply the spun slice disk of K, obtained using the identity deformation. We
will call this the canonical slice disk of —K#K.

2.2. Metric filtrations.

Definition 2.4. Let X be a set. We say that a function p: X x X — R20 is a metric filtration on
X if it is symmetric, and satisfies the ultrametric inequality

w(,2") < max{u(a, ), (e, ")}
for every z, z/, 2" € X.

The metric filtrations appearing in the paper will all be instances of the following construction.
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Ezxample 2.5. Let X be a path-connected topological space, and f: X — R2? a continuous function.
Given points z, ' € X, we define

A .
)= gl o)
7(0)=z, y(1)=a'

where the infimum is taken over continuous paths ~. This is clearly a metric filtration. Note that

w(z,z) = f(x).
Similarly, let G = (V, E) be a connected graph, and f: V — R0 a function. For z, 2’ € V, we
define p(z,z’) to be the infimum of

max{f(z1),..., f(zn)}

over paths z1,...,z, in V such that z; = z and z,, = 2’. This is a special case of the above
construction: Set X to be the l-complex associated to G, and extend f over the l-cells of X
linearly. Typically we will be interested in graphs where f is integrally valued on V. For these
graphs, we can replace the infimum with a minimum.

Definition 2.6. Let p be a metric filtration on the set X. Then we define its normalization as
iz, z') == p(x, ') — min{p(z, z), u(z', 2")}.
Recall that g: X x X — R0 is a pseudometric on X if it is symmetric, satisfies the triangle
inequality, and g(x,z) = 0 for every z € X (but g(z,y) = 0 does not necessarily imply that « = y).

Lemma 2.7. Let i be a metric filtration on the set X. Then its normalization i is a pseudometric.

Proof. Choose points z, 2/, " € X, and write a = p(x,x), a’ = p(a’,2'), and o” = p(a”,2”). It
is clear that u(x,xz) = 0. If we apply the ultrametric inequality to the triple x, 2/,  we obtain
that p(xz,z’) > a. Similarly, by considering the triple 2/, x, z/, we get that p(x,2’) > @', and hence
w(x, ") > max{a,a’}. In particular, p(z,z") > 0.
It remains to prove the triangle inequality
fi(z,2") < p(z,2") + fa’, ")
By definition,
w(z,z") = p(z, ') —min{a,a’} and p(2',2") = p(z’,2”") — min{a’,a"}.
Without loss of generality, we can assume that
max{u(z, 2'), p(a', 2"V} = pla’, 2").

Hence, by the ultrametric inequality, p(z,z”) < p(z’,2”). So it suffices to show that

—min{a,a”’} < p(z,2’) — min{a,a’} — min{a’, a”}.
We saw that max{a,a’} < u(x,z’), hence we only need to prove that

min{a,a’} + min{a’,a"} < max{a,a’} + min{a,a”}.
This holds because max{a, a’} bounds both terms on the left-hand side from above, while min{a, a”’}

bounds at least one of them from above. O

2.3. The stabilization distance. In this section, we describe a collection of topological numerical
invariants associated to pairs of surfaces bounding a knot. Given a properly embedded surface S in
a 4-manifold W, we describe several ways of increasing the genus of S within W. Our description
is inspired by Baykur and Sunukjian [3]. The most general notion, and the one we will focus on in
this paper, is the following:

Definition 2.8. Let S be a connected and properly embedded surface in a 4-manifold W. Suppose
that B* C int(W) is an embedded 4-ball such that 9B*N S is an unlink of m components, written as
Uy U---UU,. Furthermore, suppose that SN B* is a collection of m pairwise disjoint and properly
embedded disks Dy U ---U D,, that can simultaneously be smoothly isotoped into 9B relative to
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their boundaries. Let Sy be an oriented, connected, properly embedded genus n surface in B* such
that 0S5 =U; U---UU,,. The surface

S" = (S\ int(B*)) U Sy
is the (m, n)-stabilization of S along (B*,Sy). We say the genus of an (m, n)-stabilization is m+n—1,
which we note is g(S5’) — g(5).
If S’ is the (m,n)-stabilization of S, then we say that S is the (m,n)-destabilization of S’.

In this paper, a stabilization refers to an (m,n)-stabilization and a destabilization to an (m,n)-
destabilization for some m and n.

A schematic of an (m,n)-stabilization is shown in Figure 2.1.

S~

oB*

FIGURE 2.1. A (3,2)-stabilization.

Note that performing a (1,0)-stabilization is the same as taking the connected sum of a surface
S with a 2-knot contained in a small 4-ball, disjoint from S. We additionally define the following
special cases of stabilization:

Definition 2.9. Let S be a properly embedded surface in the 4-manifold W, and suppose that S’
is obtained from S by an (m, n)-stabilization along (B*, Sp).
(1) We say S’ is an unknotted surface stabilization of S if m = 1 and Sy is smoothly isotopic
into OB* relative to 0Sy. If, furthermore, n = 1, then we call this a trivial stabilization.
(2) We say S’ is a I-handle stabilization of S if (m,n) = (2,0) and Sy U D7 U D5 is the boundary
of a 3-dimensional 1-handle that is embedded in W.

Unknotted surface stabilization and 1-handle stabilization have been introduced by Boyle [4], and
studied further by Baykur and Sunukjian [3].

Lemma 2.10. The surface S’ can be obtained from S by a genus g unknotted surface stabilization
if and only if it can be obtained by g disjoint trivial stabilizations.

Proof. Suppose that S’ is obtained from S by an unknotted surface stabilization along (B*,Sy).
After isotoping Sy into S3, it becomes a Seifert surface of the unknot dSy. If g > 0, the map

m1(S0 \ N(8S0)) = m1(S® \ N(0S,)) = Z

is not injective, hence Sy is compressible in S* by the loop theorem. Compressing corresponds
to reversing a 1-handle stabilization in S3. If we push the interior of the 1-handle into B%, it
becomes unknotted. By induction on the genus of Sy, we see that S’ can be obtained from S by g
consecutive trivial stabilizations. However, in dimension 4, we can always isotope consecutive trivial
stabilizations to be disjoint from each other. The opposite implication is straightforward. |
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As in [23, Definition 3.8], we can define the peripheral map
hs: 7r1(8W\8S) — ’/Tl(W\S)

for a properly embedded surface S in W. Given surfaces S and S’ in W with S5 = 95’, we say that
their peripheral maps are equivalent if there is an isomorphism

g: m(W\S) = m(W\S)

such that hg = g o hg. The equivalence class of the peripheral map is clearly an invariant of .S up
to ambient isotopy in W fixing W pointwise.

Lemma 2.11. Suppose that S’ is obtained from S by a trivial stabilization. Then their peripheral
maps are equivalent.

Proof. Boyle [4, Lemma 11] showed that w1 (W \ S) & m (W \ S’). Indeed, a trivial stabilization
corresponds to taking the connected sum of (W, S) and (S*,72), where T2 is an unknotted torus.
Since S*\ T2 is homotopy equivalent to the suspension of S*\ T2, we have 71 (S*\ T?) = Z, generated
by the meridian of T2. Hence, the claim follows from the Seifert-van Kampen theorem. As the
connected sum is taken in the interior of W, it follows that the peripheral maps are equivalent. [

As shown by Boyle [4, Lemma 9], a nontrivial 1-handle stabilization might change the fundamental
group of the surface complement, though it is always a quotient of the original group. Based on his
work, Baykur and Sunukjian [3, Lemma 3] determined when two 1-handle stabilizations give isotopic
surfaces. If the 1-handle h is attached along the points a, b € S, then we can act on the homotopy
class of the core of h by either adding the class of the meridian of S, or pre- or post-composing with
the push-off of a loop in 71 (5, a) or 71 (S, b). The equivalence class of the homotopy class of the core
of h determines the resulting surface up to isotopy, also in the case when ¥ has boundary.

Corollary 2.12. Let D, and D, be deform-spun slice disks of a knot —K#K, where ¢ and ¢’
are non-isotopic automorphisms of (S®, K) that are fived in a neighborhood of a point of K. Then
one cannot obtain Dy from D, by a sequence of trivial stabilizations and destabilizations (or,
equivalently, by unknotted surface stabilizations and destabilizations).

Proof. According to the proof of [23, Proposition 3.9], the peripheral maps of D, and D, are
inequivalent. Hence, the result follows from Lemma 2.11. (|

Proposition 2.13. Let S and S’ be compact, properly embedded surfaces in the compact 4-manifold
W such that 0S = 0S5’ and [S] = [S'] € Ho(W,DS). Then X and X become ambient isotopic relative
to OW after finitely many 1-handle stabilizations.

Proof. This is a relative version of [3, Theorem 5], and the proof is analogous. The idea is that one
removes a neighborhood of SN S’, and chooses a relative Seifert manifold M for

(SU-S)\N(SNS).

Then a self-indexing Morse function on M with only index 1 and 2 critical points that is minimal
along S and maximal along S’ gives the required handles. ]

Definition 2.14. Suppose that S and S’ are connected, properly embedded surfaces in the compact
4-manifold W such that S = 05’ is a knot K in OW. We define the stabilization distance of the
pair (S, S"), for which we write 14 (S, S), to be the minimum of

max{g(51),...,9(S%)}
over sequences of connected, properly embedded surfaces S, ..., S, in W such that
(1) Sy =S and S, =9,
(2) 0S; = K fori € {1,...,k}, and

(3) S; and S;y; are related by a stabilization or destabilization, up to proper isotopy, for i €
{1,...,k—1}.
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We define p14(S,S”) to be 0o if no such sequence exists. Analogously, we define i (S, S”) by mini-
mizing

max{g(sl)v s 79(‘9]{))} - mln{g(sl)a s ag(sk)}
over the same set of sequences. Finally, we let

fist (S, S") = pst (S, 8') — min{g(S), 9(5")},
which we call the normalized stabilization distance.
The (trivial) 1-handle distance of S and S’ is defined similarly to ug, except that S; and S;41 are
related by adding or removing a (trivial) 1-handle. We denote the 1-handle distance by (S, S’),
and the trivial 1-handle distance by u{(S,S").

‘We observe that
ﬁst(sv SI) < ﬁst(Sa S/) < /Ufst(S’ S/) < /~L1(Sa S/) < /u'(l)(S? Sl)

Furthermore, if [S] = [S'] in Ha(W, K), then u1(S,S’) is finite by Proposition 2.13, and hence so
are fs(.9,9") and Jig (9, 5"). On the other hand, p9(S,S’) might be infinite by Corollary 2.12. Note
that Tig (S, S") = 0 if and only if S and S’ become isotopic after taking connected sums with 2-knots.
Since st (S, S) = g(59), the normalized distance satisfies figt (S, ) = 0.

Consider the graph whose vertices are isotopy classes (rel. boundary) of connected surfaces in W
with boundary the knot K in a fixed relative homology class in Hy(W, K), and whose edges corre-
spond to (m,n)-stabilization for some m and n. If we apply the procedure outlined in Example 2.5
to the genus function, we obtain s, which is hence a metric filtration in the sense of Definition 2.4.
Its normalization in the sense of Definition 2.6 is ps. So, as a special case of Lemma 2.7, we obtain
the following;:

Lemma 2.15. Let W be a compact 4-manifold, and K a knot in OW. The normalized stabilization
distance Jis, is a pseudometric when restricted to surfaces in a given class in Ho(W, K).

For a knot K in S3, let us write Surf(K) for the set of isotopy classes of connected, oriented,
properly embedded surfaces in B* with boundary K, and Surf(K)/{2-knots} for Surf(X) modulo
genus 0 stabilizations. We denote by Surfy(K) the subset of genus ¢ surfaces in Surf(K). If K is
slice, we will write

D(K) := Surfy(K)
for the set of isotopy classes of slice disks of K in B%, and D(K)/{2-knots} for D(K) modulo genus 0
stabilizations.

Remark 2.16. Note that (Surf(K)/{2-knots}, fist) is a pseudometric space (i.e., fist(S,S’) = 0 can
hold for S # S’ in Surf(K)/{2-knots}), while (Surf(K)/{2-knots}, i) is a metric space. Further-
more, g is a metric filtration, so it satisfies the ultrametric inequality

/’Lst(‘ga S”) S ma‘X{Mst(S7 S,)a ,ust(Sla SH)}

for any S, S’, S € Surf(K), and so does fis; when restricted to Surf,(K).

If one of S, S’ € Swi(K) is a disk, and Sy, ..., Sy is a sequence of surfaces connecting S and 5’,
as in Definition 2.14, then

min{g(S1),...,9(Sk)} =0,

80 st (S, 9") and T (S, S") are both obtained by minimizing max{g(S1),...,g(Sk)}. Hence ug and
T, agree on D(K)/{2-knots}, and (D(K)/{2-knots}, ust) is an ultrametric space; i.e., a metric space
that satisfies the ultrametric inequality. Our invariants from Heegaard Floer homology naturally
give bounds on ps, hence we will not study 7, in the rest of this paper.

Definition 2.17. If K is a slice knot and S € Surf(K), we define the destabilizing genus ggest(S)
of S to be the minimum of

max{g(S1),...,9(Sn)}
over sequences of properly embedded surfaces S, ..., S, in B* such that
(1) S;4+1 is obtained from S; via stabilization or destabilization for ¢ € {1,...,n — 1},
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(2) S1 =5, and S, is a slice disk of K.

By definition, gqest(S) > g(S). Furthermore, if D is a slice disk of K, then ggest(S) < fist (S, D),
and hence gqest(S) is finite. In fact, ggest(S) is the distance of S from D(K)/{2-knots} in the
pseudometric space (Surf(K)/{2-knots}, fist)-

Proposition 2.18. Let Sy, So € Surf(K). Then

ps(S1, 52) < 29(K) +max{g(51), 9(52)},
where g(K) is the Seifert genus of K.

Proof. Let S be a minimal genus Seifert surface for K, and choose an open ball B C int(S). Consider
the product S x I C S3, where we identify S with S x {0}. For i € {1,2}, isotope S; near 9S; such
that it becomes a surface S} with boundary K x {1}. We let

Y :=((S\B)x{0}))U(@BxI)u((S\B)x{1})uUSs.
Then ¥; is a surface of genus 2¢g(K) + ¢(S;) that can be obtained from S; by 2¢(K) 1-handle

stabilizations in S3. Indeed, let ay, ..., asg be pairwise disjoint arcs in S\ B with boundary on 0B
that span Hy (S, B). If we compress %; along the curves

(ai X {0, 1}) @] (80@ X I)
using the compressing disks a; x I C .S x I, we obtain S;, up to proper isotopy.
If we push 3; \ (S x {0}) into int(B*) relative to B x {0}, we obtain a surface X! that is a

stabilization of S with m = 1. The sequence of surfaces Sy, X, S, 3}, S satisfies the requirements
of Definition 2.14, and has maximal genus 2g(K) + max{g(S1), g(S2)}. O

Corollary 2.19. If K is a slice knot and S € Surf,(K), then
9aest(S) < 29(K) +g.
Proposition 2.20. Let K be a slice knot, and S, S’ € Surf(K). Then
[ist(S,S") > |gdest (S) — gaest (S”)]-

Proof. Since the claim is symmetric in S and S/, we can assume that gqest (S) < gaest(S’). Let D be
a slice disk for K such that figt (D, S) = gdest(S). Then

gdest(S) + ﬁst(S; S/) = ,Est(Da S) + ,Est(sa S/) Z ﬁst(Dv SI) Z gdest(S/)
by the triangle inequality, and the result follows. O

2.4. An upper bound on the distance between 1-roll-spun and 1-twist-spun slice disks.
Let t"r™ denote the n-twist-m-roll-spinning diffeomorphism of K. We will show the following;:

Proposition 2.21. If K is a knot in S3, then the deform-spun slice disks Dy, Di+ € Surfo(—K#K)
satisfy

tst(Drcry, D) < 2.

Proof. Let By C S3 denote a 3-ball that intersects K in an unknotted arc. We consider the knotted
ball-arc pair (B, a), where B :=S? \ int(By) and a = K N B. We present both slice disks D ,. and
Dk ¢ as movies of ball-arc pairs which start and end at (B, a).

We begin with describing a movie for Dy ¢n, for any n € N. We pick a diagram D for K with
wr(D) = n. We view the diagram D as nearly being embedded in a plane P. The movie for Dy ¢n,
consists of rotating the diagram D about an axis perpendicular to P (and shifting along the axis
perpendicular to P slightly), while translating D in the plane so that the image of K intersects
B in an unknotted arc. This is a movie for Dg ¢n, for some n. The exponent n is equal to the
difference between the blackboard framing and the Seifert framing. Since the difference between the
blackboard framing and the Seifert framing is wr(D), it follows that this movie represents D g jwr(p),..

Next, we describe a movie for the slice disk Dg ;. We pick a line ¢ in R3 which coincides with
K inside By, and is disjoint from K outside a small neighborhood of By. The movie for Dy ; is
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305
=) *65 <

FIGURE 2.2. The slice disks DK,twr(D)T and Dk of —K#K. In the top row, we
rotate the diagram counterclockwise a full turn in the plane, and consecutive frames
differ by a small rotation.

L@
e

:@)

Dy

)

obtained by rotating a in a full twist about £. Schematics of the movies for D jwr(p), and Dy are
shown in Figure 2.2.

We now present a stabilization sequence from D jwr(p), to Dy that has maximal genus two. Let
us write {a : s € I'} for the movie of arcs corresponding to D jw:(p),.. Suppose that a, = ¢5(K)NB
for a 1-parameter family of rigid motions ¢,: S® — S3 for s € I that nearly preserve the plane P.
We give K a parametrization v(s) such that ¢s((s)) is the center point of the ball By = S*\ int(B)
(note that By is the region inside the red ball in Figure 2.2).

SEDSE:

FIGURE 2.3. Attaching a 1-handle to the disk Dy ; by adding a pair of bands to
the beginning of the movie for D ;.

Let 0 < 81 < -+- < s, < 1 be the times such that v(s;) is the lower point of a crossing of D,
which we denote ¢;. Let Cr(D) be the set {c1,...,¢,} of crossings of D. As s passes s; for some
1€ {1,...,n}, the overstrand of the crossing ¢; passes over OB in the movie as.

As a first step, we attach a 1-handle to D ;w:(p),, by adding two bands to the beginning of the
movie ag, as in Figure 2.3. We can move the second band to the end of the movie. This breaks each
arc as into a knot K disjoint from 9B, which we can view as a copy of our original knot K, as well
as a small, boundary-parallel arc attached to 0B. We now wish to continuously pull the family of
knots K downward, such that they do not pass over B for any s (or, phrased another way, such
that there is a path from 9B to oo € S? disjoint from K for all s € I).

Given ¢ C Cr(D), we let S € Surf;(—K#K) denote the genus one surface obtained by modifying
the movie {as : s € I} such that the upper strand of ¢; passes over OB if ¢; € ¢, and the upper
strand of ¢; passes under 0B if ¢; & c; see Figure 2.4.
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le;

Al L= - Q

ci €C

c éc

FIGURE 2.4. On the top row, we show a portion of the surface S when ¢; € c.
The upper strand of a crossing ¢; passes over dB. On the bottom row, we show a
portion of the movie for S; when ¢; € c. The upper strand of the crossing ¢; passes
underneath 0B.

Let ¢; and ¢; be consecutive crossings in ¢ of opposite sign. We claim that S and Se\ (¢, c,} become
isotopic after a single stabilization. The stabilization is obtained by attaching a band connecting
the upper strands of the crossings ¢; and c;, followed by attaching the dual band; see Figure 2.5.

le,

B -
g — 9 —q —qQ
i |

FIGURE 2.5. A movie for a common stabilization of S and S\ (¢, ,c,}, when ¢; and
¢; are consecutive crossings in c¢ of opposite sign. In the movie, a band is added
between the first and the second frames. An isotopy connects the second and third
frames. The third and fourth frames are related by attaching the dual band.

In the case that wr(D) = 0, the number of positive crossings is equal to the number of negative
crossings, so we can eliminate all crossings from ¢ pairwise via the stabilization sequence described
above. Hence

ust(SCr(D)7 S(D) S 2.

We note that Scy(p) is a genus one stabilization of D .., while the surface Sy is described by a
movie that starts at (B, a), then has a copy of K break off and move away from 0B. This copy
of K rotates tw(D)-many times near a plane far away from 9B, where tw(D) denotes the twisting
number of D, and then K is reattached to the arc on dB via a band.
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It is a general fact that tw(D) + wr(D) is always odd for any diagram of a knot (as can be verified
by noting that Reidemeister moves and crossing changes do not change the quantity tw(D) + wr(D)
modulo 2, and that tw+wr = 1 for a trivial diagram of an unknot). Since we picked D to satisfy
wr(D) = 0, we conclude that

tw(D)=1 (mod 2).

Since a path of rotations about a line in R? induces the generator of 7 (SO(3)) & Z,, we can assume
that the copy of K which breaks off rotates in a plane exactly once.

Hence, our movie for Sy becomes a copy of K which breaks off of (B,a) as in Figure 2.3, then
makes one full rotation in a plane (away from dB), and is finally reconnected to the arc attached to
0B. A continuous deformation transforms this final movie into a stabilization of the movie for Dg ;
shown in Figure 2.2. O

We conclude this section with the following conjecture (compare Proposition 10.1, below).

Conjecture 2.22. If K is a knot in S3, then the deform-spun slice disks D ., D4 € Surfo(—K#K)
satisfy

,Ust(DK,mDK,t) <1l

3. BACKGROUND ON THE LINK FLOER TQFT

In this section, we recall some previous results about the link Floer TQFT which we will need to
compute the effect of stabilization on the link cobordism maps in Section 5, to determine the map
induced by the summand-swapping diffeomorphism in Section 8, and to prove the trace formula in
Section 9.

3.1. The full link Floer TQFT. We first recall the category whose objects are multi-based links,
and whose morphisms are decorated link cobordisms, following the notation of the second author [58];
see also the equivalent construction of the first author [18].

Definition 3.1. A multi-based link L = (L, w,z) in a closed, oriented (not necessarily connected)
3-manifold Y is an oriented link L C Y, together with two disjoint collections of basepoints w, z C L
such that

(1) each component of L has at least two basepoints;

(2) the basepoints along a link component of L alternate between w and z, as one traverses the
link;

(3) each component of Y has at least one component of L, and each component of L has at least
two basepoints.

Definition 3.2. Let Y; and Y5 be 3-manifolds containing multi-based links Ly = (L1, w1,21) and
Lo = (Lo, wa,29), respectively. A decorated link cobordism from (Y1,L1) to (Y2,L2) is a pair
) = (W, (S, A)), where
1) W is an oriented cobordism from Y; to Y3,

) S is a properly embedded, oriented surface in W with S = —L; U Lo, and

) A is a properly embedded 1-manifold in S that divides S into two subsurfaces, Sy and S,
that meet along A, such that wq, wo C Sy and z1, zo C S,.

Multi-based links and equivalence classes of decorated link cobordisms form a category.

The first author [18] showed that decorated link cobordisms induce functorial maps on the hat
version of link Floer homology. The second author [58] extended this to the full infinity complez,
denoted CFL>, which is a minor variation of the infinity complexes of Ozsvith—Szabd [37] and
Rasmussen [44]. We now review the construction of CFL™.

Let R~ denote the ring F5[U, V], and let R> denote the ring F5[U,V,U~1, V1], obtained by
inverting U and V in R™. Suppose that L = (L, w,z) is a multi-based link in Y. Given a multi-
pointed diagram (X, a, 3, w, z) for (Y,LL) (see [41, Definition 3.1]), the complex CFL*(Y,L,s) is the
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free module over R> generated by intersection points x € T, N T with sw(x) = 5. Over Fy, the
generators are the monomials

Uvi . x,
where ¢, j € Z.

The module CFL* (Y, L, s) has a filtration G over Z & Z, where the subset G,, ,,,) € CFL™ (Y, L, s)
is generated over Fy by monomials U*V7 - x with ¢ > n and j > m. We denote the R ~-submodule
G,0) by CFL(Y,L,s), and call it the full minus complex. It is generated over Fp by monomials
U'VJ . x with i, 7 > 0.

There is a filtered, R*>-equivariant endomorphism 9 of CFL>(Y,L,s), defined by the formula

Ox = Z Z #M\(@ L@ yna(@) |y
y€TaNTg pEm2(x,y)
w(e)=1
which satisfies 0 0 9 = 0.

When [L] = 0in H;(Y) and s is torsion, the chain complex (CFL™ (Y, L, s), 0) has several gradings.
Ozsvéth and Szabé defined a homological grading and an Alexander grading. It is convenient for
our purposes to repackage their two gradings into three gradings that satisfy a linear dependency.
Namely, there are two homological gradings, gr,, and gr,, and an Alexander grading A, which
together satisfy

A= %(grw —gr,).

Note that V is +1 graded with respect to A, and U is —1 graded.

When K = (K, w,2) is a doubly-based knot in S?, we will write CFL™(K) for CFL>(S?, K, s0),
where s is the unique Spin® structure on S3.

The second author [58] constructed cobordism maps for the full knot and link Floer complexes.
Given a decorated link cobordism (W, F) from (Y1,L1) to (Y2,Ls) and a Spin® structure s €
Spin®(W), there is an induced R*°-equivariant, filtered chain map

Fw,rs: CFL®(Y1,1L1, 8]y, ) — CFL™ (Ya, Lo, sy, ),
well-defined up to filtered, R°°-equivariant chain homotopy.
3.2. Basepoint actions on link Floer homology. Let L = (L, w,z) be a multi-based link in
the 3-manifold Y, and fix s € Spin°(Y). We recall that, for each w € w and z € z, there are

distinguished endomorphisms ®,, and ¥, of CFL*(Y,L,s). If H = (X, o, B, w,z) is a diagram for
(Y,L), then ®,, and ¥, can be defined via the formulas

(3.1) P, (x) = Z Z () HM(p) - U@ =1ym=(9) .y
yETaNTs pET2(x,y)
u(d)=1
and
(3.2) ‘I’z(X) = Z Z nz(¢)#ﬂ(¢) L (@) na(e) -1 y
yeTamTﬁ ¢€ﬂ'2(x,y)
p(e)=1

for x € T, N T with sy (x) = s. According to [56, Lemma 4.1}, the endomorphisms ®,, and ¥, are
the link cobordism maps induced by the two decorations of (I XY, I x L) shown in Figure 3.1. When
we are working with doubly-based knots, we will often write ® and ¥ for the maps ®,, and V¥,,
respectively.

According to [58, Lemma 4.9], the basepoint actions satisfy

(3.3) P2 ~ W2 ~ 0.

Note that the dividing sets on the decorated link cobordisms corresponding to ®2 and V2 both
contain a closed curve that bounds a disk in either Sy, or S,.
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F1GURE 3.1. The two decorated link cobordisms for ®,, and ¥,. The diagrams
indicate the decorations on the surface I x L. Here we denote w by solid basepoints,
and z by open basepoints. The shaded regions denote Yy, and the unshaded regions
denote X,.

3.3. Quasi-stabilizations and basepoint moving maps. We now review the quasi-stabilization
maps. Suppose L = (L, w,z) is a multi-based link in Y, and suppose that w and z are two new
basepoints contained in a single component of L \ (w U z). Let us assume that w immediately
follows z with respect to the orientation of L, and write

L. = (LwU {whzU{)).
There are two quasi-stabilization maps

S T CFL (Y, L, s) — CFL(Y, Ly ., 5),

w,z? Tw,z

as well as two quasi-destabilization maps S,, , and T, ,, defined in the opposite direction. If instead
z follows w with respect to the orientation of L, then we obtain similar maps Sj’w and wa.

We briefly summarize the construction of the quasi-stabilization maps. See [29, Section 6] and
[68, Section 4] for further details. Suppose H = (%, e, 3, w, z) is a diagram for (Y,LL). Let w’ and 2’
denote the basepoints adjacent to w and z on L. There is a component A of ¥\ a which contains w’
and z’. We pick a simple closed curve ay; € A that cuts A into two components, one of which
contains w’ and the other z’. We add another curve, 3y, that bounds a small disk on X, which is
cut into two bigons by «y, and is disjoint from the other ¢ curves. Inside one bigon, we place w. In

the other bigon, we place z. See Figure 3.2.

o \ o ’@
- &

FIGURE 3.2. A quasi-stabilization of Heegaard diagrams. On the left, a local pic-
ture of the quasi-stabilization near w and z is shown. On the right, we have a
complete example of a quasi-stabilization. The shaded region denotes A. Also
shown are the points w’ and z’.

