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Abstract— We present a novel direct data-driven method
for computing constraint-admissible positive invariant sets
for general nonlinear systems with compact constraint
sets. Our approach employs machine learning techniques
to lift the state space and approximate invariant sets using
finite data. The invariant sets are parameterized as sub-
level-sets of scalar linear functions in the lifted space,
which is suitable for control applications. We provide prob-
abilistic guarantees of invariance through scenario opti-
mization, with probability bounds on robustness against
the uncertainty inherent in the data-driven framework. As
the amount of data increases, these probability bounds
approach 1. We use our invariant sets to switch between
a collection of controllers to select a controller which en-
forces constraints. We demonstrate the practicality of our
method by applying it to a nonlinear autonomous driving
lane-keeping scenario.

Index Terms— Data-driven control, Control of con-
strained systems, Lyapunov methods, Machine learning.

I. INTRODUCTION

Constraint enforcement is a crucial control objective for
cyber-physical systems. These constraints can arise from
safety considerations, physical limitations on the system, or
performance specifications. A fundamental tool for constrained
control is invariance. A positive invariant (PI) set characterizes
the subset of states where, once the state enters, it remains
there indefinitely. A controlled invariant (CI) set describes the
subset of states where, for each initial state within the set,
there exists a control input that ensures the system remains in
the set for all future time. Invariant sets are important since
they reduce the infinite-horizon control objective of perpetual
constraint enforcement into a one-step problem, which is
suitable for real-time implementation.

This paper presents a novel data-driven approach for com-
puting PI sets. Standard algorithms [1], [2] synthesize PI sets
for linear [3] and nonlinear [4] systems with mathematically
accessible models. For unmodeled systems, an indirect data-
driven approach is typically employed, wherein a model is
identified from data, which is then used in a model-based
algorithm. However, this approach can be challenging due to
nonlinearity and uncertainty. Although recent advancements
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have been made toward direct data-driven approaches for lin-
ear systems [5], there are few model-free approaches capable
of computing true invariant sets for nonlinear systems [6].

Our approach parameterizes invariant sets as sub-level sets
of linear functions in a lifted space, enabling us to lever-
age recent advances in data-driven and learning-based tech-
niques [6]–[8]. However, providing guarantees of invariance
is challenging since approximations of an invariant set are not
necessarily approximately invariant, e.g. [9]. Providing guaran-
tees often requires inaccessible information about the system,
such as the Lipschitz bounds or excessively large data-set.
Even with a known Lipschitz constant, providing deterministic
guarantees requires assuming an increased contraction for the
invariant set, and an excessively large data-set [6].

Additionally, synthesizing constraint admissible CI (CACI)
sets from data is challenging because a CACI set only implies
the existence of a control input that supports invariance and
satisfies the constraints. The dataset may not necessarily con-
tain such an appropriate control input. Furthermore, certifying
that a sampled control input leads to perpetual constraint
enforcement requires a CACI set. To overcome these issues,
we consider a switching between a collection of stabilizing
controllers, which can be created using existing data-driven
methods [10], based on our data-driven constraint admissible
PI (CAPI) sets. For many systems, however, control-orient
models of the closed-loop dynamics are unavailable or in-
accessible [6], for instance, when the controller is a neural
network or includes a human in the loop. Finally, we create a
switched controller using our CAPI sets to enforce constraints.

Our contributions are summarized as follows. We relax the
assumptions from [6] and present a method to compute invari-
ant sets from finite data. We provide probabilistic guarantees
of invariance through a scenario optimization approach [11].
Our data-driven approach to computing CAPI sets uses data
to determine for which states and with what probability an
existing controller enforces constraints. Finally, we present a
supervisory controller using our CAPI sets to switch between
a collection of existing stabilizing controllers to ensure con-
straint enforcement and improve performance.

Notation and definitions: The set of natural numbers from
N to M , inclusive, is denoted by NM

N when N ≤ M , and
by NM

N = ∅ when N > M . We often drop the time index
t, and denote x = xt, and x+ = xt+1. For an autonomous
system x+ = f(x), a set O is PI if for every x ∈ O, we have
x+ ∈ O. For a controlled system x+ = f(x, u), a set C is CI
if for every x ∈ C, there exists an input u such that x+ ∈ C.
The predecessor of a set X under the mapping x+ = f(x)
is denoted by Pre(X ) = {x : f(x) ∈ X}. According to the



geometric condition for invariance, a set O is PI if and only
if O ⊆ Pre(O). A CAPI set (CACI set) is a PI (CI) set that is
a subset O ⊆ X (C ⊆ X ) of the constraint set X . A max-PI
set O∞ ⊆ X is the largest CAPI set.

