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Abstract

The National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) will provide high-resolution,
multiline spectropolarimetric observations that are poised to revolutionize our understanding of the Sun. Given the
massive data volume, novel inference techniques are required to unlock its full potential. Here, we provide an
overview of our “SPIn4D” project, which aims to develop deep convolutional neural networks (CNNs) for
estimating the physical properties of the solar photosphere from DKIST spectropolarimetric observations. We
describe the magnetohydrodynamic (MHD) modeling and the Stokes profile synthesis pipeline that produce the
simulated output and input data, respectively. These data will be used to train a set of CNNs that can rapidly infer
the four-dimensional MHD state vectors by exploiting the spatiotemporally coherent patterns in the Stokes profile
time series. Specifically, our radiative MHD model simulates the small-scale dynamo actions that are prevalent in
quiet-Sun and plage regions. Six cases with different mean magnetic fields have been explored; each case covers
six solar-hours, totaling 109 TB in data volume. The simulation domain covers at least 25× 25× 8Mm, with
16× 16× 12 km spatial resolution, extending from the upper convection zone up to the temperature minimum
region. The outputs are stored at a 40 s cadence. We forward model the Stokes profile of two sets of Fe I lines at
630 and 1565 nm, which will be simultaneously observed by DKIST and can better constrain the parameter
variations along the line of sight. The MHD model output and the synthetic Stokes profiles are publicly available,
with 13.7 TB in the initial release.

Unified Astronomy Thesaurus concepts: Magnetic fields (994); Solar photosphere (1518); Spectropolarimetry
(1973); Active solar chromosphere (1980); Convolutional neural networks (1938); Magnetohydrodynamical
simulations (1966)

1. Introduction

The solar photosphere, a dynamic layer characterized by
diverse plasma and magnetic states, plays an essential role in
solar astronomy. Within this layer, processes such as magnetic
field emergence, convection, and energy and helicity injection
are continuously ongoing and define the structure and evolution
of the outer solar atmosphere and the rest of the heliosphere.
Understanding the photospheric plasma is therefore key to
understanding solar activity. The photosphere is dynamically
described by the magnetohydrodynamic (MHD; E. Priest 2014)
equations, which govern the four-dimensional (4D; three for
space plus one for time) evolution of the MHD state vector: the
magnetic B and velocity v vector fields and the scalar density ρ
and pressure p (or temperature T) fields. In addition to the
MHD equations, radiative transfer plays a dual role in the
system. On the one hand, it directly modifies the thermo-
dynamic evolution of the plasma relative to basic MHD via the
emission and absorption of photons, while on the other hand,
the resulting spectrum that reaches the far field (e.g., at ground-
and space-based telescopes) encodes the state of the system and
thus provides crucial diagnostics of the photospheric plasma

(I. Hubeny & D. Mihalas 2015). Notably, the Zeeman and
Hanle effects encode the state of the magnetic field in polarized
radiation, provided it can be properly interpreted (J. Stenflo
1994; J. C. del Toro Iniesta 2007).
The Daniel K. Inouye Solar Telescope (DKIST; T. R. Rimmele

et al. 2020), established by the National Science Foundation,
opened a new era in solar observation with the commencement
of its scientific operations in 2022. Boasting the world’s largest
aperture for solar studies (4m), DKIST enables unprecedentedly
sharp observations (down to 0 03 or 25 km), with the excellent
seeing conditions on Haleakalā and its advanced adaptive optics
system. Both the design of the telescope and its instrumentation
suite enable measurements of polarized signals with unparalleled
accuracy (approximately 5× 10−4; T. R. Rimmele et al.
2020; A. G. de Wijn et al. 2022; S. A. Jaeggli et al. 2022;
D. M. Harrington et al. 2023). Its large aperture means it can
match the signal-to-noise ratio (SNR) of deep-exposure
quiet-Sun observations by the Hinode/Spectro-Polarimeter
(SP; B. W. Lites et al. 2008) in a fraction of the time (∼60 s
versus ∼1 s). Equipped with cutting-edge instruments like
the Visible Spectro-Polarimeter (ViSP; A. G. de Wijn et al.
2022), the Diffraction-Limited Near-Infrared Spectro-Polarimeter
(DL-NIRSP; S. A. Jaeggli et al. 2022), the Cryogenic Near-
Infrared Spectropolarimeter (T. A. Schad et al. 2023), and the
Visible Tunable Filter (W. Schmidt et al. 2016), DKIST has
the capability of exploring various solar regions, from the
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photosphere and chromosphere to the corona. Here, we focus
on the capabilities of the DL-NIRSP, which currently observes in
the near-infrared spectrum using integrating fiber-optic integral
field units (IFUs) that enable the simultaneous collection of
multiline Stokes profiles across a continuous field of view
(FOV).6 This feature significantly enhances our ability to
measure and analyze solar phenomena in detail, particularly the
magnetic properties of the small-scale structures.