We write % and 6% for the higher gr, - and gr,-graded intersection points of as N By, respectively.
The maps S . and T, _ are defined via the formulas

(3.4) Sp.(x):=xx0Y and T, (x):=xx0

for x € T, NTg, extended R*°-equivariantly. The quasi-destabilization maps are defined dually, via
the equations

(3.5) Sp.(xx0%)=0, S, (xx0%)=x, T, . (xx0V)=x, and T, (xx0%) =0,
extended R*>°-equivariantly. The decorations on (I x Y, I x L) inducing the quasi-stabilization maps

Sy 2y Sy Tif ., and T, , are shown in Figure 3.3.

w,z) Pw,zr Tw,z z
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F1GURE 3.3. The decorated link cobordisms for the quasi-stabilization maps.

We will need the following relations between the quasi-stabilization maps and the basepoint ac-
tions:

(3.6) Tr, ~U.St .,
(3.7) Toy.~S,.Y:,
(3.8) Dy > S5 .50 2
(3.9) U, ~TF T, ..

Proofs of equations (3.6)—(3.9) can be found in [58, Lemmas 4.10 and 4.11]. Examples of the
corresponding dividing sets for the relations in equations (3.6)—(3.9) appear in Figure 3.4.

2w oz w 2w oz ow

™

FicURE 3.4. Dividing set manipulations corresponding to the relations TJ’Z o~
.Sy, and &, ~ Sf So .

i1

Next, we review the connection between the basepoint moving maps and the quasi-stabilization
maps. We first focus on using the quasi-stabilization maps to move a single basepoint, while fixing
all other basepoints. Suppose that (L, wo U {w'},z) is a multi-based link in Y. Suppose that (w, z)
are a new pair of basepoints in a single component of L \ (wo U {w’} U z), such that z is adjacent
to w’. Suppose further that, according to the orientation of L, the three basepoints appear in the
order w’, z, w. We can construct a diffeomorphism

T (Y, Lowo U {w'}, 2) — (Y, L, wo U {w}, 2),
by moving w’ to w along the arc connecting them, but fixing all of Y outside a neighborhood of this
arc. According to [58, Lemma 4.24],
(3.10) T, =T,

w,z

Equation (3.10) has a simple description in terms of dividing sets and link cobordisms, shown in
Figure 3.5.

Using the quasi-stabilization maps, we can also move a pair of adjacent basepoints at the same
time. Suppose that L. = (L, wq, zg) is a multi-based link (though we allow the case where w( and
zo intersect a single component of L trivially). Suppose that (w’,z’,w, z) are four new consecutive
basepoints on a single component of L\ (wg U zg). We assume that these four basepoints appear in
the order w’, 2/, w and z on the link, with z being the first and w’ being the last with respect to
the orientation of L. There is a diffeomorphism

P @)y Lowo U {w}, 2o U{z}) = (Y, L, wo U{w'}, 2o U{z'}),
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w oz w w oz ow
T CTT: TICT T
: H + H :
| L]
: W
+ : ®
Twz :: A
. ! .
. w—w .
R
oL o
w’ w’

FIGURE 3.5. The interpretation of equation (3.10) in terms of decorated link cobor-
disms.

obtained by moving the pair (w, z) to (w’,2’), but fixing everything outside a neighborhood of an
interval containing the four basepoints (w’, 2, w, z). According to [58, Lemma 4.27], there is a chain
homotopy

(3.11) plw#Newz) o o= i

w,zTw! 2"

Equation (3.11) can be interpreted in terms of the manipulation of dividing sets shown in Figure 3.6.

z

FIGURE 3.6. The interpretation of the relation p{ =)< () ~ Sz

of dividing sets.

qu, ., in terms

Another useful relation is the following;:

(3.12) T S+ Si . Ty . +id ~0.

w,ztw,z

See [58, Lemma 4.13]. Note that Equation (3.12) follows immediately from the formulas in Equa-
tions (3.4) and (3.5). For a pictorial description, see Figure 3.7. Equation (3.12) is an example of
the bypass relation, which is often helpful when doing computations in the link Floer TQFT.

w

w

FIGURE 3.7. A pictorial description of the bypass relation, equation (3.12).

3.4. Cobordism maps for saddles. Next, we discuss the maps for saddle cobordisms. Suppose
that L = (L, w,z) is a multi-based link in Y, and that B is an embedded band for L that has both
ends in subarcs of L\ (wUz) that run from w to z, or has both ends in subarcs that run from z to
w. Assuming that L(B), the result of band surgery, is also a valid multi-based link, there is a map

F2%: CFL™(Y,L,s) — CFL(Y,L(B),s),
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described in [58, Section 6]. The map F% corresponds to a saddle link cobordism, with an index 1
critical point occurring in the type-z subregion. There is another map F'g, with the same domain
and codomain as F'5, that corresponds to adding a band to the type-w subregion.

The relation between the band maps and the basepoint maps is studied in [58, Section 9.1].
According to [58, Lemma 9.1],

(3.13) F5®, + &, F% ~ 0.

In contrast, the map F'j does not always commute with ¥,. Instead, if z is either of the two
z-basepoints adjacent to the ends of B, then

(3.14) F3VU, + U F% ~ FY,

according to [58, Proposition 9.3]. In fact, the three dividing sets corresponding to the maps in
equation (3.14) can be interpreted as a bypass relation on a saddle cobordism; see [58, Figure 9.1].

Note that, if z and 2’ are the two z-basepoints adjacent to the ends of B, then equation (3.14)
holds for both z and 2’. As a consequence, if we sum both relations, we obtain

(3.15) FE(U, + 0, )+ (¥, + ¥, )F5 ~0.

3.5. Birth cobordisms and quasi-stabilizations. We recall from [58, Section 7.1] the birth
cobordism map. Suppose U = (U, w, z) is a doubly-based unknot, which is unlinked from the multi-
based link in Y, and is given a distinguished Seifert disk D. In this situation, there is a well defined
birth map

B ,: CFL=(Y,LL,s) — CFL®(Y,LUTU,s).

The map Bﬁ' p corresponds to a birth cobordism in I XY, where the disk portion of the link cobordism
surface is decorated with a single dividing arc.

The map Bﬁ: p can be computed as follows. We pick a Heegaard diagram (X, o, 3, w, z) for (Y, L)
such that w, z € ¥, and DNX consists of an embedded arc in ¥\ (U 3) that connects w and z. We
add two new curves, o and [y, that bound a small disk containing D N ¥, and intersect in a pair
of points. Let 9;;07 5, €N Bo denote the higher Maslov graded intersection point (the designation

is the same for both gr,, and gr,). The map B{i p is defined via the formula

+ _ +
By p(x) =x x 05 5,
for x € To NTp, and extended R*>-equivariantly. There is also a death map Dy; 5, defined in the
opposite direction, though it will not make an appearance in this paper.

Suppose L is a link in Y, and U is an unknot that bounds a Seifert disk D, disjoint from L.
Suppose further that B is a band connecting U and L, which is disjoint from the interior of D. Let

¢: (Y,L) = (Y, (LUU)(B))

denote a diffeomorphism which is the identity outside a neighborhood of B U D.

Since a birth cobordism adds two basepoints, the composition of a birth cobordism map and a
band map is not simply the diffeomorphism map ¢,. Instead the composition is a quasi-stabilization.
More precisely, if U = (U,w, z), and B is an a-band (i.e., has both ends on strands of L that lie in
the a-handlebody), then

(3.16) FYBY, ~ T 6.

A proof of equation (3.16) can be found in [58, Proposition 8.5]. Note that there are other variations
of equation (3.16). For example, if B is instead a 8-band, then

(3.17) FYBY = T 6.

A schematic illustrating equation (3.16) is shown in Figure 3.8.
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e — —

/_

FIGURE 3.8. A manipulation demonstrating equation (3.16). The composition of a
birth cobordism followed by a band is (up to diffeomorphism) a quasi-stabilization.

3.6. 4-dimensional connected sums of link cobordisms. Suppose (Wi, Fi) and (Wa, F2) are
two link cobordisms, and pick two embedded 4-balls D; C Wy and Dy C W5 such that D; N F;
consists of a 2-dimensional disk which intersects the dividing set of F; in a single arc. We glue
Wi \ int(D;) to Wa \ int(D2) using an orientation-reversing diffeomorphism which restricts to an
orientation-reversing diffeomorphism of /1 NdD; and F>NAID5, and is compatible with the dividing
sets. We write (Wy#Ws, Fi#F3) for the resulting link cobordism. Using a handle cancellation
argument in the connected sum region, one can prove that

(3'18) FWI#W27}_1#~7:2751#52 = FW1;~7:1751 ® FW27]'_2>52'
See [56, Proposition 5.2] for a detailed proof. To make use of equation (3.18), it will be convenient to
have a more explicit description of the cobordism map for (W, #Ws, F1#F2). To this end, suppose
the following;:
(1) (Y1,L4) and (Y2,L2) are two 3-manifolds with multi-based links.
(2) So C Y7 UY5is a framed 0O-sphere with one foot in Y7 and the other in Y5.
(3) S C Y1#Y5 is the dual framed 2-sphere.
(4) B is a band in Y1#Y5 that connects IL; and Lo, and intersects Sy in a single arc.
(5) B is adjacent to the basepoints w; and z; on Ly, as well as wy and 25 on L.
(6) B’ is the band in Y;#Y> attached to L;#Ly dual to B.
When (W, F;) is the identity cobordism of (Y;,L;) for ¢ € {1,2}, equation (3.18) can be rewritten
as
(3.19) Fs, FY®, FY Fs, ~ id,

where w € {wy,ws}. Figure 3.9 shows equation (3.19) in terms of dividing sets.

-7

[}
| .
| |
w | R - [
1:7 i ! oo i |
- L - |
- E -
@ | ! |
wo |_"4:,_ |
] N |
| |
Fg o1 |
___o— |
21

FIGURE 3.9. A schematic of equation (3.19), the effect of taking the connected
sum of two link cobordisms. There is additionally a 4-dimensional 1-handle and
3-handle, which are not shown.
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4. HEEGAARD FLOER INVARIANTS OF SURFACES

4.1. Variations on the knot Floer complex. In this section, we describe several variations on
the full infinity complex CFL>(Y,L,s), which we will use to define our invariants. We focus on the
case that Y = S? and L = K = (K, w, 2) is a doubly-based knot.

The first variation we consider is the standard infinity complex, denoted CFK °°(K). It is defined as
the homogeneous subset of CFL>(K) in Alexander grading zero; i.e., the Fo-vector space generated
by monomials

U'v’.x
with A(x) 4+ j —4 = 0. Since the actions of U and V are —1 and +1 graded with respect to the
Alexander grading, the chain complex CFK°(K) is not an Fy[U, V]-module. However the product
U := UV is 0-graded with respect to A, and we view CFK™(K) as an Fy[U,U~!-module. The
complex CFK°(K) contains essentially the same information as CFL™ (K). We will use CFK > (K)
to define our invariants Vi (S, S’) and Z(S).
There are two small minus complexes,

CFK_y(K) :=CFL™ (K) ®r- R™/(U) and CFK,_,(K) :=CFL™ (K) ®r- R™/(V),
which are modules over Fy[V] and F5[U], respectively. By inverting V' or U, respectively, we obtain
the small infinity complezes
CFK7_o(K) and CFKY_o(K),
whose homologies are canonically isomorphic to F5[V, V=] and Fo[U, U~1], respectively.
By setting V =1 in the complex CFK;_,(K), we obtain the Alezander filtered complex

CFK/*(K),
described by Ozsvéath and Szabé [36]. It has an increasing filtration over Z; i.e., we have an increasing
sequence of subcomplexes
CFET"*(K) € CFKT{E (K)
for i € Z. The subspace @fl’Z(K) is generated by the set of intersection points x € T, NTg with
A(x) < i. The differential counts holomorphic disks which are allowed to pass over z, but not w.
Note that - -
CFEf"*(K) = CFK/"*(K) = CF(S%)

for sufficiently large 4, while CFK f l’Z(K) = {0} for sufficiently negative i. In particular, the total
homology of CFK/#*(K) is isomorphic to HF(S?) = Fy.

Symmetrically, one can filter using the w basepoint to get a Z-filtered chain complex CFKfil:* (K).
The filtration CFK/""(K) is decreasing; i.e.,

CFRL (K) € CFR{"™ (K),
where C/'F?(fl’w(K) is generated over Fy by intersection points x with A(x) > i.

Remark 4.1. The chain complex CFK;_,(K) and the filtered chain complex CFK fil2(K) contain
equivalent information. To see this, note that @ﬁl’z(K) is obtained from CFK_,(K) by set-
ting V' = 1, and using the filtration induced by the Alexander grading. In the other direction,
CFK;_,(K) is obtained by taking a basis of intersection points of CFK filZ(K), and weighting an
intersection point y appearing in dx by VA)—AG),

Furthermore, there is a conjugation symmetry of knot Floer homology that allows one to recover
CFK,_,(K) from CFK;_,(K), and vice versa, and similarly recover CFKfilw (K) from ﬁﬁlvz(K).
Our invariant 7(.5,S’) will be defined in Section 4.3 using @(ﬁl’z(K), while x(S,5") and k(9) in
Section 4.7 in terms of CFK;_,(K).

Another variation we use to construct our invariants is the t-modified complez, denoted tCFK ~ (K),
due to Ozsvath-Stipsicz-Szab6 [34]. If t = 7* € [0,2] is a rational number with m and n relatively
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K

FIGURE 4.1. The dividing set A, used to define the map t57,.

prime integers and n # 0, then we consider the ring Fo[v!/"], where v has grading —1. The ring
Fy[v'/"] can be given an action of F5[U, V] by having U act by v>~* and V act by v*. The chain
complex tCFK ™~ (K) is defined as the tensor product

tCFK ™~ (K) := CFL™ (K) ®p,v,v) Fa[v!/"].

The invariant Y (g ¢/)(t) will be defined in Section 4.6 using tCFK ™~ (K).
A final variation is the hat complex

CFK (K) := CFL™ (K) @~ R™/(U, V).

We will not discuss CFK (K) extensively in this paper, since it does not contain enough information
to compute most of our invariants.

4.2. The principal invariants of a surface bounding a knot. We now describe two general-

izations of the slice disk invariant tp € HFK (K), defined by Marengon and the first author [19], to
higher genus surfaces in the full infinity complex.

Definition 4.2. Let K = (K, w, z) be a multi-based knot in S?, and let S € Surf,(K) be a surface
in B* bounding K. If A is a decoration on S consisting of a single arc which divides S into two
connected subsurfaces, then we say that the map Fps (g5 4) is a principal invariant of the surface S.
Let A, denote the decoration on S consisting of a single arc such that g(.S,) = ¢g(S) and g(Sw) = 0;

see Figure 4.1. We define

tg?z = FB4,(S,AZ) i R — CFL™ (K)
Similarly, if Ay, denotes the decoration on S with ¢g(Sw) = ¢g(S) and g(S,) = 0, we define

t.;'“iw = FB4,(S,AW) :R® — CFCOO(K)
We call t3, and t3, the extremal principal invariants of the surface S.

Both t3’, and tg, are filtered, R*°-equivariant chain map that are well-defined up to filtered,
R>°-equivariant chain homotopy. Furthermore, both of them induce isomorphisms on homology by
[57, Theorem 9.9]. By [57, Theorem 1.4], the map tg’,, decreases the Alexander grading by g(5),
while tg°, increases it by g(S). When D € D(K) is a slice disk for K, then A, = Ay, and we denote
the=thw by t5.

Although the chain complexes CFL™(K) and CFL™ (K) contain equivalent information, it is con-
venient to also define maps

=

S,w?

ts.: R — CFL™ (K)
as the cobordism maps on the full minus complexes. For a slice disk D, we again have t}, , =t} ,,
which we denote by t,,. By [22, Theorem 1.4], when we set U = V = 0, the map t, defined using
the maps from [58], becomes tp, defined in [19].

We note that the elements [tg  (1)] and [t ,(1)] in the homology group HFL™ (K) := H.(CFL™ (K))
contain exactly the same information as the R™-equivariant, Z & Z-filtered chain homotopy types

of the maps
tsws tgn: R — CFL™ (K),
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since two filtered, equivariant maps from R~ to CFL™ (K) are filtered, equivariantly chain homotopic
if and only if their values on 1 € R~ differ by dn for some n € CFL™ (K). Nonetheless, we will usually
not view tg o and tg, as elements of HFL™ (K) because, on its own, the group HFL™ (K) is not
sufficient to define our invariants.

We now describe some basic properties of the invariants t3’, and t3°,. Let r denote the rolling
automorphism of (S?,K) that consists of a Dehn twist about K; see Definition 2.3. Then

(4.1) Te 0t3, 15,

and similarly for t3°y,, as the corresponding dividing sets differ by a Dehn twist about 95, and are
hence isotopic.

Definition 4.3. Let C and C’ be free, Z @ Z-filtered chain complexes over R*°. We say that a map
f: C — C"is skew-equivariant and skew-filtered if

fOU:VOf, fOV:UOf, and f(gm(C’)) QQM(C’)

Given skew-equivariant and skew-filtered chain maps f, g: C — C’', we say that they are skew-
equivariant and skew-filtered chain homotopic, and write f < g, if they are chain homotopic through
a skew-equivariant and skew-filtered chain homotopy.

There is a skew-equivariant and skew-filtered homotopy automorphism
ti s CFLY(K) — CFL™(K),

defined as the composition of a tautological conjugation automorphism of CFL*(K), and the map
induced by a half Dehn twist about K that switches w and z; see [13, Section 6.1]. The map tx
satisfies 1% ~ r,.

Using the conjugation formula for the link cobordism maps [56, Theorem 1.3], as well as the same
manipulation of dividing sets as in equation (4.1), one obtains

(4.2) t3w O LR ~ LK 0ty

where g : R — R denotes the unique involution that switches U and V. Using equation (4.1),
we can rewrite equation (4.2) as

(4.3) L O tFy 0 LR =t

Hence, together with the conjugation automorphism, t3, and tg’, provide essentially equivalent
information.

In the following subsections, we introduce several invariants of a pair of surfaces S, S’ € Surf(K),
in order to give lower bounds on their stabilization distance. These are all derived from the principal
invariants for S and S’. Furthermore, our invariants 7, v, Vi, and T are constructed as algebraic
analogues of the homonymous knot invariants from knot Floer homology. Hence, we shall sometimes
call these secondary versions of their knot invariant counterparts.

4.3. The tau invariant. Let K = (K, w, z) be a doubly-based knot in S®. We now describe a map
72 Surf(K) x Surf(K) — Z=°.

It is a secondary version of the concordance invariant defined by Ozsvdth and Szabd [36]. Let

(3, o, B, w, z) be a doubly-pointed diagram representing K. We will define the invariant 7(5, S”) for

S, 8" € Surf(K) in terms of the Alexander filtered complex CFK filz(K) described in Section 4.1.
Following Section 4.2, a surface S € Surf,(K) induces a chain map tg4: Fy — CFK fiz(K) whose

image is contained in CFK f;l’z(K). We recall that for sufficiently large n, we have
(4.4) H,(CFEf=(K)) =~ HF(S3) = F.

Additionally, it follows from the reduction theorem [58, Theorem C] that with respect to the iso-
morphism in equation (4.4), the element tg ,(1) represents 1 € F. We make the following definition:
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Definition 4.4. Let K = (K, w, z) be a doubly-based knot in S3. Given surfaces S € Surf,(K) and
S" € Surfy (K), we define the invariant

(8, 8") = min {n > max{g, ¢’} : [fs(1)] = [fsr 2(1)] in H. (C/*ﬁ(ﬁl’Z(K))} .

It is straightforward to see that 7(.5,5’) is independent of the choice of basepoints on K, and is
furthermore a finite integer.

Lemma 4.5. Let Sy, S7, Sa, Sy € Swrf(K) be surfaces such that [S1] = [S2] and [S]] = [S5] in
Surf(K)/{2-knots}. Then
T(Sla Si) = T(SQa Sé)

Proof. This follows from the observation that tA&z is unchanged, up to filtered chain homotopy,
if we take the connected sum of S with a 2-knot, which can be shown by adapting the proof of
[23, Lemma 4.2]. O

We recall that the concordance invariant 7(K) may be computed from the Fo[V]-module
CFK oK) := CFL™(K) @~ R™/(U),

obtained from CFL™ (K) by setting U = 0; see Ozsvath—Szabé—Thurston [43, Lemma A.2]. (Note
that Ozsvéath, Szabd, and Thurston use the V' = 0 version of knot Floer homology. Using the
conjugation symmetry, these are equivalent perspectives).

Analogously, we can reformulate 7(S, S’) in terms of CFK;_,(K). Let us write g, and tg, , for

the maps from F2[V] to CFK;_,(K) induced by tg, and tg, ,, respectively.

Lemma 4.6. Let K = (K,w, z) be a doubly-based knot in S®. If S € Swrf,(K) and S’ € Swrf,/ (K),
then

7(S,8") = min{n > max{g,g'} : V"9 - [t5,(1)] = V" - [t5,,(1)] in HFK;_o(K) }.
Proof. Let us write ((S,S") for the right-hand side. If n = (.59, 5"), then
VIOt (1) + VTt (1) = O
for some z € CFK_,(K). Note that 0 preserves the Alexander grading, V increases it by one,
Alts,(1)) = g, and Aty ,(1)) = ¢'. Hence, we can assume that A(z) = n. Consequently, using the

identification
CFK*(K) 2 CFK j;_o(K) @5, Fa[V]/(V - 1),

we have z® 1 € C/'ﬁ(ﬁl’z(K)7 and
to2(1) + 15 ,(1) = 0(z ® 1) € CFKT"*(K).

It follows that
7(8,8") <¢(S,8").

Conversely, suppose n = 7(S,5"). Then tg,(1) + ts (1) = dz for some = € C/’F?Jilz(K) We
write  as a sum of intersection points = Y. | x;. We define an element ¥ € CFK_,(K) in
Alexander grading n via the formula 7 =" | VA, The element T satisfies

VIt (1) + VTt (1) = 0.
Compare Remark 4.1. Tt follows that
¢(5,8") <7(8,5),
which concludes the proof. (|

Let K7 and K3 be knots in S3. Given surfaces S; € Surf(K;) and Sy € Surf(K3), their boundary
connected sum 5155 is an element of Surf(K;#K5).
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Proposition 4.7. Let K1 and K be knots in S*. If S, S € Surf(K1) and Sz, Sh € Surf(Ks) are
surfaces of genera g1, g1, g2, and g, respectively, then

(51482, 81853) < max {7(S1, S1) + max{gs, g5}, 7(52, S5) + max{g1, g }} -
Furthermore, when g1 = ¢ = g2 = g4 = 0, then equality holds.
Proof. Using the connected sum formula [56, Proposition 5.1], there is chain homotopy equivalence
F: CFK ;_(Ky) @, v) CFK;_((Ka) = CFK;_o (K1 #Ks),

where the decoration on K;#Ks is the decoration of K;. Furthermore, the map F' can be taken to
be the link cobordism map for a 1-handle cobordism containing a band. By the functoriality of the
link cobordism maps,

F o (tgl,z ® tgz,z) = tgthQ,Z’

and similarly for S7 and S5.
By the Kiinneth theorem for tensor products over a PID, there is a short exact sequence

_ _ G _
0 — HFK ;_o(K1) ®pyv) HFK _o(Ko) = HFK ;_o(Ki#Ky) —
Torg, ) (HFK ~(Ky), HFK ;;_o(K2)) — 0,
where G is the composition of the natural map
HFK ;_ (K1) ®p,[v) HFK ;_o(K2) = H.(CFK{;_(K1) ®p,v) CFK 7 (Ka2))

and F.. The map G sends [tg, ,(1)] ® [tg, ,(1)] to [tg s, ,(1)].
For i € {1,2}, the Fo[V]-module HFK;_,(K;) splits (non—canoxllically) as Fo[V] @ T;, where T; is

a torsion Fa[V]-module, and tg (1) = V9 @ s; and t§£7z(1) = VY% @ s, for some s;, s; € T;. Let
(4.5) n =max {7(S1,51) + max{ga, g}, 7(52, 53) + max{g1, g1 }} .
Then we claim that
(46) e ([t ()] ® [, (D) = Vi - (g, (D] @ [t , (1)
as elements of HFK ™~ (K;) ® HFK ™~ (K3). This is equivalent to

VT2 (VR V2 e (510 V2) @ (VI @ s9) @ (51 ® 82)) =

VIR (VR @ V) @ (s; @ V) @ (V9 @ sh) @ () @ sh)).
For i € {1,2} and k > 7(S;, S}), by Lemma 4.6, we have

VE@ (VF9s,) = V9 1 ()] = V9 [ig, (1] = VF @ (VF9is).
Together with equation (4.5), this implies that V" 9%s; = V"’gisg and
VIR (51 @ ) = VAT (] @ 51),

so equation (4.6) holds. The result follows by applying G to equation (4.6), and invoking Lemma 4.6.
When g1 = g} = g2 = g5 = 0, then we choose

n = 7(51552, 51455).
By Lemma 4.6, n satisfies equation (4.6), which implies that V™s; = V"¢, for i € {1,2}, and hence
Vitg =V [t§£7z}.

So n > max{7(S1,51),7(S2,5%)}, and equality holds, as claimed. O
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4.4. An infinitesimal refinement of tau. In this section, we describe a refinement of 7(S,S’),
inspired by work of Ozsvdth-Szabé [42], Hom-Wu [17], and Hom [16],
Let Z denote Z U {—o0, 00}, and write Z<% = [~00,0] N Z. Given a knot K in S3, we will define
a symmetric map
7 Surf(K) x Surf(K) — N x Z=°,
The invariant 77 (S, S’) takes the form
78,8 :== (7(S,8),7'(S,5)),

where 7(5, S') is the integer defined in Section 4.3, and 7/(S,.5’) is an element of Z=° that we define
shortly. We will think of 7/ as a second-order version of 7, or an infinitesimal refinement.
To define 7/, we introduce some notation. If (i,5) € Z @ Z, let

Rij={(mn)€EZ®Z:m>i,n>j}
If SCZ®Z,let H(S) denote the filtered hull of S; i.e.,

(i,5)eS
We say that S is a filtered shape if
S=H(S).

Let w and z be basepoints on K, and write K = (K,w,z). If S C Z & Z, let C(K,S) denote
the subspace of CFK>(K) generated over Fo by monomials U'V7 - x with A(x) +j —i = 0 and
(i,7) € S. If S is a filtered shape, then C(K,S) is a subcomplex of CFK*°(K).

More generally, we say S C Z X Z is a sub-quotient shape if, whenever (,7), (m,n) € S with
t < m and j < n, then the entire rectangle spanned by the points (¢,5) and (m,n) is contained
in §. If S is a sub-quotient shape, then C(K,S) is in fact a sub-quotient complex of CFK*(K);
i.e., there are subcomplexes Ciy (K, S) C Cout(K,S) € CFK*(K) such that Cout (K, S)/Cin(K, S) is
chain isomorphic to C'(K,S). Indeed, the two sub-complexes of CFK*°(K) are

Cous(K,8) :=C (K, H(S)), and
Cin(K,8) :=C(K,H(S)\S).
We note that, if S C Z @ Z is an arbitrary subset, then its filtered hull H(S) is automatically a
filtered shape. It is an easy exercise to show that, if S is a sub-quotient shape, then H(S) \ S is
filtered. Hence Ciy (K, S) and Cout (K, S) are both subcomplexes of CFK > (K).

We note that the map tg , naturally has image in the g(S) Alexander graded subspace of CFL™ (K).

Hence, there is a well-defined map

v —9(5) tg, FQ[U] — C(K, Ro,—g(s))-

Furthermore, if S is a sub-quotient shape of Z®Z such that Ry _,s) € H(S), then there is a natural
map
q: C(K, Ry, _g(s)) = C(K,S),
which is the composition of the inclusion map C(K, Ry _4(5)) = Cout(K, S), followed by the quotient
map Cout(K,S) = Cout(K,S)/Cin(K,S) = C(K,S). In particular, [V —9(%) “tg,(1)] determines a
well-defined element of H,(C(K, S)).
Define
ol = {0} x ([-n,00) NZ),
which is a sub-quotient shape. Noting that C'(K, ,I) is chain isomorphic to CFK fil.2(K), we obtain
the following:

Lemma 4.8. Given a doubly-based knot K = (K,w, z) and surfaces S, S" € Surf(K), we have
7(5,58") = min {n > max{g(S),g(S")} : [V - t5,(1)] = [v—9(") “tg (D] in H*(C(K,nl))} :

We are now ready to define the refinement 7/(S, S").



STABILIZATION DISTANCE BOUNDS FROM LINK FLOER HOMOLOGY 29

Definition 4.9. For n, m € Z, let
nLm =T U([0,m]NZ) x {—n}.

