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MYELOID CELLS

Plasma membrane abundance dictates phagocytic
capacity and functional cross-talk in myeloid cells
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Professional phagocytes like neutrophils and macrophages tightly control what they consume, how much they
consume, and when they move after cargo uptake. We show that plasma membrane abundance is a key arbiter of
these cellular behaviors. Neutrophils and macrophages lacking the G protein subunit G, exhibited profound plasma
membrane expansion, accompanied by marked reduction in plasma membrane tension. These biophysical changes
promoted the phagocytosis of bacteria, fungus, apoptotic corpses, and cancer cells. We also found that Gf;-
deficient neutrophils are defective in the normal inhibition of migration following cargo uptake. Sphingolipid
synthesis played a central role in these phenotypes by driving plasma membrane accumulation in cells lacking Gf4.
In GB4 knockout mice, neutrophils not only exhibited enhanced phagocytosis of inhaled fungal conidia in the lung
but also increased trafficking of engulfed pathogens to other organs. Together, these results reveal an unexpected,
biophysical control mechanism central to myeloid functional decision-making.

INTRODUCTION
Professional phagocytes of the myeloid lineage, including neutro-
phils and macrophages, maintain homeostasis by clearing apoptotic
corpses, cellular debris, and invading pathogens (1-4). Phagocytes
take up cargo via phagocytosis, an evolutionarily conserved engulf-
ment process by which cells surround objects and then internalize
them. The importance of phagocytosis for proper multicellular phys-
iology is highlighted by the consequences of its dysregulation: Insuf-
ficient levels of phagocytic activity increase susceptibility to infection
and aging, whereas both excessive and inadequate levels have been
linked to autoimmunity, neurodegeneration, and atherosclerosis (5-9).
Understanding the molecular pathways and cellular components
that control phagocytosis will be critical for mitigating these condi-
tions and also for harnessing professional phagocytes as immuno-
therapeutic agents to combat infections, cardiovascular disease, and
cancer (10-13).

Phagocytosis is triggered by the recognition of cognate cargo
ligands, such as phosphatidylserine, complement, and antibodies,
by specific receptors on the phagocyte (6). Target recognition elicits
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marked remodeling of the cytoskeleton, which shapes the overlying
plasma membrane into a phagocytic cup that embraces and then
internalizes the cargo (14, 15). In carrying out their clearance func-
tion, myeloid phagocytes exhibit not only robust cargo uptake but
also the ability to coordinate this activity with other cellular behav-
iors (16-20). Cross-talk between phagocytosis and cell motility
is particularly well established, with studies documenting an an-
tagonistic relationship between cell migration and engulfment re-
sponses in multiple cell types (16-18). In neutrophils specifically,
transient arrest after phagocytosis is thought to curtail the dissemi-
nation of intracellular microbes (21-23). Accordingly, efforts to
modulate the activity of professional phagocytes will require a
mechanistic understanding of not only phagocytosis itself but also
its regulatory effects on other activities.

Most prior research on phagocytosis has focused on the bio-
chemical mechanisms that control it, and as a result, much is now
known about the molecules that mediate cargo recognition and the
signal transduction pathways that drive cargo engulfment (24).
Phagocytosis is also an intensely physical process (14, 25), implying
that it might be subject to biophysical and biochemical modes of
regulation. In that regard, the deformability of both cargo and
underlying substrate has been shown to modulate the engulfment
behavior of macrophages (26-31). However, whether the architec-
ture and mechanics of the phagocyte itself might also influence
cargo uptake is not known, and how cell-intrinsic properties of this
kind might affect functional cross-talk between phagocytosis and
other cellular behaviors is completely unexplored.

The plasma membrane is a particularly interesting candidate
mechanoregulator because it must be stretched to build a phagocytic
cup and to accommodate increased cellular volume after engulfment
(14). Prior work indicates that phagocytosis is both constrained by
membrane tension and enhanced by the exocytosis of endomem-
branes (32-34), implying that the amount of plasma membrane
available to a cell might establish its phagocytic capacity. In the present
study, we demonstrate that loss of a specific heterotrimeric guanine
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nucleotide-binding protein (G protein) subunit, Gfj, strongly increases
the plasma membrane abundance of myeloid cells, leading to enhanced
phagocytosis and impaired cross-regulation between phagocytosis
and migration. This cellular phenotype markedly alters neutrophil
function in vivo, not only driving enhanced consumption of microbes
but also increasing trafficking away from the site of infection after
pathogen uptake. Hence, the functional potential of immune cells is
dictated by their biophysical properties and architectural constraints.

RESULTS

G, deficiency enhances phagocytic responses against a
wide range of targets

Heterotrimeric G proteins regulate phagocytosis and migration in
multiple myeloid cell types by transducing signals from seven-
transmembrane G protein-coupled receptors (GPCRs) (35-42).
GPCR activation induces dissociation of the G protein o subunit
(Ga) from the Py subcomplex (GPy), freeing both components to
bind and activate specific downstream effector molecules (43). Most
prior research in this area has focused on Ga isoforms, whereas
comparatively less is known about specific GB and Gy subunits (44).
Accordingly, we applied CRISPR-Cas9 to knock out each Gp sub-
unit in human neutrophil-like HL-60 cells (Fig. 1A and fig. S1, A
and B). Gene targeting was carried out in self-renewing HL-60
precursors, which were subsequently differentiated into neutrophil-
like cells (called HL-60 neutrophils hereafter) by the addition of
dimethyl sulfoxide (DMSO). All terminally differentiated cells were
CD15" CD16% (fig. S1C), indicating that the genetic modifica-
tions that we introduced did not prevent HL-60 progenitors from
becoming neutrophils. Knockout and control HL-60 neutrophils
were then subjected to phagocytosis assays to investigate poten-
tial effects on phagocytosis. As cargo for these experiments, we
prepared 10-pm-diameter immunoglobulin G (IgG)-coated poly-
acrylamide microparticles (MPs) (45, 46) derivatized with two
fluorescent dyes: fluorescein isothiocyanate (FITC) and lissamine
rhodamine B (LRB; Fig. 1A and fig. S2). FITC, but not LRB, fluores-
cence is quenched in acidic phagolysosomes, leading to an emission
ratio change that can be monitored by flow cytometry and fluores-
cence microscopy. In this manner, we identified Gp subunits that
either positively or negatively regulated phagocytosis. Consistent
with prior work (38, 39), HL-60 neutrophils lacking G, exhibited
a ~50% reduction in particle uptake (Fig. 1B). By contrast, depletion
of GP, induced a notable three- to fourfold increase in phagocytosis
relative to wild-type (WT) controls (Fig. 1B). This hyperphagic be-
havior resulted directly from loss of G4, because reexpression of GB4
on the knockout background restored phagocytosis to WT levels
(Fig. 1C and fig. S3A). The Gf4 knockout (AGP4) phenotype was also
cell intrinsic, because it was readily apparent in both monocultures
and cocultures containing a 1:1 mixture of WT and AGf4 HL-60
neutrophils (Fig. 1D). Phagosome acidification, which we measured
using MPs conjugated to pH-sensitive pHrodo dyes, was unaffected
by GP4 deficiency (fig. S3B), strongly suggesting that the hyperphagia
that we observed reflected increased uptake rather than accelerated
phagosome maturation.

Gp4 deficiency markedly enhanced particle consumption on a per-
cell basis. In wide-field imaging experiments, almost half of the
phagocytic AG; cells engulfed two or more MPs, whereas the vast
majority of phagocytic WT cells took up just one (Fig. 1E). Super-
resolution microscopy of individual phagocytic events revealed
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intriguing differences in engulfment dynamics. AGB4 HL-60 neutro-
phils formed stereotypical phagocytic cups featuring a pronounced
band of filamentous actin (F-actin) at the leading edge (Fig. 1F). This
morphology was much less apparent in WT cells, which still engaged
MP targets but only achieved full engulfment in less than 50% of con-
jugates. In contrast, AGB,4 HL-60 neutrophils completed over 90% of
their phagocytic attempts and executed engulfment more than twice
as fast as their WT counterparts (Fig. 1G and movie S1). To investi-
gate whether this enhanced rate of phagocytosis reflected higher levels
of environmental probing, we calculated the “ruffling index” of both
AGp4 and WT HL-60 neutrophils from live videos of fluorescently
labeled cells (47, 48). AGPy cells exhibited a twofold increase in this
ruffling index (Fig. 1H), indicative of increased physical activity and
consistent with their enhanced phagocytic potential.

