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Modern autonomous systems, such as flying, legged, and wheeled robots, are generally characterized by high-
dimensional nonlinear dynamics, which presents challenges for model-based safety-critical control design.
Motivated by the success of reduced-order models in robotics, this paper presents a tutorial on constructive
safety-critical control via reduced-order models and control barrier functions (CBFs). To this end, we provide
a unified formulation of techniques in the literature that share a common foundation of constructing CBFs for

complex systems from CBFs for much simpler systems. Such ideas are illustrated through formal results, simple
numerical examples, and case studies of real-world systems to which these techniques have been experimentally

applied.

1. Introduction

The control stack for modern autonomous systems — from legged
robots to self-driving vehicles — typically consists of a complex inter-
connection of decision-making, planning, and control modules, all of
which may leverage different model representations to strike a balance
between computational efficiency, model uncertainty, and satisfaction
of system-level specifications. Among the various specifications that
such autonomous systems must satisfy, safety — informally thought of
as requiring a system never to do anything “bad” - is often given
precedence, as the violation of specifications deemed to be safety-
critical could result in undesirable behavior. Over the past decade,
control barrier functions (CBFs) (Ames, Coogan, Egerstedt, Notomista,
Sreenath, & Tabuada, 2019; Ames, Grizzle, & Tabuada, 2014; Ames, Xu,
Grizzle, & Tabuada, 2017; Xu, Tabuada, Grizzle, & Ames, 2015) have
emerged as a powerful tool for designing controllers that ensure the
safety of autonomous systems. Despite their success, constructing CBFs
for high-dimensional autonomous systems remains an open challenge
since their dynamics may be nontrivial or not even known.

To address these challenges, there has been recent interest in con-
structing CBFs for complex autonomous systems based on reduced-
order models (ROMs) — lower-dimensional representations that are
rich enough to capture the high-level behavior of the full-order system
but that are simple enough to synthesize safety-critical controllers (Mol-
nar & Ames, 2023b; Molnar, Cosner, Singletary, Ubellacker, & Ames,
2022; Singletary, Klingebiel, Bourne, Browning, Tokumaru, & Ames,
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2021). This approach has demonstrated success in controlling seem-
ingly complex systems, such as underactuated and dynamic robotic
systems, in a computationally efficient manner, and naturally integrates
into the existing control stack present in many autonomous systems.

In this paper, we provide a self-contained introduction and detailed
overview of CBF techniques based on ROMs. Here, we highlight the
theoretical foundations of this approach and illustrate its applications
across different domains through a collection of case studies. Before
diving into this discussion, however, we first review current state-of-
the-art techniques in the field of safety-critical control and motivate
the techniques covered and perspective taken in this tutorial.

1.1. The different flavors of control barrier functions

The property of safety is often formalized using the framework of
set invariance (Blanchini & Miani, 2008) in which a system is said
to be safe if its trajectories remain within a desirable set of the state
space (Ames et al., 2019). That is, a closed-loop system is safe if there
exists an invariant set that does not intersect with a set of states deemed
by the user to be dangerous. Such an invariant set is referred to as a
safe set.

By moving from invariant sets to controlled invariant sets — those
that can be rendered forward invariant through the application of
a feedback controller — this notion of safety may also be applied
to systems with control inputs. Control designs in which safety is a
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high-priority requirement are often referred to as safety-critical con-
trollers. Among the various tools that have emerged to address safety-
critical control, including, but not limited to, model predictive control
(MPC) (Borrelli, Bemporad, & Morari, 2017; Hewing, Wabersich, Men-
ner, & Zeilinger, 2020), reachability analysis (Bansal, Chen, Herbert,
& Tomlin, 2017; Mitchell, Bayen, & Tomlin, 2005), and symbolic con-
trol (Belta, Yordanov, & Gol, 2017; Tabuada, 2009), CBFs (Ames et al.,
2019, 2017) have demonstrated success in synthesizing safety-critical
controllers for high-dimensional nonlinear systems.