This is an L-shaped subset of Z x Z, and hence a sub-quotient shape.
Let K = (K,w, z) be a doubly-pointed knot in S3, let S, S’ € Surf(K), and write 7 = 7(5,5").
Then we define

7(8,8) = —sup{m e Z: [V79I) .t (1) - VIS kg, (1) =0€ H, (C(K, L) }.

Note that ;Lo = -1, and [V 795 t5 (1) = V=959 t5 (1)] = 0 in H.(C(K, ;1)) by the definition

of 7. Tt follows that 7/(S,S”) < 0. However, if z € C(K, ;1) satisfies
Oz = V99 tg,(1) - v —9(s) b5 (1)

in C(K, ,I), then 9z might have some nonzero terms in ([0, m] N Z) x {—7} for m > 0. Hence
[V—9(5) g, (1) — V95 “tg ,(1)] might not be zero in H. (C(K, ;L)) for m > 0, and this is
what 7/(S,.S’) measures.

The invariant 7(S,S") was inspired by the concordance invariant v(K), due to Ozsvath and
Szab6 [42, Definition 9.1], which gives an improved 4-ball genus bound over 7(K) by at most 1.

We now extract an analogue of v from 7+ for pairs of surfaces in Surf(K), though there is some
information lost when doing this as 7/ can take any value in Z<°.

Definition 4.10. Let K be a knot in S* and S, S’ € Surf(K). Then let

V(8. 8) = 7(S,57) if 7/(S5,5") = —o0,
7 17(S,8") 41 otherwise.

We will see that v gives a lower bound on the stabilization and double point distances in Propo-
sition 6.8.

4.5. A sequence of local h-invariants. Let K be a knot in S? and S, S’ € Surf,(K). Modeled on
the invariants Vj(K) of large surgeries from knot Floer homology, also referred to as Rasmussen’s
local h-invariants [44], we describe a sequence of integer invariant Vi (S, S’) for k > g, such that

Vg(Sv S/) > VQ+I(S’ S/) 220,
and such that V(S,S") = 0 for k sufficiently large.

Definition 4.11. Let K = (K, w,z) be a doubly-based knot in S*, and let S, S" € Surf,(K). To
define Vi (S, S’), we consider the subcomplex

A, (K) := C(K, Ro,—x)
of CFK*°(K). We think of the complexes A, (K) as modules over the ring Fo [ﬁ], where U = UV.

The map tg, increases the Alexander grading by g(S). If k& > g(5), then V-9 “t5,(1) has
Alexander grading 0, and determines a well-defined element of H, (A, (K)). We define the invariant

Vir(S,S) := min { neN:U™-[V79 5, ()] =U" [V79 tg,(1)] in H.(A; (K)) } .

Remark 4.12. The above definition of Vi can be easily adapted to surfaces of different genera;
however, we specialize to the case when g(5) = g(5’) since our topological applications for Vj, only
hold when this is the case.

We now show that the invariants Vi of pairs of surfaces in Surf,(K) satisfy many of the same
properties as Rasmussen’s local h-invariants. The reader should compare the following to [44, Propo-
sition 7.6):

Lemma 4.13. If k > g, then
Vi (S, Sl) > Vi1 (S, S,) > Vi(S, S/) —1.
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Proof. There is a natural, grading-preserving inclusion of chain complexes
ip: Ay (K) = A, (K),
which becomes an isomorphism on homology after we invert ﬁ, and satisfies

(i)« (V79 t5 (D)) = [V77 - £, ()]
Hence
Vir1(S,S") < Vi(S,S").
Multiplication by U induces a —2-graded inclusion A1 (K) <= A (K) of chain complexes,

~

which becomes an isomorphism on homology after we invert U. The map sends [V 79 - tg,(1)] €
H (A 1(K)) to U-[V79 -ty ,(1)] € Hi(A; (K)), and similarly for S’. Hence, if

"V 65, (0] = U [V 5, (U] in Ha(A7 (K)), then
O [V b, (D] = T V9t ,(1)] in (A7 (K)).
We conclude that V5 (S, S") < Vi41(S,8") + 1. O
The reader should compare the following to [44, Proposition 7.7]:
Lemma 4.14. If S, S’ € Surf (K) and g < k < 7(5,5), then 0 < Vi(S,5").

Proof. By Lemma 4.6, we can describe 7(S5,5’) as the minimal n such that V79 - [t5 (1)] =
Ve tg (1)) in

HFK_o(K) = H. (CF~ (K) @ Fa[U, V]/(U))
Note that multiplication by V* determines an inclusion of chain complexes

Ay (K) = CFL™ (K),
which we compose with the natural map CFL™ (K) = CFK_,(K) given by x — x®1, corresponding
to setting U = 0. The induced map on homology sends [V=9-tg (1)], [V 79 tg ,(1)] € H.(A; (K))
to VF=9. ts.(1)], Vk=g. ts ,(1)] € HFK;_o(K), respectively. If g <k < 7(5,5"), then
VER9 b5, (D] # VE9 - [t5, ,(1)] in HFK ;_o(K),

and consequently,

V=9 tg (D] # V77 -t ,(1)] in Ho (A (K)).
Hence V4(S,S5") > 0, as claimed. O

4.6. The upsilon invariant. Let K be a knot in S3, and let S, S’ € Surf(K). We now describe
our invariant

T(S,S’) : [0, 2] — RZO.
It is a secondary version of Ozsvath, Stipsicz, and Szabd’s [34] invariant Y g (¢).

We recall the t-modified version of knot Floer homology, described by Ozsvath, Stipsicz, and
Szabé. Suppose that ¢ = T € [0,2] is a rational number with m € N and n € Z, relatively prime.
We define tCFK~(K) to be the free Fy[v'/"]-module generated by T, N Tz, where v is a formal
variable. Similarly, let tCFK°(K) be the free Fy[v'/™ v~1/"]-module generated by T, N Ts. The
modules tCFK ™ (K) and tCFK*(K) are equipped with a differential 0 that satisfies

Ox — Z Z #-X/I\(Cb) = (@+2-Dnu(9) .y

y€TaNTg pem2(x,y)
p(p)=1

for x € T, N Tp.

We note that tCFK ™ (K) and tCFK®(K) can easily be expressed in terms of CFL™ (K) and
CFL™ (K), respectively, as we now describe. We give Fo[v!/"] the structure of an Fo[U, V]-module,
where U acts by v2>~f and V acts by v*. With this action, we have a canonical isomorphism

tCFK ™~ (K) 2 CFL™ (K) ®p, v F2[v"/"],
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as well as a similar isomorphism involving tCFK*(K) and CFL*(K). Note that, in particular,
if (W, F): (S3,K;1) — (S Ka) is a decorated link cobordism, then the map Fy s determines a
t-modified version

tFW,]—',s = FW,]—',s ® id]Fz[,Ul/n] : tCFK ™ (Kl) — IfOFK_(KQ)
Finally, we note that there is a t-grading on CFL™ (K), defined via the formula

) = g w0+ (1 3 ) e o)

This induces a well-defined grading on tCFK ~ (K), for which we also write gr,. With respect to gr,,
the variable v is —1 graded.
If S € Swfy(K) and S’ € Swrfy (K), the invariants tg , and tg, , admit t-modified versions ttg,

and ttg, ., respectively. Furthermore, the elements ttg (1) and ttg, (1) for 1 € Fy[v'/™] have
gr,-grading —¢ - g and —t - ¢, respectively.

Definition 4.15. For t = € [0, 2], we define

T (s, (t) :=min{s = k/n > max{t-g,t-g'} : v°7"9- [tts . (1)] = vstI [tts ,(1)] € tHFK ™ (K) }.

There is an alternate definition of the invariant Y (g gy(t), which is more amenable to computa-
tions, and is based on Livingston’s description of the corresponding knot invariant [28]. If ¢ € [0, 2],
there is a filtration G!(K) of CFK(K) which is indexed by a parameter s € R. The set G!(K) is
the Fy-module generated by monomials UV - x with A(x) +j —i = 0 and

tj+(2—t)i>—s.
If s > t-g(S), then it is straightforward to see that [V ~9(5) ~t5,(1)] is a well-defined element of
H.(G{(K)). It is not hard to adapt [28, Section 14.1] to establish the following:

Lemma 4.16. If S € Surf,(K) and S’ € Surfy (K), then
T(s(t) = min {5 > £ max{g.g'} £ [V 5, (1] = [V - t5,,(1)] in H.(G())}

4.7. The kappa and kappa-nought invariants. If K = (K, w, 2) is a doubly-based knot in S3, let
CFK{;_y(K) and CFK_((K) denote the small minus and infinity knot Floer complexes described
in Section 4.1.
Lemma 4.17. If g(S) > 0, then

1Fw()] = 0 € HEKF_o(K).
Proof. For n € Z, let CFK{7_y(K),, denote the subspace of CFK{_(K) in Alexander grading n.
Explicitly, the subspace CFK5_,(K), is generated by monomials of the form V* - x, where

Ax) +i=n.
We define the reduction map
R': CFK_o(K), — CF(S%, w),

by the formula R? (V'-x) = x. It is straightforward to see that R is a chain map. Furthermore, since
the differential on CFK 7_(K) preserves the Alexander grading, the map R} is a chain isomorphism.
Consider the chain isomorphism

Ry = RL: CFEF_o(K) — ) CF(S*, w).
neZ nez
In particular, since EF(S‘?’, w) is supported in gr,-grading 0, it follow that HFK_,(K) is as well.
The map t&,, (1) has gr,-grading —2¢(S) by the grading formula in [57, Theorem 1.4]. It follows
that ’
[t3w(1)] =0 € HFK_(K),
completing the proof. O
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Definition 4.18. Let K = (K, w, z) be a doubly-based knot in S3, and let S € Surf,(K) for g > 0.
Then we let
ko(S) := min { n>g: V"9 [ty (1)] =0in HFK;;_,(K) } .

If S € Surfo(K), we set ko(S) = 0.
We note that the element tg (1) lives in Alexander grading —g. Hence
Ko(S) = g + min { keN: [fsw(l)] =0 in H, (@QEZ(K)) } .
Definition 4.19. If g > 0 and S, S” € Surf,(K), we define the invariant
k(S,8") := min { n>g: Vg (D] = VO [t L (1)] in HFK;_o(K) } .
Note that
k(S,8") < max{ro(S), ko(S")}.
We emphasize that the invariant 7(.5,.5") is defined in terms of the maps ts, and tg ,. while k(S,S")
is defined in terms of the maps tg , and tg, . Also, unlike the invariant 7(5,8"), the definition of
k(S,S") only makes sense if g(S) = g(S’) > 0.
4.8. Upsilon near 0 and 2. Ozsvéth, Stipsicz, and Szabd [34, Proposition 1.6] proved that the
knot invariant Y (t) = —7(K) -t near ¢ = 0. In this section, we prove a similar result for T (g g (t).
Theorem 4.20. Suppose that S, S’ € Swrf(K). For all t € [0,2] sufficiently close to 0, we have
T(s,51(t) =71(8,58") - t.
For t sufficiently close to 2, we have
T (s,5)(t) = (ko(S) = g(5) - (2=t)+9(S) -t if g(S) > g(5"),
’ (K(S,5) = g(9)) - (2—1t) +g(5) -t if g(5) = g(5").
Proof. The argument we present is an adaptation of Livingston’s proof of the analogous fact [28,
Theorem 13.1] for the knot invariants Y (), and we use the reformulation of T (g ¢/)(¢) in terms of
filtrations on CFK* from Lemma 4.16. We focus on Y (g ¢/)(t) near t = 2 when g(S) > g(S5’), since

the other cases are straightforward adaptations of this. Let us write g = g(S) and ¢’ = g(5’).
Define the following sub-quotient shapes of Z ® Z :

H_gi1={(,j):j=—-g+1}
ng,k = {(27]) 3/ 2 ka J = _g}
Z—g,k = H_g+1 U T—g,k-

J J J

H_» Z_ 3,3 T 33

FIGURE 4.2. Examples of the sub-quotient shapes H_g41, Z_g4 %, and T4 of
YASY A

It is straightforward to see that, for ¢ sufficient close to 2, the complex G!(K) is always equal to
C(K, Z;,;) for some i, j. Hence [V79-tg (1)] = [v—d “tg ) € Ho(GL(K)) if and only if

C(K, Z_gm) S Gi(K),
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where

m = max { k<0: [V tg, (0] = [V 5, (1)] in H(C(K, Z_y) } .
Consequently, an easy computation shows that
(4.7) T(s,5n(t) = —m(2 — 1) + g1,

for ¢ near 2.
There is a short exact sequence of chain complexes

(4.8) 0— C(K,H_g41) 5 C(K, Z_g 1) L C(K,T_yx) — 0.
Since H,(C(K,T_4 %)) is a torsion FQ[U]—module (in fact, U has vanishing action), while H, (C(K, H_441))

~

is torsion-free (in fact, isomorphic to F3[U]), the connecting homomorphism of the long exact se-
quence associated to equation (4.8) vanishes. Consequently, there is a short exact sequence

(4.9) 0— H.(C(K,H_g41)) 5 H (C(K, Z_g1)) % Ho(C(K,T_yx)) — O.
Fy[U

(
Furthermore, since H,(C(K, H_441)) = F3[U], it follows that ¢ is injective on the torsion submod-
ule of H,(C(K, Z_g4)). Since [V‘g-tgﬁz(l)]—&—[V_gl ‘tg,(1)] is a torsion element of H.(C(K, Z_,x)),
it follows that [V79 -t (1) + Vo “tg ,(1)] is zero in H (C(K,Z_g)) if and only if its image
under g is zero in H,(C(K,T_4)). Consequently,
(4.10) m = max {k <0:[V9-tg, (0] = [V - t5,(1)] in H(C(K, T_g,k))} .
Note that if g > ¢/, then [V~ “ts,] = 0 as an element of H,(C(K,T_44)), so equation (4.10)
implies that
(4.11) m = max {k <0:[V79-t5,(1)] =0 in H(C(K, T,M))} .

Next, we note that multiplication by U9 induces a chain isomorphism between C(K,T_, x) and

C(K, Ty, k+g). The group C(K, Ty x+¢) is the Fo-module generated by intersection points x € T,NTg
with A(x) > k + ¢g. The differential on C(K, T x+4) counts holomorphic disks which are allowed to

go over w, but not z. This is simply the subcomplex C/'ﬁ(ﬂrl;(K) C C/’F?(ﬁl’w(K). Applying the
conjugation symmetry of knot Floer homology to equation (4.11) implies that

m = max {k <0:[U9-t5,(1)] =0 in H,(C(K, TOJM))}
(4.12) — —min {k >0:[V9-t5,,(1)]=0in H*((Tﬁ(f,ji;(K))}
=g — Ko(9).
Equations (4.7) and (4.12) together imply that, for ¢ near 2, we have
(5,9 (t) = (ko(S) —g)-(2—1)+g-t
Similar arguments apply when g = ¢/, and for ¢ close to 0. O

4.9. Further properties of the secondary invariants. Our secondary invariants satisfy a mono-
tonicity condition with respect to stacking link cobordisms.

Proposition 4.21. Suppose that (I x S3,S) is a link cobordism from (S3, Ky) to (S?, K1), and
So, S € Surf(Ky). Let S1, S7 € Surf(Ky) be the surfaces obtained by stacking So or Sy and S,
respectively. Then

(S0, 50) + 9(8) = 7(S1, 51).-
When g(So) = g(S}), the invariant r satisfies an analogous inequality; furthermore,

Vie(S0,50) = Vietg(5)(S1, 51)
for k> g(Sop). Finally,

T (50,50 () + (1 —[1=1]) - g(5) = T(s,,57) (1),



34 ANDRAS JUHASZ AND IAN ZEMKE

for any Sp, S, € Surf(K) and t € [0,2].

Proof. Choose basepoints w; and z; on K; for i € {0,1}, and a decoration A on S such that S, is a
strip containing wo and w;. Using the functoriality of the link cobordism maps, it sends t2, ,(1) to

3, 2(1) and tg?)’z(l) to tg?,z(l)’ Furthermore, by [57, Theorem 1.4], the map Fy,gss (s,4) increases
the Alexander grading by ¢(S). From these two facts, all claims can be proven quickly. O

A concordance C from K, to K; is called invertible if there is a concordance C’ from K; to K
such that C’ o C is the identity cobordism from Kj to itself; see Sumners [49].

Corollary 4.22. Suppose that Ko and Ky are knots in S* and Sy, Sy € Surf(Ky). If C is an
invertible concordance from Kg to Ky, let S and S{ denote the surfaces in Surf(K7) obtained by
stacking So or S}y and C, respectively. Then

w(So, 56) = w(S1, Si)
forw e {r,T}. If g(So) = g(S}), then the same equality holds for w € {Vi, Kk}, provided k > g.

Proof. Let C' be a left inverse of C. We first apply Proposition 4.21 to the surfaces Sp, Sj, and to
the concordance C, to obtain that w(Sy, Sj) > w(S1, S1). Note that we recover Sy if we stack S; and
C’, and S if we stack S} and C’. Hence, if we apply Proposition 4.21 to the surfaces S, S7, and to
the concordance C’, we obtain that w(S1,S7) > w(So, S}). O

Like pgt and pising, our secondary invariants satisfy the following ultrametric inequality:
Proposition 4.23. If K is a knot in S® and Sy, Sz, S3 € Surf(K), then
UJ(Sl, 53) < max{w(Sl, SQ),W(SQ, Sg) }

for w € {1, T}, where the inequality is to be taken pointwise when w =Y. If g(S1) = g(S2) = g(S3),
then the inequality holds with w € {Vi, k}, as well.

Proof. All of the invariants are described in terms of when two distinguished elements become equal
in homology, after multiplying by some power of V', U, or v. (]

Lemma 4.24. Let K be a knot in S®, and suppose Sy, Sz, S3 € Surf(K). If we endow N x Z=°
with the lexicographic ordering, then the map T+ satisfies the ultrametric inequality

’7'+(S1, Sg) S max{TJr(Sl, SQ), T+(SQ, 53)}
Proof. For i, j € {1,2,3}, let us write 7;; = 7(5;, S;) and 7;; = 7/(S;, S;), and let
t =V 95t (1)

Without loss of generality, we can suppose that 712 < 3. By Proposition 4.23, we have 113 <
max{7i2, To3} = 3. As we have endowed N x Z=9 with the lexicographic ordering, it suffices to
consider the case when 713 = 723, which we denote by 7, as otherwise 77 (S, .53) < 7F(S2, S3).

Choose basepoints w and z on K, and write K = (K, w, z). First, assume that 712 < 7. By the
definition of 72, there exists x € C(K, ,,,I) such that Ox = t; — to. If we write m := —743, by

definition, there is an y € C(K, ;L,,) such that dy = to — t3. Since 712 < 7 and O respects the
Alexander filtration, there is an inclusion of complexes

v: CK, ;1) = CK, ;Ly,).
It follows that «(z) +y € C(K,L,,) satisfies d(¢(x) + y) = t1 — t3. As 73 = 7, it follows that
—71{3 > m, hence 73 < 753 and 71(S1, S3) < 77(S2, Ss3).

Now suppose that 712 = 7. If we write m’ := —7{5 and m := —745, then there exist © € C(K, ; Ly,/)
and y € C(K,;L,,) such that 9z = t; — t2 and dy = ta — t3. Without loss of generality, we can
assume that m’ > m. Then there is a natural projection

m: C(K, + L) = C(K, ;L)

that is a chain map, and preserves the elements t; for ¢ € {1,2,3}. Since z + n(y) € C(+L,,) and
I(x + m(y)) = t1 — t3, we have —7{5 > m, hence 7|3 < 745 and 77 (51, S3) < 77 (52, 53). O
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5. LINK FLOER HOMOLOGY AND THE STABILIZATION DISTANCE

In this section we prove our main technical results about stabilizations and the link Floer TQFT,
and show that our invariants 7 and V}, give lower bounds on pust, while kg and Z give lower bounds
On Jdest -

5.1. Algebraic reduction. In this section, we consider the relation between the Heegaard Floer
homology of multi-pointed 3-manifolds and the link Floer homology of unlinks.

There are two natural ways to reduce CFL™ to CF~ via a tensor product. Let My —; denote the
(F[U, V], F[U])-bimodule with underlying vector space F[U], where U acts on the left by U, and V
acts by 1. We have U act on the right by ordinary multiplication. There is also an (F[U, V},F[ﬁ D-
bimodule My—; with underlying vector space IF[[AI], defined similarly, except that we have V act on
the left by U and we have U act by 1.

There are canonical isomorphisms
CFL™(Y,L,s) ®@py,v) My=1 = CF~ (Y, w,s)
CFL~ (Yv, L, 5) ®IF[U,V] My—1 = CF_(Y, Z,5 — PD[LD

These isomorphisms are obtained by taking any Heegaard diagram for (Y,L), and ignoring the z
basepoints, or ignoring the w basepoints.

In particular, for any F[U, V]-equivariant map F from CFL™ (Y1,L1,81) to CFL™ (Yo, Lo, 52), we
obtain a map Fl|y=; from CF™ (Y1,wi,s1) to CF™ (Y2, ws,82). There is also a map F|y=; from
CFi(Yl,Zl,ﬁl — PD[Ll]) to CFi(YQ,ZQ,.GQ — PD[LQ])

An important special case is when L is an unlink, and each link component has exactly two
basepoints. We say that a diagram for (Y,L) is a minimal unlink diagram if each w basepoint
occurs in the same component of ¥\ (U 3) as a z basepoint. In this case, a Seifert disk is
canonically specified by picking a collection of arcs in ¥\ (U 3) which connects each w basepoint
to a z basepoint. By pushing the interiors of these arcs off of ¥, in both directions, a collection
of Seifert disks for L is spanned. In particular, there is a canonical Seifert surface S of I which is
determined by the diagram, and Ag(U*V7x) = j — i for all intersection points x.

Additionally, in the case of a minimal unlink diagram H = (¥, «, 3, w,z), there is a canonical
isomorphism

(5.1) CFL™ (3, o, B,W,2,5) = CF (%, e, B, W, 5) ®p( F[U, V],

where we view U as acting on F[U, V] via the product UV.

In particular, if we are given minimal unlink diagrams for (Y1,L;) and (Y2,L2) as well as an
F[U, V]-equivariant map F' from CFL™ (Y1, L1,51) to CFL™ (Y2, L, 82), we may view F|y=1 ®idg[y,v)
and Fly -1 ®idg[y,yv) as also being maps from CFL™ (Y1, L1,81) to CFL™ (Y2, L, 52). For our purposes,
it is useful to compare these maps to the original map F:

Lemma 5.1. Suppose that L1 C Y7 and Ly C Y5 are unlinks, and pick minimal unlink diagrams
for (Y1,1L1) and (Ya,1s), respectively. Suppose that F: CFL™ (Y1,1L1,51) — CFL™ (Ya,1Lo,52) is an
F[U, V]-equivariant map, which is homogeneously graded with respect to the Alexander grading, and
shifts the Alexander grading by A.

(1) If A > 0, then
F=V2 . (Flyo @idpyy) and U2 F = (Fly=1 ®ids,v))-
(2) If A <0, then
V™A . F=(Flyo1 ®idgyy)) and F=U"2:(Fly=1 ®ids,1)).

Proof. Consider the claim for A > 0. In this case, the maps F' and F'|y—=; ® idp[y,y] agree up to
an overall power of V. Since I'|y =1 ® idg[y,y] preserves the Alexander grading, the overall power is
VA, The same argument works for the other claims. ]
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Remark 5.2. Lemma 5.1 is stated using two fixed minimal unlink diagrams for (Y7,L;) and (Y3, Ls),
so we do not claim that the map F|y—; ® idpjy,y] and F|y=1 ® idgjy,y] are natural maps. We may
view these maps as being natural if we fix a set of Seifert disks for IL; and Ls.

5.2. Stabilizations and link Floer homology. In this section, we prove our main computational
results about stabilizations and link Floer homology. Before we state our computational results, we
recall that the link cobordism maps admit extensions

Fw re: A*(H (W)/ Tors) ® CFL™ (Y1,Lq,5ly,) = CFL™ (Ya, Lo, 5]y,)
that incorporate the action of A*(H;(W)/Tors), similar to the cobordism maps of Ozsvéth and
Szabé [40]; see [57, Section 12.2] for a description.
If F and G are two maps from Fo[U, V] to CFL™ (Y,L,s), we say that F' ~ G modulo the action
of H1(Y), and write
F~G mod H(Y),
if there are classes [y1],...,[v] € Hi(Y), as well as Fs[U, V]-equivariant maps Ji, ..., J; from
Fy[U, V] to CFL™ (Y, L,s), such that
k
F—l—G:ZA% o J;.
i=1

(Note that if v and 4" are homologous 1-cycles in Y, then A, ~ A...)

Lemma 5.3. Suppose that (W, F): 0 — (Y,U) is a decorated link cobordism from the empty set to a
doubly-based unknot U in'Y , equipped with a Seifert disk D, and let s € Spin®(W). Pick a Heegaard
diagram for (Y,U) where the w and z basepoints are immediately adjacent. Write F = (S,.A), and
suppose that Hi(Y) — H1 (W) is a surjection.

(1) Suppose A has a single component (necessarily a non-closed arc), and write

h(SUD,s) := <01(5),[SUD]>*2[SUD]~[SUD].

If h(SUD,s)+ g(Sz) — g(Sw) > 0, then
Fy,7s =2 UIESW Y9I TEUDS) [y @ idgy,  mod Hy(Y),

with respect to the isomorphism from Equation (5.1). If h(SU D,s) + g(Sz) — g(Sw) < 0,
then

Py, s = UMWDY pyy  ppig) @ idpy) mod Hy(Y).
(2) If A has a closed component ~y, then
FW,]—',s ~(0 mod H]_(Y)

Proof. The proof is a modification of [57, Proposition 9.7]. Consider first Claim (1), in the case when
h(SUD,s)+ g(Sz) — g(Sw) > 0. Note that the latter quantity is the Alexander grading change of
the map Fw, r 5. The reduction Fyy, r |y =1 is computed explicitly in [58, Theorem C], and depends
only on W, s, and the embedding of the subsurface Sy, in W. When S5, is a connected surface with
a single boundary component, according to [57, Lemma 9.6], the V = 1 reduction satisfies

(5.2) FW,]-'}5|V:1 = FW,s(gw ® _)7

where & € A*(Hy(W)/ Tors) @ Fo[U] is an element equal to U9w) modulo Hy(W). Since Hy(Y)
surjects onto Hy (W), we can commute &, with Fyy 4 to obtain the relation

FW,]-",5|V:1 ~ ﬁg(Sw) . FW,s mod Hl(Y)
Applying Lemma 5.1, we conclude that
(5.3) Fiv.r.s = P (SUD,8)+9(S2)—9(Sw) [79(Sw) - Fy,s ® idgyyy)  mod Hy(Y).

Claim (1) in this case follows by rearranging equation (5.3) using the fact that U = UV.
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The argument fails when the Alexander grading h(S U D,s) + g(S,) — g(Sw) is negative, since
multiplication by V*SUD:)+9(S2)=9(Sw) js not a filtered map. Instead we must consider the U = 1
reduction of Fyy r 4. According to [57, Lemma 9.6], the U = 1 reduction satisfies

Fw.rslu=1~ Fws—pp[s)(& ® —),

for an element &, € A*(Hy(W)/ Tors) ® F5[U] equal to U9(52) modulo Hy(W). Using this fact, the
formula

Fyy, 75 = U9 =MEUD2)79(52) (Fw,s—pp[s) @ idrjy,y) mod Hy(Y)

can be established by the same strategy as before.
Next, we consider Claim (2), where A contains a closed component. As in the proof of Claim (1),
the key will be to consider the maps Fy r s|v=1 and Fy rs|u=1. Let A denote the quantity

X(Sw) B X(Sz)
A,
which we note is the Alexander grading of the map Fyy r s.

We first consider the case when A > 0. Let us write Cy, o and C, o for the components of Sy and
Sy that intersect 05. We will reduce to the case when 0C4, o contains a closed component disjoint
from 0S. If Cw, = Sw, then 0Cy  trivially contains a closed component disjoint from 9S. If
Cw,o is not the only component of Sy, then, since S is connected, we can find a properly embedded
path ~y,: I — Cj, with both endpoints on A, such that v,(0) € Cyw o, and v,(1) is a point in the
boundary of another component, Cy, 1 of Sy,. There are four cases we consider:

(1) Cw, is planar, and |0Cyw 1| = 1.
(2) Cw, is planar, and |0Cy 1| = 2.
(3) Cw, is planar, and |0Cy 1| > 2.
(4) 9(Cw,1) > 0.