With the help of the above new facilities, spectropolarimetric
observations (typically in the form of wavelength-dependent
Stokes profiles) for solar physics will significantly expand
in the near future. These advanced observations are sensitive
to the plasma state variables across the solar atmosphere
(J. C. del Toro Iniesta & B. Ruiz Cobo 2016; L. Bellot Rubio &
D. Orozco Suárez 2019 and references therein), offering a
unique tool for probing the solar environment at different
heights through sophisticated inversion techniques, whereby
the multidimensional state of the plasma is inferred from 2D
maps of the polarized spectra (B. Ruiz Cobo & J. C. del Toro
Iniesta 1992; A. Asensio Ramos et al. 2008; H. Socas-Navarro
et al. 2015; I. Milić & M. van Noort 2018; A. Asensio Ramos
& C. J. Diaz Baso 2019; J. M. Borrero et al. 2019; J. de la Cruz
Rodriguez et al. 2019; A. Pastor Yabar et al. 2019; C. Quintero
Noda et al. 2021, 2023; B. Ruiz Cobo et al. 2022). For
example, initial DKIST/ViSP data measurements of magnetic
fields in both quiet and plage regions highlight the utility of
spectropolarimetric observation in probing plasma dynamics in
otherwise inaccessible environments (J. M. da Silva Santos
et al. 2023; R. J. Campbell et al. 2023; D. Kuridze et al. 2024).
Developing good inversion techniques is thus required to tackle
a host of unanswered questions in both solar and plasma
physics in general; for instance, probing the mechanisms
behind local magnetic dynamos (A. Vögler & M. Schüssler
2007; J. O. Stenflo 2012; J. W. Lord et al. 2014; M. Rempel
2014), understanding the flux of helicity and energy across the
solar surface (Y. Liu & P. W. Schuck 2012; Y. Liu et al.
2014, 2023; B. T. Welsch 2015; E. Lumme et al. 2019;
P. W. Schuck & S. K. Antiochos 2019; J. K. Thalmann et al.
2021), and unraveling the magnetic foundations necessary
for solar eruptions and coronal heating (S. K. Antiochos 1998;
S. K. Antiochos et al. 1999; R. L. Moore et al. 2001;
E. R. Priest & T. G. Forbes 2002; X. Sun et al. 2013; H. Wang
et al. 2015, 2017; C. Liu et al. 2016; L. P. Chitta et al. 2017;
P. F. Wyper et al. 2017; T. Samanta et al. 2019).

Despite recent advancements in inversion technology,
creating accurate 3D reconstructions of the solar atmosphere
still remains a challenge. In particular, knowledge of the
physical variables’ distribution on a spatial grid is crucial for
the calculation of differential quantities that define the key
parameters of the system, e.g., the electric current, Lorentz force,
helicity, energy flux, and so on. Most current inversion techniques
return the physical state of the plasma on an optical depth τ grid
rather than on a spatial grid. Converting to a physical grid along
the line of sight (LOS) involves the additional steps of resolving
the ambiguity in the inverted magnetic azimuth angle, reconstruct-
ing the atmosphere based on dynamic/static assumptions, and
defining a vertical offset between each (assumed) independent
LOS (A. Pastor Yabar et al. 2019; J. M. Borrero et al. 2019, 2021;
J. M. Borrero & A. Pastor Yabar 2023). The spatiotemporal

information of the time-series observations is governed by the
MHD equations. Once incorporated, they can help resolve
the LOS spatial grid and ambiguity issues while also enhancing
the physical accuracy of inversions. However, integrating this
information is challenging in traditional 1D inversion techniques
based on sophisticated radiative transfer methods. These chal-
lenges are exacerbated by the need for powerful computers to
process the data and the complex work of creating accurate
solar models that match up with scientific laws over time, e.g.,
Newton’s laws and Maxwell’s equations. Moreover, the arrival of
powerful telescopes like DKIST, which can generate about 20 TB
of data every day, makes these challenges even greater, testing the
limits of our current technology. This huge amount of data
highlights the urgent need for innovative and efficient methods to
handle and analyze large volumes of solar Stokes profile data in
the DKIST era.
On the other hand, deep learning (DL), a specialized branch of

machine learning (ML), has shown exceptional efficacy in deriving
approximate inferences from physics models (P. Sadowski
& P. Baldi 2018; J. Brehmer et al. 2020). The rapid progress of
ML in solar physics, especially through DL’s application to Stokes
inversion, would significantly enhance our understanding and
analytical abilities (A. Asensio Ramos et al. 2023 and references
therein). Recent studies have highlighted the effectiveness of
convolutional neural networks (CNNs; A. Asensio Ramos &
C. J. Diaz Baso 2019; I. Milić & R. Gafeira 2020; R. Gafeira et al.
2021; R. E. L. Higgins et al. 2021, 2022; B. A. Chappell &
T. M. D. Pereira 2022; R. Centeno et al. 2022; S. Rahman et al.
2023, 2024; L. Mistryukova et al. 2023) and other advanced ML
algorithms (M. G. Bobra & S. Couvidat 2015; M. G. Bobra &
S. Ilonidis 2016; K. Florios et al. 2018; X. Huang et al. 2018;
N. Nishizuka et al. 2018; A. Sainz Dalda et al. 2019; C. J. Díaz
Baso et al. 2022; A. Vicente Arévalo et al. 2022; R. Jarolim et al.
2023, 2024a, 2024b; G. T. Goodwin et al. 2024) in processing a
wide array of solar observations, ranging from the quiet Sun to
dynamic solar flares and coronal mass ejections. These models
have shown promising results in enhancing accuracy and
efficiency, notably outpacing traditional methods in speed without
sacrificing analytical complexity. Furthermore, the DL methods
can enhance spatial resolution and image denoising, improving the
capability of observing small structures (A. Asensio Ramos et al.
2018; C. J. Díaz Baso & A. Asensio Ramos 2018; C. J. Díaz Baso
et al. 2019; S. Rahman et al. 2020; W. Song et al. 2022;
H. Eklund 2023). With the help of time-series observations, it also
effectively resolves solar surface flows, with the DeepVel code
(A. Asensio Ramos et al. 2017) demonstrating superior perfor-
mance compared to conventional methods in analyzing these
small-scale structures (B. Tremblay et al. 2018).
Most of the aforementioned ML models are supervised

learning models, requiring a large volume of training data to
derive a relationship between the input and target data.
Fortunately, modern numerical MHD simulations can now
accurately mimic various solar phenomena (M. C. M. Cheung
et al. 2010, 2019; M. Rempel 2012, 2014; F. Chen et al.
2017, 2023a, 2023b) and therefore allow the generation of
extensive and realistic data sets for DL training. Once trained,
DL inversion models are extremely fast to run. For example, in
the pioneering work of A. Asensio Ramos & C. J. Diaz Baso
(2019), they train 2D CNN models using a radiation-MHD
simulation of a sunspot and synthesized Stokes profiles. When
applied to observational data from the Hinode/SP, their CNN
model inverts a 512× 512 pixel map within ∼180 ms, orders

6 DL-NIRSP recently (winter 2023) swapped the fiber-optic IFU for a newly
developed image-slicer. The resulting data products will be functionally
equivalent for our purposes, but have increased fidelity.
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of magnitude faster than current inversion methods. Addition-
ally, the model could recover the 3D MHD variables on a true
spatial grid rather than an optical depth grid, and at roughly half
the error compared to the Stokes Inversion based on Response
functions (SIR; B. Ruiz Cobo & J. C. del Toro Iniesta 1992,
2012) code. It is worth mentioning that A. Asensio Ramos &
C. J. Diaz Baso (2019) did not treat the azimuthal ambiguity in
the magnetic field directly, but instead solved a reduced
problem using a coordinate transformation.