Since the introduction of CBFs (Ames et al., 2014, 2017) (see Ames
et al. (2019) for a more in-depth survey on the history of CBFs), there
has been a large body of work in developing various types of CBFs for
different classes of systems and control objectives. Given that CBFs are
a model-based tool, and that most models are coarse representations
of the underlying system, many of these developments have been moti-
vated by controlling systems subject to uncertainty (Wabersich, Taylor,
Choi, Sreenath, Tomlin, Ames, & Zeilinger, 2023). These include, for
example, robust CBFs for systems with unstructured uncertainty (Alan,
Taylor, He, Ames, & Orosz, 2023; Alan, Taylor, He, Orosz, & Ames,
2022; Jankovic, 2018; Kolathaya & Ames, 2019), adaptive CBFs for
systems with parametric uncertainty (Cohen & Belta, 2023; Lopez, Slo-
tine, & How, 2021; Taylor & Ames, 2020), data-driven CBFs for systems
with unknown dynamics (Brunke, Zhou, & Schoellig, 2022; Dhiman,
Khojasteh, Franceschetti, & Atanasov, 2023; Taylor, Singletary, Yue,
& Ames, 2020), and stochastic CBFs for systems with stochastic dy-
namics (Cosner, Culbertson, Taylor, & Ames, 2023; Santoyo, Dutreix,
& Coogan, 2021).

Other lines of work have developed classes of CBFs to account for
different assumptions on systems’ actuation and sensing capabilities.
For example, measurement-robust (Dean, Taylor, Cosner, Recht, &
Ames, 2020) and observer-based CBFs (Agrawal & Panagou, 2023;
Wang & Xu, 2022) have been developed to design safety-critical con-
trollers for systems with measurement uncertainty, whereas event-
triggered (Long & Wang, 2022; Taylor, Ong, Cortés, & Ames, 2021;
Xiao, Belta, & Cassandras, 2023; Yang, Belta, & Tron, 2019) and
sampled-data CBFs (Breeden, Garg, & Panagou, 2021; Ghaffari, Abel,
Ricketts, Lerner, & Krsti¢, 2018; Taylor, Dorobantu, Cosner, Yue &
Ames, 2022) have been developed to enforce safety when one may
only update control inputs at discrete instances in time. Variants of
CBFs have also been developed to address more nuanced notions of
safety including input-to-state safety (ISSf) (Alan et al., 2022; Kolathaya
& Ames, 2019) and finite/fixed/prescribed-time safety (Abel, Steeves,
Krstié¢, & Jankovié, 2023; Garg & Panagou, 2021; Polyakov & Krstic,
2023), whereas others have been used to enforce satisfaction of more
general temporal logic specifications (Cohen, Serlin, Leahy & Belta,
2023; Lindemann & Dimarogonas, 2019; Srinivasan & Coogan, 2021).

1.2. Constructive methods for control barrier functions

Although much attention has been given to defining different classes
of CBFs for various systems and control objectives of interest, relatively
less attention has been given to the construction of such CBFs. As a
result, there exists a plethora of different types of CBFs, but a lack
of constructive techniques required to obtain such CBFs in the first
place. This lack of constructive techniques often limits the applicability
of CBFs to relatively simple low-dimensional systems. Motivated by
these limitations, researchers have begun to investigate constructive
techniques for safety-critical control and CBFs.

A central challenge in constructing a CBF is finding a scalar function
whose time derivative directly depends on the system’s control input
and whose zero superlevel set defines a controlled invariant subset
of the state space. This challenge highlights the crucial distinction
between a safe set and a constraint set. The former is a controlled
invariant set that does not intersect with the set of failure states. The
latter is simply the set of states deemed by the user to not be in
violation of a given safety constraint. These sets need not coincide
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and, in general, they do not. For example, in robot motion planning
problems, the “distance to the obstacle” function — depending only on
the robot’s position — defines the obstacle-free space (constraint set) but
is not a CBF (i.e., it does not yield a safe set) unless the derivatives of
the position directly depend on the control inputs.

The challenges mentioned above are related to the relative degree
of the function - the number of times it must be differentiated along
the system dynamics until the input appears — defining the safety
constraint. A popular approach to address such challenges is through
the use of extended, also called exponential (Nguyen & Sreenath, 2016)
or high-order (Xiao & Belta, 2022), CBFs, which have roots in work
on non-overshooting control (Krsti¢c & Bement, 2006). Here, one dif-
ferentiates a high relative degree constraint function until the control
input appears and then enforces CBF-like conditions upon its highest-
order derivative. Such an approach has demonstrated success in safety-
critical control of high-dimensional systems (Xiao, Cassandras & Belta,
2023), but also faces challenges in verifying the satisfaction of CBF-like
conditions (Tan, Cortez, & Dimarogonas, 2022).