In Case (1), the surface Cy 1 is topologically a disk, which is necessarily disjoint from 0.5, since
AN dS| = 2. We claim that the map Fw r . ~ 0. Indeed, the cobordism map Fy, . can be
factored through the composition of a quasi-stabilization, followed by a quasi-destabilization, and
such a composition clearly vanishes.

We next consider Case (2), when Cy, 1 is an annulus, which is disjoint from 9S. In this case, we
also have Fyy r s >~ 0. To see this, pick a properly embedded path vy : I — Cy 1 that connects the
two boundary components of Cy, 1, and such that yw(0) = v5(1); see the top of Figure 5.1. We
concatenate 7y, and v to get a path v. A neighborhood of v is the domain of a bypass. Let A’ and
A" denote the other two dividing sets in the bypass triple; see the bottom row of Figure 5.1. The
bypass relation (relation (3.12) above and its interpretation in terms of decorated cobordisms from
Figure 3.7) implies that

A:=h(SUD,s)+

(5.4) Fy,s,4),s = Fw,(s,47),s + Fw,s,47),s-

The key observation is that A" and A" are actually isotopic, so equation (5.4) implies that Fyy, (g 4,5 =~
0. The isotopy between A" and A" is shown in Figure 5.1.

We now consider Cases (3) and (4), when Cy, 1 is planar and |0Cy 1| > 2, or when ¢(Cw,1) > 0,
respectively. In both cases, we let yw: I — Cy, 1 be a properly embedded curve which is non-
separating and satisfies v,(1) = 7w (0); see the top of Figure 5.2. If g(Cw,1) > 0, we require that
both ends of 7, are on the same component of 9Cy, ;1. We let v denote the concatenation of v, and
vz. As in Case (2), we consider the bypass triple obtained by taking a regular neighborhood of the
image of . Let A’ and A” denote the other two dividing sets in the bypass triple, shown on the
bottom of Figure 5.2.

Let Cy o and CF o denote the type-w subreglons of S\ A" and S\ A” that intersect 9S. In
Cases (3) and (4), it is easy to check that 0Cy, ; and 9Cy ; both contain a closed curve disjoint
from 05, so it is sufficient to show the main clalm for each of Fy,s,4r),s and Fyy, (5,45 separately.
Case (4) is illustrated in Figure 5.2.
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FIGURE 5.1. When Cy,; is an annulus, the two other dividing sets in a bypass are
isotopic.

FIGURE 5.2. The bypass relation in Case (4), when ¢g(Csw,1) > 0. On the bottom
row, the domain of the bypass is shown. The dotted lines outside of the domain of
the bypass indicate the configuration of the dividing set outside the bypass region.

We now proceed to show that if A is a dividing set on S such that 0Cw ¢ contains a closed
component vy disjoint from 95, then

(5.5) Fwrsly=1=A4,0G

for some map G, where A, denotes the homology action of the curve v. To establish equation (5.5),
we must recall some additional facts about the functor Fyy, r |y =1. According to [58, Theorem C],
the chain homotopy type of the map Fyw, r s|v=1 depends only on W, the embedded surface S,
(which is not properly embedded) and s € Spin®(W). To describe the reduction in more detail, we
recall that a ribbon 1-skeleton of Sy is a choice of embedded graph I'y, C Sy, such that 'y, NS,
{w}, and Sy is a regular neighborhood of T'y, in S; see [58, Definition 14.5].

There is a simple way to construct the ribbon 1-skeleton of the subsurface Sy,. One starts with a
collection of arcs a C Sy such that a NSy, = {w}, and such that each component of Sy, contains
exactly one arc. One then takes inward translates C,...,C, of the boundary components of 0Sy,
which do not contain a basepoint of w, which one connects to a by adjoining an embedded arc
(disjoint from the other arcs). The complement of this graph in Sy consists of a collection of [0Sy
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connected surfaces, each with a single boundary component. The total genus of these surfaces is
g(Sw). We then pick a geometric symplectic basis of H; of the complement of this graph (i.e.,
a collection of simple closed curves Ai,...,A,, Bi,...,B, that form a basis of H; and satisfy
|A; N Bj| = §;;). By connecting a with one of the curves in each pair in the symplectic basis by an
arc, we obtain a ribbon 1-skeleton of Sy,. An example is shown in Figure 5.3.

w w

FI1GURE 5.3. A ribbon 1-skeleton I'y, for a genus 2 component of Sy, with 2 bound-
ary components.

The second author [53] constructed maps on CF~ induced by cobordisms with embedded ribbon
graphs. By [58, Theorem C], the reduction Fyy r s|v=1 is chain homotopic to the graph cobordism
map Fwr,, s for a ribbon 1-skeleton I'y, of Sy. Note that I'y, inherits a ribbon structure; i.e., a
cyclic ordering of the edges adjacent to each vertex, from the orientation of Sy .

By picking an appropriate ribbon 1-skeleton T'y, of ¥y, (see Figure 5.4), we can decompose the
graph cobordism (W, T'y,) such that it is a sequence of graph cobordisms (W3, v3)o(Wa,T'y)o(W7,T),
satisfying the following conditions:

(1) Wy is a 4-dimensional 1-handlebody, and the graph I'y intersects W7 in a single point.

(2) Wy is a cylinder I x Y, and I'y is a graph of the form (I x {p}) U~, as shown in Figure 5.4,
where + is a loop induced by one of the boundary components of Sy, which is disjoint from
0S.

(3) W3 is a cobordism between two connected 3-manifolds, and ~3 is a path connecting the two
components.

This can be achieved as follows. We pick I'y, by first taking an arc a in ¥y, such that aN9Xy, = {w}.
We then join closed loops (as described above) for components of 0S5y not containing w, and also for
a symplectic basis Ay,..., A4y, B1,..., B, as above. We assume that of these loops, v is joined the
closest to w along the arc a. We pick an ordered handle decomposition for W into 0-, 1-, 2- and 3-
handles. We let W7 be the the union of the 0- and 1-handles. We let W5 be a regular neighborhood
of OW1, and we let W3 be the 2-handles and 3-handles. By flowing using a gradient like Morse
function for this handle decomposition, we may isotope all of the closed loops of 'y, so that they lie
below Wj3. Therefore we may assume that I'y, N W5 consists of a subarc of a with ~ spliced in, and
that W3 N Ty, consists only of a single arc, as claimed above.
The composition law for graph cobordism maps implies that

(5.6) Fwr,,s >~ FW3773;5|W3 ° FW27F2,5|W2 ° FW17F1:5|W1 :

Since 73 is a path, the map Fyy, -, agrees with Ozsvath and Szabd’s cobordism map. By

5|W3

[565, Proposition 4.6], we have

(57) FW27F2¢5|W2 >~ Ary.
Since H1(Y') surjects onto Hi (W), we have
(5'8) FW37’)’3»5|W3 o A’Y = A’Y o FWS»’Y375‘W3'
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(W3,73)

(Wy,T)

(W1,T)

FIGURE 5.4. A decomposition of the graph cobordism (W,T'y,). The loop 7 in I'y
corresponds to a closed curve in 0Cy o disjoint from 95.

Combining equations (5.6), (5.7), and (5.8), we obtain the relation
(5.9) Fwrslv=t = Fwr,,s = Ay 0 Fyw, o5 slw, © Fwy Ty sl -

Since we assumed that the Alexander grading shift A was nonnegative, by using Lemma 5.1 we
obtain

Fwre =V (Fw,rslvl) ®ide,v)

~ VA (A 0G) ®idp v

~ (A, ®idpy,vy) © (V& Go idg(u,v1)

~ AFY o (VA -G ® id[g[av]),
where G ~ Fwy s slwy © Fwiry s, - In the last line, we are using the fact that A, preserves the
Alexander grading, so (A|y=1) ® idg[y,v] coincides with the ordinary action of A, on CFL™(Y,U)
by Lemma 5.1. This proves the claim.

The case when the Alexander grading change A is negative is handled similarly, using the U = 1

reductions instead. ]

Next, we compute the effect of a stabilization, for a simple dividing set:

Lemma 5.4. Suppose that (W, F): (Y1,L1) — (Y2,L2) is a decorated link cobordism with by(W) = 0.
Write F = (S,.A), and suppose that S is connected. Let S’ be a (n,g)-stabilization of S along
(B*,Sy). Let Dy,...,D, denote the components of SN B*, and let D C S be a disk that contains
D1, ..., D, and intersects A in a single arc. Consider the subsurface

Shi=(D\(DyU---UD,))US, C &
Let A’ be a dividing set on S’ that agrees with A outside D, and write F' = (8", A").

(1) Suppose that A’ intersects S in a single arc that divides S|y into two connected components.
Let Sw and S}, denote the type-w regions, and S, and S, the type-z regions of F and F',
respectively. Then

Fyy 71 o =~ UIEW—9(Sw)y9(5,)—9(S2) . g o
(2) If AN S| contains a closed component, then

FW7]:/75 ~ (.

Proof. We first show Claim (1). Consider the punctured disk
Do:=D\ (DyU---UD,).
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FIGURE 5.5. An example of a stabilization considered in Lemma 5.4. The dividing
set A in the region D C S is shown on the left, and the dividing set A’ on the
stabilization S’ is shown on the right.

Let NN denote the total space of the unit normal disk bundle of lA)o in W\ B*. Note that N is
diffeomorphic to BO x B2. Define

Wy := B*U N,
which, after rounding corners, we can view as a codimension 0 submanifold of W with smooth
boundary. In fact, Wy is a 4-dimensional genus n — 1 handlebody (S* x B3)¥"~1. Let Y denote
OWy. We observe that Sj, as defined above, is equal to Wy N.S’. We can view (W, S)) as a link
cobordism from the empty link to the pair (Y, K) where K = oD x {0}.

Let us write C,...,C, for the components of 8130 \ 613, and Uy,...,U, for the components of
the unlink Sop N 9B*. We can view

ON = (Dy x 0B%) U (8D x B%) U | J(C; x BY).
1=1

Hence, we can write

Y = <6N\ O(Ci X B2)> U <634 \ CJ N(Ui)> ;

i=1 i=1
where the two manifolds are glued along their n torus boundary components.

We now claim that K is an unknot in Y. It is at this step that we use the fact that SN 9B* is an
unlink. To see that K is an unknot, we will construct a Seifert disk D for K in Y. Let r denote a
radial arc from 0 € B? to a point p € dB2. Let A denote the annulus

A:=0Dxr cvY.
We then attach the punctured disk ﬁo x {p} to the annulus A. The resulting surface has boundary

O(AU (Do x {p})) = K U [ J(C; x {p}).
i=1

Next, we note that the image of C; x {p} in N (U;) C dB* is the Seifert longitude, since the disks
D; C SN B* can be pushed into dB* to give Seifert disks of U; that intersect N (U;) along C; x {p}.
By capping C; x {p} with Seifert disks of the U;, we obtain the Seifert disk Dg of K in Y.

Let us write Fo for the decorated surface (D, AN D), F for the decorated surface (S5, A’ N S}),
and sq for s|w,. Since Hy(Wj) = 0, by applying Lemma 5.3 to both Fuy, 7,5, and Fy, 7, .., we
compute that

(5.10) Fuy 760 = U9 S0 VoSo2) 20 mod Hy(Y).

Write Wy := W\int(Wy), F1 := F'NW1, and s1 := s|w,. Since Wy is a 4-dimensional handlebody,
we conclude that by (W) = 0. Noting that the map 6: H'(Y) — H?(W) is trivial, and using the
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Spin® composition law, we conclude from equation (5.10) that

(5.11) Fivrs ™~ U9(86,w)179(S0,2) Fwr.s

Noting that g(Sy, ) —9(Sw) = 9(S) +) and g(S;) —9(Sz) = g(S 4), the proof of Claim (1) is complete.
We now consider Claim (2). In this case, Lemma 5.3 implies that Fw,.75.s = Zle A, o J;

for some filtered, equivariant maps Ji,...,Jy. The map Hi(Y) — H;(W;)/ Tors is trivial since
b1 (W) =0 and Wy is a 4-dimensional 1-handlebody. Hence, using the composition law,

k
Fw.r s ~ Fw, F s, © FWo,fé,So ~ Fw, 75 © (E A'Yi 0 ‘]i) ~ 0,
=1

concluding the proof of Claim (2). O

Lemma 5.4 computes the result of a stabilization of a link cobordism, when the dividing set is
nicely arranged on the stabilization. However, to prove geometric bounds on the secondary versions
of Vi, we will need to consider more general dividing sets on stabilizations.

Definition 5.5. Suppose that (B*,S) is an undecorated knot cobordism from () to an arbitrary knot
K in S%. Let K denote K decorated with two basepoints, and let sy be the unique Spin® structure
on B*. We say that S satisfies the decoration-independence condition (DI) if the following holds:

(DI) For any decoration F = (5, .4) whose dividing set intersects K in exactly two points,
(1) the filtered, equivariant chain homotopy type of the map

FB4,]:,50: FQ[U, V] — C]:Ef(K)

depends only on ¢(Syw ) and g(S;) when |A| = 1, and
(2) Fpa rs, >~ 0 when [A] > 1.

Note that, if S is a stabilization of a slice disk (B, D), then, by Lemma 5.4, the link cobordism
(B*, 9) satisfies the decoration-independence condition (DI).

Definition 5.6. Let S and K be as in Definition 5.5. Suppose d > ¢(S) is an integer. We say that S
satisfies the decoration-independence condition (DI) above degree d if for any decoration F = (.5,.4)
compatible with K, and for any 4, j € N satisfying i + j + g(S) > d,

(1) the chain homotopy type of the map UV? - Fpa r 4, depends only on i+ g(Sw) and j+g(S,)

when |A| =1, and

(2) U'VJ - Fpa 74 ~ 0 when |A] > 1.
We define the invariant Z(S) € N to be the minimal d > ¢(S) such that S satisfies condition (DI)
above degree d.

Remark 5.7. The quantity Z(S) is finite for every surface S. This can be seen as follows. Two F[U, V]-
equivariant chain maps f, g: F[U,V] — CFL™(53,K) are F[U, V]-equivariantly chain homotopic if
and only if [f(1)] = [g(1)], as elements of HFL™ (S K). However, the rank of HFL™ (5% K) in
(gry,, gr,)-bigrading (—2n, —2m) is 1 whenever n, m > 0 and n + m is sufficiently large.

Note that, to compute Z(S), one would need to determine the cobordism maps for infinitely many
dividing sets on S, which is a formidable task. However, to obtain a lower bound on Z(.S), it suffices
to find two dividing sets A; and A5 on S, both consisting of a single arc, and integers i1, 42, j1, and
J2, such that

i1+ 9(S1,w) = i2 + 9(S2,w) and ji + g(S1,2) = j2 + g(S2,2), but
UVt Fpa(s,4,),50 Z UV - Fpa (5,4,),505
where Sj;, w and S, denote the type-w and type-z subsurfaces of S with respect to the decoration
Ay, for k € {1,2}. In this case, Z(S) > i1 + 42 + g(.59).

Proposition 5.8. Suppose that (B*,S) satisfies the decoration-independence condition (DI) above
degree d, and let S' be a stabilization of S. Then (B*,S') satisfies condition (DI) above de-
gree max{d, g(S")}.
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Our proof of Proposition 5.8 uses the following combinatorial lemma about dividing sets on sur-
faces:

Lemma 5.9. Suppose that Ay, Az, and As are three dividing sets that fit into a bypass triple on a
surface S with |0S| =1, and |A; N 9S| =2 for i € {1,2,3}. Then the number of A; that have no
closed loops is even.

Proof. If A1, Ao, and Az all have a closed loop, then the statement is true since 0 is even, so instead
assume that A; has no closed loops. Note that this implies that |A;| = 1, since |0S N A;| = 2.
The dividing sets A; can be consistently oriented, by declaring their orientation to be the boundary
orientation of Sy,. Let D denote the bypass region. The set A; N D consists of three arcs, which
we label as aj, as, and ag; see Figure 5.6. The main claim can be proven by considering separately
six cases, corresponding to the possible relative orderings of the arcs a1, as, and ag, as they appear
on A;. Let us first consider the case when the arcs appear ordered (a1, as, as), read left-to-right. In
this case, A; has no closed loops by assumption, and by inspecting Figure 5.6, we see that exactly
one of Ay and Aj also has no closed loops. The arguments when the arcs appear along A; with
ordering (a1, as,as), (as,a1,as), (az,as,a1), (as, a1, asz), or (as,asz,ar) are easy modifications of the

above argument. O
,° L—’a \\.“ I’ \\.:“ e \\.“
I' 1 Y ,’ LY ” v
. A L Y
! as \| . ' V) [ VY
Lo S T i .- 7’
R :' . ' H “ '
(R (IR ) . ’
N A as A N\ . , N A ’
‘~~‘ J‘_\’ ‘~~‘ \\ ‘ ‘~~‘ \\ - <
Al " AQ . A3‘.

FIGURE 5.6. The proof of Lemma 5.9, when the arcs a1, as, and az appear on
Ay with order (aq,as9,as), read left-to-right. The bypass region is the disk shown.
The dashed lines outside the bypass regions represent the configuration of dividing
arcs outside the bypass region. In the case at hand, A; and A3 have no closed
components, while A5 has two.

Proof of Proposition 5.8. Fix integers 4, j > 0 such that i + j + g(S’) > d. Analyzing the proof of
Lemma 5.4, we can find a 4-dimensional 1-handlebody W, whose boundary we denote Y, such that
(1) NY =5NY is an unknot in Y;
(2) SNW, is a disk, and S’ N Wy is a connected, genus g(S’) — g(S) surface with only one
boundary component.

Let J denote S’ NY. Note that Lemma 5.4 immediately implies the statement for any dividing set
A" C S’ (connected or disconnected) that intersects J in exactly two points.

We now show the main claim by induction on |A’ N J|. We have established the base case,
|[A'NJ| = 2. If A" is a dividing set on S” with |.A'NJ| > 4, then, using the bypass relation as shown
in Figure 5.7, we can write

(512) FB4,(S/,A’),50 ~ FB4,(S/,A”),50 + FB4,(S/,A”/)750)
where A" and A" are dividing sets satisfying
A'NnJ=]A"nJ =]ANJ -2

Let us write S, SJ, Su/, and S} for the type-w and type-z subregions of S’ \ A" and S’ \ A"
There are two cases to consider: when A’ has no closed components, or when A’ has at least one
closed component.
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(SI,A//) (SI’A///)

FIGURE 5.7. Reducing |JNA’| by 2, using the bypass relation. The annulus shown
is a neighborhood of J in the surface S’. Using a small isotopy, we may push the
two bigons in each of the bottom two annuli out of the neighborhood of J which is
shown.

Let us consider the case when A’ has no closed components. In this case, by Lemma 5.9, we know
that exactly one of A” and A" has no closed components, while the other has a closed component.
For definiteness, let us say that A" has no closed components. Note that, in this case, g(S%,) = g(Sw)
and g(5;) = g(S57).

By our inductive hypothesis, we know that U'V7 - Fpa (g am) s, =~ 0. Combining this with
equation (5.12), we conclude that

UiVj . FB4,(S’,A’),50 ~ UZVJ . FB4,(S',A”),5O-

By the inductive hypothesis, U'V7-Fga (g, a1 s, depends only on the integers i+g(Sk) and j+g(Sy),
and hence the same holds for UV - Fpa (sr,.41),50-
Next, we consider the case when A’ has a closed component. We wish to show that

Ule . FB4,(S’,A/),50 ~ O
By Lemma 5.9, one of the following two cases holds: Either A” and A"’ both have a closed compo-
nent, or neither A" nor A" has a closed component. If A” and A" both have a closed component,
then UVJ - Fpa (s1,4r) 5, and Uivi - Fpa (s a5, are both chain homotopic to zero, by induction.
If neither A” and A" have a closed component, we note that g(S%,) = g(Si) and g(S)) = g(Sy"),
SO
U,LV] . FB4,(S’,A”),50 >~ U,LVJ . FB4,(S’,A”’),50
by induction. In both cases, the sum
UiVj . FB4,(S’,A”),50 + UzVJ . FB“,(S’,A’”),so ~ 0.

Hence, by equation (5.12), UV - Fpa (5,415, ~ 0, completing the proof. |

5.3. Destabilizing genus bounds from 7 and ky. In this section, we show that the invariants
ko(S) and Z(S) give lower bounds on the quantity gdest(S), introduced in Definition 2.17. We begin
with the invariant Z(.S) from Definition 5.6.

Theorem 5.10. If K is slice a knot in S® and S € Surf(K), then

I(S) < gdest(s)'
Proof. Let Sy,...,S, € Surf(K) be a sequence of surfaces as in Definition 2.17 connecting S; = S
with a slice disk S,, = D, such that gqest(S) = max{g(S1),...,9(Sn)}.

The result follows immediately from Proposition 5.8, with the following explanation. The disk S,
trivially satisfies the decoration-independence condition (DI) above degree 0. By Proposition 5.8,
if Sy for k € {2,...,n} satisfies condition (DI) above degree d and Sj_; is a stabilization of Sy,
then Si_; satisfies condition (DI) above degree max{d, g(Sk—1)}. Using the stabilization formula,
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Lemma 5.4, the converse is also true: If S satisfies condition (DI) above degree d and Si_; is a
destabilization of Sy, then S;_; also satisfies condition (DI) above degree d. Hence, by induction,
we see that S = S satisfies condition (DI) above degree d = max{g(S1),...,9(Sn)}, and hence
Z(S) < gaest(S). O

We note that the invariant Z(.5) is not easy to determine, since it involves computing the cobordism
maps for infinitely many decorations on S. The invariant k¢(S) defined in Section 4.7 is easier to
compute because it involves calculating just a single cobordism map on HFK_,, as opposed to
infinitely many on CFL™. We now prove that xq(S) also bounds gqest(S):

Theorem 5.11. If K is a slice knot in S* and S € Surf(K), then
K0(S) < Gaest (9).
Proof. Suppose that g(S) > 0. Recall that tg is defined by decorating S with a dividing set

)

consisting of a single arc such that g(Sw) = ¢(S) and g(S,) = 0. Suppose that Si,...,S, is a
stabilization sequence of surfaces in Surf(K) such that S; =S and S, is a slice disk. Let

d = max{g(S1),...9(Sn)}
By Theorem 5.10, the surface S satisfies the decoration-independence condition (DI) above degree d.

There are two cases: d = g(S) or d > g(5). If d = ¢g(S), then the stabilization formula implies that
tgw = Uty

S0 tg, vanishes on HFK;_, implying that
HO(S) = g(S) = gdest(S)-
We now counsider the second case, where d > ¢(S). We note that
yd—9(S) .t§7w ~ FB4,(S',A(”)a

where (5', A,,) is obtained from (S, Ay) by performing d — ¢g(S) trivial 1-handle stabilizations
along Sy. Since (5’, Ay, ) satisfies condition (DI), by definition the map Fps (g 4, ) depends only on
the dividing set through the genera of the type-w and type-z subregions. Hence, if A’ C S’ is any
other dividing set on S’ consisting of a single arc, such that the genera of the type-w and type-z
subregions are the same as those of (', A.,), then
FB“,(S’,A(N) ~ FB4,(S’,A’)-

We pick a dividing set A’ C S’ such that one of the trivial stabilizations of S’ occurs in the type-w
subregion. See Figure 5.8.

K K K
(5, Aw) (5 Aw) (5, A')

FIGURE 5.8. The surfaces (S, Aw), (5', A%,), and (S’, A’) from the proof of Theo-
rem 5.11.

Using the stabilization formula, we conclude that there is a decorated surface F such that

vd—9(5) 'FB4,(S,AW) o~ FB4,(S',.A’) ~U- FpsF,
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from which we conclude that V4=9(5) “tg.w = 0 since the action of U is trivial on CFK y—g. O

Remark 5.12. If S is a genus g > 0 stabilization of a surface, then ro(S) = g(5), since tg , ~UY-G
for some map G, so [tg(1)] = 0 in HFK;;_(K). Also, we note that if S satisfies the decoration
independence condition (DI) at degree d > g(S), then the map V¢-9(5) -t vanishes on HFK ;.
This follows by adapting the argument from the proof of Theorem 5.11. Hence

ko(S) < max{g(S) +1,Z(S)}.

5.4. Stabilization distance bounds from 7 and V.

Theorem 5.13. Let K be a knot in S3, and let S, S € Surf(K). Then
7(5,5") < pst (S, 9").

Proof. Let us write m = pug(S,S’). Suppose that Si,..., Sk is a stabilization sequence of surfaces
in B* connecting S and S’, as in Definition 2.14, such that

max{ g(51),...,9(Sk) } = m.

Let K denote K decorated with two basepoints. By Lemma 5.4, if S;11 is obtained from S; by a
stabilization, then the map b, 1,z 18 filtered chain homotopic to V9(Si+1)—9(S:) -tg, ,- Similarly, if
S;+1 is obtained from S; by a destabilization, then the map ts 1z is filtered chain homotopic to
V9(8i)=9(Sit1) -tg,,, ,- It follows that all of the maps ym=9(5i) “tg, , coincide for i € {1,...,n}. In
particular,

(5.13) ym—a(5) by, ym—9(8") by,

z

The map tg, , on CFL™ increases the Alexander grading by ¢(S;), so V95 - tg, , determines a
well-defined map from Fy [ﬁ] into C(K, Ry, _y4(s,)) € CFK>(K). Hence, from equation (5.13), we

conclude that the induced elements [V ~9(5) ‘t5,(1)] and [V—9(5) ‘tg ,(1)] coincide in H.(C (K, ,1)).
By Lemma 4.8, this implies that 7(5,S") < m, completing the proof. O

A different algebraic perspective on the previous proof can be given using the formulation of
7(S,8’) in terms of HFK,_,(K) described in Lemma 4.6, and the computation of the effect of
stabilizations from Lemma 5.4.

We now show that the local h-invariants give a lower bound on the stabilization distance between
two slice disks:

Theorem 5.14. If D and D' are slice disks of K and k < ug (D, D’), then

i, < [2LI=K]

Ifk Z Mst(D,D/), thCTL Vk(D,D/) = 0

Proof of Theorem 5.14. Suppose first that k& < pug (D, D’), and that Si,...,S, is a sequence of
embedded surfaces in Surf(K) such that S;;; is either obtained from S; by a stabilization or desta-
bilization. Further, we assume that S; = D and S, = D’. Let d denote max{g(S1),...,9(Sn)}
Since S, is a slice disk, gqest(S;) < d for i € {1,...,n}. Furthermore, Z(S;) < gdest(Si) by Theo-
rem 5.10, hence S; satisfies the decoration-independence condition (DI) above degree d.

Next, we fix an integer k such that 0 < k < d. By increasing d by 1, if necessary, we may assume
that (d — k)/2 is an integer. Let K denote K decorated with two basepoints. We decorate each
surface S; with a single dividing arc A;, and we pick nonnegative integers n; and m; such that
9(S;) + n; + m; = d and
d+k

5
We note that, since each S; satisfies condition (DI) above degree d, it follows that the map U™ V™ .
Fpa (s, A,),s, depends on the dividing set A; only up to the quantities n; + g(S;w) and m; + g(S; 2),

d—k
9(Siw) +n; = 5 and ¢g(S;z) +m; =
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and is independent of the choice of A;. Using the stabilization formula, Lemma 5.4, it thus follows
that all of the maps U™ V™ - Fyy (5, 4,),5, are chain homotopic. In particular,

(5.14) U@=R)/2y(d0)/2 _goo (7 (d=R)/2y/(d+K)/2 oo

Note that U(@=R/2)/(d+k)/2 . £5 (1) is not an element of CFK*(K), since it lives in Alexander
grading k. In fact, U(@=F)/2y(@+k)/2.42 (1) is an element of the subcomplex of CFL ™ (K) of Alexander
grading k. Multiplication by V" gives a chain isomorphism between the subset of CFL™ (K) in
Alexander grading k and the subcomplex of CFL*(K) generated over Fy by elements U'V7 - x
with A(x) + (i —j) =0, ¢ > 0, and j > —k. The latter is A, (K), by definition. Hence, from
equation (5.14), it follows that

g2 (e (1)) = TP (835 (1)] € Ha(4; (K)),

where U = UV. It follows that dn
V(D D) < ——,
completing the proof when k < ug (D, D’).
The statement for k > ug (D, D) follows from the statement for k = ug (D, D’), together with
the monotonicity result from Lemma 4.13. O

6. REGULAR HOMOTOPIES AND THE DOUBLE POINT DISTANCE

6.1. The double point distance. If K is a knot in S, we denote by Imm (k) the set of immersed
connected surfaces in B* with boundary K. Furthermore, for ¢ € N, we write Immg(K) for the
subset of Imm(K) consisting of genus g surfaces. If S, S € Imm(K), then a regular homotopy from
S to S’ is a 1-parameter family {S; : t € I} in Imm(K) that is continuous in the C'*°-topology,
and such that Sy = S and S; = §’. If S and S’ are regularly homotopic, then ¢g(S) = g(S’). For a
generic regular homotopy, at all but finitely many ¢, the surface S; is embedded away from finitely
many transverse double points. At finitely many ¢, the immersion S; has a single non-transverse
double point, where a pair of double points of opposite signs is created or canceled. In particular,
the algebraic number of double points is constant along a generic regular homotopy.