To address the challenges outlined above and take advantage
of the potential of DL, we launched the “Spectropolarimetric
Inversion in Four Dimensions with Deep Learning” (SPIn4D)
project7 to train CNN models on radiative MHD (RMHD)
simulations with a significantly larger data set, i.e., larger
domain size, longer evolution, and more cases with a variety of
mean magnetic field strengths, compared to previous efforts.
As discussed below, this provides more statistically indepen-
dent snapshots useful for training. Detailed information about
the data, including access methods, are publicly available.8

Figure 1 presents a schematic overview of the key elements
of each phase of the project. Our focus will be on photospheric
regions with intermediate field strengths (between quiet
Sun and plage or up to a few hundred Gauss when spatially
averaged), characterized by relatively simple field geometries.
These regions are expected to be prevalent in the initial years of
DKISTʼs operation. Simulations are carried out using the Max-
Planck University-of-Chicago Radiative MHD code (MURaM;
A. Vögler et al. 2005; M. Rempel et al. 2009; M. C. M. Cheung
et al. 2010; M. Rempel 2012, 2014) and take the quiet-Sun
small-scale dynamo (SSD) simulation of M. Rempel (2014) as
the point of departure. The fact that these MURaM simulations

use gray radiative transfer is not expected to impact the
results here. As both the training and the evaluation steps use
synthetic data, the ML models should simply learn the mapping
between the self-consistent inputs and outputs, without
regard to the detailed physics. When applying to real
observations, however, we do expect ML models trained
on more realistic, nongray radiative transfer simulations
(A. Vögler 2004) to perform better, at the expense of increased
computational costs.
Next, we employ forward modeling of radiative transfer

through these simulations, using a new version of the SIR code
(SIR3D) and the Departure Coefficient aided Stokes Inversion
based on Response Functions (DeSIRe; B. Ruiz Cobo et al.
2022) code to synthesize Stokes profiles for multiline
observations. We have selected the well-studied Fe I lines at
630.15, 630.25, 1564.9, and 1565.2 nm due to their significant
Landé factors (2.5, 1.67, 3, and 1.53, respectively) and their
widespread use in ground- and space-based observations with
high Stokes SNR.
The third phase involves developing CNN models that aim

to accurately correlate time series of observational data,
especially those from the DL-NIRSP instrument at DKIST,
with precise 4D MHD states. The models will be rigorously
trained and evaluated using the data generated in the first
two steps. The ability of this model will be compared with
the SIR inversion code as a baseline. Higher-level variables,
such as the vector velocity and associated Poynting flux
across the photosphere, may be estimated either based on the
inversion results, as in conventional methods (e.g., Y. Liu &
P. W. Schuck 2012; M. D. Kazachenko et al. 2014), or
ultimately directly from our ML models that encode the temporal
information with a time series of Stokes profiles as input.
In this paper, we focus on the generation of the training
data for the SPIn4D project. The paper is organized as follows.
Section 2 delves into the specifics of the MURaM SSD

Figure 1. Schematic representation of the SPIn4D model workflow. The core of the model is the DL neural network, highlighted in blue in the middle of the diagram.
The network training step is outlined by the broken green line and uses data derived from the MURaM simulations, both the MHD variables themselves and the Stokes
profiles (I, Q, U, V ) synthesized from the MHD data cubes (green lines). Once trained on the simulated data, observed Stokes data can be input into the network (red
arrow) to produce the most likely 3D MHD state as output (labeled ”Predicted MHD Variables”). The network may be trained to receive single-time input Stokes data
to produce a reduced dimensional output MHD state (B, vz, P, T) or to receive multitime input Stokes data to produce a full-dimensional MHD output, including
additional derived outputs, such as vector velocities, Poynting flux, and so on. The network may also be trained to produce the derived outputs directly.

7 https://ifauh.github.io/SPIN4D/
8 Several data access methods are offered for Data Release 1 at http://dtn-itc.
ifa.hawaii.edu/spin4d/DR1/.
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simulation. The process of multiline synthesis is explored
in Section 3. Section 4 addresses simulation artifacts and
their treatment. Finally, a summary is provided in Section 5.
Additional details on the pipeline are included in Appendices A
and B.

2. Solar Atmosphere Simulation

We ran six RMHD simulations covering a variety of
photospheric conditions, ranging from very quiet Sun to fairly
strong plage. Synthetic spectropolarimetric observations are

Figure 2. From top to bottom, representative simulation results for Cases 1–5 at simulation times 5.43 hr, 5.59 hr, 5.59 hr, 5.59 hr, and 5.58 hr, respectively. From left
to right, the columns show continuum emission at 500 nm, LOS velocity (VZ), and LOS magnetic induction (BZ) at an extracted surface of t =log 010 , respectively.
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created by running radiative forward models through
the RMHD output (Section 3). The RMHD simulations use
the MURaM code (A. Vögler et al. 2005; M. Rempel et al.
2009) and take the relaxed solar atmosphere of the SSD case
SSD 016bM from M. Rempel (2014) as their starting point.
Compared to M. Rempel (2014), the simulation domain was
extended by 500 km in the vertical direction above the

photosphere and the vertical grid spacing was reduced from
16 to 12 km. This formed the basis of our Case 1, a
straightforward continuation of the SSD O16bM simulation.
Cases 2, 4, and 5 simulate regions with increasingly stronger
average field strength, introduced as an additional uniform
magnetic field to each initial condition’s vertical component,
BZ, at strengths of 50 G, 100 G, and 200 G, respectively.