II. PROBABILISTIC DATA-DRIVEN INVARIANCE PROBLEM

Consider an unmodeled discrete-time, potentially nonlinear,
time-invariant dynamical system x+ = f(x, u), where the
mapping f : X × U → Y is defined on a constraint set
X ⊆ Rnx for the state x ∈ X and an input set U ⊆ Rnu

for inputs u ∈ U with a codomain Y ⊆ Rnx . Accordingly, the
transitions f(x, u) for states x ∈ Y \ X may be undefined, as
they lie outside the constraint set X . We define the closed-loop

x+ = fj(x), j ∈ Nnκ
1 , (1a)

x ∈ X =
{︁
x ∈ Rnx : g(x) ≤ 1

}︁
, (1b)

where fj : X → Y is given by fj(x) = f(x, κj(x)) for the
controller κj : X → U that is selected from a known set of
available stabilizing state-feedback controllers K = {κj : j ∈
Nnκ

1 }. We assume that the constraint set X is compact and
defined as a sub-level of a continuous function g : Rnx → R.

We consider the case where the closed-loop dynamics (1a)
are unmodeled, and our knowledge is limited to data-sets

Dj =
{︁
xij , x

i+
j : i ∈ Nns

1

}︁
, j ∈ Nnκ

1 (2)

with size ns, collected for each controller κj . Each data-set Dj

is comprised of pairs (xij , x
i+
j ) of states xij and their successors

xi+j for the system (1) under the j-th controller κj ∈ K. Our
assumptions about the system (1) are summarized below.

Assumption 1 (System assumptions):
(a) The state x is available.
(b) The constraint set X is compact.
(c) The existing controllers κj ∈K ensure Lyapunov stability.
(d) Performance metrics Jj(x, r) are known for κj ∈ K.
Assumption 1(a) holds for well-instrumented dynamical sys-
tems. For example, the state x of many robots includes
measurable physical variables such as position and velocity.
Alternatively, for differentially flat nonlinear autonomous sys-
tems, the state x can be defined as a window of any flat
measurement {yk : k ∈ Nt−n

k=t} [12]. Assumption 1(c) is
necessary but not sufficient for enforcing bounded constraints,
since a stabilizing controller may cause constraint violations
xt ̸∈ X at some time t > 0 for some initial conditions. We will
use Assumption 1(d) to quantify and optimize the performance
of our switched controller based on the known performance
metrics Jj(x, r) of each controller κj at the current state x
and command r e.g., energy consumption, tracking error, and
settling time.

A. Probabilistic data-driven invariance problem
In this section, we define the problem of synthesizing a

probabilistic CAPI set for the closed-loop system (1) under a
fixed controller κj using the corresponding data-set Dj . We
seek to characterize the set of initial states Oj for which the
closed-loop system (1) satisfies the constraint xt ∈ X for all

times t ≥ 0. The solution Oj is the well-known CAPI set [13]
i.e., a feasible solution of the optimization

sup
Oj

volume of Oj (3a)

s.t. x+ = fj(x) ∈ Oj , ∀x ∈ Oj , (3b)
x ∈ X , ∀x ∈ Oj . (3c)

Solving (3) presents two challenges. First, the conditions (3b)
and (3c) should be verified on an unknown set Oj . We will
provide a method in Section III to address this challenge.
Second, when a control-oriented model of the dynamics is
unavailable, synthesizing Oj requires infinite data, as the
conditions (3b) and (3c) can only be verified on data samples.
It is unclear how to provide deterministic guarantees that Oj is
CAPI using finite data without making additional assumptions
about the system and data, such as Lipschitz continuity and
adequate data density. Thus, we instead seek probabilistic
guarantees based on the available data (2).