Lemma 6.1. Let K be a knot in S®, and let g € N. Then any two surfaces S, S € Surfy(K) are
reqularly homotopic relative to K.

Proof. By extending the proof of Hirsch [15, Theorem 8.2] using the relative version of his h-
principle [15, Theorem 5.9], we obtain that the regular homotopy class of S relative to K is de-
termined by the relative normal Euler class of S. Since S is embedded and [S] = 0 in Hy(B*,0B%),
there is a 3-manifold-with-boundary M embedded in B* such that S C OM and M \ S C S? is a
Seifert surface of K. In particular, M induces a normal framing of S that restricts to the Seifert
framing along K. Hence, the normal Euler class of S relative to the Seifert framing vanishes. Since
the same holds for S’, we obtain that S and S’ are regularly homotopic relative to K. O

The regular homotopy class of a generic immersed surface S € Imm(K) is determined by the
algebraic number of its double points. If {S; : ¢ € I} is a regular homotopy such that Sy is
embedded, then the algebraic number of double points of S; is zero for every t € I where S; is
generic.

Definition 6.2. Given an immersed surface S € Imm(K), let Sing(.S) be the set of its double points
(this might be infinite when S is not generic). If S, S” € Surf,(K), then we define

- 1 . .
fising (S, 9") = 3 {Srtx}ggl}max{ | Sing(Sy)| :t €I},

where the minimum is taken over all generic regular homotopies {S; : t € I} such that Sp = S and
S1 = 5’. Furthermore, we set

HSing(Sv S/) = ﬁSing(Sa S/) +g.
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When S, S” € Surf(K) and g(S) # g(S’), we set pging(S,S") = co. We call piging(S,S”) the double
point distance between S and S’.

Since figing (S, S") = 0 if and only if S and 5" are isotopic, the function figing is an ultrametric on
Surfy(K) for every g € N. Furthermore, psing is a metric filtration whose normalization is figing.
The goal of this section is to prove that, if S, S” € Surf,(K), then

(6.1) 7(5,5") < psing(S,9").
If g > 0, we will also show that
(6:2) RS, S') < ising (S, 5.

Equations (6.1) and (6.2) are proven in Theorems 6.7 and 6.9. Finally, in Theorem 6.14, we will
show that the local h-invariants also give lower bounds on pging (.S, S’).

6.2. Movies of immersions and regular homotopies. Suppose that S € Imm(K) is the image
of a proper immersion
f: S — B

Let B’ C int(B*) be a ball disjoint from S. After a suitable identification between B* \ int(B’)
and I x S3, we can view S as an immersed surface in I x S3, satisfying S N ({0} x S3) = 0 and
SN ({1} xS?) = K. We can visualize S by considering the movie { S* : s € I }, where S* is obtained
by projecting ({s} x S$3) NS into S®. We orient S* as the boundary of ([0, s] x S*) NS using the
outward-normal-first convention.

If S is generic, then 77 o f is a Morse function on S and the double points are on regular level sets,
where 77 : I xS? — I is the projection onto the I-factor. Hence S° is an immersed link whenever s is
a regular value. If s is a critical value of index zero, then an unknotted component is born. If s has
index one, the link undergoes a saddle move, and if it has index two, an unknotted component dies.
Generically, passing a double point of S locally corresponds to a crossing change of S°; see Gompf—
Stipsicz [11, Figure 6.25]. We now explain why this is true, and how to read off the intersection
sign.

Lemma 6.3. Generically, as we pass a positive (negative) double point p of S, a negative (positive)
crossing of S° changes to a positive (negative) crossing; see Figure 6.1.

Proof. Suppose that S is the image of an immersion f: S 9+ B*. The set of points = € S such that
S is not transverse to the sets {s} x S at f(z) is generically O-dimensional, and hence disjoint from
the two preimages of p. Hence, generically, passing the double point p corresponds to two strands
of §¢ passing through each other.

Write the double point p € S C I x S® as p = (s0,po), where so € I and pg € S®. Suppose
that, at s = sp, a negative crossing of S° turns into a positive crossing. Let vy, v_ € Tp083
denote oriented tangent vectors for the upper and lower strands of the crossing, respectively. Let
v: (80— €,80+¢€) — S? denote the trajectory of a point on the upper strand, chosen to pass through
a point on the lower strand at sg. By inspection of the crossing change, the triple (v4,v_,7'(sg)) is
a positive basis of T,,S®. Using the product orientation on I x S3, the 4-tuple (9/8s,v4,v_,7'(s0))
is an oriented basis for I x S3. It is easy to see that oriented bases for the tangent spaces of the two
sheets of S at p are

(9/05 ++'(s0),v4) and  (9/Ds —'(s0),v-),
respectively, which concatenate to form a positive basis of I x S3.
A similar argument applies when a positive crossing turns into a negative one at p. O

Now suppose that {S; : t € [—1,1]} is a generic regular homotopy in Imm(K), and that a
pair of double points p; and p_ appear as t passes 0 € [—1,1]. The immersed surface Sy has a
non-transverse double point p € B*. Write p = (so, po), where so € I and pg € S3.

A local model for a double point creation can be visualized via a 2-parameter family

{S; :(s,t) €[so — €, 80+ €] X [—¢€€]}
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of immersed links in S? that is constant outside a neighborhood N(pg) containing the crossing. The
families { S0 : t € [—€,€]} and { ST : ¢t € [—¢, €]} are constant and have a positive crossing
in N(pg); we denote this link by L,. For ¢ < 0, the intersection Sf N N(py) is a positive crossing
and the family of links S} is embedded (and hence isotopic to Ly) for all s € [sg — €, 80 + €]. For
t > 0, the positive crossing L. N N(pg) changes to a negative crossing, and then back to a positive
crossing. Let L_ be the link obtained by changing L, N N(pg) to a negative crossing. If we fix ¢,
self-intersections in the 1-parameter family { S;: s € [so — €, so + €] } correspond to double points of
the surface the family traces out in [sop — €, 50 + €] x S®. The movie { S} : s € [sop — €, 50 + €] } for
t > 0 is shown in the top of Figure 6.1. We prove the above in the following lemma.

€o

By s

FIGURE 6.1. The top row shows a movie of a pair of double points after they
have been born during a regular homotopy of an immersed surface. The bottom
row shows the standard model of a Whitney disk used in the proof, which gives a
canonical neighborhood of the pair of canceling double points.

Lemma 6.4. Let {S; : ¢t € [-1,1] } be a generic regular homotopy of immersed surfaces such that

a pair of double points is born at time 0 at a point p € B*. Furthermore, let B’ C int(B*) be a ball

disjoint from Sy for everyt € [—1,1]. Then there is an identification of B*\ int(B’) with I x S* and

an € > 0 such that, if p corresponds to (sg,po), the I1-parameter family of immersed links
{S]:s€lso—¢€s0+¢€}

is diffeomorphic to the constant 1-parameter family Ly := S*°"¢ fort = —e, where L has a positive

crossing in N(po), and to the 1-parameter family shown on the top row of Figure 6.1 for t = ¢, where
the positive crossing of Ly in N(pg) changes to negative, and then back to positive.

Proof. Choose an identification between B*\ int(B’) and I x S® such that s(p_) < s(p.), where s is
the I-coordinate. We write S; as the image of a 1-parameter family of immersions f;: S & I xS?. Up
to isotopy, we can express any regular homotopy of a surface in a 4-manifold as a composition of finger
moves and Whitney moves; see Gabai [9, Proposition 4.3] and Freedman—Quinn [8, Section 1.5]. In
particular, p4 and p_ admit a Whitney disk B. A neighborhood of the Whitney disk can be put in
the standard form of Milnor [32, Lemma 6.7]; see the bottom row of Figure 6.1. This is given by an
embedding ¢: U x R x R = B*, where U is a neighborhood of the disk By in R? enclosed by arcs ¢
and ¢, that transversely intersect at points a and b. We have ¢(By) = B, ¢(a) = p4+ and ¢(b) = p_,
and let us write ¢ = ¢(cp) and ¢ = ¢(cf)). The preimages of the two branches of S meeting at p;
and p_ are (U N¢p) x R x {0} and (U N¢p) x {0} x R, respectively. The isotopy S; at the finger
move is modeled on the isotopy of ¢, shown in [32, Figure 6.3] that creates the intersection points
a and b with ¢y. This isotopy is constant in the normal R x R direction.

The immersed surface Sy has a non-transverse double point. If z, y € S are the two preimages of
the double point, let v denote a generator of the 1-dimensional vector space (fo)x(T%S) N (fo)«(T,S).



50 ANDRAS JUHASZ AND IAN ZEMKE

For t > 0, the movie S} has an extra pair of double points. By the choice of the coordinate function s,
we have ds(v) # 0 and s(p_) < s(p4+). Both p; and p_ correspond to a crossing change in the movie
{S; :s € [sop—¢€80+¢€} for t >0 by Lemma 6.3. By arranging for the Whitney disk to be
symmetric about s = sg in a small neighborhood of sy, the movie for the second double point is
obtained by reversing the movie for the first double point. When ¢ < 0, the curves ¢y and ¢, become
disjoint, and so the movie { S} : s € [sg — €, 80 + €| } is just an isotopy of the link L, completing
the proof. O

6.3. The desingularization of an immersed surface.

Definition 6.5. Suppose S € Imm(K) is a generic immersed surface in B*; i.e., an immersion with
only transverse double points. The desingularization of (B*,S) is the link cobordism (B4(S),§)
obtained as follows:
(1) The 4-manifold B*(S) is constructed by blowing up the 4-manifold at each negative double
point of S. Tgpologically, this corresponds to connected summing with @2.

(2) The surface S is constructed from the proper transform of S in B*(S) by resolving each
positive double point (increasing the genus of S by 1 at each point).

Definition 6.5 makes sense for any immersed oriented link cobordism as well. For a movie pre-
sentation of the resolution of a positive double point, see Figure 6.2, taken from the book of Gompf
and Stipsicz [11, Figure 6.30]. For a movie of the blowup of a negative double point, see Figure 6.3.

The 4-dimensional 2-handle of CP- is attached along a (—1)-framed unknot that links the negative

X

/

FIGURE 6.2. Resolving a positive double point. The top row is the singular knot
cobordism. The bottom is our choice of resolution.

N\

L +

Let (W,F) with F = (S,.A) be an immersed, decorated link cobordism, such that the double
points are disjoint from A. Furthermore, suppose that the two branches meeting at a double point

~

either both lie in Sy, or they both lie in S,. We write (W (S), F) for the decorated link cobordism
with double points resolved as described above.

Lemma 6.6. Suppose (Wy, Fo) is a non-singular link cobordism, and (W, F) with F = (S,.A)
is obtained from (Wy, Fo) by a double point birth, corresponding to a tangency between either two
branches of Sw, or two branches of S,. Let (W (S), F) denote the resolved link cobordism, as described
above. Then W(S) = Wo#@Q, and F is obtained from Fy by a 1-handle stabilization along Sy or
Sz, and disjoint from @2.

Let s be a Spin® structure on W such that (c1(5),E) = £1, where E denotes the exceptional
divisor in ﬁ/\, and agrees with s on W. Then
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X

FIGURE 6.3. Resolving a negative double point. The top is the singular knot cobor-
dism. The bottom is the resolution, obtained by blowing up the surface at the double
point.

if the double points both occur in Sy, and

F

wrs =V Fwrs,

if the double points both occur in S,.

Proof. By Lemma 6.4, there is a movie presentation of F as in the top of Figure 6.1, where a positive
crossing changes to negative, and then back to positive. Furthermore, the movie of the decorated
surface Fy only differs from that of F by locally changing the above movie to one where the positive
crossing stays positive.

We consider the composition of the resolutions of the positive and negative double points shown
in Figures 6.2 and 6.3; see the top row of Figure 6.4. We can arrange that the resolution of the
negative double point occurs immediately before the resolution of the positive double point. The
resolution of the positive double point is a pair of saddles, corresponding to attaching bands B;
and By. The composition of the two resolutions can be rearranged such that we first attach the
band Bj, then attach a 4-dimensional 2-handle along the —1 framed unknot ¢, and finally attach
the band Bs; see the second row of Figure 6.4.

We can slide the band By over U, though it gains a full right-handed twist when we do this; see
the third row of Figure 6.4. The unknot I/ is now totally unlinked from the knot and bands, and B;
and By are simply dual bands, corresponding to a 1-handle stabilization of the surface Fy disjoint
from the —1 framed unknot giving the TP’ summand of W(S).

Applying Lemma 5.4 for the effect of the 1-handle stabilization, and using the standard blow-up
formula for —1 surgery on an unknot contained in a ball disjoint from the link, we see that the
composition is multiplication by either U or V', depending on whether the 1-handle is added to X,
or X,. Using the composition law, the proof is complete. (]

6.4. Tau, nu, and the double point distance. We now prove that 7 gives a lower bound on piging:
Theorem 6.7. If S, S’ € Surf,(K), then
7(5,5") < psing(S, S”).

Proof. Suppose that {S; : t € I} is a generic regular homotopy between embedded surfaces S,
S’ € Surf(K). The immersion S; fails to be self-transverse at times s1,...,s,-1 € (0,1). Pick a
point ¢; € (s;_1, ;) for every i € {2,...,n—1}, and let S; = S;,. We write S; = S and S, = 5'. Let
(B4(SZ-),]?,») denote the desingularization of (B*,S;), as described in Definition 6.5. Let 5; denote
any maximal Spin® structure on B*(S;) (i.e., c1(5)2 + b2 (B*(S;)) = 0), such that 5, is obtained by
blowing up or blowing down 3;.
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FIGURE 6.4. In the top row, we show the movie of the resolution of a canceling pair
of double points, which consists of a blowup followed by two band moves. We then
commute the blowup and the first band move, giving rise to the movie in the second
row. Finally, we slide the second band over the (—1)-framed 2-handle, giving the
third row. The two bands form a tube, and the blowup now happens away from
the surface.

We decorate each fZ such that the type-w region is a bigon along K, and the rest of ]?Z is of
type-z. In particular, all double points occur in regions of type-z. If S; is obtained from S;_; via a
double point birth, then Lemma 6.6 implies that

FB4(S,-+1),E+17§¢+1 ~V- FB“(Si),ﬁi,Ei'

Similarly, if S; 41 is obtained from S; via a double point cancellation, then

V'FB4(S

i41),Fit 1,841 = FB“(&'), )54
It follows that
Vhetg, =Vt ,,
where n is the maximal number of positive double points of any S;. Since the algebraic count of

double points of each S; is zero, we have n = }max{|Sing(S;)| : ¢t € I'}. It now follows from
Lemma 4.6 that

1
7(5,8") < 3 max{ | Sing(Sy)|: t €I} +g.
Hence 7(5,5") < psing(S,5"), as claimed. O

We now show that v, introduced in Section 4.4, gives a slightly better lower bound on the stabi-
lization distance and the double point distance than 7.

Proposition 6.8. If S, S’ € Surf(K), then
(6.3) v(S,8") < min{us (S, 5"), psing (S, S”)}.

Proof. Let K be K decorated with two basepoints, and write ¢ = ¢(S) and ¢ = ¢(S’). By
Theorems 5.13 and 6.7, if n is either us(S,S’) or uging(S,S’), then 7(S,5") < n (recall that
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Using (S, S") = 0o when g # ¢/, so the inequality obviously holds in this case). Furthermore, their
proofs imply that

(6.4) VT, VIt

If 7(S,S”) < m, then equation (6.3) automatically holds, since v(S, S") < 7(5,5")+1, so it is sufficient
to consider the case when 7(5,5") = n. It follows from equation (6.4) that

(6.5) Vtg,(1) =Vt (1) = 0z

for some z € C(K,i > 0,5 > —n). It follows that the elements tg (1) and tg, ,(1) agree in the
homology of any quotient of C(K,i > 0,5 > —n) by a filtered subcomplex. Since C(K, ,,L,,) is the
quotient of C(K,7 > 0,7 > —n) by a filtered subcomplex for any m € N, it follows that

V=9 t5,(1) — V79 - tg ,(1)] =0 € Ho(C(K, nLm))
for all m € N. Hence 7/(S,5") = —oco and v(S,5’) = 7(S,5") = n. O

6.5. Kappa and the double point distance. In this section, we show that the kappa invariant
also gives a lower bound on the double point distance.

Theorem 6.9. Let K be a knot in S®. If S, S’ € Surf,(K) and g > 0, then
/(S,5") < psing (S, 5").

The proof requires several steps. Suppose that S € Imm(K) is a generic, properly immersed
surface in B* (by generic, we mean S has a discrete collection of transverse double points, disjoint
from 9S). The surface S is the image of an immersion f: S & B*, and write 5§ C B(S) for the
desingularization of S. Let

ptcS
denote the preimages of the positive double points of S. Note that each positive double point of S
contributes two points to pT. Let P be a subset of the positive double points of S.

Definition 6.10. Suppose that S € Imm(K) is a generic immersed surface. Let T' C S denote an
embedded tree such that the following hold:

(T1) T NS consists of a single point.

(T2) Each point of f~1(P) is a leaf of T, and T is disjoint from p*™ \ f~1(P).
Given such a tree T, we define an induced decoration Ay (T) on S, as follows. The underlying divid-

ing set of Aw(T) is ON(T)\ dS. We declare N(T) to be the type-z subregion, and the complement
of N(T) to be the type-w subregion. We note that the decoration Ay (7") on S induces a decoration

on the desingularized surface S C B(S), for which we also write Ay (7). There is an analogous
decoration A, (T), obtained by reversing the roles of w and z.

Note that g(Sw) = ¢(5) + |p*|/2 — |P| and ¢(S,) = |P|. We now prove the following, somewhat
surprising fact:

Proposition 6.11. Suppose that S € Imm(K) is a generic immersed surface in B* with bound-
ary K, and that P is a subset of the positive double points of S. Let T C S be a tree satisfying
conditions (T1) and (T2). If s € Spin®(B*(S)), the chain homotopy type of the map

Fpa(8),(8, 4w (T)).s° R — CFL™(K)

is independent of the choice of tree T'.
To prove Proposition 6.11, we need a set of moves that can be used to connect two trees satisfying
conditions (77) and (72). We introduce the following tree-moves:

(TM1) T is replaced by another tree 7" satistying (77) and (7T2) such that ON(T') and ON(1") are
isotopic through dividing sets which are fixed on 85 and never intersect pT.
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(TM2) Suppose that e is an edge of T' which contains a point p of p™, and that ¢’ is an embedded
path in S such that ¢/ N T = de’, and such that e N e’ consists of a single point t. The tree
T is replaced with the tree T” formed by adding €', and removing a segment of e that is not
between p and t; see the top row of Figure 6.5.

Lemma 6.12. If S is a surface, p* C S is a collection of points, and f~*(P) C p* is a chosen
subset, then any two trees satisfying (T1) and (T2) can be connected by moves (TM1) and (TM2).

Proof. We pick a subset A C S consisting of g(S) compressing curves on S such that we are left
with a disk after surgering S on A. If T is a tree satisfying (71) and (T2), we give T the partial
order determined by setting 7'N dS to be the maximal point. If t € T, define

Lit)={zeT:z <t}

As a first step, we show that any tree T satisfying conditions (77) and (T2) can be connected
by moves (TM1) and (TM2) to a tree which is disjoint from A. To establish this, we show that if
|[ANT| > 0, we can always reduce |ANT| by 1, using moves (TM1) and (TM2). To do this, we pick
any point t € ANT such L(t) N A = 0. There are two cases: either L(¢t) Np" =0 or L(t) Np™ # 0.

If L(t)np* =0, then we can just isotope L(t) (an instance of move (TM1)) so that it no longer
intersects A, thus reducing |[ANT].

Next, we consider the case that L(t) N pt # (. In this case, we pick a point ¢ € L(t) such that
L(t') is a subset of a single edge of T, and L(t') contains a point p € p™. We let ¢’ be any embedded
path in S\ A such that ¢ NT = d¢/, and O¢’ consists of ¢’ and another point of T" which is not
contained in L(t). Let e denote a subinterval of the edge of T containing ', such that ¢’ is the smaller
endpoint of e. We can then use move (TM2) to replace e with e’. This reduces L(t) Np™ by 1, and
does not increase |A N T|. Repeating this procedure, we may reduce to the case that L(t) Np™ = 0.
Arguing as before, an isotopy of L(t) can then be used to reduce |ANT| by 1.

Hence, if T and T” are two trees satisfying conditions (T1) and (T2), by applying moves (TM1)
and (TM2), we may assume that T and T’ are both disjoint from A. We may compress S along A
to get a disk D, containing 7' and T", as well as a collection of 2¢(S) points p corresponding to the
curves in A. We note that T and T” are disjoint from p. Furthermore, isotoping an edge of T or T”
across a point in p may be achieved by move (TM2). In this manner, we can reduce the claim to
the case that S is a disk, and it is straightforward to see that in this situation that T and 7" can be
related by applying move (TM1). a

Proof of Proposition 6.11. By Lemma 6.12, it is sufficient to show invariance of FB4(S) (8. Aw(T))s
under moves (TM1) and (TM2). First note that, up to isotopy, the decoration Ay, (T') depends

only on a regular neighborhood of 7' C S, so move (TM1) does not change the cobordism map

Fps(5),(8.Au (1)) 5

We now address move (TM2). Suppose that e is an edge of T' which has exactly one endpoint at
a point p € pT and another at a vertex v € T\ p*. Suppose that ¢’ is an embedded path on S such
that ¢ NT = de’ and eNe’ = {t}. Let 7" denote the tree obtained by removing a segment of e not

between t and p, and inserting e’. There is a bypass relation

(6.6) Frpics),8.401)),s T FB1(8),8 A1), T FBi(8),8,47),s =0

for a third decoration A" C S , which is shown in Figure 6.5.
We now claim that

(6.7) Fpacs),§,am,s =0

for any s € Spin®(B*(S)), which will complete the proof when combined with equation (6.6). The
key observation is that the dividing set A" has a closed loop, which is homologically essential in the
tube that is added to form the desingularized surface S. Let B be a 4-ball in B*(S) containing the
point f(p). We note that S intersects OB in a negative Hopf link H. Let Ay denote the annulus

that is inserted into B to form the desingularized surface S. By isotoping A” in S , We may assume
that A” intersects Ap in the dividing set Aj shown in Figure 6.6.
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(S, Aw(T)) (S, Aw(T")) (S, A")

FIGURE 6.5. The graphs T and T” on the top row are related by move (TM2).
The point p is in p*. On the bottom row, the associated decorations Ay (7)) and
A (T") on the desingularized surface S are shown, as well as a third decoration A",
which fits into a bypass triple with Ay (T") and Ay (T”). The dashed circles denote
where a tube is added on the desingularized surface.

1/
Fo

FIGURE 6.6. On the left is the annulus Ag C §, which is added to desingularize
the immersed surface S at the negative double point f(p). The decoration .Aj on
Ag is shown. On the right is the dividing set corresponding to the map ®,, 0¥, on
a cylindrical link cobordism.

Let us write 7" for (5, A”) and F!! = (A, Al). Using the composition law, it is sufficient to
show that

Fp ry s =0,

where sq is the unique torsion Spin® structure on B.

Let HT denote the positive Hopf link, decorated with basepoints w; and z; on one component,
and wy and 2, on the other. By isotoping the dividing set on F{, we may factor the map Fp, FYl 0
through

®,, V., : CFL™(HT) — CFL™(HT).

A diagram for H* is shown in Figure 6.7. The differential can be computed by simply counting
bigons. It is not hard to see that the complex CFL™ (H™) is chain homotopy equivalent to the
complex shown in Figure 6.8. The chain homotopy type of the maps ®,,, and ¥,, are also shown
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Ht

o W2

FIGURE 6.7. The positive Hopf link (left), and a genus zero Heegaard diagram

(right).
X1 v, X9 X1 X2 X1 — X2
CFL™ (H+) = lU VT ) (I)wl = ) \Ilzl =
X4 <T X3 X4 < X3 X4 X3

FIGURE 6.8. The chain complex CFL™ (H™), as well as the maps ®,,, and ¥,,.

in Figure 6.8. Examining the maps ®,,, and ¥, shown in Figure 6.8, we see that ®,,, ¥, vanishes,
completing the proof. O

Definition 6.13. Given a generic immersed surface S € Imm(K) that is the image of an immersion
f: 8 % B% as well as a subset P of the positive double points of S, pick a tree T' C S satisfying
conditions (T1) and (T2). We form the decoration Ay, (T') of the desingularization (B4(S), S) as in
Definition 6.10. For s € Spin®(B*(9)), we define the map

t5 pwe R — CFL™(K)

to be the decorated link cobordism map Fp, (8),(8, Aw(T)),s” which is independent of the choice of T
by Proposition 6.11. Analogously, we can define the map

65 et R — CFL™ (K).
We can now prove that (S, 5’) is a lower bound for piging (S, S"):

Proof of Theorem 6.9. Suppose that Si,...,.S, is a sequence of immersed surfaces, each of which is
obtained from the previous via creating or canceling a pair of double points, up to diffeomorphism
fixing 9B* pointwise, and S; = S and S,, = S’. Furthermore, let P;, be the set of all positive double
points of Sy for k € {1,...,n}.

Using Lemma 6.6, we conclude that, if

1 . .
m = 5max{| Sing(S1)], .- ., | Sing(Sy)|},

and s;,...,5, is a stabilization sequence of Spin® structures on B*(S;),...,B*(S,) that are all
maximal, then the filtered chain homotopy types of the maps
1

m—5|Sing(S:)| | {—
14 2 tSkaPk1W75
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coincide for k € {1,...,n}. In particular, the maps on CFK,_, coincide, so
VTt W (D] = V™ g o (D] in HFK ;_o(K),
and hence k(S,5") <m+g. O

6.6. The local h-invariants and the double point distance. In this section, we show the
following:

Theorem 6.14. Suppose that S, S’ € Surf,(K) and g < k < piging(S,S’). Then

. AN
Vi(S,8") < Vslﬂg(szs)ﬂ .
If k > psing(S, S”), then Vi(S,S") = 0.

Definition 6.15. Suppose that S € Imm(K) is a generic immersed surface. We denote by P the
set of positive double points of S. Furthermore, let d be an integer satisfying d > ¢(S) + |P*].
We say that S satisfies the singular, decoration-independence condition (SDI) above degree d if the
following holds:

(SDI) For all maximal s € Spin®(B*(9)), for every 4, j € N satisfying
g(8) +|PF|+i+j>d,
and for all P C PT, the chain homotopy type of the map
UV tg paet R™ = CFL™(K)
depends only on s and the quantities
i+|P| and j+|Pt|—|P|
Lemma 6.16. Let S € Imm(K) be a generic immersion with positive double points P+, and suppose
that S’ is obtained from S by the birth of a pair of double points. Write p™ and p~ for the new positive

and negative double points of S', respectively. If S satisfies the singular decoration-independence
condition (SDI) above degree d, then S’ satisfies condition (SDI) above degree

max{d, g(S') + |[PT U {p"}|}.
Similarly, if S satisfies (SDI) above degree d, then so does S.

Proof. Consider first the case that S satisfies condition (SDI) above degree d. Let s € Spin®(B*(S5))
and s’ € Spin®(B*(S’)) be such that s’ agrees with s on B*(S)\ N(p~) and (¢1(s'), E) = £1, where
E is the exceptional divisor that appears after blowing up B*(S) at p~.
Let P C P and P’ C PT U {p"}. By Lemma 6.6, we have that
iy 4 Sy /
(6.8) Uivi A g {U. Zl tf,p/\{pﬂ,z,s ?f p+ € P,
UVIT b progs if pt ¢ P'.