To further explore the scope of the AGP4 phenotype, we chal-
lenged WT and AGPs HL-60 cells with MPs bearing alternative
coatings, including phosphatidylserine (PS), complement, IgG, and
IgA. AGpy cells phagocytosed 2- to 10-fold more cargo in each case,
indicating that their hyperphagia was not limited to a specific up-
take receptor (fig. S3C). Next, we measured the phagocytosis of four
distinct biological targets: the Gram-negative bacterium Pseudomonas
aeruginosa, Staphylococcus aureus bioparticles, conidia from the
fungus Aspergillus fumigatus, and apoptotic Jurkat T cell corpses
(Fig. 2A and fig. S3, D and E). These experiments used both HL-60
neutrophils and HL-60-derived macrophages (HL-60 macro-
phages), which we differentiated from progenitors using 12-O-
tetradecanoylphorbol-13-acetate (49, 50). AGp4 cells outperformed
WT controls in every case, further supporting the hypothesis that
Gp, deficiency potentiates phagocytosis against diverse biological
cargos. We also examined macropinocytosis, an F-actin-dependent
process used by professional phagocytes to ingest antigen and other
soluble factors (51). Although a similar fraction of WT and AGp4
HL-60 neutrophils performed macropinocytosis, which we quanti-
fied by uptake of fluorescent 70-kDa dextran, AGpP4 cells took up
substantially more cargo per cell (Fig. 2B). Hence, GB4 deficiency
affects multiple cargo uptake mechanisms.

Next, we investigated whether loss of Gf4 could augment the
therapeutic phagocytosis of tumors. Cancer cells may evade im-
mune detection and clearance by expressing CD47, a cell surface
protein that has been proposed to function as a “don’t eat me” signal
(52, 53). Antibodies or peptides against CD47 or its receptor, signal
regulatory protein a (SIRPa), can stimulate an engulfment response
either by blocking the “don’t eat me signal” or by opsonizing the
cancer cell for phagocytosis (54-58). To adapt this approach to our
experimental system, we challenged HL-60 neutrophils with Ramos
B lymphoma target cells in the absence or presence of anti-CD47
blockade. Antibodies against the B cell marker CD20 were added to
further promote phagocytosis via Fc receptor engagement. WT HL-
60 neutrophils did not take up Ramos cells, and treatment with anti-
CD47 and/or anti-CD20 failed to enhance their activity. In contrast,
AGp4 HL-60 neutrophils exhibited a low but measurable level of
baseline phagocytosis, which increased threefold in the presence of
anti-CD47 and even more so (eightfold) when anti-CD47 was com-
bined with anti-CD20 (Fig. 2C). These results suggest that Gf4 defi-
ciency augments weak phagocytic responses against tumor cells.

Phosphoinositide 3-kinases (PI3Ks) promote phagocytosis, par-
ticularly the uptake of large cargos, by generating phosphatidylino-
sitol 3,4,5-trisphosphate (PIP3) at the phagocytic cup (59, 60). The
hyperphagic behavior of AGp, cells raised the possibility that they
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Fig. 1. AGB4 HL-60 neutrophils have increased phagocytic capacity. (A) Schematic of Gp knockout workflow in HL-60 neutrophils and the MP-based phagocytosis assay.
(B) WT and AGP HL-60 neutrophils were challenged with human IgG-coated MPs and phagocytosis quantified after 3 hours. Data are means + SD. (C) WT and AGp4 HL-60
neutrophils transfected with exogenous G4 (WT over and AG4 rescue) or control lentivirus (WT and AGR,) were challenged with human IgG-coated MPs and phagocyto-
sis quantified after 3 hours. Data are means + SD. For (B) and (C), n > 6 for each sample, pooled from three biological replicates. One-way ANOVA with Tukey’s multiple
comparisons test, *P < 0.05, **P < 0.01, and ***#*P < 0.0001. (D) AGB4 and WT HL-60 neutrophils were stained with different fluorophores, mixed 1:1, and then challenged
with IgA-coated MPs. The graph shows phagocytic uptake after 3 hours. Data are means + SD. n = 12 for each sample, pooled from three biological replicates. Unpaired
t test, ****P < 0.0001. (E) AGB4 and WT HL-60 neutrophils were challenged with IgA-coated MPs and imaged over 3 hours to assess per-cell phagocytic capacity. The histo-
gram shows the number of AGB4 and WT cells that consumed one, two, three, or four MPs during the experiment. Data were pooled from five biological replicates. The inset
shows sample images of WT and AGpy4 cells after MP uptake. Scale bars, 20 pm. (F and G) WT and AGp4 HL-60 neutrophils expressing F-tractin-mCherry (magenta) were fed
lgG-coated MPs (green), and phagocytic uptake was monitored for 10 to 30 min. (F) Representative interactions are shown in time-lapse montage format. Scale bars, 5 pm.
(G) Quantification of the frequency (left) and speed (right) of phagocytosis. Data points in the left graph correspond to mean values in each movie, whereas data points in
the right graph denote individual cells. Bars denote means + SD, pooled from six biological replicates. Unpaired t test, ****P < 0.0001. (H) Live videos of WT and AGf4
HL-60 neutrophils expressing F-tractin (magenta) were analyzed for environmental probing. The graph shows the quantification of the ruffling index for both WT and AG,4
HL-60 neutrophils. Data are means + SD. n = 20 cells for each condition, pooled from three biological replicates. Unpaired t test, ****P < 0.0001.

might have enhanced or otherwise modulated PI3K activity. During
phagocytosis of IgG-coated MPs, however, WT and AGf4 HL-60
neutrophils exhibited similar levels of PIP; enrichment at the phago-

enhances nor circumvents the need for PI3K signaling during
phagocytosis.

cytic cup, which we measured using a PIP; biosensor containing the
AKT pleckstrin homology domain linked to blue fluorescent pro-
tein (PH-AKT-BFP) (fig. S4, A and B). Furthermore, the inhibition
of PI3K activity using the small molecule PIK90 abrogated MP
uptake in both cell types (fig. S4C). Thus, G4 deficiency neither
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Gf4 deficiency alters cell migration and cross-talk between
phagocytosis and motility

Because proper coordination between cargo uptake and motility is
essential for myeloid cell function (16-18), we next investigated the
effects of GB4 on cell migration. To this end, we used a chemotaxis
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assay in which HL-60 neutrophils were attached to fibronectin-
coated glass and then presented with a point source of the peptide
chemoattractant MLF (N-formyl-methionyl-leucyl-phenylalanine),
applied via micropipette (Fig. 3A). Under these conditions, neutro-
phils adopt a fan-like morphology with a broad leading edge directed
toward the point source and a thin uropod trailing behind. Both
AGP4 and WT cells were able to migrate up the fMLF gradient and
moved at similar velocities during the first 15 min of each experi-
ment (Fig. 3B). AGP4 cells slowed substantially over the remainder
of the experiment, however, leading to a reduction in mean velocity
over the entire 1-hour time course (Fig. 3C and movie S2). This
reduced motility was associated with the formation of extended
“tails” at the rear of migrating AGp, cells, suggestive of a defect in
uropod retraction (Fig. 3D). We observed multiple instances in
which elongated AG4 cells appeared to be “struggling” against
their own uropod to make forward progress (Fig. 3D). We obtained
a similar set of results using HL-60 macrophages. In a uniform

chemokinetic field of fMLE, AGB4 HL-60 macrophages moved slower
than their WT counterparts and also formed elongated uropods
during migration (fig. S5, A to C). In some cases, AGf, macro-
phages exhibited multiple extended tails (fig. S5D), implying a
defect in cell polarity. Collectively, these results indicate that G4
deficiency impairs motility and alters migratory cell morphology in
myeloid cells.