Some limitations of extended CBFs have been addressed by lever-
aging the structure present in certain classes of systems. For exam-
ple, constructive CBF techniques have been developed for robotic
systems (Cortez & Dimarogonas, 2022; Cortez, Oetomo, Manzie &
Choong, 2021; Cortez, Verginis & Dimarogonas, 2021; Singletary,
Kolathaya & Ames, 2022) by exploiting structural properties of their
dynamics. Other approaches have sought to extend Lyapunov backstep-
ping (Krsti¢, Kanellakopoulus, & Kokotovi¢, 1995) to CBFs for systems
in strict-feedback form (Taylor, Ong, Molnar & Ames, 2022).

Other works have sought to address the limitations outlined above
by leveraging implicitly defined CBFs, often constructed by propagating
forward the dynamics of the system in a receding-horizon fashion (Bree-
den & Panagou, 2023) under a “backup” (Chen, Jankovic, Santillo, &
Ames, 2021; Gurriet, Mote, Singletary, Nilsson, Feron, & Ames, 2020)
or performance-based policy (Breeden & Panagou, 2022). Such ap-
proaches have close connections with MPC, and, indeed, one may also
leverage MPC techniques to construct CBFs in a receding horizon man-
ner (Wabersich et al., 2023; Wabersich & Zeilinger, 2022). Although
powerful, these techniques often require additional online computation
that may prohibit their use for real-time control of high-dimensional
systems.

To address these limitations, alternative approaches seek to shift
the computational burden of constructing a CBF offline where one
may leverage powerful optimization tools to build a CBF. For example,
sum-of-squares programming has been used to construct CBFs for sys-
tems with polynomial dynamics (Clark, 2021, 2022; Dai & Permenter,
2023; Zhao, Ghabcheloo, Cheng, Abdi, & Hovakimyan, 2023). Other
works have sought to bridge the gap between reachability analysis and
CBFs (Choi, Lee, Li, How, Sreenath, Herbert, & Tomlin, 2023; Choi,
Lee, Sreenath, Tomlin, & Herbert, 2021; Tonkens & Herbert, 2022), and
illustrate that a CBF for a general class of nonlinear systems can be
constructed from the value function of a particular discounted optimal
control problem. Although promising, these techniques are limited by
the computation needed to solve sum-of-squares programs or compute
value functions over a grid, both of which scale poorly with the state
dimension.

The computational challenges in constructing CBFs using offline
optimization have motivated the use of learning-based techniques to
learn CBFs from data. Such approaches model the CBF using a suitable
class of function approximators, such as neural networks, and train such
a model to satisfy the criteria of a CBF either directly (Dawson, Gao, &
Fan, 2023; Dawson, Qin, Gao, & Fan, 2022; So, Serlin, Mann, Gonzales,
Rutledge, Roy, & Fan, 2023) or by using data from expert demonstra-
tions (Lindemann, Hu, Robey, Zhang, Dimorogonas, Tu, & Matni, 2020;
Robey, Hu, Lindemann, Zhang, Dimorogonas, Tu, & Matni, 2020).
These learning-based approaches empirically perform well but also face
the challenge of verifying if the trained model satisfies CBF conditions
for safety, which may preclude their application to systems where
safety must be rigorously certified.
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1.3. Control barrier functions via reduced-order models

Modern autonomous systems, such as flying, legged, and wheeled
robots, are generally characterized by high-dimensional nonlinear dy-
namics. Although CBF-based controllers may, in principle, be applied
to such systems, this first requires constructing a CBF for a complex
high-dimensional nonlinear system — a task that many of the afore-
mentioned methods struggle with. Rather than directly constructing a
CBF for a complicated system, an alternative approach is to construct
a CBF for a much simpler system, and then attempt to relate the inputs
that enforce safety of this simpler system back to the inputs of the
original system. That is, one may use a reduced-order representation
of the original, full-order, dynamics for the purpose of control design,
and then refine such a controller for the full-order system provided its
dynamic behavior is sufficiently captured by the reduced-order model.