Since S satisfies condition (SDI) above degree d, the expression on the right side of equation (6.8)
depends only on the quantities i + |P’| and j + 1+ |P*| — | P’|, as long as

i4+j+1+[Pt4g(S)>d
Hence S’ satisfies condition (SDI) above degree d if d > g(S) + |P™|, or above degree d + 1 if
d=g(S)+|PT|.
Next, we suppose that S’ satisfies condition (SDI) above degree
d>g(S)+|PTU{p"} =g(S)+[PT]+1.
The stabilization formula from equation (6.8) shows that S satisfies condition (SDI) above degree d,

as well. O

We can now prove that Vi (S, S’) gives a lower bound on pging (S, S’):
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Proof of Theorem 6.14. Suppose first that g < k < pging(S,S"). Pick a sequence of generic immersed
surfaces S1, ..., S, € Imm(K) such that consecutive surfaces differ by the birth or death of a pair of
double points. Furthermore, assume that S; = S and S,, = S’. Note that, trivially, S and S’ satisfy
the singular decoration-independence condition (SDI) above degree g := g(S) = ¢g(S’). We pick a
stabilization sequence of maximal Spin® structures si,...,5, on B4(S;),..., B4(S,), respectively.
Write m = £ max{| Sing(51)|, ..., |Sing(S,)[}. By Lemma 6.16, each of the immersed surfaces S;
satisfies condition (SDI) above degree g + m. By adding one additional birth-death pair of double

points, if necessary, we may assume that m+29_k and m_29+k are both integers. Note also that both
expressions are nonnegative, since ¢ < k < m + g by assumption. Let Pl+ be the set of positive
double points of S; for I € {1,...,n}. Since

m+g—k+m—g+k_

2 2
and \Pﬂ < m for all [, we can pick subsets P, C Pﬁ such that
m+g—k m—g+k
Pl ™IS and (R R s PSR
We then pick sequences of nonnegative integers i; and j; such that
. m+g—Fk . m—qg+k
i+ Pl =T and G+ |Bf - R = T

forall1 <[l <n.
Using our computation of the effect of a double point birth from Lemma 6.6, as well as Lemma 6.16
to change the decorations as needed, we conclude that the maps

UtV oty poae: RT — CFL™ (K)

are all filtered chain homotopic to one another. In particular,

g+m—k __m—g+k g+m—k __m—g+k

(6.9) USETVEET oy, ~ U VT g,

The maps in equation (6.9) increase the Alexander grading by k. Multiplying equation (6.9) by V¢
and rearranging, we conclude that

U557 Vo b5, (1)) =0

completing the proof for k < iging (.S, S”).
To verify that V(S,S5") = 0 when k > pging(S,S’), we note that the above result implies that

gtm—
2

7 ts ()] in H. (A} (K)),

Vising (5,51 (8, 8") = 0. The monotonicity result from Lemma 4.13 then implies the claim for & >
MSing(Sa S/) O

7. UPSILON AND AN INFINITE FAMILY OF TOPOLOGICAL METRIC FILTRATIONS

Let K be aknot in §?, and let S, S’ € Surf(K). The invariant T (g g/) gives a family of algebraically
defined functions
Y(s,5)(t): Surf(K) x Surf(K) — R0
parametrized by ¢ € [0,2]. In this section, we describe a topologically defined family Mg g/)(t) of
functions that are bounded below by Y (g ¢/(t).

7.1. The topological M-metric on Surf(K). The topological M-metric will be defined using the
following generalized stabilization operation:

Definition 7.1. Suppose that (W, S) bounds (S3, K), and that B* C int(W) is an embedded 4-
ball such that 0B* N S is an n-component unlink U,. Further, suppose that B* N S consists of
disks Dy, ..., D, that can be smoothly isotoped into dB* relative to U,,. We say that (W’,S’) is a
generalized stabilization of (W, S) if it is formed by removing (B*, S N B*) from (W, S), and gluing
in a link cobordism (X, Sp) such that the following hold:

(1) (Xo,So) is a cobordism from @) to (9B*,U,,),

(2) b3 (Xo) = b1(Xo) =0,
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(3) Sp is connected and oriented.

We remark that, although Definition 7.1 clearly generalizes the stabilization operation from Sec-
tion 2.8, it may still seem somewhat unmotivated. We note that, after a double point creation, the
desingularization of an immersed surface changes by a generalized stabilization:

Example 7.2. Suppose that S is an immersed surface in B* which bounds K, and S’ is obtained
from S by a creation of a pair of canceling double points. If (W, §) and (W’,g’) denote their
desingularizations, as defined in Definition 6.5, then (W’ ,§’ ) can be obtained from (W, §) by a
generalized stabilization. Indeed, since a double point creation can be achieved by a finger move
supported in a neighborhood of a path A connecting two points on S, we can take B* to be a
neighborhood of \. Clearly, 9B* intersects S along two disks, and SN dB* is a 2-component unlink.
Since S’ differs from S only inside B*, the desingularization (W, §) can be obtained by cutting out

B* and gluing in (@2 \ B%,5p) for an annulus Sy in TP’ \ B%.

If W is a compact, oriented 4-manifold with boundary S*, we let Char(W) denote the set of char-
acteristic vectors of the intersection form Qyy; i.e., the set of elements C € H?(W) = H*(W,0W)
such that

(zUz, [W,0W])=(C Uz, [W,0W]) mod 2
for every x € H2(W,0W). It is well known that Char(W) = {¢1(s) : s € Spin®(W) }.

Suppose (W, S) is a link cobordism from § to (S%, K), with by (W) = b (W) = 0. For C €
Char(W), let

_CP4by(W) —2¢(C,[S]) + 2t[S] - [5]
= T ,
where [S] € Ho(W) 2 Hy(W,0W). Furthermore, for s € Spin®(W), we write

Ht(Wa [5]70) :

Hy(W,[S],8) == H (W, [S], e1(s)).
If t € [0,2], we define the M -degree of (W, .S) to be the function

Mw,s)(t) == CGéﬂi?(W) —Hy (W, [S],C) +t-g(9).

Definition 7.3. Suppose that K is a knot in S3, and S, S’ € Surf(K). We say that S = {Si,...,S,}
is a generalized stabilization sequence from S to S’ if the following hold:

(1) Each S; = (W;,S;) is a link cobordism bounding (S?, K), such that S; is connected and
by (W;) = by (W;) = 0.

(2) & = (B* S) and S,, = (B4, 9").

(3) Up to diffeomorphism fixing S* pointwise, S;;1 is obtained from S; via a generalized stabi-
lization or destabilization.

We write Py (.5, S") for the set of stabilization sequences connecting S and S’.

Definition 7.4. Let K be a knot in S? and suppose S, S’ € Surf(K). Given a stabilization sequence
S§={81,...,8,} from S to S’, we define the M-degree of the sequence S to be the function

Mg(t) (= max M(Wz,Sz)(t)

1<i<n
Furthermore, the M-distance of S and S’ is the function Mg g/ : [0,2] — R=9 defined by

M(S,S’)(t) = min Mg(t)
SePs(S,5")

For each t € [0,2], the quantity Mg s+ (t) is a metric filtration on Surf ().
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7.2. The M-metric and Y. In this section, we prove the following:
Theorem 7.5. If K is a knot in S® and S, S’ € Surf(K), then
T(s,51)(t) < M(s,s1)(2).

The proof of Theorem 7.5 is similar to the proof of Theorem 5.13, our bound on 7. It is con-
venient to introduce the following notation. Suppose (W, F): (Y1,L;) — (Y2,L2) is a decorated
link cobordism, and s € Spin®(W). Write F = (S,.A). If s|y, is torsion and L; = (L;, w;,2;) is
null-homologous for ¢ € {1,2}, we define the quantities
c1(8)? —2x(W) — 3a(W)

4

1
Gw(W, F,s) := +x(Sw) = 5 (fwi| + |wal)

and
(s — PD[S])* = 2x(W) — 30(W)
4

Gu(W, F,5) = &
For ¢ € [0, 2], we define

(1] + |z2))-

1
+ X(Sz) - 5

t t
2) -Gw(W, F,s) + 3 G.(W, F,s).

In the case when (W, F) is a cobordism from () to (S3,K) with b5 (W) = b1 (W) = 0, and the
dividing set A consists of a single arc that divides S into two components, we have

01(5)2 + bQ(W) 81(5 — PD[SDQ + bQ(W)

G¢(W, F,s) = (1 -

Gw (W, F,5) = 1 —2¢9(Sw) and G,(W, F,s5) = 1 —29(Sy).
In this situation, we also have
(7.1) Gi(W, F,s) = H(W,[S],5) = (2= 1) - 9(Sw) — - 9(Sz).

We now compute the effect of a generalized stabilization; cf. Lemma 5.4:

Lemma 7.6. Suppose that (W, F): (Y1,L1) — (Ya,1Ls) is a decorated link cobordism with by (W) = 0.
Write F = (S, A). Suppose that (W', S") is a generalized stabilization of (W, S), obtained by cutting
out B* CW and gluing in a link cobordism (Xo, So) with by(Xo) = b3 (Xo) = 0, as in Definition 7.1.

o~

Let Dy, ..., D, denote the components of S N B*, and suppose that D C S is a disk that contains
each of Dy, ..., Dy, and intersects A in a single arc. Define

Sh:=(D\ (D1U---UD,))USp,
and suppose that A" is a dividing set on S’ that intersects S{ in a single arc, and agrees with A
outside D. Write F' = (S", A’). If ' € Spin®(W’) agrees with s € Spin®(W) on W \ B%, then

Fyr g ~U PV =22 Ry £
where dy := Gw (W', F',s") — Gw (W, F,s) and dy := G,(W',F',s") — G,(W, F,s).
Proof. Let Dy denote the punctured disk D\ B*. We write N(Dy) for the total space of the unit
normal disk bundle of Do in W\ B%, and let

Wy := N (Do) U B* and W[, := N(Dy) U Xo.

Note that Wy and W{ are topologically obtained from B* and Xy, respectively, by attaching a
collection of 4-dimensional 1-handles. Write Y := 0W, = 9W/. We can view (W, D) and (W[, S))
as undecorated link cobordisms from the empty set to the knot

K:=0D x {0} =5 NY C N(Dy)
in Y. As in Lemma 5.4, the knot K is an unknot in Y, since we can explicitly construct a Seifert

disk Dg. Let us write Fy = (D,.A) and F} = (S}, A').
Suppose s = s#t, for t € Spin®(X). Consider the quantity
(c1(s"),[90 U Dk]) — [Sp U D] - [So U D]

h(SéUDK,E/) = 5 .
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If h(Sy U Dre,s") + g(S5.2) — 9(Shw) = 0, then, according to Lemma 5.3,

(7.2) FW(,)’F(,]’E,‘W(/) ~ 9(S0,w) 1/ 9(50,,)+h(SUDK ,87) | (FW(;,s/\Wé ®@F[U,V]) mod H{(Y),
while
(73) FW07]:075|W0 = (FW0,5|WO ® F[Uv V]) mod Hl(Y)

Up to diffeomorphism, we can write Wy and W/ as the compositions
Wo = W, o B* and W} = W, o X,

where W, 2 (I x S%) U N(Dy). We note Wy is a 1-handle cobordism.
The map
Fx,: HF~(S*) — HF~(S?)

is an injection since by (Xo) = b3 (Xo) = 0, by the proof of [35, Theorem 9.1]. The map Fx, ¢ has
grading
c1(t)® + ba(Xo)

1 )
and hence must be chain homotopic to multiplication by U-
(7.4) Fuvga)y, 0 Fxou 2 U Fyy, oy, 0 Fpisl o 2 U Fiyg g -

Write Wy := W\ Wi. The inclusion Hy(Y) — H;(Ws)/ Tors is trivial, since Y is the boundary
of a 4-dimensional 1-handlebody in W. Similarly, the coboundary maps H'(Y) — H?*(W) and
HY(Y) — H?(W') are both trivial. Hence, combining equations (7.2), (7.3), and (7.4), and using
the Spin® composition law, we conclude that

|~ U= 4/2+0(S5 )y~ /2 h(SpUD s 5 )+9(S)

d:=

4/2 Hence

= FWl,ﬁ\Wl

Py 71 4 ). Fw.r.s.

It is easy to see that
d 1
5 +9(So.w) = —3 (Gw(W', F',5") — Gw (W, F,s))

and
d 1
—5 Sy U Dk, 8) +9(Sp,) = =5 (Gu(W', F'8') = Go(W, T 5))
which completes the proof in the case when h(Sy U D, s') + g(Sp.,) — 9(Sh w) > 0.
The proof when h(Sy U D, s") + 9(S5 ,) — 9(Sh ) < 0 is an easy modification, using the corre-

sponding subcase of Lemma 5.3. O

Lemma 7.6 also immediately computes the effect of a generalized stabilization on the ¢t-modified
versions of the link cobordism maps:

Corollary 7.7. If (W', F') is a generalized stabilization of (W, F) and s € Spin®(W"') restricts to

s on W\ B4, then

! ! ’
tFW/7f/75/ ~ ’UﬁGt(W T8N HGH W T 8) | tFWJ:’g.

We can now prove Theorem 7.5:

Proof of Theorem 7.5. Fix t € [0,2]. Suppose S = {81,...,8,} is a stabilization sequence connect-
ing (B%,S) and (B%,5"), and write S; = (W;, S;). Decorate each S; with a dividing set A; consisting
of a single arc, such that the type-w subregion has genus 0, and the type-z subregion has genus
9(S;). We can assume the dividing arc is very near to the knot K, and the the type-w subregion is
unaffected by any of the stabilizations. Write F; = (5;, A;).

Let us call a sequence § = {s1,...,8,} of Spin® structures on W7, ..., W,,, respectively, a stabiliza-
tion sequence if, whenever (W;11,S;+1) is obtained by stabilizing (W;, S;) with the negative definite
link cobordism (X, Sp), the Spin® structure s,4; can be written as s;#t; for t; € Spin®(Xy). We
require an analogous condition whenever W, is a generalized destabilization of W;. We define

M§7§(t) = 11;113‘5{”( _Gt(Wi7fi75i) = 11%151%% _Ht(Wia [Sz]a5z) +t- g(Sz)y
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where the second equality follows from equation (7.1) and the fact that ¢(S;w) = 0 and ¢(S; ) =
9(5).
By Corollary 7.7, if § = {s1,...,5,} is a stabilization sequence of Spin® structures on Wy, ..., W,
then all of the elements
ng’g(t)—i_Gt(Wi’]:i?si) ’ [tFWia-Fi75i(]‘)]

coincide in tHFK ™~ (K). In particular,
(75) UMS-,;(t)*t'Q(S) . [tFS,z(l)] _ ,UMS-’g(t)*t'Q(S’) . [tFS",z(l)]y
as Gy (W1, Fi,81) = —t - g(S) and G4(W,,, Fpn,8,) = —t - g(5).

Suppose that (W;i1,S;41) is obtained by stabilizing (W;,S;) using the negative definite link
cobordism (Xo, Sp), and s; € Spin®(W;) and t; € Spin®(Xy). Then

H (Wit Xo, [Si] + [Sol, si#tts) = Hi(Wi, [Si], 5:) + Hy(Xo, [So], ti).

Hence, the Spin® structure s;#t; minimizes —H;(W;11, [Six1],8:#t) for a fixed ¢ if and only if
5; minimizes —Hy(W;, [S;],s;) and t; minimizes —H¢(Xo, [So],t;). It follows that we can always
construct a stabilization sequence of Spin® structures § = {s1,...,5,} such that

—Hy (Wi, [Si],8:) =  min  —Hy(W;,[Si],5) = Mw, s,)(t) —t - g(S;).
s€Spin®(W;)
Then

(7.6) Mg t) = max —Hi(Wis [Sil,80) + - 9(5:) = max Mow, s,)(t) = Mgle).

1<i<n

Combining equations (7.5) and (7.6), we conclude that

(7.7) T(s,5m)(t) < Mg(t)

for any ¢ € [0,2]. Minimizing equation (7.7) over all § € Py (S, ') yields the result. O

8. THE SUMMAND-SWAPPING DIFFEOMORPHISM

If K is a knot in S®, one can construct an order n automorphism of the knot K#", corresponding
to cyclically permuting the summands. In this section, we investigate the case when n = 2, and
compute the induced map on knot Floer homology. We will use this in Section 10 to construct pairs
of slice disks for which we can explicitly compute the secondary invariants defined in Section 4.

8.1. Construction of the diffeomorphism map. If K C S? is a knot, there is a diffeomorphism
R™: (S*, K#K) — (S*, K#K)

that switches the two summands of K# K. In fact, for an appropriate embedding of K#K into S?,
the diffeomorphism R™ can be realized as an order 2 rigid motion of S3: Isotope K into the y > 1
half-space of R? C §* = R3U{oo} such that the line segment I :=[-1,1] x {(1,0)} € K. For ¢ € R,
let R¥ be p-rotation about the z-axis. If we let K# K be the equivariant smoothing of

(K\I)UR™(K\ I)UR™?(I)U R ™3I,
then R™ is an orientation-preserving automorphism of (S?, K#K).
In particular, the knot K# K is 2-periodic, and has no fixed points. We pick two basepoints, w,
z € K\ I, such that w follows z with respect to the orientation of K. We let w’ and 2’ denote their
images on R™(K \ I) under the map R™. We write K = (K, w, z) and K#K = (K#K,w, z).
We define the element
R™ := po R™ € MCG(S?, K#K,w, z),
where
p: (S5, K#K,w',2) = (S* K#K,w, 2)
is a half-twist diffeomorphism in the direction of the knot’s orientation that swaps the pairs (w, 2)
and (w’,2’). We note that the diffeomorphism (R™)? is isotopic to a full Dehn twist along K#K.
Hence, by [54, Theorem B],

(8.1) (RT)? ~ id +X#K o gh#K
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where ®X#K and WE#K are the basepoint actions on CFL™ (K#K) described in Section 3.2; see also
the work of Sarkar [47].

Remark 8.1. Note that any F[U, V]-equivariant homotopy equivalence

CFL> (K#K) ~ CFL”(K) & CFL>® (K)
will intertwine ®X#K (vesp. UX#K) with &, ® id +id ®®,, (resp. ¥, ® id+id®W¥,), up to chain
homotopy. This is because if C' and C’ are free chain complexes over F[U,V] and F: C — C’ is a

chain map, one easily shows that F'o ® ~ &' o ', where ® and ®’ are the algebraic analogs of the
map ®,, on C and C’.

We now wish to compute a formula for the chain homotopy type of the induced map R}. Note
that there is a filtered chain map

Sw: CFL™(K) ® CFL™(K) — CFL™(K) ® CFL™(K),

obtained by switching the two factors. Note that Sw cannot be chain homotopic to R”™, since
Sw o Sw = id, which would violate equation (8.1). In this section, we prove the following:

Theorem 8.2. Let K = (K, w,z) be a doubly-based knot in S, and consider the doubly-based knot
K#K = (K#K,w,z) defined above. Then there is a filtered chain homotopy equivalence between
CFL™® (K#K) and CFL™ (K) @re CFLY(K) that intertwines R} with

Swo (ld®id+id®(P, o V,) + ¥, @ &) .
Remark 8.3. We say the endomorphisms F' and G of a chain complex C' are homotopy conjugate if

there is a homotopy automorphism A: C — C such that FFo A ~ Ao G. It is not hard to see that
the four maps

Swo (id®id+id®(Py o ¥,) + ¥, ® D)
Swo (ld®id+id®(Py, o V,) + P, @ V)
Swo(ld®id+(Py o ¥,) ®id+V, ® D),
Swo (id®id +(Py o ¥,) ®id+P, @ ¥,)

are all homotopy conjugate endomorphisms of CFL™(K) @ CFL*(K). Indeed, the map A can be
taken to be one of the maps Sw, id ®id +®,, ® ¥, or id®id +¥, ® ®,,, since ®2 ~ 0, U2 ~ 0, and
D,oV, ~V,0d,.

9

)

8.2. Proof of the formula for the summand-swapping diffeomorphism map.

Proof of Theorem 8.2. Let us write K#K = (K#K,w, z), where w and z appear on the right copy
of K. Let w’ and 2’ denote their images under R™, on the left copy of K. We define our connected
sum map
E: CFLZ® (K#K) — CFL®(K,w', 2") @re CFL®(K)

as the composition

E = F5, FET], e
where Fs, denotes the 3-handle map induced by the framed 2-sphere Sy that separates the two
copies of K after the band surgery along B. A schematic of the link cobordism corresponding to £
is shown in Figure 8.1.

The map E is a chain homotopy equivalence. Indeed, F is the map induced by a pair-of-pants
link cobordism in a 3-handle cobordism that is diffeomorphic to the reverse of one of the two
connected sum cobordisms constructed in [56, Section 5] (in fact, it is diffeomorphic to the link
cobordism inducing the map F7, described therein). According to [58, Proposition 5.1], the map E
is a chain homotopy equivalence, and a homotopy inverse is given by turning around and reversing
the orientation of the cobordism.

Expanding the definitions of E and R™, and observing that p o R™ and R” o p are equal as
automorphisms of (S3, K#K), we have

(8.2) ERT ~ F5,FAT,, ,R7p..
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FIGURE 8.1. A schematic of the map F := Fs, FAT.,

w’,z' "

A decomposition of the
surface is shown, corresponding to the factors of Fg and T, ;r,’z, in E. The 3-handle
map Fg, is not shown.

We note that, for the doubly-based knot p(K#K) = (K#K,w', 2’), we have

(8.3) TS . RI~RIT},

by the functoriality of the quasi-stabilization operation. Similarly,

(8.4) FERT ~ RTF%,

since the diffeomorphism R™ preserves the connected sum band B setwise. Finally, we note that
(8.5) Fs, R ~ Sw Fg,,

since the framed sphere Sy is fixed setwise by R™. We remark that, in equation (8.5), R™ reverses
the orientation of the framed 2-sphere S,, though this has no effect on the cobordism map.
Applying the relations from equations (8.3), (8.4), and (8.5) to equation (8.2) yields
(8.6) ER] ~ Sw FgQFgTJyzp*.
Next, we examine the expression Fg,F’ ETJ’Zp* appearing in equation (8.6). We perform the
following manipulations:
Fs, FET} p« ~ Fs, FET} .S, T (equation (3.11))

~ F5, FETS, . + Fs, FES) T, T (equation (3.12)).

w,z w2z w2’

(8.7)

Next, we compute
Fs, FgS) T, TS .~ Fs,F§Sy S, W.TS . (equation (3.7))

w,zTw,zTw,z w,z~Mw,z
o~ F§2F§<I>w\IIZTJ,,Z, (equation (3.8)).

We note that \IIZITQIJ‘—/,Z, ~ 0, since ij/,z’ o~ \IIZ/S;:,’Z, and W2, ~ 0 by equations (3.6) and (3.3).
Hence

(8.8)

(8.9) FSQFIZBCI)U,\IJZT;C,Z, ~ F5, F£D,, (¥, + \Ifz/)T:Ur,’Z,.
From equations (3.13) and (3.15), we conclude that
(8.10) Fs, FE®, (V. + V)T, ~ F5, @, (V. + V. )FET,, .
Finally, we note that ®,,, ¥,, and ¥, commute with Fs, by [58, Lemma 8.3], hence
(8.11) Fs, @0 (V. + V) FET,, .~ (d@(PuV.) + V. @ o) Fs, FET,, .
Combining, equations (8.7)—(8.11), and using the fact that E := Fg, FET;F,’Z,, we see that
(8.12) Fs, FET) pu ~ (id®id+id @, V. + V. @ Oy E.

By applying Sw to equation (8.12), and combining it with equation (8.6), we obtain that
ERT ~ Sw(id ®id +id @0, U, + U,/ ® &) E.

Upon relabeling w’ and 2’ as w and z, we obtain the formula in the statement. |
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9. THE TRACE FORMULA
If (Y,L) is a multi-based link, the identity decorated link cobordism
(Wia, Fia): (Y,L) = (Y, L)

is constructed by decorating (I x Y, I x L) with a dividing set A = I x p, where p C L consists of
one point in each component of L\ (w U z).

By changing which ends of (Wiq, Fiq) are designated as incoming or outgoing, we get two other
decorated link cobordisms, which we denote by

(Wi, For): (=Y UY,—LUL) -0 and (Weotr, Feotr): 0 — (Y U =Y, LU -L).

The R-module CFL> (=Y, —L,s) is canonically isomorphic to Homge (CFL(Y,L,s), R*), and
hence there is a canonical trace pairing

tr: CFL™ (=Y, —L,s) @re CFLT(Y,L,s) = R™.
Similarly there is a canonical cotrace map
cotr: R™ — CFL>®(Y,L,s) @re CFLZ (=Y, L, s),
obtained by dualizing the trace pairing. In this section, we prove the following:
Theorem 9.1. The trace and cotrace cobordisms induce the canonical trace and cotrace maps:

Fw,, ros>tr and Fw,,. F

cotrs/ ¢

oer,s = COtI .

Our proof of Theorem 9.1 is similar to the proofs of [55, Theorem 1.6] and [22, Theorem 1.2].

9.1. Heegaard triples and link cobordisms.

Definition 9.2. We say that (X, «, 3,7, w, z) is a Heegaard link triple if (X, o, 3,~) is a Heegaard
triple diagram decorated with two disjoint collections of basepoints, w and z. Furthermore, for each
o € {a, 3,7}, each component of ¥\ ¢ is planar, and contains exactly one w basepoint, and exactly
one z basepoint.

We remark that such a Heegaard triple is called a doubly multi-pointed Heegaard triple in [58]. If
(3, o, B,7v,w,2) is a Heegaard link triple and o,n € {a, 3,7}, then we write (Y, ,,L,,) for the
multi-based link defined by the diagram (X, 0,1, w,z). There is a decorated link cobordism

(Xa,87vsFa87)t (Ya,8U Y5, La s ULgs) = (Yaqy, Lay),

described in [22, Section 9.4], which is a refinement of the construction from [39, Section 8.1]. The
4-manifold X, 3 - is constructed as the union

Xa’ﬁﬁ = (A X Z) @] (ea X Ua) @] (65 X Uﬂ) @] (67 X U,y),

where U, Ug, and U, denote handlebodies with boundary ¥, with compressing curves o, 3, and -,
respectively.

The decorated surface Fo 34 = (Sa,8,y:Aa,8,y) is constructed as follows. We pick embedded
paths in ¥\ e, ¥\ 3, and X \ v connecting the z-basepoints to the w-basepoints, and then push
the interiors of these arcs into the interior of U,, Ug, or U, respectively. We obtain three sets of
properly embedded arcs £, C Ua, £g C Ug, and €, C U,. The surface S, g, is defined as

Sapy = A x (wUz))U (eq x o) U (eg x €3) U (ey x £y).

To obtain A, g, choose subsets p, C fa, Pg C {5, and p, C £, consisting of one point in the
interior of each component of ¢/, {3, and ¢,, and set

Aapy = (€a X Po) U (eg X Pg) U (ey X P,).



66 ANDRAS JUHASZ AND IAN ZEMKE

Theorem 9.3. If (X, «, B,~,w,z) is a Heegaard link triple, then the cobordism map Fyy,
is chain homotopic to the holomorphic triangle map

Fa’57715: CFEOO(E? a? /67 W? Zas‘Yaﬁ) ® CIT'Z:OC(E; ﬁ’ﬁy} W7 Z75|YBW’Y) — cfﬁoo(z, Ot»')’, W, Z;E‘Ya,»y%
defined by the formula
Faprs(x@y)i= Y S EM) Uy
z€TNT, YET2(x,y,2)

w()=0
Sw (1[)):5

By Fa,B,y:8

forxeToNTg andy € TgNT,.
We now demonstrate that the trace formula follows quickly from Theorem 9.3:

Proof of Theorem 9.1. We will focus on the claim that Fw,, 7, s = tr. The claim about the cotrace
cobordism follows from the formula for the trace cobordism. Indeed, if (W, F) is a decorated link
cobordism from (Y7,L;) to (Y2,Ls), and
(Wv,fv)i (—YQ, _LQ) — (—Yl, —Ll)
is the cobordism obtained by turning around (W, F), then it is straightforward to adapt the proof
of [40, Theorem 3.5] to see that Fyyv rv 5 is equal to the dual map
(FWJ."s)v : Homp~ (C]:EOO (Y27 L2,5|Y2>, Roo) — Homp (C]:L‘OO (Yl, ]L175|y1), ROO)

To establish the formula for Fy,, 7, s, we pick a diagram (X, o, 3, w,z) for (Y,L), as well as a
small Hamiltonian translate B’ of 3, and we consider the Heegaard triple (%, 3, a, 3, w,z). The
decorated link cobordism (Xg o8, Fp,a,p) is in fact equal to (I x Y, I x L) with a neighborhood of
{%} x Ug removed. Hence, using Theorem 9.3 and the composition law, we can write

(9.1) Fw, Fos(x@y) = (Go Fgraps)(x®Y),
where x € Tgr N T, and y € T, N Tg, and G is a composition of 3-handle and 4-handle maps. The

map G takes the form
1 ife=07,
Ge)y=q.
0 otherwise

for © € Tg N Ty, and extended R>°-equivariantly. On the other hand equation (9.1) says that
Fw,..Fu.s(Xx®y) is exactly equal to the count of Maslov index 0 holomorphic triangles with vertices
x,y, and O 5. Note that ©5, ; = @EB,, and that the transition map

Q5 5 CFL® (N, o0, B, W, Z,5) — CFL® (3, o, B, W, 2, 5)

can be computed via the triangle map Fi, g g/ s(— ® @;g 5,). Observing that Fi, g g s and Fgr 85
count the exact same holomorphic triangles, we conclude that

Fw, Fos(x@y) = tr(x @ ®5_,5.(y)),
completing the proof. O

9.2. Compound 1- and 3-handle maps and some related counts of holomorphic curves.
Suppose that (X, a, 3, w,z) and (2, &, ¢, wo,2¢) are two multi-pointed Heegaard diagrams, and
that we have a choice of injection

11 Wo — Z.
Suppose further that (X, &, ¢, wo, zo) satisfies the following:

(D1) The curves & can be related to the curves ¢ by a sequence of isotopies and handleslides in
the complement of wg and zg.