For a candidate CAPI set Oj , we define its inaccuracy as

Px{Oj not CAPI} (4a)
:=Px{(x ∈Oj ∧ fj(x) /∈Oj)∨(x ∈ Oj ∧ x /∈X )},

the probability of a randomly sampled state x ∈ Oj vi-
olating the conditions (3b) and (3c). Ideally, we aim to
bound Px{Oj not CAPI} ≤ ϵ and minimize the bound ϵ ∈
[0, 1]. However, the data-driven set Oj is itself a random
variable since it is computed using the randomly sampled
data-set Dj . Consequently, we can only bound the probability
PDj

{︁
Px{Oj not CAPI} > ϵ

}︁
< β of violating the inaccuracy

bound with some β ∈ [0, 1]. In other words, Oj may indeed
fail as a (1−ϵ)-accurate solution of (3), but with a probability
of at most β. This problem is defined below.

Problem 1 (Probabilistic data-driven CAPI set synthesis):
Given a random data-set (2), find a set Oj that satisfies (3b)
and (3c) with accuracy 1− ϵ and confidence 1− β, i.e.,

PDj

{︁
Px{Oj not CAPI} ≤ ϵ

}︁
≥ 1− β. (4b)

B. Invariance based switched control problem

We will leverage our data-driven CAPI sets to determine the
switching between the available controllers in K to enforce
constraints and optimize performance. The switched control
problem for constraint enforcement is defined below.

Problem 2 (Switched control for constraint enforcement):
Given a collection of CAPI sets Oj , j ∈ Nnκ

1 for the closed-
loop dynamics (1), compute an optimal switching sequence
j⋆τ for the controller κj⋆τ that enforces the constraint xτ ∈ X
for every τ ≥ t, while optimizing the current performance
Jj⋆t (xt, rt) at each time t.

III. PROBABILISTIC DATA-DRIVEN INVARIANCE

Without loss of generality, we can parameterize each set Oj

as a sub-level set,

Oj =
{︁
x ∈ Rnx : Vj(x) ≤ 1

}︁
, (5)



of a scalar function Vj(x). The function Vj(x) must satisfy
Vj(x) ≤ 1 ⇒ Vj(x

+) ≤ 1 to enforce the PI set condition
x ∈ Oj ⇒ x+ ∈ Oj from (3b), which makes the synthesis of
Vj(x) challenging. We instead enforce the following sufficient
condition on the entirety of the constraint set X ,

Vj(x
+) ≤ (1− γ)Vj(x) + γ, ∀x ∈ X , (6a)

where 0 ≤ γ ≤ 1. Additionally, the constraint admissibility
condition (3c) is met if the following holds

Vj(x) ≥ g(x), ∀x ∈ Rnx \ X , (6b)

where g(x) from (1b) defines X . If the conditions (6b) and (6a)
hold, then Oj from (5) is a feasible solution of (3).

Lemma 1: The CAPI set conditions (3b) and (3c) hold if
the conditions (6a) and (6b) hold.

Proof: When x ∈ Oj we have Vj(x) ≤ 1 by defi-
nition (5), which implies Vj(x) ≤ (1 − γ)Vj(x) + γ ≤ 1
since the right hand side of (6a) is a convex combination
of Vj(x) ≤ 1 and 1. Therefore, Vj(x+) ≤ 1 holds when
Vj(x) ≤ 1, which supports x+ ∈ Oj . Additionally, when
x ̸∈ X we have 1 ≤ g(x) ≤ Vj(x) from (6b) which implies
x ̸∈ Oj . Thus Oj ⊆ X .

The scalar γ from (6a) creates a convex combination of
Vj(x) and 1, allowing Vj(x+)−Vj(x) ≥ γ(1−Vj(x)) ≥ 0 to
increase in Vj(x) inside Oj where Vj(x) < 1. To synthesize
the CAPI set Oj , we adopt the following parameterization

Vj(x) =

{︄
θ⊤j ϕ(x) if x ∈ X ,
g(x) if x ̸∈ X ,

(7)

where Vj(x) on X is a linear combination of some pre-
selected basis functions ϕ(x) = [ϕ1(x), · · · , ϕnθ

(x)]⊤, and
θ is the parameter vector to be computed. Based on the
generalized Weierstrass approximation theorem [14], the lifted
linear form θ⊤j ϕ(x) is generic for synthesizing a continuous
Vj(x) on the compact set X . For example, the basis ϕ(x)
can be eigenfunctions of Vj(x), and the parameters θj be
the eigenvalues of Vj(x). Additionally, the resulting set Oj

is compact, since Oj ⊆ X by construction, according to
Lemma (1), where X is compact, and Vj(x) is continuous
on X .