Such control designs, despite leveraging simple models, have demon-
strated success in different areas of robotics. In mobile robotics, single
integrator (Zhao & Sun, 2017) and unicycle models (Luca, Oriolo, &
Vendittelli, 2001) are often used as the basis for control designs of
more complicated nonholonomic systems. In legged robotics, reduced-
order models such as the spring-loaded inverted pendulum (Raibert,
1986), linear inverted pendulum (Kajita, Kanehiro, Kaneko, Fujiwara,
Yokoi, & Hirukawa, 2002), and hybrid-linear inverted pendulum (Xiong
& Ames, 2022) have demonstrated continued success in controlling
walking robots with high-dimensional nonlinear dynamics.

Inspired by their success in robotics, there has been recent interest
in using reduced-order models for safety-critical control design. In the
context of CBFs, such ideas were introduced in Singletary et al. (2021),
Singletary, Kolathaya et al. (2022) where CBFs designed for simple
kinematic models were used to generate safe velocity commands to
be tracked by more complicated robotic systems, such as drones (Sin-
gletary et al., 2021) and manipulators (Singletary, Kolathaya et al.,
2022). Such control designs were formalized in Molnar et al. (2022) by
illustrating that the combination of a CBF for a reduced-order model
and a Lyapunov function certifying tracking of the reduced-order tra-
jectory may be used to establish safety of the full-order system. Further
extensions and applications of this approach have been reported in Kim,
Lee, and Ames (2023), Molnar and Ames (2023b), Singletary, Guffey,
Molnar, Sinnet, and Ames (2022). Although not explicitly framed as
safety-critical control based on reduced-order models, CBF backstep-
ping (Taylor, Ong et al., 2022) shares with these approaches the
ability to construct CBFs for complicated systems from CBFs for simple
models.

1.4. Objective of this paper

The primary objective of this paper is to provide a tutorial presenta-
tion of CBF techniques based on reduced-order models. In doing so, we
present a unified formulation of techniques in the literature that share
a common foundation of constructing CBFs for complex systems from
CBFs for much simpler systems. These ideas are illustrated through
formal results, simple numerical examples, and high-level overviews of
more complicated applications. The majority of the stated theoretical
results have already been established, in one form or another, in the
various works cited herein. For illustrative purposes, the proofs of
selected results are provided in the Appendix. Other results are new
but are also minor extensions or combinations of existing results. For
completeness, the proofs of such results are also collected in the Ap-
pendix. All the numerical examples presented in this tutorial can be
reproduced using open-source code available on Github.!

1 https://github.com/maxhcohen/ReducedOrderModelCBFs.jl
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1.5. Organization and outline

The remainder of this paper is organized as follows.

In Section 2, we provide a self-contained introduction to safety-
critical control via CBFs. First, we review the characterization of
safety via set invariance (Blanchini & Miani, 2008) and barrier func-
tions (Ames et al.,, 2017) and then discuss how such ideas may be
extended to design safety-critical controllers using CBFs. Next, we
discuss how CBFs may be extended to disturbed systems using the
framework of ISSf (Alan et al., 2023, 2022; Kolathaya & Ames, 2019),
leading to the synthesis of robust safety-critical controllers. Finally, we
review the concept of a smooth safety filter (Cohen, Ong, Bahati &
Ames, 2023) — a class of differentiable CBF-based controllers that will
play an important role in synthesizing CBFs via ROMs.

In Section 3, we begin our exposition on the construction of CBFs
via ROMs. Here, we first discuss some of the technical challenges
in constructing CBFs for high-dimensional systems and then outline
various classes of systems whose structure facilitates the synthesis of
CBFs using ROMs.

In Section 4, we present our first constructive technique for CBF
synthesis, which exploits the idea of CBF backstepping as originally
developed in Taylor, Ong et al. (2022). We demonstrate how this
approach applies to general classes of systems whose dynamics may
be interpreted as a layered control architecture and compare this
backstepping approach with existing high-order CBF approaches.