Next, we interrogated cross-talk between phagocytosis and
migration by quantifying the motility of HL-60 neutrophils after up-
take of one IgG-coated MP. WT and AGpy, cells were exposed to
MPs with distinct fluorescent labels [pHrodo Red (WT) versus
pHrodo Green (AGf4)] to facilitate imaging and tracking in mixed
samples. MP consumption slowed the movement of WT HL-60
neutrophils considerably relative to MP-less WT controls (Fig. 3C).
By contrast, AGP4 cells containing MPs moved at the same rate as
their MP-less AGP4 counterparts (Fig. 3C). Although the instanta-
neous speed of MP-bearing AGp4 neutrophils remained slightly less
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HL-60 neutrophils or macrophages were challenged spores cells
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Fig. 3. GB4 deficiency alters cell migration and cross-talk between phagocytosis and motility. (A) Schematic of the micropipette-based chemotaxis assay. (B to
F) AGB4 and WT HL-60 neutrophils were seeded onto fibronectin-coated slides and exposed to 200 nM fMLF delivered through a micropipette over the course of an hour.
Alternatively, AGB4 and WT cells that had consumed one MP (WT + TMP and AGf4 + 1MP) were sorted, seeded at a 1:1 ratio on fibronectin-coated glass, and exposed to
200 nM fMLF through a micropipette for 1 hour. (B) Mean velocity of AG4 and WT HL-60 neutrophils during the first 15 min of the time course. (C) Mean velocities of WT,
WT + 1MP, AGP4, and AGP4 + 1MP cells were calculated from three separate 1-hour videos. (D) Time-lapse montages of representative cells in each experimental group,
with the red arrow indicating the direction of the fMLF gradient. Yellow asterisks denote a transient loss of migratory cell polarity in a WT + 1MP cell. White arrows indicate
cell body regression in a AGf4 cell with an extended uropod. Scale bars, 20 pm. (E) Total distance travelled by WT + 1MP and AGp4 + 1MP cells after 1 hour of exposure to
200 nM fMLF. (F) Representative migration tracks for WT + 1MP and AGf4 + 1TMP over the course of 1-hour exposure to 200 nM fMLF. Violins in (B, C, and E) encompass the
entire distribution, with solid horizontal lines indicating the median and dotted lines indicating the upper and lower quartiles. ***P < 0.001 and ****P < 0.0001, calcu-

lated by unpaired t test (E) or two-way ANOVA with Sidak’s multiple comparisons test (C). n > 174 for each sample, pooled from three biological replicates.

than that of MP-bearing WT cells, their migration was more persis-
tent, yielding substantially longer tracks that more closely approached
the fMLF point source (Fig. 3, E and F, and movie S2). These motil-
ity phenotypes were mirrored by changes in cell shape. In WT HL-60
neutrophils, phagocytosis appeared to hamper migratory polariza-
tion; cells periodically collapsed into a rounded configuration, and
these morphological changes tended to coincide with stalls in motil-
ity (Fig. 3D and movie S2). By contrast, AGf4 morphology was nor-
malized by MP uptake; MP-bearing cells formed persistent leading
edges and lacked the extended uropods characteristic of the cargo-
less state (Fig. 3D). Hence, G4 depletion affects neutrophil migra-
tion in two ways: It reduces the speed of unencumbered cells, and it
also impairs inhibitory cross-regulation between phagocytosis and
motility.

G4 deficiency alters lipid composition and plasma
membrane abundance

The notable uropod extension displayed by migrating AGB4 HL-60
cells was suggestive of a substantial change in cellular architecture.
Consistent with this notion, scanning electron microscopy (SEM)
indicated that AGB4 HL-60 cells had a more ruffled surface appear-
ance than WT controls (Fig. 4A). To investigate this structural dif-
ference more closely, we performed focused ion beam (FIB)-SEM, a
method in which successive sections from the same sample are
imaged by SEM and then used to generate a nanometer-resolution

Winer et al., Sci. Immunol. 9, eadl2388 (2024) 7 June 2024

three-dimensional (3D) reconstruction (61). WT and AGf4 HL-60
cells were osmium-stained to highlight lipid-rich cellular compo-
nents, embedded in resin, and subjected to FIB-SEM at 40-nm
sectioning. Supervised machine learning was used to define the
plasma membrane in each image, followed by 3D rendering (62).
The resulting reconstructions revealed notable differences in plasma
membrane configuration. Whereas the surface of WT cells was
mostly smooth with small extensions, AG, cells exhibited large
flaps of plasma membrane projecting up to 10 pm from the cell body
(Fig. 4B and movie S3). The presence of these structures increased
the surface-to-volume ratio of AGB,4 HL-60 neutrophils by a factor
of two relative to WT controls (Fig. 4C). AGpy cells also contained
larger and more numerous cytoplasmic lipid droplets, which ap-
peared as high-contrast compartments in osmium-stained FIB-
SEM images (Fig. 4, B, D, and E). Using FM64 and BODIPY
staining, we confirmed that loss of Gf4 leads to excess accumula-
tion of plasma membrane and lipid droplets, respectively (fig. S6, A
to C). Together, these data indicate that GP4 controls membrane
architecture and lipid content in neutrophils.

We considered the possibility that excess plasma membrane
might concomitantly increase surface expression of Fc receptors and
thereby enhance phagocytosis. AGB, and WT HL-60 neutrophils,
however, expressed similar levels of FcyRI and FcyRII and little to
no FcyRIII (fig. S7, A to C), arguing against a role for Fc receptor
overexpression in the AGP4 hyperphagic phenotype. SIRPa levels
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were similarly unaffected by Gf, deficiency (fig. S7D). AGB, and
WT HL-60 neutrophils also contained nearly equivalent levels of
F-actin, which we visualized by phalloidin staining, and most cells
of either genotype exhibited canonical migratory cell morphology,
defined by strong F-actin accumulation at the leading edge (fig. S7,
E and F). Hence, excess plasma membrane did not appear to cause
cytoskeletal dysregulation in AGp, cells.

Having ruled out these potential mechanisms, we turned our
attention to the biophysical and functional effects of Gf4 deficiency
on the plasma membrane itself. Acute osmotic shock swells cells to

Fig. 4. AGf4 HL-60 neutrophils have increased
plasma membrane and decreased membrane
tension. (A) SEM images of WT and AGp4 HL-60
neutrophils. Scale bars, 2 pm. Representative of
five biological replicates. (B to E) AGB4 and WT
HL-60 neutrophils stained with potassium ferro-
cyanide and osmium tetroxide were imaged by
FIB-SEM (n = 2 of each cell type, from one bio-
logical replicate). (B) 3D reconstructions of repre-
sentative cells, with plasma membrane shown in
semitransparent green and lipid droplets in solid
magenta. Scale bars, 5 pm. (C) Quantification of
surface area to volume ratio. (D) Quantification of
lipid droplet number per cell. In (C) and (D), data
are means + SD. (E) Quantification of lipid droplet
volume (n = 20 droplets in WT cells and 24 drop-
lets in AGP4 cells). Violins encompass the entire
distribution, with solid horizontal lines indicating
the median and dotted lines indicating the upper
and lower quartiles. (F) HL-60 neutrophils lacking

the limits of their plasma membrane capacity, thereby enabling
comparisons of total surface area. AGBs HL-60 neutrophils were
only slightly larger than their WT counterparts under isotonic
conditions. Upon transfer to hypotonic medium, however, AG4
cells expanded to twice the size of controls (Fig. 4F). Assuming that
swelled HL-60 neutrophils are spherical, this volume differential
implies a ~60% increase in plasma membrane surface area. Excess
plasma membrane would be expected to facilitate the formation
of phagocytic cups and thereby promote engulfment. To quantify
membrane mobilization during cup formation, we used a “frustrated
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phagocytosis” assay (63, 64) in which HL-60 neutrophils were ap-
plied to IgG-coated glass slides. Neutrophils and macrophages form
flat, unresolved phagocytic cups on surfaces of this kind, which are
easily visualized by total internal reflection fluorescence microscopy.
Frustrated phagosomes formed by AGf4 HL-60 neutrophils were
substantially larger than those of WT controls (fig. S8), consistent
with a role for increased membrane abundance in phagocytic cup
formation.