By choosing a set of basis functions ϕ with established
generalization properties [15], we can ensure that the lifted
linear form θ⊤j ϕ(x) parameterizes any continuous function
Vj(x) on X .

A. Deterministic data-driven positive invariance
In this subsection, we discuss the intractability of a deter-

ministic approach to synthesizing CAPI sets from data, as it
leads to an optimization problem with an infinite number of
constraints. To synthesize a CAPI set Oj , we may attempt to
solve the following linear program (LP)

min
θj

θ⊤j

∫︂
X
ϕ(x) dµ(x) (8a)

s.t. θ⊤j
(︁
(1− γ)ϕ(x)−ϕ(x+)

)︁
≥−γ, ∀x∈X∩Prej(X ), (8b)

θ⊤j (1− γ)ϕ(x)≥g(x+)− γ, ∀x ∈X \Prej(X ), (8c)

θ⊤j ϕ(x) ≥ l(x), ∀x ∈ X , (8d)

where the weights of the linear cost (8a) involve a Lebesgue
integral with some set-measure µ, which can be analytically
pre-computed, g(x) defines the constraint set X from (1b),
Prej(X ) is the predecessor set of X under fj(x), and l :
Rnx → R lower-bounds Vj(x) to make the LP (8) bounded.
Trivial choices for l(x) can be l(x) = g(x) or l(x) = 0.

The following proposition shows that this approach guaran-
tees Oj from (5) is CAPI.

Proposition 1: Let θ = θ⋆j be a feasible solution of (8).
Then, Vj(x) from (7) creates a set Oj from (5) that is CAPI
for the closed-loop system (1).

Proof: The conditions (8b) and (8c) enforce (6a). Ad-
ditionally, the definition Vj(x) = g(x) on Rnx \ X from (7)
enforces (6b). Thus Oj is CAPI according to Lemma 1.
According to Proposition 1, solving the infinite-dimensional
LP (8) produces a CAPI set Oj . The heuristic cost (8a) rewards
minimizing Vj(x) to increase the volume µ(Oj) of its level-
set Oj = {x : Vj(x) ≤ 1}. Nonetheless, enforcing (8b)-(8d)
for every x ∈ X is impossible since the set X has infinite
cardinality. This requires an infinite amount of data, and leads
to an infinite number of constraints. A common approach
to resolve this challenge is to consider specific models for
the dynamics, which imposes restrictive assumptions on the
system (1). For instance, results from sum of squares (SOS)
programming show that the problem is tractable for finite
degree polynomial dynamics with polynomial constraints,
where ϕ is a polynomial basis [16]. Similarly, quadratic basis
functions can be used for stable linear time-invariant (LTI)
systems, where the existence of the parameter θj is supported
by the Kalman–Yakubovich–Popov lemma [17].

Previously, we showed in [6] that tightening the con-
straints (8b) and (8c) leads to a guaranteed CAPI set under less
restrictive assumptions, including knowing an upper bound on
the Lipschitz constant of the system and having a sufficiently
dense data-set. Unfortunately, the data density requirements
necessitates an excessively large data-set. Furthermore, tight-
ening (8b) and (8c) can render the LP (8) infeasible.

B. Probabilistic data-driven positive invariance

In this section, we present a data-driven method for synthe-
sizing a set Oj with probabilistic guarantees of being CAPI.
We use scenario optimization to avoid the infinite constraints
of LP (8) and approximate the solution of the LP (8) using
finite data. With finite data available, the LP (8) becomes an
uncertain optimization. In our approach, we approximate the
uncertain LP (8) by the following randomized program (RP)

min
θ

θ⊤j

∫︂
X
ϕ(x) dµ(x) (9a)

s.t. θ⊤j
(︁
(1− γ)ϕ(xij)−ϕ(xi+j )

)︁
≥−γ, ∀i ∈ Nnp

1 , (9b)

θ⊤j (1− γ)ϕ(xij)≥g(xi+j )− γ, ∀i ∈ Nns
np+1, (9c)

θ⊤j ϕ(x
i
j) ≥ l(xij), ∀i ∈ Nns

1 , (9d)

where Nnp

1 indicates the np samples xij ∈ X that map to
xi+j ∈ X i.e. xij ∈ X ∩Prej(X ). The RP (9) is an LP with a
finite number 2ns of constraints, hence tractable. Compared to
the deterministic approach from [6], our probabilistic approach



does not require the Lipschitz constant of the system, it is less
data intensive, and provides some level of guarantees even
when data is limited. The latter is crucial since data often
comes from expensive and time consuming experiments or
high-fidelity simulations.