In Section 5, we demonstrate how CBF backstepping may be spe-
cialized to robotic systems whose dynamics also exhibit a particularly
useful cascaded structure. When such a system is fully actuated, we
illustrate how one may directly apply the backstepping approach pre-
sented in Section 4 to generate CBFs. We then extend this approach,
combining it with the notion of an energy-based CBF (Singletary, Ko-
lathaya et al., 2022), which further exploits the structure of the robot
dynamics to construct CBFs. Finally, using ideas inspired by those
from (Spong, 1994), we show how CBFs may be constructed for certain
classes of underactuated robotic systems.

In Section 6, we illustrate how previous constructions can be un-
derstood as combining a CBF for a ROM with a Lyapunov function
certifying tracking of the ROM by the full-order dynamics. Such an
approach relaxes many of the structural requirements imposed in the
previous sections and replaces them with the, perhaps, less strict re-
quirement of the existence of a tracking controller. Moreover, we
demonstrate how this approach leads to the paradigm of model-free
safety-critical control (Molnar et al., 2022) in which one need not
directly rely on the full-order dynamics to construct safety-critical
controllers.

In Section 7, we revisit more complex application examples from
the literature that leverage the constructive CBF techniques outlined
in previous sections. These examples include safety-critical control of
fixed-wing aircraft, flying, legged and wheeled robots, manipulators,
and heavy-duty trucks — both in simulation and hardware experiments.

In Section 8, we highlight the limitations of the paradigms presented
in this tutorial and provide our perspective on open research directions.

2. A primer on safety-critical control
2.1. Notation

We use N, R, Ry, R, to denote the set of natural numbers, real
numbers, nonnegative real numbers, and positive real numbers, re-
spectively. The notation R” denotes the n-dimensional Euclidean vector
space. Given a vector x € R" we write x" € R to denote its transpose
and x -y = x'y to denote the inner product between vectors. Given a
continuously differentiable scalar function 2 : R” — R we denote the
gradient of 4 as Vi : R" — R". We use L;h(x) := VA(X) - (x) to denote
the Lie derivative of a continuously differentiable scalar function A
R" — R along a vector field f : R” — R". The same definition applies
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when taking the Lie derivative of h along a matrix-valued function
g : R" > R™™ whose columns can be thought of as vector fields on
R". For a continuously differentiable function k : R" — R™ we use
% € R™" to denote the Jacobian matrix of k evaluated at x € R".
A continuous function « : R — R is said to be an extended class K,
function, denoted by a € K¢, if a(0) =0, « is strictly increasing, and
limg_,, , a(s) = +oo. A continuous function « : Ry, — R, is said to
be class K, function, denoted by a € K, if a(0) = 0, a is strictly
increasing and lim,_, , a(s) = co. We use ReLU(x) := max{0, x} to denote
the ReLU activation function. For a manifold Q, we use T,Q to denote
the tangent space to Q at a point q € Q and TQ to denote the tangent
bundle. We use ||x|| to denote the Euclidean norm of a vector x € R”
and [|x|l¢ := infyec [Ix — y|| to denote the distance between a vector
x € R” and a set C ¢ R". Given a function 2 : R" — R and set C C R we
denote the restriction of h to C by h|. : C — R. For a closed set C c R”,
we use JdC to denote its boundary and Int(C) to denote its interior. We
use 0 to denote a vector or matrix of zeros of appropriate dimension
and I to denote an identity matrix of appropriate dimension, where all
dimensions will be made clear from the context.

2.2. Foundations of safety-critical control

In this subsection, we outline the foundations of safety-critical
control based on the fundamental notion of set invariance. We begin
by considering the dynamical system:

x = f(x), (@)

where x € R” is the system state and f : R” — R” is a locally Lipschitz
vector field. Then, for each initial condition x, € R”, the dynamics
in (1) generate a unique continuously differentiable trajectory x
I(xy) — R" defined on some maximal interval of existence I(xy) € Ry,
satisfying:
x(1) =t (x(®))
x(0) =xq,
for all 1 € I(x,) (Khalil, 2002, Ch. 3).

The main property of (1) studied in this paper is safety, which is
formalized by requiring trajectories of (1) to remain within a safe set
C c R” at all times.

(2)

Definition 1 (Safety (Ames et al, 2019)). A set C Cc R" is said to be
forward invariant for (1) if for each initial condition x,, € C, the resulting
trajectory x : I(xy) — R” satisfies x(r) € C for all t € I(x;). System (1)
is said to be safe on a set C c R" if C is forward invariant.