Membrane tension is known to inhibit both phagocytosis and
migration, presumably by mechanically constraining the formation
of actin-based structures and/or activating inhibitory mechanosen-
sory pathways (63). We speculated that, by increasing plasma
membrane abundance, Gf,4 deficiency might reduce membrane
tension and thereby attenuate these regulatory effects. To explore
this possibility, we used an established approach in which a con-
canavalin A-coated bead is adsorbed to the cell surface and then
pulled away using an optical trap (65). The displaced bead remains
attached to the cell via a thin membrane tether, which exerts a re-
storing force that is proportional to the square of membrane ten-
sion (66, 67). In this manner, we found that Gf4 deficiency reduced
tether forces by a factor of two in HL-60 neutrophils (Fig. 4G).
AGPA4 cells also generated longer tethers then WT controls, indicat-
ing that they had larger plasma membrane reservoirs (Fig. 4H)
(68). Rescue experiments confirmed that both phenotypes were
specific to Gp4 (Fig. 4, G and H). In conjunction with the imaging
and osmotic shock studies described above, these results suggest a
central role for plasma membrane abundance in the regulation of
neutrophil effector responses.

To explore potential mechanisms underlying the AGf, plasma
membrane phenotype, we subjected AGB, and WT HL-60 neutro-
phils to comparative lipidomics (fig. S9, A and B, and data file S1).
As expected, AGP4 cells contained more total lipids than WT
controls on a per-cell basis (fig. S9C). This increase did not apply
equally to all lipid subtypes, however, because many species were
unchanged in proportion between samples and some, like hexosyl-
ceramides, were more abundant in WT cells (fig. S9D). AGP4 cells
were distinguished by a disproportionate enrichment of sphingolip-
ids, particularly ceramide and sphingomyelin (Fig. 5A and fig. S9C),
which are predominantly found in the plasma membrane. Using
RNA sequencing, we observed selective up-regulation of sphingo-
lipid synthesis genes in AGp4 neutrophils after MP exposure
(Fig. 5B), establishing an additional link between sphingolipids and
the AGP4 phenotype. To interrogate the role of sphingolipids in
plasma membrane expansion more directly, we asked whether the
inhibition of sphingolipid synthesis could reverse the effects of G4
deficiency. To this end, we applied the small molecule myriocin, a
potent inhibitor of serine palmitoyltransferase, the first enzyme in
the sphingolipid synthesis pathway (fig. S9E) (69, 70). Myriocin
treatment during differentiation restored the membrane tension of
AGP4 HL-60 cells to WT levels (Fig. 5C), and it also largely reversed
their hyperphagic behavior (Fig. 5D), their extended migratory
morphology (Fig. 5E), and their motility defect (Fig. 5F). By con-
trast, acute treatment of fully differentiated AGP4 HL-60 cells
with myriocin had no effect on MP uptake (fig. S9F), suggesting
that the functionally relevant effects of G, signaling on sphingo-
lipid synthesis occur during the differentiation phase. Collectively,
these results indicate that the excess plasma membrane characteris-
tic of AGPy cells is due, at least in part, to increased sphingolipid
synthesis.

Winer et al., Sci. Imnmunol. 9, eadl2388 (2024) 7 June 2024

Gf}4 controls membrane abundance and phagocytosis in
primary myeloid cells

Having demonstrated that Gf, deficiency induces hyperphagia in
HL-60 neutrophils and macrophages, we next investigated whether
this phenotype would manifest in primary cells. By applying CRISPR-
Cas9 targeting to the estrogen-regulated (ER)-HoxB8 immortalized
murine progenitor system (fig. S10, A and B) (22, 71, 72), we were
able to generate primary-like neutrophils lacking Gf4, along with
controls expressing nontargeting guide RNA (gRNA). Both AG,4
and WT ER-HoxB8 neutrophils expressed equivalent levels of CD11b
and Ly6G after differentiation (fig. S10C), indicating that Gp, is dis-
pensable for the acquisition of neutrophil fate. As with AGf4 HL-60
cells, AGB4 ER-HoxB8 neutrophils displayed clear signs of plasma
membrane dysregulation, including reduced membrane tension
and increased membrane tether length in optical trap experiments
(fig. S10, D and E). AGPs ER-HoxB8 neutrophils also expanded to
nearly twice the volume of WT controls upon transfer to hypotonic
medium (fig. S10F). In phagocytosis assays, both WT and AGp,
ER-HoxB8 neutrophils failed to consume IgG-coated MPs, likely
because primary murine neutrophils are substantially smaller than
HL-60 neutrophils and therefore unable to accommodate larger
(diameter, ~10 pm) cargos. When challenged with smaller (diameter,
2 pum) S. aureus bioparticles, however, AGB, ER-HoxB8 neutrophils
more than doubled the uptake of WT controls (fig. S10G).

To assess the role of G, signaling in primary macrophages, we
prepared WT and AGP4 macrophages from human induced plu-
ripotent stem cells (hiPSCs; Fig. 6A and fig. S11A) (73-75). CRISPR-
Cas9 was used to target the GNB4 locus (encoding Gf4) at the hiPSC
stage, and WT control hiPSCs were generated in parallel using a
nontargeting gRNA (fig. S11B). Granulocyte monocyte progenitor
(GMP) cells derived from these hiPSC lines were then differentiated
into mature CD11b" CD14" CD68" macrophages. G, deficiency
did not affect the efficacy of this differentiation protocol (fig. S11C).
In optical trap experiments, AGB4 macrophages generated weaker
tether forces and longer membrane tethers than WT controls (Fig. 6,
B and C). AGP4 macrophages also became substantially larger than
their WT counterparts in hypotonic medium, despite being simi-
larly sized under isotonic conditions (Fig. 6D). These phenotypes,
which mirrored our results in the HL-60 and ER-HoxB8 systems,
were strongly suggestive of excess plasma membrane accumulation.
Last, we evaluated phagocytic capacity and found that Gf4 deficien-
cy markedly increased the uptake of IgG-coated MPs (Fig. 6E). We
conclude that the Gp, pathway regulates plasma membrane abun-
dance and phagocytosis in primary neutrophils and macrophages.

Gf,4 regulates antifungal immunity in vivo

Phagocytes are the first line of defense against microbes in multiple
epithelial tissues (3, 13, 76). To evaluate the role of Gf4-dependent
membrane allocation during this early phase of immunity, we gener-
ated mice with a targeted deletion of exon 4 of the Gnb4 locus
(fig. S12, A and B). This modification prematurely terminated the
Gnb4 open reading frame, leading to constitutive Gf4 deficiency.
Mice homozygous for this deletion (Gnb4™'~) and WT (Gnb4™'")
littermate controls were infected intratracheally with A. fumigatus, a
fungal pathogen that elicits the robust recruitment of phagocytically
active neutrophils to the lung (77-79). To enable flow cytometric
detection of fungal uptake by these cells, we used fluorescent
Aspergillus reporter (FLARE) conidia that expressed DsRed, a de-
gradable fluorescent protein, and were also labeled with Alexa
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Fig. 5. G4 regulates plasma membrane expansion via sphingolipid synthesis. (A) Lipidomic quantification of ceramides (left) and sphingomyelin (right) in WT and
AGP4 HL-60 neutrophils. Data are means + SD. n = 3, pooled from three biological replicates. Unpaired t test, ***P < 0.001 and ****P < 0.0001. (B) AGP4 and WT HL-60
neutrophils were compared by RNA sequencing before and after consumption of IgG-coated MPs. Gene set enrichment analysis (GSEA) plots are shown that associate the
gene expression changes induced by MP uptake in AGp,4 cells with gene sets for sphingolipid metabolism (center) and de novo sphingolipid biosynthesis. NES, normal-
ized enrichment score. (C to F) WT and AGf4 HL-60 neutrophils were differentiated in the presence or absence of myriocin and then subjected to biophysical and func-
tional analysis. (C) Quantification of membrane tension, determined by membrane tether pulling. Data represent means + SD. n > 19 for each sample, pooled from five
biological replicates. Two-way ANOVA with Sidak’s multiple comparisons test, *##P < 0.001 and **#*#P < 0.0001. (D) Cells were challenged with IgG-coated MPs, and
phagocytosis was quantified after 3 hours. Data represent means + SD. n > 10 for each sample, pooled from five biological replicates. Two-way ANOVA with Sidak’s mul-
tiple comparisons test, **P < 0.01 and ****P < 0.0001. (E) Representative images of myriocin-treated and untreated AG,4 HL-60 neutrophils. Scale bars, 10 um. (F) Migra-
tion velocities of myriocin-treated AGB4 and WT HL-60 neutrophils. Untreated AGP, and WT velocities from Fig. 3B are included for comparison. Data represent
means + SD. n > 174 for each sample, pooled from three biological replicates. One-way ANOVA with Tukey’s multiple comparisons test, **#**P < 0.0001. ns, not significant.