The following theorem provides probabilistic guarantees for
the CAPI set Oj computed through our data-driven approach
i.e., the solution of Problem 1.

Theorem 1: Let the data Dj from (2) be randomly gener-
ated according to the probability distribution Px. Let (9) be
feasible. Let ns and ϵ, β ∈ [0, 1] satisfy

β =

nθ−1∑︂
i=1

(︃
ns
i

)︃
ϵi(1− ϵ)ns−i. (10)

Then, (4b) holds i.e. the set Oj from (5) with optimal
parameters θ⋆ from (9) is CAPI with accuracy 1 − ϵ ∈ [0, 1]
and confidence 1− β ∈ [0, 1].

Proof: First, we reformulate the optimization (8) as

θ⋆j = argmin
θj

c⊤θj (11a)

s.t. θj ∈ Θj(x), ∀x ∈ X , (11b)

where c =
∫︁
X ϕ(x) dµ(x) and

Θj(x)=
{︁
θj ∈ Rnθ : θj satisfy (8b)-(8d)

}︁
.

Since x+ = fj(x) is a deterministic mapping, the constraint
set Θj(x) only depends on the sampled states x ∈ X .
Scenario optimization [11], [18] draws random samples xij ,
i ∈ Nns

1 from X with probability Px, and approximates the
optimization (11) by solving the RP

θ̂j ∈ argmin
θj

c⊤θj (12a)

s.t. θj ∈ Θj(x
i
j), i ∈ Nns

1 , (12b)

which is equivalent to the RP (9). The set Θj(x) is convex
and closed with respect to θj since it is an intersection
of half-spaces defined by (8b)-(8d). Therefore, according to
Theorem 1 from [19], the relation

Pθ̂j
{Px{θ̂j /∈ Θj(x)} ≤ ϵ} ≥ 1−

nθ−1∑︂
i=1

(︃
ns
i

)︃
ϵi(1−ϵ)ns−i (13)

holds. According to Proposition 1, the condition θ̂j ∈ Θj(x)
is a sufficient for satisfying the CAPI conditions (3b) and (3c).
Thus, the set-inclusion Θj(x) ⊆ {θ̂j | Oj CAPI} holds.
Therefore, the probability Px{θ̂j /∈ Θj(x)} ≤ ϵ that we can
sample x ∈ X that violates the constraints θ̂j /∈ Θj(x) of (9)
is higher than the probability (4a) that we have not found
a CAPI set i.e. Px{Oj not CAPI} ≤ Px{θ̂j /∈ Θj(x)} ≤ ϵ.
This implies {θ̂j |Px{Oj not CAPI} ≤ ϵ} ⊇ {θ̂j |Px{θ̂j /∈
Θj(x)} ≤ ϵ}. Combining with (13) we obtained the de-
sired bound Pθ̂j

{Px{Oj not CAPI} ≤ ϵ} ≥ Pθ̂j
{Px{θ̂j /∈

Θj(x)} ≤ ϵ} ≥ 1− β.
According to Theorem 1, condition (10) specifies the con-

fidence bound 1 − β for a dataset of size ns and a targeted
accuracy of 1−ϵ. Often, it is desirable to compute ns for given
values of ϵ and β. A lookup table is provided in [19] to verify

that the sample size ns is sufficient to satisfy condition (10).
Alternatively, ns can be over-approximated [20] by

ns ≥
1

ϵ

e

e− 1

(︃
log

1

β
+
nθ(nθ + 3)

2

)︃
, (14)

where e is the Euler number. Theorem 1 implicitly relies
on the geometric condition for invariance [1] to compute Oj

from pairs {xj , x+j } of states xj and successor states xj . This
contrasts with related work in reachability [20] which typically
requires trajectories. We note Theorem 1 holds independently
of the probability Px and the convexity of the set X [19].
However, note that accuracy is measured with respect to the
probability distribution Px. Thus, Oj can be inaccurate in
regions where Px has low mass since it is unlikely that we
will draw a sample that disproves (4a) Oj is CAPI.