Necessary and sufficient conditions for set invariance, and thus
safety, can be characterized using the notion of tangent cones® (Bony,
1969; Brezis, 1970; Nagumo, 1942; Redheffer, 1972). Informally, the
tangent cone 7.(x) C R” to a closed set C ¢ R" at a point x € R" is
the set of all vectors v € R” emanating from x such that if one were to
move infinitesimally along v, then one would remain in C. Hence, for
x € Int(C) we have 7.(x) = R", whereas for x ¢ C we have 7.(x) = §,
implying the tangent cone is nontrivial only on the boundary of C. The
above ideas can be formalized concisely using the following definition:

x4 ovle
Te(x) =3 veR" : liminf ———= =0 p. 3
cX) {V im in 3 3

The following result, known as Nagumo’s Theorem, leverages tangent
cones to provide necessary and sufficient conditions for safety.

2 For a general closed set C one may define various classes of tangent
cones, all of which coincide when C is convex. Examples include the Bouligand
tangent cone (Bouligand, 1932) and the Clarke tangent cone. In this tutorial,
our definition corresponds to the Bouligand tangent cone.
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Theorem 1 (Nagumo’s Theorem (Nagumo, 1942)). A closed set C C R" is
forward invariant for (1) if and only if for all x € 0C:

f(x) € To(x). (€))

Intuitively, Nagumo’s Theorem states that C is forward invariant
if and only if the vector field characterizing (1) points into or is
tangent to C for each point on the boundary of C. Modern proofs of
Nagumo’s Theorem can be found in Blanchini and Miani (2008, Ch.
4) and Abraham, Marsden, and Ratiu (1983, Ch. 4). Unfortunately,
obtaining a closed-form expression to (3) for general closed sets C is
often not possible, making the general version of Nagumo’s Theorem
challenging to apply in practice. To obtain more practical conditions
for safety, we must restrict the class of sets whose invariance we wish
to certify. Throughout this paper, we focus on sets of the form:

C={xeR" : h(x)>0},
oC ={x eR" : h(x) =0}, )
Int(C) ={x € R" : h(x) > 0},

where 4 : R” — R is continuously differentiable. Before illustrating
how such sets yield convenient representations of tangent cones, we
require the notion of a regular value.

Definition 2 (Regular value (Abraham et al, 1983)). A real number
a€R is said to be a regular value of a continuously differentiable
function 2 : R" — R if VA(x) # 0 whenever h(x) = a.

When C is defined as in (5) and zero is a regular value of A, the
tangent cone is straightforward to compute.

Lemma 1 (Abraham et al., 1983). Consider a set C C R" as in (5) and
suppose that zero is a regular value of h. Then:

Tcx)={veR" : VA(x)-v>0}, VxeaC. (6)

This characterization of tangent cones leads to the following useful
corollary of Nagumo’s Theorem.

Corollary 1. Let the conditions of Lemma 1 hold. Then, C is forward
invariant for (1) if and only if:

h(x) =0 = h(x) = Lyh(x) > 0. )

Note that when zero is not a regular value of 4, the condition in (7)
does not necessarily imply the forward invariance of C since, in such a
situation, the tangent cone does not coincide with (6).

The preceding developments serve as the foundation for barrier
functions — Lyapunov-like functions that can be used to verify the
safety (rather than stability) of nonlinear systems.

Definition 3 (Barrier function (Xu et al,, 2015)). A continuously differ-
entiable function 4 : R"” — R defining a set C c R” as in (5) is said
to be a barrier function for (1) on C if zero is a regular value of h and
there exists « € K¢, such that for all x € R™:

h(x) = Leh(x) 2 —a(h(x)). (8

Note that since «(0) = 0, the condition in (8) implies that in (7),
thereby providing a suitable generalization of invariance conditions
beyond just the boundary of C. Intuitively, the condition in (8) requires
the system to “slow down” as it approaches the boundary of C and
stop once it reaches the boundary. Although our definition of a barrier
function requires zero to be a regular value of A, this is not strictly
necessary. Indeed, the use of an extended class K, function in conjunc-
tion with requiring inequality (8) to hold at points outside of C enables
one to dispense with this regularity condition and establish forward
invariance using the comparison lemma (Konda, Ames, & Coogan,
2021), providing further generalizations of classical invariance tools.
An additional benefit of requiring inequality (8) to hold on a set larger
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than C - in our case, all of R" - is that such a condition not only enforces
invariance of C, but also attractivity of C. That is, C is asymptotically
stable® for (1) with V' (x) = ReLU(—A(x)) as a Lyapunov function.