Figure 3. Similar to Figure 2, but for Case 6 at 5.44 hr. Panel (d) shows the additional vertical field added to each quadrant and outlines the mask function.
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Case 3 was augmented with an inclined initial magnetic
field instead, uniformly set at 50 G across all magnetic
components.

The computational domain for Cases 1–5 spanned 24.6×
24.6× 8Mm, with a spatial resolution of 16× 16×12 km. The
horizontal grid size is approximately half of the diffraction limit of
DKIST. We saved the data output every 40 s to match the
expected cadence from the DL-NIRSP observations. The side
boundaries of the domain are periodic, the bottom boundary is
open for convective flows, as detailed in M. Rempel (2014), and
the top boundary applies a potential magnetic field extrapolation
in the ghost layers, along with a semi-transparent boundary
condition for hydrodynamic variables, i.e., density, velocity, and

internal energy. This condition is designed to be open for outflows
and closed for inflows, featuring (anti)symmetric settings in the
ghost layers for inflows and outflows, respectively. Radiative
transfer calculations may be carried out in arbitrary directions
through the simulated domain, but for the tasks described in this
work, we take the LOS direction to be the simulation Z-direction
and use these two interchangeably.
In Figure 2, we show representative simulation output

toward the end of each run for Cases 1–5: the 500 nm
continuum intensity (left), LOS velocity (VZ; center), and LOS
magnetic field (BZ; right), each extracted from the layer of
optical depth t =log 010 at roughly 5.5 hr into each run, where
τ is the optical depth at 500 nm. The increasing initial average
field strength in each case forms more and stronger field
concentrations, as seen in the right column. The greatest

Figure 4. (a)–(d) The response function of Stokes I to the magnetic induction for the four lines used in our study. (e) Temperature distribution on a vertical slice at the
middle of the computational domain, y = 12.28 Mm, from Case 1 at t = 5.43 hr. The three white dashed lines indicate the contours of the logarithm optical depth,

tlog10 , with the values of 0, −2, and −4. The two blue dashed lines indicate the subdomain we extracted for the training data set.

Table 1
MHD Simulation Summary

Modified Field a Duration b Size c

(G) (hr) (TB)

Case 1 0 5.97 12
Case 2 BZ: 50 6.21 12
Case 3 BX,Y,Z: 50

d 6.23 12
Case 4 BZ: 100 6.02 12
Case 5 BZ: 200 6.04 12
Case 6 BZ: 200, − 150, − 50e 6.20 49

Notes.
a The magnetic field added to the relaxed SSD O16bM atmosphere as the
initial condition for our simulations.
b The physical time of the total simulations for each case.
c The total size of the output 3D atmosphere files.
d Case 3 has BX = BY = BZ = + 50 G.
e Case 6 has +200 G, −150 G, and −50 G added to BZ in three quadrants (see
Figure 3).

Figure 5. The time-series histogram of the density, ρ, and LOS magnetic field,
BZ, on two surfaces, t = -log 110 and −2, calculated for Case 5. The vertical
dashed lines indicate the time of 2 hr, after which the simulation has essentially
steady-state dynamics.
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addition in Case 5 shows the development of several pores with
substantially reduced intensity (left column) associated with the
strongest field concentrations (right column), consistent with
regions of strong plage on the Sun.

Cases 2–5 each have a net magnetic flux that would mimic
coronal hole environments on the actual Sun, with no strong
polarities with opposing signs. To account for real-Sun
conditions with mixed polarities, we ran an additional Case 6
in a larger domain, created by stitching together four of our
modified SSD O16bM initial conditions in the two periodic
horizontal directions and then adding additional field of
strengths 200 G, −150 G, and −50 G to the vertical component
in three quadrants; the fourth quadrant was left in the initial
SSD configuration. To avoid discontinuous field strengths, the
vertical field added to each quadrant was first multiplied by a
mask function that decreases smoothly to zero at each quadrant
boundary,
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, 1

where x and y are normalized coordinates in each field region,
before being stitched into the larger domain.

Representative results for Case 6 are shown in Figure 3
around 5.5 hr into the simulation. Figure 3(d) shows the
additional vertical field added to each quadrant in the initial
condition. After a few solar hours of relaxation, this simulation
showed a mix of strong polarities, with the interaction of
opposite-polarity patches at the quadrant boundaries (see
Figure 3(c)). Portions of this simulation may therefore
represent the boundaries of long–decayed active regions.

Each simulation extends over 8 Mm vertically for all cases,
from a shallow convection zone to the upper photosphere,
represented by 672 grid points. The photospheric Fe I lines
that we are interested in form in a relatively narrow layer
(∼1Mm) entirely contained within the simulation domain. In
Figures 4(a)–(d), we show the response functions of Stokes I to

the magnetic field magnitudes of these lines calculated using
SIR. Based on this, and to optimize storage, we selected a
range of 128 layers from the simulation interiors for output
(at 40 s cadence), specifically from the z grid points 450–577
in the vertical direction, spanning an optical depth range from
105 to 10−5 and demarcated by the blue dashed lines in
Figure 4(e). Comparison with the response functions shows
that the extracted region adequately encompasses the formation
layers of the Fe I lines of interest. Further details are provided
in Section 3.
All Cases 1–6 were simulated for about six physical hours

(including the initial two hours of relaxation) and generated a
total of 109 TB of output for the 3D MHD variables, including
the high-cadence output just described plus occasional snap-
shots of the full numerical domain. The initial magnetic
configuration, total duration, and total output for all cases are
summarized in Table 1.