Fluor 633 (AF633), a nondegradable small-molecule dye. Cells
that take up FLARE conidia become AF633*DsRed*, whereas
cells that have killed the phagocytized fungi are AF633"DsRed”
(Fig. 7A) (21). FLARE A. fumigatus infection induced similar lev-
elsofneutrophil recruitment to the lungs of WT and Gnb4 ™'~ animals,
with CD11b*Ly6G*SiglecF~ cells accounting for ~70% of CD45*
infiltrates in both experimental groups (Fig. 7B). However, fungal
phagocytosis was almost three times higher in Gnb4™~ neutrophils
(Fig. 7C), mirroring the hyperphagic phenotype seen in HL-60 cells,
ER-HoxB8 neutrophils, and hiPSC-derived macrophages lacking
Gp4. Among these phagocytic cells, the frequency of fungal killing
was unaffected by G, deficiency (fig. S12C), consistent with the
interpretation that Gf,4 signaling modulates cargo uptake but not
subsequent acidification of the phagolysosome. Gnb4™'~ animals
also exhibited a ~10-fold reduction in fungal colony-forming units
(CFU) in the lung relative to WT controls at the 18-hour time
point (Fig. 7D), indicating that the increased conidial phagocytosis

Winer et al., Sci. Imnmunol. 9, eadl2388 (2024) 7 June 2024

conferred by loss of GP4 improved fungal clearance during early-
stage infection.

Given that AGf4 HL-60 neutrophils failed to arrest their motility
after cargo uptake in vitro (Fig. 3, C to F), we speculated that Gnb4™'~
phagocytes might exhibit altered trafficking behavior in vivo. Ac-
cordingly, we examined the organ distribution of phagocytic WT
and Gnb4™/~ neutrophils 24 hours after FLARE infection (Fig. 7A).
In WT mice, neutrophils bearing AF633-labeled material were found
predominantly in the lungs, with small numbers in the draining
lymph nodes (dLNs) and essentially none in the spleens and blood
(Fig. 7, E to G, and fig. S12D). These observations were consistent
with the expectation that phagocytosis inhibits motility after conidial
uptake in the lungs, thereby preventing the dissemination of neutro-
phils with internalized pathogens to other organs. By contrast, we
observed a substantial number of AF633" neutrophils in the dLNs of
Gnb4™'~ animals (Fig. 7, E and F), suggesting that Gf, deficiency at
least partially relieves the brake on motility applied by phagocytosis.
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Fig. 6. Gp4 deficiency boosts primary macro-
phage phagocytosis. (A to D) Isogenic AGB4 and
WT macrophages were derived from hiPSCs and
subjected to biophysical and functional assays.
(A) Schematic of embryoid body generation from
hiPSCs and differentiation of primary macro-
phages from GMPs. (B and C) Membrane tethers
were generated from WT and AGB4 macrophages
using an optical trap. (B) Quantification of mem-
brane tether force. (C) Quantification of mem-
brane tether length. Data in (B and C) represent
means + SD. n > 46 for each sample, pooled from
five biological replicates. (D) AGB4 and WT macro-
phages were osmotically shocked and allowed to
expand to their full volume to assess total plasma
membrane. Data represent means + SD. n = 12
for each sample, pooled from three biological
replicates. (E) WT and AGP, macrophages were
challenged with IgG-coated MPs for 2 hours, and
phagocytic uptake was quantified by florescence
microscopy. Data represent means + SD, pooled
from five biological replicates. Unpaired t test (B,
C, and E) or two-way ANOVA with Sidak’s multiple
comparisons test (D), ****P < 0.0001.
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DsRed*AF633* neutrophils were observed
in Gnb4~’~ dLNs (Fig. 7, E and H). Given
that GP4 deficiency does not affect pha-
golysosome maturation (fig. S3B), these
results strongly suggest that Gnb4™'~ neu-
trophils continue to migrate after conidi-
al uptake, enabling them to reach proximal organs like the dLN
before their cargo is broken down. We conclude that GP4 deficiency
not only increases the phagocytic capacity of myeloid cells in vivo but
also disrupts the cross-regulatory relationship between phagocytosis
and migration.

To investigate whether the altered behavior of Gnb4™~ neutro-
phils affected the overall efficacy of antifungal immunity, we infected
Gnb4™~ and WT mice with A. fumigatus CEA10, a clinically de-
rived strain with increased pathogenicity in mice (Fig. 7I) (80). WT
mice experienced acute weight loss in the first 72 hours after CEA10
administration, and half succumbed to the infection within the first
week (Fig. 7, ] and K). Both weight loss and mortality were attenu-
ated in Gnb4™'~ animals, indicating that loss of GP4 protects mice
from the adverse effects of A. fumigatus infection.

o

DISCUSSION

Our results identify Gf4 as a critical regulator of plasma mem-
brane abundance in myeloid cells and demonstrate that the plasma
membrane exerts biophysical control over phagocytic capacity
and functional cross-talk. Because the plasma membrane must be
mobilized to build protrusive cellular structures, limiting its abun-
dance provides a simple mechanism for not only constraining
the magnitude of a given architectural response (e.g., phagocyto-
sis) but also enabling cross-regulation between responses (e.g.,
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Phagocytosing IgG MPs (% cells)

phagocytosis inhibiting migration). This scarcity model is consis-
tent with prior work documenting antagonism between uptake be-
haviors, such as phagocytosis and macropinocytosis, and migration
(16-18). Thus, the mechanisms governing plasma membrane allo-
cation in myeloid cells effectively dictate their functional potential.

The plasma membrane-dependent control mechanism studied
here appears to most strongly affect the phagocytosis of large (diam-
eter, ~10 pm) cargos, such as apoptotic cells and cancer cells, while
having less impact on the uptake of small entities such as bacteria.
This distinction likely reflects the fact that engulfing large, unbroken
targets with high surface area places a disproportionate burden on
plasma membrane mobilization. The importance of G, for regulat-
ing this type of phagocytosis suggests that it may be particularly rel-
evant for processes that involve the clearance of large eukaryotic
cells, such as antitumor immunosurveillance and the maintenance
of tissue homeostasis.

Although lipid droplets are clearly augmented in AGf; cells, their
role in myeloid cell hyperphagia remains unclear. Prior work has
associated increased lipid droplet formation with reduced, rather
than enhanced, phagocytosis (81-83). In these studies, however,
lipid droplet growth either occurred downstream of a genetic
defect in phagocytosis itself or was induced by cell-extrinsic nutri-
tional changes, complicating direct comparisons with our find-
ings. Lipid droplets almost exclusively contain triglycerides (84),
which must be processed into amphipathic lipids in intracellular
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Fig. 7. GB, deficiency boosts
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organelles before being incorporated into the plasma mem-
brane. Hence, it seems highly unlikely that lipid droplets would
augment the plasma membrane directly during phagocytosis.
That being said, it has been shown that cells use lipid droplets to
buffer membrane depletion and fatigue under conditions of
metabolic stress and protein misfolding (84-87). Hence, it is
tempting to speculate that the enlarged lipid droplets present in AG4
phagocytes might enable these cells to replenish the plasma
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membrane after phagocytosis, thereby facilitating serial con-
sumption.