IV. SWITCHED CONTROL VIA DATA-DRIVEN INVARIANCE

In this section, we will leverage our probabilistic data-
driven CAPI sets Oj from the previous section to synthesize
a switched controller that enforces constraints. To solve Prob-
lem 2, we select the switched index j⋆t of κj⋆t by solving the
following one-step integer program (IP)

j⋆t = arg min
j∈Nnκ

1

Jj(xt, rt) (15a)

s.t. xt ∈ Oj , (15b)

which is solved in real-time at each time instance t. The IP (15)
uses the CAPI sets Oj , j ∈ Nnκ

1 from Section III. The follow-
ing proposition demonstrates that the switched controller κj⋆t
enforces the constraints and thus solves Problem 2.

Proposition 2: Let Oj be CAPI for every j ∈ Nnκ
1 . Let the

state xt ∈ Oj for some j ∈ Nnκ
1 at the current time t. Let

the index j⋆t of the operating controller κj⋆t be the optimizer
of (15). Then, the online optimization (15) is recursively
feasible and the constraint xτ ∈ X is enforced at every time
instance τ ≥ t.

Proof: The assumption xt ∈ Oj for some j ∈ Nnκ
1

renders (15) initially feasible at the current time t. Addition-
ally, (15) will be feasible at time t + 1 since the applied
controller κj⋆t keeps x+ = xt+1 inside Oj⋆t

. Thus, (15)
is recursively feasible for τ ≥ t. Finally, the constraint is
enforced at all time τ ≥ t since Oj⋆τ

⊆ X .
Although our CAPI computation approach requires con-

siderable computational resources to solve Problem 1, these
computations can be performed offline. However, the one-step
IP (15) can be solved online by exhaustively evaluating the
costs Jj and safety Oj at each controller j ∈ Nnκ

1 .

V. NUMERICAL EXAMPLES

We demonstrate our data-driven invariance approach
through an illustrative and a practical example.

A. Computation of CAPI sets for a linear system
In this example, we applied our CAPI set computation

method to the following under-damped LTI system

x+ =

[︃
0.8 0.6
−0.2 0.8

]︃
x, (16a)

x ∈ X =
{︁
x ∈ R2 : ∥x∥∞ ≤ 1

}︁
, (16b)



(a) (b)

(c) (d)

Fig. 1: Our probabilistic data-driven CAPI sets for the LTI
system (16) with ns samples and nθ basis functions. For (a)-
(d), respectively, we set ns = 50, 100, 1000, 5000 and nθ =
32, 52, 112, 212, and computed FNR= 10.81, 2.74, 0.99, 0.59%
AND FPR= 0.01, 1.16, 0.41, 0%.

where the constraint set X is defined by the infinity norm
g(x) = ∥x∥∞. We considered an LTI system with a polytopic
constraint since its true max-PI set can be computed using
standard algorithms [1] for comparison. To test our data-driven
approach, we randomly sampled X using a uniform probability
Px over X . Then, we applied the random samples xij , i ∈
Nns

1 to the system (16) and collected their pairs xi+j . For the
basis functions ϕ, a set of thin-plate spline functions ϕm(x) =
∥x− cm∥2 ln ∥x− cm∥, m ∈ Nnθ

1 , was used, with centers cm
positioned at the nodes of a

√
nθ ×

√
nθ grid over X . We set

γ = 0.4 and l(x) = g(x), and solved (9) to synthesize the
CAPI set (5).

The purpose of our approach is not to approximate the max-
PI set O∞, but rather a set O that is CAPI with probability
bounds (4b). However, the numerical results in Fig. 1 show
that our CAPI set converges to the max-PI set O∞ for the LTI
system (16) as ns and nθ increase. To quantify this, we used a
Monte Carlo approach where we drew an additional 104 ran-
dom samples xij , i ∈ N104

1 , from the box B, and computed the

false negative rate (FNR)=
number of (xi

j∈O∞\O)×100%

number of (xi
j∈O∞)

and the

false positive rate (FPR)=
number of (xi

j∈O\O∞)×100%

number of (xi
j ̸∈O∞)

reported
in Fig. 1.