2.1. Initial Relaxation, Convective Turnover Time, and
Statistically Independent Training Data

The additions of the vertical fields to the initial conditions of
Cases 2–6 represent substantial injections of magnetic energy,
and the resulting simulated atmospheres need some time to
relax to new steady dynamical states. To illustrate the
atmospheric relaxation process, we focus on Case 5, which
features the most intense initially added magnetic field at
200 G. Figure 5 presents time-series histograms of physical
variables computed at surfaces of –t =log 110 and −2 in the
left and right columns, respectively, i.e., near the maxima of
the response functions of the selected Fe I lines (see Figure 4).
The histogram density is displayed as a color scale, with the
histogram bin values given on the linear-scaled ordinates
and time given on the log-scaled abscissas (to highlight the
approach toward a quasi-stationary state). Notably, the
density ρ distributions exhibit pronounced oscillations attribu-
table to the initial addition of a uniform BZ and the
resulting imbalance of total pressure. The histograms for BZ

exhibit an initial rapid reduction of pixels with smaller
magnitudes (e.g., less than 100 G), as well as a gradual
increase of pixels with larger magnitudes (e.g., greater than
250 G). Both distributions stabilize after approximately two
hours (vertical dashed line).
With the goal of generating a large training data set suitable

for DL, it is important to ensure that each snapshot of training
data contains statistically independent information. As the
primary spatial feature in our simulations is the solar
granulation pattern, we seek to minimize the temporal
correlation of this pattern in the final training data set. To
achieve this, we assess the lifetime of granules in 500 nm
continuum intensity by calculating the structural similarity
index measure (SSIM) using the skimage.metrics.
structural_similarity Python package (Z. Wang
et al. 2004). SSIM returns a scalar value for the difference
between two images, where a value of 1(0) indicates identical
(different) images. For each simulation, we calculate SSIM
backward in time, using the final continuum intensity image
as a fixed reference image. The results are shown in Figure 6.
The curve for each case is offset vertically by 0.1 to aid
legibility. Each SSIM curve approaches 0 after about
10 minutes, indicating significant image variation; such is
consistent with a granule’s lifetime of about 10 minutes. As an

Figure 6. The SSIM of continuum images for different time lag, for all six
cases. Each curve is offset vertically by 0.1 for clarity. The vertical dashed line
marks our selected cadence of 12 minutes for producing forward-modeled
spectral synthesis of independent observations.
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initial attempt, we selected a 12 minutes cadence to generate
the synthesized Fe I lines for our training data set. More
discussion on this choice can be found in Section 3.

2.2. On the Range of Simulated Solar Environments

Cases 1–5 represent a range of conditions found on the Sun,
differentiated solely by the strength of the uniform magnetic field
added to the base SSD simulation for each case’s initial condition;
Case 6 extends this with a larger FOV and mixed-polarity regions.
The varied conditions produce corresponding differences in the
spatial structures of the resulting granulation patterns. In Figure 7,
we quantify those differences by computing, at the t =log 010
surface, the spatial power spectra of the normalized continuum
intensity I/I0 (first row, panels (a)–(c)), the vertical velocity
(second row, panels (d)–(f)), and the vertical magnetic field (third
row, panels (g)–(i)). All the curve plots in the log scale in this

Figure 7. The power spectra of the normalized continuum intensity I/I0, VZ, and BZ at the surface t =log 010 , displayed from top to bottom. The left panels (a), (d),
and (g) present the direct power spectra for the six cases, each offset vertically by a factor of 3 for better visualization. The vertical dashed lines in panels (a), (d), and
(g) mark the local power spectrum peak for Case 1. The middle panels (b), (e), and (h) depict the power spectra ratios of Cases 2–6 to Case 1, with the vertical dashed
lines in (b) and (e) indicating the local peak and saddle point for Case 2 at smaller scales, and in (h) the local peak for Case 2 at larger scales. Panels (c), (f), and (i)
show lines marking the typical scales of the peak values in their respective spectra overlaid on a representative subregion for each variable. The dashed red box in (i)
highlights the FOV seen in panels (c) and (f), to enhance the visualization of the typical spatial scale derived from the power spectrum.

Table 2
Stokes Profile Data

Fe I 6301–6302 Å 15648–15652 Å

Line Range (Å) 6300.8–6303.3 15646.8–15654.8
Δλ (mÅ) 8.945 31.376
SIR Data Size (TB) 5.5 5.1
DeSIRe Data Size (TB) 5.5 5.1
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figure are offset vertically by multiplying by a factor of 3 for better
visualization. The effect of adding stronger magnetic fields is made
clearer by taking the ratio of the power spectra for Cases 2–6 to the
SSD case, as shown in the second column (panels (b), (d), and (e)).
Together, the power spectra and their ratios reveal that several
spatial scales are either present in all cases or notably arise due to
the addition of a magnetic field. These scales are indicated in the
Fourier domain by vertical dashed lines and in the physical domain
by the solid lines drawn on top of a representative subregion for
each variable in panels (c), (f), and (i).

Both the continuum intensity and vertical velocity show
pronounced peaks at the scale of the granulation pattern, around
1.4 and 1.3Mm, as seen in panels (a) and (d), respectively. The
vertical magnetic field shows a very slight peak for Case 1 only
(panel (g)); the peaks are indicated by the vertical dashed line in
the first column. From the power spectral ratios presented in the
second column, there is a clear trend toward higher power at higher
spatial frequencies relative to the SSD case and a generally steeper
slope for cases with a greater added magnetic field strength. In the
continuum intensity, this trend produces the large peak in ratio at a
scale of 74 km, which corresponds to the readily apparent small-
scale intergranular bright points seen in Figure 7(c). There is no
peak in ratio in the power spectra of VZ, but instead a saddle point
at a scale of 90 km Figure (7(e)), which is the width of the
intergranular lanes.

Turning our attention to the power spectrum of BZ, the only
apparent peak occurs for Case 1 and has a size of 0.78Mm, i.e.,
roughly half of the granule size as measured in either
continuum intensity or velocity. Surprisingly, as more flux is
added to the simulation, the magnetic field becomes more
ordered (more distinct local peaks) on larger scales. This
somewhat mimics a mesogranular morphology and has two
local peaks at 4.5 and 7.0 Mm (Figures 7(h) and (i)). However,
this might be influenced by interaction with the bottom
boundary, since we do not have a deep enough convection
layer for the formation of the supergranulation convection
pattern (J. W. Lord et al. 2014; J. W. Lord 2014).