Theorem 2 (Xu et al, 2015). If h : R" — R is a barrier function for
(1) on a set C Cc R" as in (5), then C is forward invariant. Moreover, if
C is compact or the vector field f in (1) is forward complete, then C is
asymptotically stable.

In the above result, the requirement that (8) holds on all of R” is
made only for ease of exposition — Theorem 2 and almost all other
barrier-related results presented in this tutorial can be generalized to
hold on a subset D C R” such that C c D. Finally, we note that the
characterization of set invariance via barrier functions is tight in the
sense that, under certain conditions, the existence of a barrier function
is necessary and sufficient for forward invariance.

Theorem 3 (Xu et al, 2015). Let h R" — R be a continuously
differentiable function defining a compact set C C R" as in (5) and assume
zero is a regular value of h. Then, C is forward invariant for (1) if and only
if h|c : C - R is a barrier function for (1) on C.

The preceding generalizations of set invariance via barrier functions
play an important role in synthesizing controllers enforcing safety,
discussed in the following section.

2.3. Control barrier functions

In the previous subsection, we laid the foundation for safety-critical
control using the language of set invariance and illustrated how barrier
functions provide a useful tool for verifying safety properties of dynam-
ical systems. In this section, we focus our attention on control systems
of the form:

x =f(x) + gx)u, 9

where f : R" — R” is a locally Lipschitz vector field modeling the
drift of the system, g R"” — R™™ js a locally Lipschitz mapping
characterizing the control directions, and u € R™ is the control input.
Defining a notion of safety for a control system, such as in (9), rather
than a closed-loop system, such as in (1), requires some modifications.
Definition 1 cannot be directly applied to (9) since the trajectories of
(9) cannot be determined, in general, until one specifies a control input
u. The definition of safety for (9) is captured via the notion of controlled
invariance.

Definition 4 (Controlled Invariance (Blanchini & Miani, 2008)). A set
C c R" is said to be feedback controlled invariant for (9) if there exists
a locally Lipschitz feedback controller k : R" — R™ such that C is
forward invariant for the closed-loop system:

% =f(x) + gk(x) := f(x). 10

Rather than verifying that an a priori designed controller renders C
forward invariant using the barrier conditions outlined in the previous
subsection, our objective in this subsection is to provide a general
methodology to design controllers that enforce safety by construction.
Towards this objective, the aforementioned barrier conditions suggest
designing such a controller so as to satisfy:

Lih(x) + Lgh(x0k(x) 2 —a(h(x)), an
— ——

Ly, h(x)

3 Note that forward invariance is a necessary condition for asymptotic
stability of a set. Thus, barrier functions can also be seen as generalizing
Lyapunov functions certifying stability of equilibrium points to Lyapunov
functions certifying stability of sets.
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implying that such a controller enforces safety of the closed-loop system
by Theorem 2. This observation motivates the concept of a control
barrier function (CBF).

Definition 5 (Control Barrier Function (Ames et al., 2017)). A continu-
ously differentiable function 2 : R"” — R defining a set C ¢ R" as in (5)
is said to be a control barrier function for (9) on C if there exists a € K
such that for all x € R":

sup h(x,u) = sup { Lyh(x) + Lgh(x)u} > —a(h(x)). (12)
ucRm” uekm

In contrast to Definition 3, we do not explicitly require zero to be a

regular value of 4 in the above definition since this property implicitly
follows from the strict inequality in (12). Further motivation behind
the use of this strict inequality is presented in Remark 1, and concerns
the continuity of controllers synthesized from CBFs. The existence of a
CBF implies that for each x € R” there exists an input u € R” enforcing
the inequality:

Leh(x) + Lgh(x)u > —a(h(x)).

To use such inputs to enforce safety, we must be able to stitch them
together into a locally Lipschitz feedback controller k : R" — R™
satisfying (11). Fortunately, the existence of a CBF implies the existence
of such a controller.