(D2) Each wp-basepoint is contained in the same region of g \ (£ U ) as a zg-basepoint.

(D3) & N¢;| = 26,5, and & N ; consists of two points that have relative Maslov grading 1.
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Note that condition (D1) implies that (X, &, ¢, Wo,2o) is a diagram for an unlink U in (S x
§2)#9(30) " each of whose components contains exactly two basepoints. Condition (D2) implies that
gr,, (x) = gr,(x) for any intersection point x € T¢NT,. Finally, condition (D3) implies that there is a
top-graded intersection point @ ec € T¢NT¢, and a bottom-graded intersection point @ ec € TeNTe.

We form the surface X#;3% by joining ¥ and X( together with a connected sum tube for each
point wy € wg, which is attached near the points wgy and i(wp). Let us write

z' = (z\i(wo)) Uz.
There is an induced Heegaard diagram (X#;30,c U&,BU ¢, w,2z’).
We define the compound 1-handle map

Fy: CFLY (3, o, B,w,z) = CFLT (1) (S#:50, a UE, BUC, W, 7))

via the formula
Fié(x) =xx 0F,

for x € T, NTg, and extended R*>-equivariantly. Here J, and Js(T) are 1-parameter families of
almost complex structures on X X [0,1] x R and (Z#;%g) x [0,1] x R, respectively, that we will
describe shortly.

Similarly there is a compound 3-handle map

F5: CFLY (1) (S#:80, € UE, BUC, w, 7)) — CFLT (S, e, B, W, 2),

defined via the formula

x if©®= 96_0

F5S(x % 0):= { ¢
0 ifO#6,,
for x € T, NTs and © € T N T¢, and extended R°°-equivariantly.

We now wish to show that the compound 1-handle and 3-handle maps are chain maps. This
involves an argument involving analyzing how holomorphic curves behave as one degenerates the
almost complex structure. Lipshitz’s cylindrical reformation of Heegaard Floer homology [26] pro-
vides the technical framework necessary to perform the analysis. Let us write n = |wg|, the number
of connected sum tubes we add. Given almost complex structures J; and J. on ¥ x [0,1] x R
and Yo x [0,1] x R that are split in a neighborhood of the connected sum points, as well as an
n-tuple of positive numbers T = (T4,...,T),), we can form an almost complex structure J5(T) on
(X#,:%0) x [0,1] x R by inserting necks of length T7, ..., T, along the connected sum tubes.

Proposition 9.4. Suppose that (X0, &, ¢, Wo,20) is a Heegaard diagram satisfying conditions (D1),
(D2), and (D3). If T is an n-tuple of neck lengths, all of whose components are sufficiently large,
the compound 1-handle map Ff‘c and the compound 3-handle map F§‘C are chain maps.

Proposition 9.4 follows from a careful analysis of how holomorphic curves in (X¥#;3¢) x [0,1] x R
degenerate as one sends all components of T to +oo, simultaneously. The technical details of the
proof can be found in [55, Proposition 6.1].

There is an analogue of Proposition 9.4 for the holomorphic triangle maps, which we will need for
our proof of the trace formula. Suppose that (2o, &, ¢, T, W, 20) is a Heegaard link triple satisfying
the following;:

(T) All three sub-diagrams of (Xg, &, ¢, T, wo, Zo) satisfy conditions (D1), (D2), and (D3).
Note that condition (7T') implies that there are top-graded intersection points @ZC’ @5 > and ®< i
as well as bottom-graded intersection points @f o @;rv and G)C_,T

Suppose T = (X, a, 8,7, w,z) and Ty = (20, &,¢{, T, Wo,20) are Heegaard link triples such that
the latter satisfies condition (7T) above, and that we have a fixed injection

11 Wo — Z.
We can construct a surface X#;%( as we did before, as well as a Heegaard link triple

T#,]B = (E#lEOaa USvﬁ U Cv’y U vaazl)v
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where 2’ := (z \ i(wg)) U zo.
Using a Mayer—Vietoris argument, it is not hard to see that there is an isomorphism

Spin®(Xaug,puc,yur) = Spin(Xa,p,4) % Spin®(Xe ¢ 7)),

under which swyw, (W#10) is identified with (sw (), Sw, (¥0)). For triples (Xo, &, {, T, Wo, zg) satis-
fying condition (T'), the 4-manifold X¢ ¢ » becomes #9(30) (S x §%) once we glue in 3- and 4-handles
along the boundary. In particular, there is a unique Spin® structure sy € Spin®(X¢ ¢ ) which re-
stricts to the torsion Spin® structure on all three boundary components. If s € Spin“(X, g,,), there
is thus a well-defined Spin® structure s#so € Spin®(Xaue guc,yur)-

The holomorphic triangle counts from [55, Proposition 6.3] carry over to our present situation
without change to imply the following:

Proposition 9.5. Suppose that T = (X, ¢, 8,7, w,2) and To = (X0,&,(,T,Wo,2o) are Heegaard
link triples such that the latter satisfies condition (T'), and i: wog — z is a chosen injection. Let
T+#7To denote the Heegaard link triple described above. Then, for a tuple of sufficiently large neck-
lengths T, the following hold:

Prom s (1) stiso (FL (<) @ FY7 (=) = FY T Pr yo(— @ —),
Fy Fropge s (m) o0 (FY ¢ (<) ® =) = Pr.e(— © F57(=)),
F5 T Frgpgy s (T).sstso (— @ FY7(=)) = Pr o (F§ (=) ® —).
Remark 9.6. Consider the special case when

(20a£7 Cy T7W07Z0) = (82767 CvTv {w0= ’LU(/)}, {ZO7 26})

is a Heegaard triple where wg and zp, and also wj, and z{, are adjacent, and where any two of &, ¢,
and 7 intersect in two points. Then Propositions 9.4 and 9.5 imply more standard relations between
the holomorphic disk and triangle counts, and the 1-handle and 3-handle maps, for 1-handles with
feet attached near the z basepoints on the original Heegaard diagram. Compare [40, Theorem 2.14]
and [53, Lemma 8.5 and Theorem 8.8].

Finally, we need an additional holomorphic triangle count, due to Manolescu and Ozsvath [29,
Proposition 6.2], which is useful in the proof that the quasi-stabilization maps are well defined.
Suppose that 7 = (X, ¢, 3,7, w, z) is a Heegaard triple, and write A for a distinguished component
of ¥\ a. Let w and z be the two basepoints in A. Suppose a; is a simple closed curve in A that
divides A into two components, one of which contains w, and the other contains z. Let p € as\(BU~)
be an arbitrary choice of point. We form the quasi-stabilized Heegaard triple 7+ via the formula

TH:=(S,aU{a},BU{Bo},vU {10}, wU{w},zU{z}),

where ag, 8o, Y0, wo, and zp are as shown in Figure 9.1. (Compare Figure 3.2). The curves [
and 7o are contained in a small disk centered at the point p. The basepoints wg and zo are both
contained in this disk, and are in the regions bounded by 5y and ~g.

- S~

/’ \\
4 N
’ \
Il \\
0z0
rooov[ v 0= \6%  \ a,
\ I
\ oWy ,’
\ Bo 70 !
\ ’
N //
So 9_ -

S~o e

FIGURE 9.1. The quasi-stabilized Heegaard triple T+ = (2, aU{as}, BU{Bo},yU
{7}, wU{wp},zU{z}) considered in Proposition 9.7.
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Abusing notation slightly, write
asﬂBO:{ewuez}7 asm’YO :{0W792}7 and 50ﬂ’YO:{9+79_}7

where 6% denotes the top gr,,-graded intersection point, and 6% denotes the top gr,-graded intersec-
tion point. When the relative gradings coincide, we write 87 for the top-graded intersection point,
and 6~ for the bottom.

We note that, if (X, a, 8,4, w,z) is a Heegaard triple and (X, aU{as}, BU{Bo},yU {10}, W,2) is
a quasi-stabilization, then the 4-manifolds X4 g, and Xou{ao},8u{80}.1U{+e} are canonically diffeo-
morphic, since the handlebodies U,, Ug, and U, are unchanged after we quasi-stabilize the triple.
In particular,

Spin®(Xa,p,7) = Spin(Xaufao},80160} AUL70})-

We will need the following holomorphic curve count:

Proposition 9.7. Suppose that T = (X, o, 3,7, w, z) is a Heegaard link triple, and T+ is its quasi-
stabilization. Write U for a doubly-based unknot containing the basepoints wg and zg, with Seifert
disk D, intersecting X2 in an arc connecting wg and zg disjoint from By and vg. Then

Tz Frs(x®@y) = Fre (T, ., (%) ® Bj p(y)) and S5, . Fr(x®y) = Fr+ o(Su, 2, (x) @ By p(¥)).

Proof. From the definitions of the maps S} _, T,/ _ . and BHJE’D (see Sections 3.3 and 3.5), the main
claim is equivalent to the claim that

Fra(x0y)x0% = Fre , (x % 0%)  (y x 0%)) and Fro(xay)x0* = Fr, (x x 0%) @ (y x 0%))
which is exactly the statement of [29, Proposition 6.2]. O

9.3. Twisted conjugate Heegaard diagrams for links. Analogous to the proofs of the trace
formulas in [55] and [22], to prove Theorem 9.3, we define a special kind of operation on a Heegaard
diagram for a link, whose result we will call the twisted conjugate of the original. We describe the
construction presently.

If L = (L,w,z) is a multi-based link, we write L for the multi-based link (L, z, w), obtained by
switching the roles of the basepoints. Given a Heegaard diagram H = (¥, o, 3, w, z) for (Y,L), we
can obtain a diagram for (Y, L) by reversing the orientation of 3, and switching the roles of o and 3.
The resulting diagram H := (%, 3, @, z, w) is referred to as the conjugate of H; see [38, Section 2.2]
and [13, Section 6.1].

To obtain a diagram for (Y,ILL), we can modify the embedding of ¥ in a neighborhood of L. By
isotoping ¥ along L in the positive direction according to the orientation of L, we obtain the positive
twisted conjugate diagram Tw™(H). Analogously, if we twist in the negative direction, we obtain

the negative twisted conjugate Tw™ (H). The diagrams Tw™ (H) and Tw™ (H) are illustrated in

Figure 9.2. We write Tw™(¥) and Tw™ () for the underlying Heegaard surfaces of the twisted
conjugate diagrams.

9.4. Doubling Heegaard diagrams for links. An additional type of operation on Heegaard
diagrams we will encounter in the proof of Theorem 9.3 is doubling. In the case of links, if
H= (3o B,w,z) is a diagram for (Y,L), then there are four natural variations of the doubling
procedure, producing four diagrams

(9.2) D%(H), D%(H), D¥(M), and DY(H).

For our purposes, it will be sufficient to consider any one of the four diagrams in equation (9.2). We
focus on DZ(H), whose construction we describe presently.

We first construct the underlying Heegaard surface D?%(X). Let N(X) = [—1,1] x ¥ denote a
regular neighborhood of ¥ in Y. Let N(z) denote a regular neighborhood of the basepoints in ¥,
which is a collection of disks, and let us write

Yo : =X\ N(z).

We define
D2 (%) = 0([~1,0] x Zo).
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Tw™ (H) Tw* (H)

FIGURE 9.2. On top, we show a link diagram H, and its twisted conjugates Tw™ (H)
bottom left and Tw™ (H) bottom right.

We can view DZ () as being formed by gluing a copy of £\ N(z) to £\ N (z) along their boundaries.
Note that D7 (X) N L consists of the original basepoints w C ¥, as well as another collection of
basepoints z’, which are the images of w on X.

We now describe the attaching curves on DZ ((X). Let m = |w| = |z]. We pick embedded and
pairwise disjoint arcs A1,..., A, on X, each traveling from a z-basepoint to a w-basepoint. We
assume further that each basepoint in w U z is an endpoint of exactly one A;. We assume that the
interiors of the \; are disjoint from w U z.

Next, we pick a collection A of subarcs of 9%, such that each component of 0%y contains exactly
one subarc. We further require that A be disjoint from each \;. Pick a collection dy,...,d, of
properly embedded and pairwise disjoint arcs on ¥, that have both boundary components on A, are
disjoint from the A;, and such that they form a basis of Hy(3, A4).

By doubling the arcs d, ..., d, across the connected sum tubes onto all of D% (%), we obtain n
pairwise disjoint simple closed curves 6y, ..., d, on D% ((X) that do not intersect the arcs \;. Let us
write

A ={b1,...,0n}
We can now define an initial version of the doubled diagram as
DZ o(H) = (D7 o(2), U B, A, w,2),

where 3 is the copy of 3 on X.

Via an isotopy of Y supported in a neighborhood of L that fixes w, we can move z’ to z. We let
D7 (X) denote the Heegaard surface obtained by isotoping D% (%) in such a manner. The diagram
D?(H) is similarly obtained by pushing forward the attaching curves on DZ%(?) under such an
isotopy; see Figure 9.3.

A diagram DE(H) can be constructed using a variation of the above construction, by having
[0,1] x (3\ N(z)) play the role of the 8-handlebody. Diagrams D} (#) and D} (H) can be defined
similarly, by instead adding tubes near the w-basepoints.

We now proceed to show that DZ(H) is a valid Heegaard diagram for (L, w,z). Note that it is
clearly sufficient to show that D7 (H) is a valid Heegaard diagram for (L, w,z’). To this end, we
prove the following fact about the A curves:

Lemma 9.8. The curves d1,...,0, are homologically independent in both Hy (D7 ,(X)\ N(w)) and
Hy (D7 0(2) \ N(2)).

Proof. Let p; denote the point \; N 9%, and write p = {p1,...,pm}. Since the \;, as well as their
images on X, are disjoint from the §;, if follows that ¢i,...,6, are homologically independent in
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H _@% / D%, o(H)
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FIGURE 9.3. The link diagram H = (3, a, 3, w, z) is shown top left, the preliminary
double DZ ,(H) top right, and the double DZ(#) at the bottom. The curves A
bounding disks in the B-handlebody of DZ%(H) (i.e., the region between the two
copies of ¥) are not shown.

Hy (D7 5 (X)\ N(w)) if and only if they are independent in H; (D7 (¥)\ N(2z')), which in turn occurs
if an only if they are homologically independent in H; (D7 (3)\ N(p)). Noting that DZ ,(¥)\ N(p)
can be viewed as £ glued to ¥ along the arcs A, we consider the sequence

(9-3) Hy (D7, 6(8) \ N(p)) = H1(D7 o(2) \ N (p), Zo) — Hi(Xo, A).

Here, the first map is induced by inclusion, and the second is the inverse of the excision isomor-
phism. Since the curves d1,...,d, are mapped to di,...,d, by the composition of the two maps
in equation (9.3), which are homologically independent in H; (X, A), we conclude that the curves
d1,...,0, are also homologically independent. O

Lemma 9.8 implies that A is a valid set of attaching curves on D% ((X), as the following basic
lemma demonstrates:

Lemma 9.9. Suppose that X is a connected surface-with-boundary, and 61, ...,0, C Xg @s a col-
lection of pairwise disjoint simple closed curves, with n = g(Xo) + |0%0] — 1. Then each component
of 3o\ (61 U---Udy,) is planar and contains exactly one component of 0%¢ if and only if 61,...,0,
are homologically independent Hy(Xo).

Proof. Assume first that each component of Xy \ (6; U---Ud,) is planar and contains exactly one
component of 0%y. Each curve §; determines two boundary components of 3¢ \ (61 U---UJ,). A
simple Mayer—Vietoris argument for gluing along these two boundary components shows that the
curves 01, . .., 0, are homologically independent in Hy(X).

Conversely, suppose that 1, ..., d, are homologically independent in H;(3). We note that, if any
component of ¥g \ (§; U---Ud,) does not contain a component of 0¥, then we obtain a non-trivial
relation in H;(X() amongst the ¢;. Hence each component of ¥y \ (61 U---UJ,,) contains at least
one component of 0%. If any component C of 3¢ \ (61 U--- U d,) is non-planar or contains more
than one component of 9%, then we can pick a simple closed curve §’ in C such that [§'] is not
in the span of the classes [§;], for §; C 0C. Using a Mayer—Vietoris argument, such a class [¢']
remains homologically independent from the classes [d;] in H;(%), and is clearly disjoint from the
curves 01, ...,0,. However, it is easily verified that the maximal rank of a subspace of H;(3g) on
which the intersection form Qy, vanishes is n = g(Zg) + |0%¢] — 1, so such a curve §’ cannot exist,
since we would obtain a subspace of rank n + 1 on which )y, vanished. Hence each component of
Yo\ (01 U---Ud,) must be planar and contain exactly one component of 9%. O
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9.5. Transition maps and doubled Heegaard diagrams. Suppose that H = (2, o, B, w, z) is
a Heegaard diagram for (Y,L). Let D%(H) = (D?(X),a U B, A, w,z) denote the doubled diagram
from Section 9.4, and let Tw™ (H) = (Tw™ (¥), 8, &, w,z) be the negative twisted conjugate from
Section 9.3. In this section, we describe compact formulas for the transition maps between the link

Floer complexes for H, D%(H), and Tw™ (H).

As a first observation, we note that (DZ (%), BUB, A, w, z) is a multi-pointed diagram for an unlink
in (St x SQ)#g(Z)’ where each component has exactly two basepoints. Hence there is a well-defined
top-graded generator

[@;LJB,A] € HFL™ (DZ%(H),BUB, A, w,z,5),

where s is the torsion Spin® structure on (S! x S2)#9(3),

Lemma 9.10. If H is a Heegaard diagram and DZ%(H) is its double, then
‘I’HeDg(H)(_) = Fauﬁ,ﬁuB,A(Flﬁﬂ(_) ® @;UBA)'
Proof. The key observation is that the map FF B is equal to a composition of 1-handle maps, while
_ +
Fauppupal=®05 5 4)
is chain homotopic to the 2-handle map for a collection of 2-handles that cancel the 1-handles which
were added by Flﬁ . See [65, Proposition 7.2] for a detailed proof of a closely related result. |

Next, we need a simple formula for the transition map from Tw™(H) to DZ%(H). A handle
cancellation argument yields the following:

Lemma 9.11. There is a chain homotopy
D 1 (31)= Dz (1) (=) = Fatgavaa (F1 (=) @ ©F 5 A)-

Finally, we describe a formula for the transition map from DZ(H) to H, which is essentially just
the dual of Lemma 9.10. Suppose D1, ..., D, are compressing disks attached to the ¥ portion of
Y.#,% that bound the curves in 3. If we surger X#;,% along the 3 curves using the compressing disks
Dy, ..., D,, we simply obtain the original Heegaard surface ¥ (up to isotopy, relative to LNY). With
this in mind, the handle cancellation argument used to prove Lemma 9.10 implies the following:

Lemma 9.12. There is a chain homotopy
®pz (30 (—) = FY P Fog A pup(— @ ez,ﬂuﬁ)'

9.6. Intertwining maps and connected sums. Suppose that (Y;,L;) for j € {1,2} is a 3-
manifolds with a multi-based link, and H; = (3, aj, B, w;, z;) is a Heegaard diagram for (Y;,L;).
Suppose also we have chosen a bijection i from z; to wo. We can form the generalized connected
sum of (Y1,L1) and (Ya,Ls), for which we write (Y1#,Y2,L1#:L2), by deleting 3-balls centered at
each point in z; and wo, and gluing the boundary components according to our chosen bijection
between z; and wy. The link 1Ly #;ILs is decorated with the basepoints wi and zs.

We can construct a Heegaard surface ¥q1#;29 for (Y1#;Ys,L1#:L2) by adding a connected sum
tube between Y; and Y5 near each basepoint in z; and the corresponding basepoint in wo. We
define

Hi#iHe = (X1#:i22, o U g, B, U By, W1, 22)
for the resulting diagram.
Adapting the construction from [38, Section 6.2], we can define an intertwining map

G: CFL™(H1,81) @proe CFL> (Ha,52) — CFL™ (H1#iHa, 51#52),
via the formula
(94) g(_’ _) = FuanzﬁlUuzﬁlUBz (Fl(y27a2(_) ® P11Bl7ﬁ1 (_))

We now show that the map G is chain homotopic to a link cobordism map. We define the decorated
link cobordism (W, F), as follows. Write z1 = {z1.1,...,21,n} and wy = {wa1,..., w2}, ordered
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such that z; ; and ws ; are paired. The 4-manifold W is obtained by attaching n 1-handles, such that
the 7" 1-handle has one foot at 21.i, and the other foot at wy ;. We construct a surface S inside the
1-handle cobordism by attaching a band inside each 1-handle. We construct a dividing set 4 C S
as follows. For each pair (z1,;,w2,;) we add a dividing arc a; which has one end on Y7, and the other
on Y3, and travels through the 1-handle connecting z1; to wa ;. One end of a; occurs immediately
after z1 ;, and the other end occurs immediately after ws ;. The remaining arcs of A are of the form
I x {p}, for points p € L; U Ly. We define F := (5, .A); see Figure 9.4.

Ly —O
2

FIGURE 9.4. The decorated link cobordism used to define the map G, when IL; and
Lo are both doubly-based knots. The orientation of IL; and Ly is shown.

We define the cobordism map
G = FW7]:.
In the case when L; and Lo are doubly-based knots, using the decomposition shown in Figure 9.4,
we see

(9.5) G~S, . FYF,

w2,2z1

where F; denotes the 1-handle map. More generally, if L; and Ly have many basepoints, the
cobordism map G is a composition of n terms which each have the form shown in equation (9.5).
Note that there is an asymmetry between Y7 and Y5 in the definition of G. At each pair of base-
points we delete, we could instead do a type-z band map, followed by the T}, . quasi-stabilization
map. The corresponding decorated link cobordism is not diffeomorphic to (W, F) (they can be dis-
tinguished by looking at the order in which the boundary components appear on the subsurface Sy,
with respect to the boundary orientation). There is a similar asymmetry also in the definition of G

since the formula defining G is not invariant under switching the roles of Y7 and Y5.
Proposition 9.13. The intertwining map G is chain homotopic to the link cobordism map G.

Proof. The proof is similar to the proof of [55, Proposition 8.1]. The idea is that we exhibit a chain
homotopy inverse of G, which we denote F, and show that

(9.6) EoG~id.

For notational simplicity, we restrict to the case when IL; and Ly are both doubly-based knots. The
proof we present extends to the more general case by an elaboration of notation.
We define the map E via the formula

(9.7) E = FFY S

w2,21"

We note E is the cobordism map for the decorated link cobordism obtained by turning around and
reversing the orientation of the link cobordism used to define G. The fact that £ and G are chain
homotopy inverses of each other follows from [58, Proposition 5.1]. Using equation (9.7), we see
equation (9.6) is equivalent to

(98) F3F§S+ FQ1U()427/@1U0¢27/[31U62 (Flaz’(m ® Flﬁlﬁl) ~id.

w2,2z1
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We pick two curves in the connected sum region of ¥1#3s, which we label as £ and (. The
curve (p bounds a small disk containing the basepoints ws and z1, while £; wraps all the way around
the connected sum tube; see Figure 9.5. We write

&N = {08 ¢00 0%, o 1
where 92:7 ¢, 1s the top gry,-graded intersection point and QES,CO denotes the top gr,-graded intersection
point.

FIGURE 9.5. The connected sum region of 31 #X,.

The map St

w2,21

appearing in equation (9.8) is defined by the equation
St (x) =X X OF 05

w2,z
extended R°°-equivariantly. Similarly, there is a birth map (corresponding to the cobordism map
for a doubly-based unknot being born), given by the formula

+
BT (x) _anﬁoCo’

where 92 ‘ denotes the top-graded intersection point of {y and a small Hamiltonian translate of (j.
Note that to ease the notational burden, we will henceforth not distinguish between a curve and
its Hamﬂtoman translate (though, implicitly, when we are counting holomorphic triangles, we must
translate some of the curves using Hamiltonians).

We introduce the following shorthand notation for sets of attaching curves on 3, #3s:

L:= o3 Uag, M := B, Uas, and R:=p3,Up3,.
We define
Lo = a1 U{{} U and L = a1 U{& U ao,

and we define My, My, Ry, and R, similarly.

By Proposition 9.7,
Sw2 Z1FLMR(FQ2’OCZ( ) Flﬁl’ﬁl(_)) =
Fr, at0,10 (Sih, 2 FY2 % (=) @ BT FV 71 (=),
The band map F} is defined via the triangle count
(9.10) Fg(=) = Fr.,Ro.R.(— @ (Of g X 0F, ¢.))-
We note that

(9.9)

@E g X 0% ¢ =T (@E )

w2,21

by definition, so equation (9.10) reads
(9.11) FE(=) = Fr,ror. (= ® Ty, ., (OF g))-
Combining equations (9.9) and (9.11), and using associativity, we see that
S$2 zlg(fv 7) =
(912) FLS,RD,R (FLS;MO7RO (Swz,leaz,az( ) B+Figlaﬂl(_)) ®T$2721 (@E,R)) ~

Fro o, (85,0 F7 (2) © Fagyror, (BYFPPH(2) @ T, L, (00)) ) -
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Using Proposition 9.7, equation (9.12) becomes
(9'13) FL57M07RS (S;’;Q,Zl F1a27a2(7) ® TJQ,Z1FM1R7R (Ff17ﬁ1 (7) ® ®E7R)> *

The expression Far, g r(—® @E ) is the change of diagrams map for shifting the curves R slightly,
which we can safely delete, since we are already precomposing with a change of diagrams map on
CFL™(Y1,L1,81) ® CFL™ (Y3, Lg, 82). Hence equation (9.13) becomes

(9.14) Frono R (S, o FY2 (<) @ T, L, FV7 ().

wa,21 w2,21

Define the map
TOp&l,ﬂl,ﬁl): arﬁoo(227a21132) — C‘F‘COO(Elwalv/Bl) ®C‘F‘Coo(22aa27/82)

via the formula
+ — Ot
Top(zhﬂlﬂl)(x) T 951#31 X,

extended R*°-equivariantly. Next, we claim

(9.15) T2, BV (2) = FRFFS Toly, 5 5 (=),

21,W2

where
FE]/ : C]—ZOO(Z;L#EQ,MS, RS) — C]—ZOO(Zl#Eg,MO, RS>
is the band map

(9.16) Fg (=) = Fytg 01,7, (T2 10, (O ) © =)

Note that F, is an a-band map, because the handlebody Uy, is playing the role of the a-
handlebody. Furthermore, the quasi-stabilization map T.* appears in equation (9.16) instead

Z1,Ww2
of Tijz,z , because Uy, is now playing the role of the a-handlebody instead of the 3-handlebody, so
the induced orientation of the strands it contains are reversed, and hence, in this handlebody, z;
now immediately follows ws.

It is possible to establish equation (9.15) via a direct holomorphic triangle count. Indeed, by using
Proposition 9.5, one could delete the portion added via the compound 1-handle map, and reduce the
computation to a holomorphic triangle count supported in a disk, involving three isotopic attaching
curves. A holomorphic triangle count could then be performed by using a neck-stretching argument,
as in [58, Lemma 8.6].