3. Stokes Profile Synthesis

We calculated synthetic Stokes data for each case at the
statistically independent 12minutes cadence after the initial 2 hr
relaxation period, as determined in Section 2. For the Stokes
profiles data set, we selected two Fe I line pairs in the 630 and
1565 nm range, originating from the deep and upper layers of the
photosphere, respectively. These lines, whose response functions
are depicted in Figures 4(a)–(d), are pivotal in diagnosing

the photospheric magnetic field (see L. Bellot Rubio &
D. Orozco Suárez 2019 and references therein). Employing a
multiline diagnostic approach with these lines will facilitate a
comprehensive understanding of the 3D photospheric structure.
The output wavelength sampling for the synthesis was chosen

to match the capabilities of the DL-NIRSP instrument, as detailed
in S. A. Jaeggli et al. (2022). For the 630 nm spectral window, the
DL-NIRSP has a nominal bandpass (derived from the combina-
tion of a narrowband filter and spectral mask) of 6.4Å, a spectral
sampling rate of approximately 17.9 mÅ per pixel, and a point-
spread function (PSF) with an FWHM of about 40mÅ.
Our synthesis was performed at half the DL-NIRSP sample
step, about 8.945mÅ, covering a range from 6300.8521Å to
6303.3119Å across 275 steps. These settings fully cover both
lines and extend well into the continuum on either side.
Similarly, for the 1565 nm Fe I line pair, the DL-NIRSP has

a nominal bandpass of 16.1Å, a spectral sampling rate of
62.9 mÅ per pixel, and a PSF with FWHM of 125.8 mÅ. We
again synthesized at double the DL-NIRSP spectral sampling,
31.376 mÅ, covering a wavelength range of 15646.875–
15654.876Åwith 255 steps. The settings for both line pairs
are detailed in Table 2.
We performed the spectral synthesis using two different codes.

First, for forward synthesis under local thermal equilibrium (LTE)
conditions, we used the 3D version of SIR (B. Ruiz Cobo &
J. C. del Toro Iniesta 1992; A. Asensio Ramos & C. J. Diaz
Baso 2019). To align with our data set and coordinate system, the
code underwent several adaptations, with the revised version
accessible on GitHub9 and details of the modifications described
in Appendix A. Acknowledging the significance of non-LTE
effects, as identified in the research by H. N. Smitha et al.
(2020, 2021), we also integrated the DeSIRe code (B. Ruiz
Cobo et al. 2022), along with the parallel Python wrapper
outlined by R. Gafeira et al. (2021), into our software pipeline.
This approach facilitated the generation of non-LTE Stokes
profiles for our chosen lines. The elemental abundance data for
an SIR source is from N. Grevesse & A. J. Sauval (1998),
which is consistent with that used in the MURaM simulation.
For DeSIRe, we use the updated abundance data from
M. Asplund et al. (2009). The atomic parameters for the Fe I
lines are detailed in Table 3. The resulting synthesized spectral
data sets are illustrated in Figure 8.
Cases 2–5 are characterized by a dominant positive magnetic

flux. To account for the equally possible input of negative polarity,

Table 3
Atomic Parameters

Wavelength Γ6
a Exc. Potb log(gf )c Transition Level αd σd

(Å) (eV) (cm2)

6301.5012 1.0 3.654 −0.718 5P 2.0–5D 2.0 0.242 2.33543e–14
6302.4936 1.0 3.686 −1.131 5P 1.0–5D 0.0 0.239 2.38024e–14
15648.5088 1.0 5.426 −0.652 7D 1.0–7D 1.0 0.229 2.72747e–14
15652.8809 1.0 6.246 −0.050 7D 5.0–7k 4.0e 0.330 4.045e–14

Notes. The atomic parameters are written in SIR format (B. Ruiz Cobo & J. C. del Toro Iniesta 1992).
a Enhancement factor to the van der Waals coefficient.
b Excitation potential of the lower level.
c The logarithm of the multiplicity of the level times the oscillator strength.
d The collisional broadening parameters from the quantum mechanical theory of P. S. Barklem et al. (1998).
e This transition level is used for the SIR synthesis pipeline, while for DeSIRe, the level is 7D 5.0–(6D4.5)f2k 4.0.

9 https://github.com/ifauh/par-sir
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we manually flip the signs of the magnetic field and calculate a
second set of synthetic profiles for each data set. Note that the
plasma evolution under the ideal MHD equations remains
unchanged when the signs of all three magnetic field components
are inverted. This approach allows for random selection between
the original and flipped magnetic fields during training of the ML
model, effectively minimizing the possible bias from the magnetic
field polarity in the resulting neural network model. In total, we
generated a collection of 20 TB of Stokes profiles for both SIR and
DeSIRe, with and without magnetic field flipping, covering 210
dynamically independent snapshots.

Stokes profiles for five representative locations are shown in
Figure 9, corresponding to Case 5 at t= 5.6 hr. The first row
(panels (b)–(e)) and second row (panels (f)–(i)) present the Stokes
profiles for the Fe I 630 and 1565 nm line pairs from the SIR code.
The third row (panels (j)–(m)) and fourth row (panels (m)–(q))
present the differences between the synthesized profiles from SIR
and DeSIRe, demonstrating minimal discrepancies (note the scale
difference between the upper and lower rows). Figure 10 presents
the joint distribution between the SIR and DeSIRe synthesized
Stokes profiles for the 630 nm line pair for the same data set, with
the SIR results shown on the abscissa and DeSIRe on the ordinate

Figure 8. Example synthesized spectropolarimetric data computed for a single snapshot of the Case 5 MHD simulation at t = 5.6 hr; the 3D data cubes show a subset
of the output for both spectral line pairs and both forward-modeling codes. The red box in panel (a) marks the FOV of the 3D data cubes. Panel (b) shows the zoom-in
view of the subset, with the colorized circles indicating locations representative of typical Stokes profiles, as presented in Figure 9.
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for each panel. The red dashed curve marks the one-to-one line.
From top to bottom, the rows compare wavelengths in the blue
wing, line core, and red wing of the 630.15 nm line, followed by
similar plots for the 630.25 nm line. The Pearson correlation of the
Stokes I and V is always greater than 0.99, while the linear
polarizations (Q and U) show a slightly smaller correlation,

R≈ 0.96. Figure 13 shows the analogous comparison for the
1565 nm line pair, in Appendix A. The high correlation suggests
that the results from the two synthesis codes are in qualitative
agreement. The differences can be owing in part to the LTE versus
non-LTE treatment of line formation or the different opacity
packages.