B. Switched control for autonomous lane-keeping
We illustrate the effectiveness of our data-driven switched

controller through an autonomous lane-keeping problem sim-
ilar to that in [6]. For the vehicle dynamics, we used the
following kinematic bicycle model from [21],

ẏ = v sin(ψ + u), −2 ≤ y ≤ 2, (17a)

ψ̇ =
v

l
sin(u), (17b)

where y is the lateral position of the center of mass, ψ is
the inertial heading angle, v is the speed, l = 1.6m is the
distance from the rear axle to the center of mass, and the
control input u is the angle between the direction of motion
and the longitudinal axis. The widths of the vehicle is assumed
1.6m and each lane is 3.6m wide. Therefore, the allowable
maneuver of the center of mass from the center of a two-
lane road should belong to the constraint set X = {x :
1
4 ([1, 0]x)

2 ≤ 1}, where x = [y, ψ]⊤ is the state of the system.
For the controllers, we used offset state feedback controllers

u = κj(x) = K(x− [r̄j , 0]), (18)

where r̄j = −2.4 + 0.04(j − 1), j ∈ N121
1 . The gain K is the

linear–quadratic regulator (LQR) gain with the weights Q =
diag([100, 10]) and R = 1, derived based on the following
linearization of (17) at the origin,

ẋ =

[︃
0 v
0 0

]︃
x+

[︃
v
v/l

]︃
u, (19)

where v = 20m/s ≈ 45mph is the nominal speed. To make
the problem more challenging, we used the nominal LQR gain
K, designed at the nominal speed, for two experiments at the
nominal speed v = 20m/s ≈ 45mph and the overtaking speed
of v = 27m/s ≈ 60mph.

We randomly sampled the box B = {(y, ψ) : y ∈
[−2, 2], ψ ∈ [−π

2 ,
π
2 ]} using a uniform probability Px to draw

the samples xij , i ∈ N1000
1 . Then, for each j ∈ N121

1 , we
simulated the kinematic bicycle model (17) in closed-loop with
each of the nominal controllers κj using MATLAB’s ODE45
solver for one time step of duration 0.1 seconds to sample the
pairs {xij , x

i+
j } of data (2). In practice, data can be gathered

via a test-drive on a wider road. For the basis functions ϕ, a set
of thin-plate spline functions ϕm(x) = ∥x−cm∥2 ln ∥x− cm∥,
m ∈ N1000

1 was used with centers cm located on a 15 × 15
grid within the box B. We set γ = 0.4 and l(x) = g(x), and
solved the RP (9) to synthesize the CAPI sets Oj , j ∈ N121

1 .
Fig. 2 shows our data-driven CAPI sets Oj for four different

j with respect to r̄j , where the blue star is the state equilibrium
x∞ = [r̄j , 0]. We observed that for almost every j ∈ N182

1 our
data-driven CAPI set Oj includes the equilibrium in its interior.

The true max-PI sets Oj∞ are not known for the bicycle
model (17). However, we approximated samples of Oj∞ by
creating a uniform 20 × 20 set of initial conditions over the
box B and labeling whether the resulting trajectory satisfied
the constraints over a horizon of 4 s. We used these samples to
approximate the max-PI sets Oj∞ through a nearest neighbor
method, i.e., the nearest sample xij to the current state x
determines whether x ∈ Oj∞. These samples are shown by
green circles xij ∈ Oj∞, and red crosses xij ̸∈ Oj∞ in
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Fig. 2: Our probabilistic data-driven CAPI sets for the nonlin-
ear car model (17) at four different values of r̄j . The green
circles are the approximated samples of the max-PI sets Oj∞.

Fig. 2. We used the approximated max-PI sets for the switched
controller (15) to compare it to our probabilistic data-driven
switched controller.

Fig. 3 shows the reference tracking of the bicycle model (17)
in closed-loop with our switched nominal LQR controller
compared to the nominal controller u = K(x− [r̄t, 0]) and the
sample-based controller, where rt is the desired reference. We
used MATLAB’s ODE45 solver and zero-order hold controllers
κj⋆t , where the switched index j⋆t is computed by solving (15)
and the performance metrics Jj(x, r) = ∥rt − rj∥, j ∈ N121

1 ,
are used to minimize the discrepancy between the desired ref-
erence rt and the applied reference rj⋆t . The applied reference
rj⋆t is the value used to design the respective controller κj⋆t .

We simulated an overtaking maneuver, where the speed
changes from the nominal 20m/s to a higher 27m/s at t = 5 s.
Fig. 3 shows that the car stays on the road with our probabilis-
tic data-driven controller, while it leaves the road four times
at t = 2.1, 6.8, 8.1, 10.4 s with the nominal controller, and two
times at t = 2.3, 8.1 s with the sample-based controller.
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