The notable functional gains exhibited by AGB4 neutrophils and
macrophages raise the question of why Gf4-dependent control of
membrane abundance evolved in the first place. One obvious answer
is that tight cross-inhibition between phagocytosis and migration is
essential for immune function, at least in some contexts. We found
that Gnb4™'~ neutrophils not only take up more A. fumigatus conidia
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in vivo but also traffic them out of the lung to the dLN. Although
increased fungal dispersion did not appear to compromise immunity
in our experiments, one could imagine that a pathogen more capable
of resisting or escaping the phagolysosome could exploit the dysreg-
ulated migration of Gf4-deficient phagocytes to spread.

Although we cannot, at present, rule out a role for Gp,4 in the
acute regulation of phagocytosis and motility, we favor a model in
which the GP4 pathway acts during myeloid cell differentiation to
dictate the size and composition of the plasma membrane, which
then serves as a master mechanoregulator of morphology and effec-
tor responses in the terminally differentiated state (fig. S13). This
model is consistent with our observations that AGB, neutrophils
and macrophages exhibit architectural abnormalities (Fig. 4 and
fig. $6) and that acute myriocin treatment fails to reverse the AGf4
phagocytosis phenotype (fig. SOF). Conceptually, the regulation of
plasma membrane abundance by Gp, signaling is analogous to how
the unfolded protein response sets the size of the endoplasmic re-
ticulum and, therefore, the capacity to process misfolded proteins
under conditions of cell stress (88). We postulate that differential
G4 expression among myeloid progenitors might promote func-
tional diversification by enabling the formation of differentiated
subsets with a spectrum of plasma membrane-defined phagocytic
and migratory set points. This type of diversity could enable the in-
nate immune system to engage effectively with a wide variety of ho-
meostatic and microbial challenges.

Gp4 mutations have been associated with Charcot-Marie-Tooth
disease (CMTD) (89-92), a hereditary neurological disorder character-
ized by the progressive demyelination of peripheral nerves. Although
the pathogenesis of this disease is generally thought to arise from cell-
intrinsic glial dysfunction, macrophages routinely patrol peripheral
nerves and are well positioned to induce autoimmune neuropathy (93,
94). Macrophage depletion has been shown to attenuate neurodegen-
eration in mouse CMTD models (95-97). In light of these reports, our
data raise the intriguing possibility that dysregulated macrophage
phagocytosis might contribute to at least some forms of CMTD.

The identification of Gy signaling and sphingolipid synthesis as
key regulators of phagocytic capacity in myeloid cells reveals hereto-
fore unexplored avenues for enhancing innate immunity in therapeu-
tic contexts. By targeting the architectural basis of cargo uptake, one
could potentially modulate phagocyte activity in a manner that is ag-
nostic to specific targets. We anticipate that an approach like this
would be particularly useful for treating systemic microbial infections
and for enhancing the antitumor potential of chimeric antigen recep-
tor (CAR)-macrophages (10, 98). Exploring these possibilities in
translationally relevant experimental systems will be an interesting
topic for future research.

MATERIALS AND METHODS

Study design

The goal of this study was to determine how Gp, signaling affects
myeloid cell phagocytosis and migration. In vitro assays were used
to measure phagocytic uptake and chemotaxis. FIB-SEM was used
for ultrastructural analysis of the cell membrane, and optical trap
methodology was used to quantify membrane tension. We also
applied lipidomics/mass spectrometry and RNA sequencing to
investigate the molecular basis of the AGP4 phenotype. Experi-
mental sample sizes were not predetermined, and there were no pre-
defined study end points. Experiments were not randomized, and
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investigators were not blinded during data acquisition and analysis.
In general, experiments were performed at least three times (three
biological replicates). Specific information about replication is in-
cluded in the figure legends. Data analysis protocols are detailed be-
low and in the Supplementary Materials.

HL-60 genetic manipulation

Gp isoforms were deleted from HL-60 progenitors using the IDT
Alt-R CRISPR-Cas9 system (IDT). Briefly, crispr (cr)RNAs specific
for each Gf isoform (see table S1 for sequence details) were resus-
pended in sterile duplex buffer (IDT) to a final concentration of
200 pM. Each crRNA was then mixed with tracrRNA-ATTO 550 (IDT)
at a 1:1 ratio and annealed to form sgRNA using a thermocycler
(Bio-Rad). sgRNA:Cas9 ribonucleoprotein (RNPs) were formed by
mixing 0.3 pl of 36 pM Cas9 protein (IDT) with annealed sgRNAs at
a 1:1 ratio followed by room temperature incubation for 10 to
20 min. HL-60 progenitor cells at a density of 2.2 X 10° (>95% via-
bility) were washed with phosphate-buffered saline (PBS) and then
transferred into 200 pl of resuspension buffer (Buffer R, Invitrogen).
The cells were then mixed with RNPs, loaded into an electropora-
tion cuvette (Thermo Fisher Scientific) with E2 buffer, and electro-
porated at 1350 V for 35 s. Electroporated cells were recovered in
2 ml of RPMI with 20% fetal bovine serum (FBS) and 1% penicillin-
streptomycin and incubated at 37°C and 5% CO; for 24 to 48 hours.
Subsequently, ATTO 550-positive cells were single-cell sorted into
96-well plates using a FACS Aria 3. Cell clones were screened for G
gene expression after 2 to 3 weeks. For screening, cells were fixed
and permeabilized using BD fixation and permeabilization buffers,
followed by staining using primary antibodies against Gp isoforms
(table S2) at a dilution 1:100 for 30 min at 4°C. Cells were then
stained with goat anti-rabbit AF647 antibody (Thermo Fisher Scien-
tific) for 20 min at room temperature before flow cytometric analy-
sis on a CytoFLEX LX machine (Beckman Coulter).

To overexpress Gfs, a GNB4 gene block (IDT) containing homol-
ogy arms to the lentiviral vector pLVX-Puro (Clontech) was inserted
into Xho I-digested pLVX-Puro using the In-Fusion HD Kit (Takara
Bio). The homology arms were 5'-ctaccggactcagatctcga-3’ at the 5'
end of GNB4 and 5’'-tcgagctcatcgggatcccgetegacta-3’ at the 3' end.
The resulting plasmid was combined with plasmids encoding (i) gag-
pol from HIV53 and (ii) appropriate viral glycoproteins (vesicular
stomatitis virus glycoprotein), and the mixture then transfected into
human embryonic kidney (HEK) 293T Lenti-X cells (Takara Bio) us-
ing the X-tremeGENE transfection reagent (Roche Applied Science).
Lentivirus was collected 24 and 48 hours after transfection and stored
at —80°C until use. For transduction, 0.5 X 10° to 1 x 10° HL-60
progenitor cells were mixed with lentivirus preparations (1 ml of vi-
rus supplemented with polybrene and Hepes) and centrifuged at
1400g at 37°C for 2 hours in either 24-well or 6-well polystyrene
plates (Corning). Subsequently, 1 ml of RPMI complete media
(10% FBS and 1% penicillin-streptomycin) was added to the cells,
followed by overnight incubation at 37°C and 5% CO,. Cells were
then placed in puromycin (0.5 pg/ml) for 14 days to select for
successfully transduced cells. HL-60 progenitors transduced with
lentivirus derived from empty pLVX-Puro were prepared in paral-
lel as controls. To express F-tractin-mCherry in HL-60 cells, DNA
encoding the F-tractin-mCherry fusion was amplified from a
C1-F-tractin-mCherry plasmid (Addgene, #155218) and then
subcloned into the lentiviral vector pLVX-M-Puro (Clontech)
by Gibson reaction. Lentivirus production and transduction were
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performed as described above. To express PH-AKT-BFP in HL-60
cells, DNA encoding the PH domain of AKT was amplified from a PH-
AKT-Venus plasmid (Plasmid #85223), and DNA encoding BFP was
from pLentiCas9-BFP (Plasmid #78545). The fragments were then
subcloned into the lentiviral vector pHR using the Gibson approach.