Figure 9. Illustration of the synthesized Stokes profiles from SIR. (a) Intensity of SIR Stokes I at continuum wavelength, with locations of representative Stokes
profiles marked by colored circles. Panels (b)–(e) and (f)–(i) show the Stokes profiles for the 630 nm and 1565 nm lines, respectively. Panels (j)–(m) and (n)–(q) detail
the differences between the SIR and DeSIRe synthesized profiles, i.e., -I ISIR DeSIRe.
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Our analysis revealed discrepancies in the continuum opacity as
a function of T and gas pressure Pgas between the SIR and
MURaM results. Figure 11 contrasts their κ500 values. MURaM’s
values are derived from its own lookup tables (F. Castelli &
R. L. Kurucz 2004), while SIR’s are calculated with its
PemufromPgT_i module using T and Pgas. Both use the same
element abundance (N. Grevesse & A. J. Sauval 1998). Notably, in
certain optical depth layers where the line is formed (outlined by
the colored contours in Figure 11(c)), the opacity from MURaM is
slightly larger than that from SIR.

A direction comparison between the MURaM and DeSIRe
opacities proves to be difficult. The latter use a different opacity

package, from the RH code (H. Uitenbroek 2001). It is calculated
under non-LTE conditions, which do not solely depend on local
thermal variables. This is expected to cause some difference in the
synthetic profiles shown in Figures 9, 10, and 13. As it is out of the
scope of the SPIn4D project, we defer a comprehensive
investigation of their differences to future work.

4. Artifacts in MHD Simulation and Solutions

Several features of the MHD simulations may require attention
when using the simulation database. In all six cases, significant
oscillations occur in the upper regions of the simulated atmosphere,

Figure 10. Comparison of the Stokes data from SIR and DeSIRe for the 630 nm line from Case 5 with t = 5.6 hr, focusing on the wings and cores. The colors
represent the pixel count in the 2D histogram. The dashed red lines denote the line of identity, indicating perfect agreement between the two sets of data. The
corresponding Pearson correlation coefficients are marked on each panel.
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close to the top boundary. These are especially apparent for Case 5,
with the strongest magnetic field of 200G (Figure 12(a)). The root
cause of this is that we artificially limited the Alfvén velocity vA to
60 km s−1 to speed up the computation (M. Rempel et al. 2009;
M. Rempel 2017). This is justified for our primary target, the
photosphere, where vA is low. However, numerical issues may
arise in higher atmospheric layers, as vA increases rapidly with
decrease density such that the imposed limit becomes inconsistent
with the calculation. To address this issue, we adjust the Courant–
Friedrichs–Lewy (CFL) condition and Alfvén velocity limit as
necessary to maintain numerical stability. The approach proves to
significantly reduce the oscillation, though some residual signals
remain. Other solutions include adding proper treatment for a
transition region in higher layers. Unfortunately, this would lead to
more than a tenfold increase in the required computing time, so
was not adopted here.

It is worth noting that such oscillations do not appear in
M. Rempel (2014), and they are barely detectable for the cases

with a weaker mean magnetic field. Specifically, Case 5 is
intermittently impacted, whereas Case 4 remains mostly unaf-
fected. As a test, we also simulate a case with a stronger added
magnetic field, 400G, which produced even stronger oscillations
(Figure 12(b)). The problem arises from both stronger magnetic
fields and the more extended vertical domain. The combination
leads to large vA values exceeding the imposed limit. Efforts to
stabilize this simulation by reducing the CFL parameter and
adjusting the velocity parameters were unsuccessful. A potential
solution involves expanding the simulation box upward and
incorporating a realistic corona. This would significantly
increase computational demands, exceeding the SPIn4D pro-
ject’s scope. Consequently, we limited our simulations to a
maximum magnetic field strength of 200 G.
In both the 200 G and 400 G cases, we observed numerous “hot

pockets” in the regions close to the top boundaries. In these
regions, the code attempts to form a hot layer analogous to the
transition region, but the set boundary conditions do not allow it to

Figure 11. Panels (a) and (b) display the continuum opacity tables derived from the MURaM and SIR models, respectively. Panel (c) illustrates the ratio of these
opacity tables, highlighting the pressure and temperature ranges with colored lines for Case 1 at t = 5.4 hr across various tlog10 layers.

Figure 12. The oscillation in temperature in the vertical slice in the middle of the simulation box. Panels (a) and (b) show Case 5 and an additional test case with an
added uniform field as large as 400 G. The three dotted curves are for t =log 0 01 , −2, and −4.
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do so. These hot pockets tend to extend to the lower region as the
mean magnetic field increases. Meanwhile, temperatures outside
these pockets above z> 7Mm rise slightly with a stronger mean
magnetic field, though the pockets themselves show little
correlation with changes in the magnetic field.