A more conceptually enlightening approach for proving equation (9.15), and the approach we take,
is to interpret the maps appearing as cobordism maps and use properties of the link Floer TQFT. We
note that the map Top&h 8,,8,) Can be written as the composition of a single 0-handle map, followed

by |83;| 1-handle maps. After rearranging handles and canceling the 0-handle added by Top&l’ 8.1

with the 1-handle added by Ff“gs, the composition Ffs’gs Top?'21 5,,p1) Can be rewritten as the

composition of the cobordism map F; induced by attaching |3;| 1-handles to Y3, followed by a birth
cobordism map, which adds the doubly-based knot U = (U, w1, 21). Hence, we can write

(9.17) Fyo Topls, 5 5~ BiFr.
Similarly,
(9.18) FPPr~ g

where ¢ is an isotopy of Ya#(S! x §2)#81] that moves the knot in Y3 into the 1-handle region formed
when we attach (21, 84, 3;)-

We can decompose the isotopy ¢ as the composition of an isotopy ¢, which fixes wy and zo
but moves the link, followed by an isotopy 7%t %2 that fixes the link setwise, is supported in a
neighborhood of the link, fixes zo, but moves ws to wy. Using equations (9.17) and (9.18), we see
that equation (9.15) is equivalent to

(9.19) T W, T2 () Py = FY B Fr.

Z1,Ww2 " *
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We now simply note that equation (3.10) implies T}} ,, 7*<*2 ~ T;f _ while equation (3.16) im-

plies FY. B ~ T . (¢0)«. Together, these establish equation (9.19), and hence also equation (9.15).

wi,21

If we substitute the formula (9.16) for F}%, into equation (9.15), equation (9.14) becomes

(920)  Fr, mo.R. (Swz,le{”’a?( ) ® Fagg, . R, (Tzl ws (O ap) ® FE% TOPELgl,ﬁl,gl)(—))) :

By associativity, we see that equation (9.20) is chain homotopic to
(9'21) FLS)MS7RS (FLS7M07 (S{:}_Q,Zl Fla27a2 (_) ® Tz—t,wz (@XLM)> ® F1557£s Toperl,ﬁl,ﬁl) (_))

After post-composing equation (9.21) with the 3-handle map Ffs’gs, and pulling the 3-handle map
inside the outer triangle map using Proposition 9.5, we obtain that the composition E o G is chain
homotopic to

9.22)  Prug (B Froaman, (S5, F0(2) © T2 1, (0840 ) © Tons, 5, ) (7)) -

where 71 U 75 denotes the disjoint union of the Heegaard triples (X1, a1, 81, 3;) and (X2, aa, a2, B5).
Since the outer triangle map is on the disjoint union of 3; and ¥, we direct our attention to the
inner triangle map. We claim that

(9.23) F§S7€3FLS’MO’MS (Swz’zl Fa2v‘3‘2( ) ® TZJ; w2 (G)]J\r/[,M)) = Top?_Ez,az,ozz) '
Note that, by the definition of F}¥, the left-hand side of equation (9.23) is
(9.24) ng,ﬁsF SZ;_Q . Flaz,az.

Our strategy for proving equation (9.23) will be to manipulate equation (9.24) using algebraic
properties of the TQFT until it becomes the cobordism map for the disjoint union of the identity
cobordism I x Y;, and a 4-dimensional handlebody bounding Y, .-

We can write F["*'*? as (¢.)F1, where Fy is a 1-handle cobordism, and ¢ is a diffeomorphism that
moves a small portion of the link near z; into Y, 4,, and sends z; to z;. Note that we can write
¢ as a composition p*1 %2 o ¢y, where ¢y moves a small portion of K near z;, but fixes z1, and
p*r7#2 is a diffeomorphism that is fixed outside a neighborhood of the subarc of ¢¢(K7) containing
z1 and zg, but sends z; to z3. We note that the map p?~#2 satisfies the relation

(9.25) pAT S T

w2,21 7" 22,W2?

by [58, Lemma 4.25]; cf. equation (3.11) and Figure 3.6.
We perform the following manipulation:
Pu Pilﬂw(%)*
(9.26) ~ S T 0, (60)s (equation (9.25))
~ S, . FEB (equation (3.17)),

where U denotes (U, ws, 22). Hence equation (9.24) becomes

(9.27) F§oS FwSt  S-  FYBLF.

w2,21 7 W2,21

We note that the 1-handles of F} can be moved to the left of all the other maps. After moving
Fy to the left, the birth cobordism map B+ becomes the composition of a 0-handle map Fy (which

adds a 4-ball containing U), and the 1-handle map F~***. We also note that S 1Sy = Py by
equation (3.8). Hence equation (9.27) becomes

(9.28) FIFS S Py, FY FS% Fy,

where F| denotes the cobordism map for attaching |as| 1-handles to the 3-sphere added by Fp.
Using equation (3.19), we can reduce equation (9.28) to the expression

F| Fy,
which is clearly just Top&z as,an)? establishing equation (9.23).
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Applying the relation from equation (9.23) to equation (9.22), it follows that E o G is chain
homotopic to

+ +
Frum, (TOP(EQ,OQ,OQ)(_) ® TOp(Elth,Bl)(_)> ’

This holomorphic triangle count appears on the disjoint union of ¥; and Yo, and is clearly just the
tensor product @gfﬁﬁl ® @gsﬁo‘ﬂ completing the proof. O

Remark 9.14. There is another chain homotopy equivalence E’ from the connected sum to the
disjoint union, defined via the formula B’ := F3F&T.} ,.2,- The map E’ corresponds to a pair-of-
pants link cobordism where the type-w and type-z regions have been switched from the cobordism
corresponding to E. One might expect the above argument to also go through using E’ to try to
cancel G, by just replacing each type-T quasi-stabilization map with a type-S quasi-stabilization
map, and replacing each type-w band map with a type-z band map. However, the careful reader

will discover that such a strategy fails at equation (9.15).

9.7. Proof of the triangle cobordism formula. We now prove that the cobordism map induced
by (Xa,8,~, Fa,8,4) is chain homotopic to the holomorphic triangle map:

Proof of Theorem 9.3. A handlebody description of the 4-manifold X, g~ is given in the proof of
[55, Theorem 9.1]. Let fsz denote a Morse function on the handlebody Us compatible with the
attaching curves 8 C ¥, which has ¥ as a maximal level set. The 4-manifold X, g, has the
following handlebody description:

e A 1-handle for each index 0 critical point of fg, with one foot at the critical point in
Us C Yy, 5, and the other foot at its image in Ug C Y3 .

o A 2-handle for each index 1 critical point of fg. The attaching sphere is equal to the union of
the corresponding descending manifold in Ug, concatenated across the connected sum tubes
with its mirror image in Ug. There is a canonical framing specified by taking an arbitrary
framing in the portion in Ug, and mirroring it in the portion in UB~

Let W; denote the 1-handle cobordism, and let W5 denote the 2-handle cobordism. Let F; and
F> denote the intersection of the decorated surface F, g with W; and W5, respectively. Note that
F1 is obtained by attaching a collection of bands, one for each 1-handle, each containing a single
dividing arc that meets both Y, g and Yp . Hence, we can write

(929) FXQ,[S,'yy]:a,ﬁ,'y = FW2,-7'-2 © FWl,]:l'

Let Hop = (3,0, B, w,z), and let Tw™ (Hp~) = (Tw™ (X),7, B, w, z) denote the negative twisted
conjugate of the diagram Hg ., = (3, 3,7, W, z) described in Section 9.3. To show the main claim,
we need to compute the cobordism map starting at the diagram H, s U Hg. However, for the
computation, it is more convenient to start at the diagram H, gl Tw™ (7:[/3,“7)~ Hence, we precompose
with the change of diagrams map id ®(I>HﬁﬁﬁTw7(gﬁﬁ). To simplify notation, we will omit writing
this change of diagrams map for most of the proof, though it will reappear at the end.

We note that, by Proposition 9.13,

(9.30) Fw, 7, =0,
where
G: CFL (Ha,p) @ CFL®(Tw™ (Hp,y)) — CFL™ (S#; Tw™ (2), U5, BU B, W, 2)
is the intertwining map defined by the equation
G(=, =) = Faiypum.005 (F17 (=) @ FP (=),
Hence

(931) FXa,B,'y,]:a,B,'y =~ FWQ,]'—Q © g
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Next, it is not hard to see that the Heegaard triple (X#; Tw ™ (X),a U~,8U B, A, w,z) can be
used to compute the 2-handle cobordism map Fy, r,, where A was defined in Section 9.4; see

[55, Lemma 7.7] for a detailed argument in a very closely related context. It follows that
FW27]:2 = FaU"y,BUB,A(_ ® @;—UB,A)'

Hence, omitting the initial factor of id @®,,, _, 7y,- (5, ), we have, by associativity,

FXO,[‘I,'y»]:a,[f,-y (_v _) = (FW2,-7'-2 © g)(_v _)
~ _ _ V5 8,8
9.32) = Foinpupa (Favsponpos (B (D) @ FPP(2)) @05 )
= Lauy,puy,A (F?ﬂ(_) ® FBU’V,BUE,A (Ffﬁ(_) ® @;UB,A)) .

It is not hard to see that the Heegaard diagram corresponding to the codomain of the map in
equation (9.32) is the double D% (%, ) of the diagram H, -, = (£, a, 7y, W, z), so we must postcom-
pose with the transition map ®pz (3, .)-#, ., Which we computed in Lemma 9.12. Accordingly,

our expression from equation (9.32) for Fx, , . 7. , . becomes

(9.33)  Fy7 Fauy.anus (Fauwua,A (Ffﬂ(—) ® Fuy,808,A (Flﬁ’ﬁ(—) ® @;BFUB’A)) ® @Z,yua> .

Associativity implies that equation (9.33) is chain homotopic to

(9.34)  FJ"7 Faus,809.405 (Ffﬁ(—) ® Fuy,a, U5 (Fﬂw,ﬁué,A (Ff’ﬂ(—) ® @;UB,A) ® @Z,wu;y)) .

Using Proposition 9.5, we see equation (9.34) is chain homotopic to

(9.35) Fopn (— © k" (FﬁumA,vuv (Fﬁua,ﬂuE,A (Flw(_) ® GEUB,A) ® 9%@))) :
Lemmas 9.11 and 9.12 imply that equation (9.35) is chain homotopic to

Fopqr(—® (I)Tw*("?‘:l/a‘w)ﬁyﬁw)'

The transition map inside the triangle map cancels the initial factor of id ®®4, 7y~ (34,.,), Which
we have been omitting writing up until now. Hence Fx_ , 7. , =~ Fu g, concluding the proof. [J

10. EXAMPLES

In this section, we perform some model computations to illustrate our invariants defined in Sec-
tion 4 for pairs of slice disks. Our two main examples will be slice disks constructed by roll-spinning,
and deform-spinning using the rigid motion deformation from Section 8. See Section 2.1 for the
definitions of roll-spinning and deform-spinning.

10.1. Invariants of deform-spun slice disks. As stated in the introduction, our main computa-
tional results rely on a formula for the fundamental principal invariants of deform-spun slice disks,
generalizing [23, Theorem 5.1] from the hat to the full infinity version of knot Floer homology:

Theorem 1.2. Let Dk, be a slice disk of the knot —K#K, obtained by deform-spinning a knot
K in S® using an automorphism ¢ of (S3,K). Let w and z be basepoints on K, and write C' :=
CFL™(K,w,z). Then

Eotpy, =~ (id®p,)ocotr € Homge (R, CY®0),

where the chain homotopy equivalence E: CFL (—K#K,w,z) — C¥ ® C is described in [56, Sec-
tion 5].

Proof. This follows from the trace formula in Theorem 9.1, using the same argument as the proof
of [23, Theorem 5.1]. O

We now prove the following:



STABILIZATION DISTANCE BOUNDS FROM LINK FLOER HOMOLOGY 79

Proposition 10.1. Let Dg iq and D , be the canonical and the 1-roll-spun slice disks of —K#K,
respectively. Then
T(Dgid; Di,r) < 1.

Proof. Let w and z be basepoints on K, and write K = (K, w, z) and —K#K = (- K#K,w, z). By
Lemma 4.6, we can calculate 7(Dg iq, Dx ) using HFK{, _,(—=K#K). By Theorem 1.2,
(10.1) Eotpy  ~ cotr € Hom (Fo[U], CFK+,_o(K)" ®p, ) CFK,_o(K)) .
Furthermore, 7, ~id +®,, o ¥, by [54, Theorem B], so
(10.2) Eotp, =~ (d®(id+®, 0 ¥,))ocotr.
Hence, if we can show that U - ®,, o ¥, is U-equivariantly chain homotopic to zero, then

U - tBK,id ~U- tE)K,r’
s0 T(Dg id, Dr,») < 1. We note that ®,, has a simple algebraic interpretation on CFK,_,(K).
It is the map obtained by writing the differential as a matrix with entries in Fy[U], and then
differentiating each entry; cf. equation (3.1). According to [14, Proposition 6.3], since CFK,_,(K)

is a finitely generated, free, Z-graded chain complex over Fy[U], the map U - ®,, is U-equivariantly
chain homotopic to zero, and hence so is U - ®,, o ¥,. The claim follows. |

Question 10.2. In light of Proposition 10.1, it is natural to ask whether pg (D igq, Dr,r) < 1 for
any roll-spun slice disks Dk iq and Dk ,; cf. Conjecture 2.22. This would give a topological proof
of Proposition 10.1 by Theorem 5.13.

10.2. Computational examples. In this section, we compute the invariants 7, Vi, and Y for
several pairs of deform-spun slice disks. We begin by considering the complex CFL>(4;) for the
figure-eight knot 4;, which is shown in Figure 10.1.

4 4

U U
(grw7A) = (1’ 1) (070) (050) (070) (_17_1)

FIGURE 10.1. The complex CFL>(S3,41).

Lemma 10.3. Let K be the figure-eight knot, and let Dk ;q and D , denote the canonical and the
1-roll-spun slice disk slice disks of —41#41. Then

T(Dkida; Dir) =1, Vo(Dk id, Drr) =1, and Vi(Dk ia, Di,r) = 0.

Proof. The Alexander filtered chain complex CFK(4;), obtained by setting U = 0 and V = 1, has
the form

CFKf1(41) = (x0)1 — (x1)0  (x2)0  (x3)0 — (x4)-1).
The notation (x;); means the intersection points x;, which has Alexander grading j. Using equa-
tions (3.1) and (3.2),
(P 0 ¥, )(x3) = x1,

and ®,, o ¥, vanishes on all other generators. The complex CFK fil(—4;) is obtained by dualizing

@ﬁl(%) (note that, although 4; is amphichiral, to compute the trace formula, it is better to
ignore this fact). Hence

CFKP(—4y) = (xg)-1¢— ()0 (x5)o  (x3)o+— (x})1)-
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Using equations (10.1) and (10.2),
E(tADKYT(l) — tADK,;d(l)) = (id®(®y 0 ¥,)) o cotr(l) = x5 ® (P 0 ¥,)(x3) = X3 ®X7.
We now observe that x3y ® x; is nonzero in the homology of the 0-filtration level
Go (CFE™(~4) @g, CFEM(41)),

where G; denotes Alexander filtration level i. Indeed, the only elements mapped to x¥ ® x; by the
differential are xj ® x; and xy ® xo. However, neither of these are in Gy; instead, they are in Gj.
Hence T(DK,id7 DK,r) =1.

We now consider the invariants V and V3. The complex A (—41#41) has 25 generators over
Fo[U]. The generators are the monomials U"V™ - x ® x;, where n, m > 0, and
(10.3) A(x)) + A(xj) +m—n=0.
Similarly, Ay (—41#44) is generated by the monomials U"V™ - x) ® x;, where n > 0, m > —1, and
satisfy equation (10.3).

As above, we can identify ¢, (1) —tp, (1) with U0 . xY ®@x;. It is straightforward to see

that UV - x¥ @ x; is not a boundary in Ay (—41#41), so Vo > 1. However,
AUV - xY @x)=U'V! x¥ @x;:=U -x{ ®x1 and
AUV . xy @x) =xy ®x,
implying that V5 <1 and V5 = 0. ]

Lemma 10.4. Let K denote the figure-eight knot, and let Dk iq and Dk, be as in Lemma 10.5.
Then Y (py .4,Dx.,)(t) takes the form shown in Figure 10.2.

Proof. The proof is similar to Lemma 10.3. Therein, we computed t5,,  (1)—tp, ;4(1) tobe Xy ®x1 €
CFK™(41)Y ® CFK*(41). The two elements y; = V lxy ® x; and yo = U~ 'xy ® x¢ lie in
homogeneous (gr,,, 4)-grading (—1,0). It is straightforward to check that for ¢ € [0, 1], y; satisfies
dy1 = xy ®x1 and y; € Gf(41#41). Furthermore, if s < ¢, then there are no elements z € G (4;#4,)
such that 0z = xy ® x1. Similarly, if ¢t € [1,2], then Oys = xy ®x; and y2 € G5_,(41#4,), and there
are no elements z € G!(41#4;) such that 9z = xy @ x; for s <2 —¢. O

1
0.8}
0.6}
0.4f

0.2

05 I L5 2
FIGURE 10.2. Yp, ., p, . (1)

Our remaining examples were computed with the help of SageMath [46]. The program that
computed these invariants can be found at [24].
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The next examples we consider are built from the knots T3 4 and Ty 5. Their associated full infinity
complexes are shown in Figure 10.3. If K is a knot, we will write Dy r~ for the deform-spun slice
disk induced by the summand-swapping diffeomorphism R, of (S*, K#K) described in Section 8.

CFL™ (T5,4) Xp«—V— X1 —U?— Xo ¢ V22— X3 —U— X4
(grwaA) = (_63 _3) (_53 _2) (_270) (—1,2) (073)
CFL™ (Tu,5) Xg —V— X] —U*— Xg ¢ V2— X3 —U2+ X4 ¢V3— X5 —U~ Xg

(grw,A) (_127_6) (_117_5) (_67 _2) (_570) (_272) (_175) (076)

F1GURE 10.3. The complexes CFL™ (T3 4) and CFL™ (Ty5).

The following has been computed using SageMath:

Lemma 10.5. (1) For the pair (D1, ;47,4 R7» D1y y13 41a), we have 7 =2, Vo =1, V1 =1,
and Vo = 0. A plot of T is shown on the left-hand side of Figure 10.4.
(2) For the pair (D1, ;T s R™, DTy s#Ty 5.,id), we have 7 = 3, Vo =2, Vi =1, Vo = 1, and
V3 =0. A plot of T is shown on the right-hand side of Figure 10.4.

2.0
1.2
Lo 1.6
0.8 1.2
0.6 ' '
0.8

0.4
0.2 0.4

05 1 15 2 05 1 5 2

FIGURE 10.4. The Y(t) functions for the pairs (D, , 41, , R™> D1y 4 #7175 4,0, 1d) (left)
and (D, 41, 5 R™> D1y 5#74 5.,id) (right), computed using SageMath.

An immediate corollary of Lemma 10.5 and Theorems 5.13 and 6.7 is the following:

Corollary 10.6. Let w € {ps;, Usingf- Then
W(DT3,4#T3,47R"aDT3,4#T3,47id) > 2, and
W(Dry sy 5 R D1y s 7 5,00) > 3.

10.3. Slice disks with large stabilization distance. We now prove Theorem 1.3 of the intro-
duction.

Theorem 10.7. Given n > 0, there is a knot K, and a pair of slice disks D1 and D5y for K, such
that (D1, D2) > n.

If K is a knot in S3, consider the V-torsion order of HFKy,_,(K), for which we write Tory (K).
This is the minimal n € NU {co} such that

V™ Tor(HFK5_o(K)) = {0}.

See [2] and [20] for examples of applications of the torsion order in knot Floer homology.
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Let K be a knot in S3, and consider the slice knot J = K; #Kg#f(g #I_Q, where each K; denotes a
copy of K. We define two slice disks for J, which are boundary connected sums of slice disks for pairs
of summands, as follows. Let D; be the spun slice disk obtained by viewing J as (K1 # K3)#(Ka#Ky)
and taking the boundary connected sum of the Artin spun slice disks for K;# K3 and Ko#K,, and
let D5 be the spun slice disks obtained by viewing J as (K1#K,)#(Ko#K3), and taking a similar
boundary connected sum.

Lemma 10.8. If K is a knot and Dy and Dy are the slice disks for J = K#K#K#K described
above, then
7(D1, D2) = Tory (K).

Proof. Firstly, note that the connected sum formula and the duality formula for mirroring knots
implies that Tory (L) = Tory (—L), and also Tory (L#M) = max(Tory (L), Tory (M)) for any knots
L and M. In particular Tory (J) = Tory (K).

We claim firstly that

(10.4) (D1, Ds) < Tory (K).

This follows from algebraic considerations. Indeed, [t} (1)] = [tp, (1)] + o, where 0 € HFK;_(J)
is V-torsion. Hence, if n = Tory (K), then V™ -0 =0, so

V*ltp,] = V" [tn,].

This establishes equation (10.4).

To establish the reverse inequality of equation (10.4), we argue as follows. Consider the connected
sum decomposition of J as (K1#K3)#(Ke#K,). The corresponding 2-sphere gives a pair-of-pants
cobordism from (S3, J) to (S%, K#K)U(S3, K#K). Denote the cobordism map by F. By composing
tp, and i with F', we may view the induced elements as chain maps

11, Ty € Homgpy)( CFK_o(K#K), CFK ;_o(K#K)).
Since F' is a homotopy equivalence,
Vet =V"-ip,]

if and only if V" - [F(tp )] = V" - [F(tp,)], which in turn occurs if and only if V" - T1 >~ V" - Ty,
where ~ denotes F[V]-equivariant chain homotopy.

The maps 7; and T, may be identified with concordance maps for concordances from K#K to
K#K. The map T} is identified with the identity map id. On the other hand, the map 75 is
the concordance map for a concordance which factors through the unknot. In particular, 75 must

annihilate all torsion, as Tory (_Unknot) = 0. In particular, if V™ -id ~ V™ -T5, then n must be larger
than the torsion order of K#K. O

We now prove Theorem 10.7:

Proof of Theorem 10.7. It suffices to construct knots where Tory (K) > n. This is straightforward.
For example, Tory (T, 4) = min(p,q) — 1. (This fact is well known, but a proof may be found in
[20, Lemma 5.3]). O

11. THE COBORDISM DISTANCE
In this section, we consider the following notion of distance between two surfaces:

Definition 11.1. Suppose that g € N, and S, S’ are two slice surfaces of a knot K C S3. We
say that S and S’ are strictly g-cobordant if there is a smoothly embedded, orientable 3-manifold
Y C I x B, such that the following are satisfied:

(1) Yy =(I x K)u—({0} x SYu ({1} x 9.

(2) Projection of Y onto I is Morse.

(3) The sum of the genera of the components of each regular level set of Y at most g.
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We write pcop(S,5”) for the minimal g such that S and S’ are strictly g-cobordant. We call this
quantity the cobordism distance of S and S’. In the case of a 0-cobordism, this coincides with the
notion of a 0-cobordism introduced by Melvin [30] for 2-knots. He defined a g-cobordism to be one
where each component of every level set has genus at most g.

The main result of this section is that the invariant 7(D, D’) gives a lower bound on pcon(D, D’)
for slice disks D and D'.

Theorem 11.2. Suppose D and D’ are two slice disks of a knot K in S®. Then
7(D,D") < pcob(D, D).

The main additional subtlety in the proof of Theorem 11.2 is that the level sets of a strict g-
cobordism Y need not be connected, whereas the link cobordism maps vanish when there is a closed
component. Hence, some care is required in the proof.

11.1. Tubing disconnected surfaces. In this section, we describe a way of meaningfully assigning
cobordism maps to disconnected surfaces by tubing the components together.

Definition 11.3. Suppose that W is a compact 4-manifold with boundary Y, and S is a properly
embedded, orientable surface in W. Suppose further that 95 is equal to a knot K C Y. A tubing
of S is a properly embedded surface S C W with 908 = K , obtained by attaching tubes to S which
are the boundaries of 3-dimensional 1-handles in W. Furthermore, we assume g(S) = ¢(5) and S is
connected.

We now prove a local relation for the graph cobordism maps (cf. [59, Lemma 6.2]):
Lemma 11.4. The graph cobordism maps satisfy the relation shown on the bottom of Figure 11.1.

Proof. We begin with the bypass relation for the knot Floer cobordism maps, which is shown on the
top of Figure 11.1. We may take the underlying link cobordism to be I x K, where K is an unknot.
The bypass relation for the link cobordism maps is proven in [56, Lemma 1.4]. We then obtain
the graph relation by considering the V' = 1 reductions of the graph cobordism maps, following
[58, Theorem CJ. O

FiGure 11.1. The bypass relation, as well as an induced relation obtained by
setting V' =1, in terms of graph cobordisms.
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Proposition 11.5. Suppose that S is a properly embedded, oriented surface in B* with boundary
equal to a knot K. Suppose that 51 and Sg are two tubings of S. Then

t= ~t. .
S1,2 S2,2

Proof. Any tubing of S is isotopic to a tubing where each tube has one foot on the component
of S containing K, and one foot on a closed component of S. Since tubes are boundaries of 3-
dimensional 1-handles, we may assume that, after an isotopy, any two such tubings have disjoint
tubes. In particular, it suffices to change tubes one at a time.

We assume that T and 7" are tubes which have their feet on the same components of S. We
assume the feet of the tubes are very close, and we pick an open neighborhood of the two tubes
which is diffeomorphic to S! x B3. We can factor the two cobordism maps through (S x S2,03),
where O, is a two-component unlink in S! x S2.

We will prove the tube relation shown in Figure 11.2. This tube relation may be proven by
considering the V' = 1 reduction of the link cobordism maps, and then applying the graph relation
shown in Figure 11.1. Since the link in S' x S? is an unlink with 2 basepoints per component, the
link cobordism maps are determined by the graph cobordism maps, and so it is sufficient to prove
the analogous formula for the graph cobordism maps. We do this in Figure 11.3, using the local
relation from Lemma 11.4, which is shown in Figure 11.1.

We now claim that the cobordism map for the right-most surface in Figure 11.2 factors through
the Hj-action. This is proven as follows. The V = 1 reduction factors through the H;-action
by [55, Proposition 4.6]. Since the Alexander grading change of the link cobordism map is zero,
Lemma 5.1 implies that the link cobordism itself factors through the Hi-action. In particular, once
we compose this cobordism map for S x B3 with the remainder of the cobordism map for the surface
in B*, we obtain the 0-map since b, (B*) = 0.

=% @ 3
+ + ~0

FIGURE 11.2. A relation involving tubes.

l | l

FI1GURE 11.3. A relation involving graphs.
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11.2. Proof of Theorem 11.2.

Proof of Theorem 11.2. Suppose that Y is a strict g-cobordism between slice disks D and D’ of
K C S3. The projection from Y onto the factor I of I x B* is a Morse function, by assumption. We
may understand this Morse function as determining a sequence of 3-dimensional handles attached
to {0} x D, which build the 3-manifold Y. These handles may be of any index in {0,1,2,3}. A
0-handle or 3-handle corresponds to adding or deleting an unknotted 2-sphere that is unlinked from
the rest of the surface. Attaching a 1-handle corresponds to a 1-handle stabilization, while a 2-handle
corresponds to 1-handle destabilization. Let us write Sq,...,.S, for a sequence of surfaces induced
by a strict g-cobordism. By definition

k= max g(S)),

1<i<n
where g(S;) is the sum of the genera of the components of S;.
The surfaces Sp,...,S, will in general not be connected. Let S; be any tubing of S; for i €

~

{1,...,n}. Note that, by definition, g(S;) = ¢(S;). We decorate each S; with a dividing set such

~

that (S;)w is a bigon. We write S; for this decorated surface. Proposition 11.5 implies that the map

ts is independent of the choice of tubing, and hence depends only on S;.

If S; is obtained from S;_1 by a 0-handle, then we can pick tubes so that §Z is isotopic to §»,1. If
S; is obtained by a 3-handle, then, after changing tubes if necessary, the same is true. In particular,

te  =ts if S; is obtained from S;_; by attaching a 0-handle or a 3-handle.
irZ i—1,2Z

If S, is obtained by attaching a 1-handle to S;_1, then either g(S;) = g(Si—1) or g(S;) = g(S;—1)+1.
In the first case, the 1-handle connects two different components of S;_1, and consequently, after
changing tubes if necessary, §Z and S ;—1 are isotopic. In the second case, :S'\l is obtained by stabilizing
§i_1. We have the same conclusions for a 2-handle attachment, with the roles of S;_; and S; reversed.
Consequently, using the formula in Lemma 5.4 for stabilization, the maps V* t§ coincide for all 4.

iy

So 7(D, D’) < k by Lemma 4.6, which completes the proof. O
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