Flow cytometric MP phagocytosis assay

Neutrophils stained with either Hoechst or CellVue Maroon (both
from Thermo Fisher Scientific) were seeded into fibronectin-coated
24-well plates at a density of 150,000 cells per well. FITC/LRB-
labeled MPs coated with a phagocytic target ligand (e.g., IgG) were
then added at a 1:2 (MP:cell) ratio, followed by incubation at 37°C
and 5% CO, for 3 hours. In certain experiments, neutrophils were
pretreated with 1 pM PIK90 (Tocris Biosciences) for 30 min before
MP addition and maintained in 1 pM PIK90 for the duration of the
3-hour coincubation. Cells were then removed from the surface
by trypsinization and transferred into fluorescence-activated cell
sorting (FACS) tubes for analysis using a CytoFLEX LX machine
(Beckman Coulter). Analysis was performed by first gating out free-
floating MPs and then identifying LRB*FITClow cells, indicative of
successful uptake and acidification of MPs. In each sample, the total
number of LRBYFITC'®" cells was normalized to the total number of
live cells to generate a %phagocyt031s metric. In experiments using
pHrodo Green-or pHrodo Red-dyed MPs, the %phagocytosis
metric was calculated using pHrodo right cells [in FITC or phycoer-
ythrin (PE) channels] as the numerator and total cells as the de-
nominator. In experiments comparing AGf4 and WT HL-60 cells
in the same sample, each cell type was labeled with a different dye
(either Hoechst or CellVue Maroon, both from Thermo Fisher Scien-
tific) to distinguish them during end point flow cytometric analysis.
Dyes were switched between experiments to control for potential
effects of the dyes on phagocytosis.

Wide-field imaging of MP phagocytosis

Neutrophils or macrophages were stained using Hoechst and/or
CellVue Maroon (both from Thermo Fisher Scientific) and seeded
into fibronectin-coated eight-well chamber slides (ibidi) at a den-
sity of 100,000 or 50,000 cells per well, respectively. FITC/LRB-
labeled IgG-coated MPs were then added at a 1:2 (MP:cell) ratio,
and the samples were imaged on a Zeiss Axiovert microscope
using a 20X objective lens for at least 2 hours at 1-min intervals.
4’,6-Diamidino-2-phenylindole, FITC, and tetramethyl rhodamine
isothiocyanate images were collected at each time point. Phagocy-
tosed MPs were identified in Fiji by a reduction in FITC signal due
to phagolysosome acidification. %Phagocytosis was determined by
dividing the number of phagocytes containing acidified MPs by the
total number of phagocytes in each frame.

Micropipette migration assay

Differentiated AGP4 and WT HL-60 neutrophils were stained with
Hoechst (Thermo Fisher Scientific) for 20 min at 25°C and allowed
to attach to fibronectin-coated 35-mm glass-bottom cover slips for
1 hour (250,000 cells per dish). Samples were washed to remove
nonadherent cells and left in 3 ml of complete RPMI media before
imaging. A femptotip (Eppendorf) micropipette loaded with sterile
filtered RPMI containing 2% fatty acid—free bovine serum albumin,
1% penicillin-streptomycin, 200 nM fMLE, and trace AF647 dye was
attached to a FemptoJet 4i (Eppendorf), and the micropipette tip
was positioned at the center of the imaging frame. Pressure (400 psi)
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was then applied to dispense the chemoattractant mixture, and se-
rial images (40-s intervals between frames) were collected over the
course of an hour at 20X magnification using a Ti Eclipse micro-
scope with a CSU-0W1 Yokogawa camera (Nikon) at 37°C and 5%
COs,. To measure migration after MP uptake, AGp4 and WT HL-60
cells were preincubated with pHrodo Green-or pHrodo Red-la-
beled MPs, respectively, for 3 hours. Cells that had taken up MPs
during this time were FACS-sorted on the basis of green (AGp4) or
red (WT) fluorescence. A 1:1 mixture of these cells was then applied
to fibronectin-coated cover slips (250,000 cells per dish) and chemo-
taxis toward a point source of fMLF measured as described above.

FIB-SEM imaging and analysis

Cells were plated on Aclar coverslips coated with fibronectin and
then fixed with 2% glutaraldehyde and 2 mM CacCl, in 0.08 M so-
dium cacodylate bufter (pH 7.2). This primary fixation was followed
by a reduced osmium-thiocarbohydrazide-osmium protocol as fol-
lows: Cells were incubated for 1 hour in 1% OsO4 and 1.25% potas-
sium ferrocyanide in 0.1 M sodium cacodylate buffer on ice, washed
with buffer, and then incubated with 1% thiocarbohydrazide in wa-
ter for 12 min. After washing, cells were treated with 1% osmium
tetroxide in 0.1 M cacodylate buffer for 30 min on ice. The samples
were then dehydrated using a graded series of ethanol solutions and
embedded in Eponate 12. Sample blocks were trimmed and then
mounted on an SEM sample holder using double-sided carbon tape
(EMS). Colloidal silver paint (EMS) was used to electrically ground
the sides of the resin block. The entire surface of the specimen was
then sputter-coated with a thin layer (5 nm) of gold/palladium. The
sample was imaged using immersion, through-the-lens detector,
back-scattered electron mode on an FEI Helios Nanolab 650 micro-
scope. Images were recorded after each round of ion beam milling
using the SEM beam at 2.0 keV and 0.10-nA current with a working
distance of <5 mm. The ion beam was held at 30 keV, with a milling
current of 80 pA. Data acquisition occurred through automation us-
ing Auto Slice and View G3 software. Raw images were 4096 pixels
by 2048 pixels, with 20- to 50-nm slices viewed at a —38° cross-
sectional angle. Each raw image had a horizontal field width of 10 to
15 pm with an XY pixel size of 2 to 4 nm and a 40-nm Z-step size.
Images were aligned using the image processing programs in
IMOD. All segmentation was performed using semimanual thresh-
olding and manual annotation of a test set (10% of data) using the
LABKIT machine learning plug-in for Imaris. Three-dimensional
renderings, reconstructions, surface/volume calculations, and internal
vesicle volume calculations were performed using Imaris (Bitplane).

Myriocin sphingolipid synthesis inhibition assays

For acute myriocin treatment, HL-60 cells on the fifth day of DMSO
differentiation were treated with a final concentration of 50 nM
myriocin (Millipore Sigma-Aldrich) for 12 hours before phagocyto-
sis or C-trap experiments. For long-term inhibition of sphingolipid
synthesis, HL-60 progenitor cells were incubated over the 5-day
DMSO differentiation in the presence of 50 nM myriocin. Treated
cells were then used in phagocytosis, migration, or C-trap ex-
periments. No observable effect on viability was observed in either
treatment regime.

Osmotic shock experiments
HL-60 cells or terminally differentiated primary human macrophages
(derived from hiPSC cells) were suspended in 200 pl of complete
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RPMI (supplemented with 10% FBS and 1% penicillin-streptomycin)
containing either 1.5% DMSO or 50 ng/ml human macrophage colo-
ny stimulating factor (h-mCSF), respectively, and then applied to a Vi
Cell Blue (Beckman Coulter, MA) cell counter to measure cell diam-
eter. The samples were then osmotically shocked for 2 or 4 min by
adding 180 pl of sterile ddH,O to 20 pl of suspended cells (final con-
centration of 2 X 10° cells/ml) before loading onto the same device.
Each measurement was performed using nine biological replicates.
All recorded samples had >90% viability during the assay, as moni-
tored by trypan blue (Thermo Fisher Scientific) exclusion.

Membrane tension measurements

Plasma membrane tension was quantified using a C-Trap optical
trapping device (Lumicks BV, Netherlands). An infrared laser beam
(50 mW and 1064 nm) was tightly focused through a series of mir-
rors, beam expanders, and a high-numerical aperture (NA) objec-
tive lens (63x/1.2 NA; Nikon Instruments) to form a steerable
optical trap. Cells were immobilized inside an Ibidi p-slide (Ibidi
GmbH, Germany) treated with fibronectin (200 pg/ml; Thermo
Fisher Scientific/Sigma-Aldrich). To measure plasma membrane
tension, polystyrene beads (2.2 pm; Spherotech Inc., IL) were coated
with concanavalin A (50 pg/ml; Thermo Fisher Scientific/Sigma-
Aldrich) and added to the cell culture medium inside the slide.
Beads were momentarily placed in contact with the cell membrane,
and tethers were then extruded by moving the bead away from the
cell perpendicularly at a speed of 2 pm/s. Force measurements were
made using the Lumicks Bluelake software suite by capturing the
exiting trapping light with a high-NA condenser lens (63x/1.45, oil
immersion; Zeiss AB, Germany) and measuring bead displacement
in the trap with position-sensitive detectors through back focal
plane interferometry. Membrane tether breaking was documented
as a sharp discontinuity in tether force during tether extrusion, with
breaking distance measured from simultaneously collected bright-
field images using Fiji. Data analysis was performed using Py-
thon 3.8.0.