We note that these aforementioned artifacts are not expected to
impact our results, as illustrated by Figure 12. The upper panel (a)
is for Case 5. The regions of numerical instability produce very
high temperatures, exceeding 2× 104 K, saturating the color table
in white. These regions produce both the strong oscillations and
shocks in the surrounding plasma, but are basically confined to
strong-magnetic-field regions. The MURaM code uses a numer-
ical diffusivity scheme that can significantly enhance the
diffusivities in regions where the monotonicity changes (see
Section 2 in M. Rempel 2014), where needed, and keep them low
everywhere else. This sufficiently decays and prevents the spread
of these oscillations to the lower and higher atmosphere, so they
are mainly trapped around z= 7Mm, where they are generated.
The magnitude of the oscillations decreases as the density rises in
the lower regions of the atmosphere, such that the oscillations are
largely confined to layers where t < -log 410 . Given the
distribution of the response function, as shown in Figures 4(a)–
(d), the regions critical for the formation of Fe I lines remain
unaffected.

5. Summary

In this work, we provide an overview of the SPIn4D project,
which aims at advancing the inversion of spectropolarimetric data
through ML. We describe the procedures for generating a
comprehensive training and test data set derived from MURaM
simulations and the forward synthesis of Stokes profiles.
Specifically, we conduct six distinct MURaM SSD simulations,
generating a total of 109 TB of photospheric atmosphere data.
Additionally, we synthesize Fe I lines at 630 and 1565 nm at every
12minutes of the simulations, yielding 21 TB of data
in HDF5 format. The simulations required an extensive computa-
tional effort, amounting to 10 million CPU hours. We have
released the SIR-based synthesized Fe I lines and the corresp-
onding 3D photospheric slabs totaling 13.7 TB, making them
accessible to the wider research community for further analysis and
study. We have used both the SIR and DeSIRe codes to synthesize
the Stokes profiles. Their results largely agree; additional study is
required to explain their minor differences. We will focus on the
SIR results and keep the DeSIRe version available for the
community. Our DL model training will use these MURaM
simulations. The results and comparisons with the SIR inversion as
a baseline will be presented in upcoming work.

This data set, encompassing photospheric physical variables
from both quiet-Sun and Plage regions, is poised to bolster the
burgeoning field of ML within solar physics. Its relevance extends
particularly to the early research topics of the DKIST science
objectives (M. P. Rast et al. 2021). The versatility of the data not
only supports the inversion tasks of the SPIn4D project, but also
potentially facilitates the development of a range of other ML
models. The public availability of this data set ensures that the
broader scientific community can leverage it not just for inversion
studies, but also for other tasks, like advanced super-resolution and
disambiguation of the horizontal magnetic field. The large volume
can reduce the issue of overfitting when training DL models on a
small data set. Its applicability is not limited to DKIST alone; other
solar telescopes can also benefit from the insights derived from this
comprehensive data set and the ML model built on it. In this way,

the data set can act as a critical resource, driving forward the
integration of ML techniques into solar physics and potentially
transforming observational strategies and data analysis methodol-
ogies across multiple platforms.
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Appendix A
Changes in SIR3D and Data Organizing

To enhance the handling of half-integer quantum levels for the
Fe I 1565 nm lines, new atomic state symbols have been updated
in the src/interface.f90 module of the 3D version of SIR.
The orbital angular momentum range has been expanded from six
integer levels to include 13 integer and 11 half-integer levels. The
element abundance data were updated in both src/inter-
face.f90 and src/leyendo.f. We have enhanced the
selection of optical depth ranges for forward synthesis by
introducing new parameters in synth/model.py: clip_tau,
clip_tau_min, and clip_tau_max. To address precision
issues in the upper layers of MURaM simulations that cause
duplication at very small optical depths, line synthesis is now
constrained to layers within t- < <5 log 210 . We modified the
SIR3D code to support a new “MURAM” atmosphere that uses
solar Cartesian coordinates, to match the DL-NIRSP axis ordering
and the conventions used in the Python package for the solar
community (SunPy). MURaM’s SSD simulation coordinates (zm,
ym, xm) correspond to SIR3D’s coordinates (zs, xs, ys) and to solar
Cartesian coordinates (yc, xc, zc), thus a transpose(1,0,2)
transformation is applied to all memmap objects in synth/
multiprocessing.py to align with the solar Cartesian
coordinate system. See our project website for a detailed
explanation of these changes.
On the SPIn4D project website, our data sets are stored within

corresponding case directories, whose names are characterized by
the mean magnetic field strength. The directories are labeled as
follows: SPIN4D_SSD, SPIN4D_SSD_50G, SPIN4D_SSD_
50G_V, SPIN4D_SSD_100G, SPIN4D_SSD_200G, and
SPIN4D_SSD_Large, corresponding to Cases 1 through 6. For
instance, the file subdomain_0.051405 in the directory

14

The Astrophysical Journal, 976:204 (16pp), 2024 December 1 Yang et al.

https://doi.org/10.5065/D6RX99HX


SPIN4D_SSD_50G corresponds to the mass density data from the
simulation output at time index “051405,” where “0” is the
variable index. Variable indices from 0 to 11 represent the mass
density (ρ), velocities (vz, vx, vy), internal energy (e), magnetic
fields (Bz, Bx, By), temperature (T), pressure (P), electron number
density (Ne), and optical depth (τ), the shift of the vector
components reflecting the coordinate transformations between
SIR and MURaM previously mentioned. Furthermore, stokes-
051405-6302.h5 corresponds to the Fe I 630 nm line at the
corresponding output time index. Detailed guidance on accessing
and interpreting the data is provided in our online tutorial.10 It is
also available on Zenodo doi:10.5281/zenodo.13879854.

Appendix B
Comparison of Synthesized Lines

Statistical comparisons of the synthesized Stokes profiles for
the 1565 nm line from SIR and DeSIRe are detailed in
Figure 13. These discrepancies of the Stokes I and V are more
obvious than those observed in the 630 nm lines shown in
Figure 10. Specifically, for the 1565.2 nm line, DeSIRe exhibits
greater slopes for Stokes Q and U compared to the identity
relation. Despite these differences, the Pearson correlation
coefficient remains above 0.939 for all line positions and all
Stokes components, though it shows a weaker correlation than
the 630 nm lines, whose smallest correlation is 0.969.

Figure 13. The same as Figure 10, but for the 1565 nm lines.

10 https://github.com/ifauh/spin4d-data
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