Lipidomics

Frozen cell pellets were thawed and extracted using a modified Folch
protocol (99). Briefly, samples were resuspended in 300 pl of metha-
nol containing SPLASH LIPIDOMIX (Avanti Polar Lipids) as inter-
nal standards, vortexed, and then mixed with 600 pl of chloroform.
Water (180 pl) was added to each tube to induce phase separation,
and after mixing, samples were centrifuged at 16,000¢ for 5 min at
4°C. Subsequently, the lower chloroform layer was collected and the
aqueous layer reextracted using 450 pl of chloroform:methanol:water
(3:48:47 v/v/v). The lower chloroform layer was collected and pooled
with the previous extract. Samples were then dried under nitrogen at
40°C and resuspended in 100 pl of 90:10 methanol:chloroform. Lipid
profiling was performed using an Agilent 6546 Q-TOF mass spec-
trometer in positive and negative ionization modes, coupled to a
ZORBAX Eclipse Plus C-18 column (100 mm by 2.1 mm; 1.8-pm
particle size; Agilent). Mobile phase A consisted of 10 mM ammoni-
um formate in 50:30:20 water:acetonitrile:isopropanol. Mobile phase
B consisted of 10 mM ammonium formate in 1:9:90 water:acetonitrile:-
isopropanol. Liquid chromatography (LC) gradient conditions were
as follows: 0 min at 0% B, 2.7 min at 45% B, 2.8 min at 53% B, 9 min
at 65% B, 9.10 min at 89% B, 11 min at 92% B, 11.10 min 100% B,
12 min at 10% B, and 15 min at 10% B. Other LC parameters were as
follows: flow rate at 0.4 ml/min, column temperature at 60°C, and
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injection volume of 5 pl. Mass spectrometry (MS) source parameters
included were as follows: gas temperature, 200°C; gas flow, 10 liter/min;
nebulizer pressure, 50 psi; sheath gas temperature, 300°C; sheath gas
flow, 12 liter/min; Vcap, 3000 V; nozzle voltage, 0 V; and fragmentor,
150 V. For lipid annotation, five injections of iterative tandem MS
(MS/MS) acquisition were performed on a pooled lipid extract in
both positive and negative polarity. To identify lipid species, iterative
MS/MS acquisition data in positive and negative polarity was pro-
cessed using Agilent Lipid Annotator software 1.0 (100). Subsequent
targeted feature extraction and peak integration was performed using
Skyline (101). For statistical analysis, the Welch ¢ test was used for
pairwise comparisons between WT and AGp, groups with Benjamini-
Hochberg false discovery rate correction.

Generation of Gnb4™'~ mice

The animal protocols used for this study were approved by the In-
stitutional Animal Care and Use Committee of Memorial Sloan
Kettering Cancer Center (MSKCC). Two sgRNAs (with targeting
sequences 5'-cgtcaaaatatcgcaagtge-3’ and 5'-aggtgtcagatcaaacc-3’)
against exon 4 of the Gnb4 locus (IDT) were injected together with
purified Cas9 protein (IDT) into C57BL/6 zygotes, which were
then transferred into C57BL/6 pseudopregnant females. Founder
animals were screened for deletion of the entire exon 4 and the
presence of an early stop codon in exon 5 and then bred to homo-
zygosity. Routine genotyping polymerase chain reactions were
performed using forward (5'-ggagaacagctagtactcttaac-3’) and re-
verse (5'-aaaagtatttattagcagtatc-3’) primers. The resulting ampli-
cons for WT and Gnb4 KO mutant alleles were 1360 and 305 base
pairs, respectively.

A. fumigatus FLARE intratracheal mouse fungal infections

Gnb4™"~ and WT mice were infected by intratracheal administration
of 60 x 10° FLARE Af293 A. fumigatus (see Supplementary Materials
and Methods for the staining protocol) in 50 pl. WT mice were also
infected with unlabeled A. fumigatus to serve as analysis controls (see
below). Eighteen hours after infection, mice were euthanized, and
their lungs were harvested into 5 ml of digestion buffer [PBS with 5%
FBS, deoxyribonuclease I (0.1 mg/ml), and type IV collagenase
(Worthington) at 2.2 mg/ml]. Tissue homogenization was performed
using a MACS Octo Dissociator for 55 s at 1302 rpm, followed by
slow rotation at 37°C for 40 min. A final mechanical homogenization
was performed for 37 s at 2079 rpm, after which all samples were
diluted with 5 ml of PBS + 5% FBS, filtered through a 100-pm pore
size cell strainer, and centrifuged at 300g for 5 min at 4°C. The pellet
was resuspended in 2 ml of ACK lysis buffer (BD) and incubated for
15 min to achieve red blood cell lysis. After quenching in 4 ml of
RPMI + 10% FBS, cells were centrifuged at 300g for 5 min at 4°C,
followed by resuspension in cold FACS buffer (PBS + 5% FBS). To
assess dissemination at 24 hours after infection, lungs, dLNs, spleens,
and 200 pl of blood were harvested from each mouse. Lungs were
processed as described above. dLNs and spleens were homogenized
and filtered through a 100-pm pore size cell strainer. Subsequently,
the spleen single-cell suspension was centrifuged, resuspended in
2 ml of ACK lysis buffer (BD), and incubated for 15 min to achieve
red blood cell lysis. After quenching in 4 ml of RPMI + 10% FBS,
cells were centrifuged at 300g for 5 min at 4°C, followed by resuspen-
sion in cold FACS buffer. Blood samples were diluted into 2 ml of
ACK lysis buffer (BD) containing 100 mM EDTA and incubated for
15 min to achieve red blood cell lysis. After quenching in 4 ml of
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RPMI + 10% FBS, cells were centrifuged at 300g for 5 min at 4°C,
followed by resuspension in cold FACS buffer. Aliquots of 2 x 10°
cells from each organ were dispensed into round-bottom 96-well
plates (Corning) and then stained for 20 min at 4°C with a viability
dye (1:250; Tonbo Ghost Dye Violet 510) along with antibodies
against Ly6G (BUV395, 1:100), CD11b (BUV805, 1:100), Siglec F
(BV650, 1:100), CD45 (BV785), and CD11c (PE-Cy7, 1:100; table $3).
Samples were then applied to a CytoFLEX LX flow cytometer and
analyzed using Flow]Jo software. Neutrophils were identified as CD
11b*Ly6G*SiglecF"CD11c™ cells. %Phagocytosis was determined by
dividing the total number of AF633* neutrophils in each sample by
the total number of neutrophils. %FLARE killing was expressed
as the number of AF633*DsRed ™ neutrophils over the total number
of AF633* neutrophils in each sample. Gating for AF633" neutro-
phils was facilitated using unlabeled neutrophils extracted from mice
infected with unlabeled A. fumigatus. To quantify fungal infection,
lung suspensions were diluted 50-fold, and 50 pl of each sample was
plated on Sabouraud dextrose agar (Thermo Fisher Scientific). CFUs
were quantified after 2 days of incubation at 37°C. For survival
experiments, both Gnb4™~ and WT mice were infected with CEA10
A. fumigatus (65 x 10° CFU). Weight and survival were monitored
over the course of 7 days.

Statistical analysis

Figure panels show either representative images or data pooled from
all biological replicates. f, one- or two-way analysis of variance
(ANOVA), and logrank testing was performed as indicated using
Prism. Error bars denote SD or SEM as described in the figure legends.
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