Theorem 4 (Ames et al, 2017). If h : R" — R is a CBF for (9) on a
set C C R" as in (5), then C is feedback controlled invariant. Furthermore,
if a locally Lipschitz feedback controller k : R" — R™ satisfies (11) for all
x € R", then C is forward invariant for (10).

Although the above theorem guarantees the existence of a controller
enforcing safety, it does not explicitly state how to construct one.
The most popular approach to constructing CBF-based controllers is
to incorporate (11) as a constraint in an optimization problem pa-
rameterized by the system state. That is, the controller x — k(x) is
itself an optimization problem that returns, for each x, a control input
u = k(x) satisfying (11). This approach is motivated by the fact that
such an inequality defines an affine constraint on the control input,
implying k(x) can often be cast as a quadratic program (QP) that, in
many situations, admits a closed-form solution.

Perhaps the greatest utility of this QP-based perspective is the ability
to use CBFs as a safety filter for a desired control policy k; : R" —
R™ whose safety has not yet been established. Often, it is desirable
to modify such a controller in a minimally invasive fashion while
guaranteeing safety. This leads to the instantiation of safety-critical
controllers via the following optimization problem:

Kk(x) = argmin %Hu —k,®|?
uek” (13)
subject to  L¢h(x) + Lgh(x)u > —a(h(x)),

which is a QP whose closed-form solution can be obtained by defining:

a(x) :=Lsh(x) + Lgh(x)kd(x) + a(h(x))
2 a4
b(x) :=||Lgh)I",

and applying the Karush-Kuhn Tucker conditions (Boyd & Vanden-
berghe, 2004) to yield (Alan et al., 2023):

k(x) =ky(x) + A(a(x), b(X))Lgh(X)T
b<0 (15)

Ma,b) =

ReLU(—a/b) b> 0,

where 1 is the Lagrange multiplier associated with the constraint in
(13). Note that, by (15), the controller in (13) allows the desired con-
troller k; to be applied so long as it satisfies the barrier condition (11),
and provides a minimal correction to k; when such a condition is

not satisfied. Importantly, the closed-form expression to the QP (13)
in (15) obviates the need explicitly solve an optimization problem in
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the control loop, which enables the deployment of such controllers on
hardware with limited computational resources. Although this closed-
form expression is only valid for a single CBF, whereas, in practice,
one must often consider multiple CBFs, one often can combine multiple
CBFs into one, allowing one to leverage the closed form solution even
for arbitrarily complicated safety specifications (Molnar and Ames,
2023a).

Remark 1 (Strict inequality). One may note that in (8) and (11) we
have used a nonstrict inequality, whereas in the definition of a CBF
(12) we have opted for a strict inequality. This difference is subtle but
plays an important role in ensuring Lipschitz continuity of CBF-based
controllers (Jankovic, 2018). In short, the strict inequality preserves
Lipschitz continuity of CBF-based controllers at points where Lyh(x) = 0
(see Sepulchre, Jankovi¢, and Kokotovi¢ (1997, Ch. 3.5.3) for a similar
discussion in the context of control Lyapunov functions). Such points
arise often in practice. For example, any compact safe set* will contain
points such that Lyh(x) = 0. Note that, as a result, one may use a
nonstrict inequality in (12) if Lyh(x) # 0 for all x € R”. Finally, we
note that the strict inequality is a property of the dynamics and safe
set irrespective of any particular controller — its purpose is to restrict
the class of functions that may serve as a CBF to those that can be used
to synthesize a locally Lipschitz feedback controller.

Although constructing a controller given a CBF can be done system-
atically, constructing a CBF is often more challenging. To determine if
a candidate CBF A - a continuously differentiable function defining (5)
- is indeed a CBF, one must verify that (12) holds for each x € R". To
do so, one may compute the supremum in (12):

o Lgh(x) # 0

up { Leh(x) + Lgh(x)u} =
p (LG + Lghtou) {th(x) Lgh(x) =0

and verify that the above result is strictly greater than —a(h(x)). This
simplifies to verifying that:

Loh(x) =0 = Lh(x) > —a(h(x)),

for all x € R”. Intuitively, the CBF condition (12) is a scalar inequality,
which, when L,A(x) # 0, is always possible to satisfy by simply taking u
as large or small as necessary. When Lyh(x) =0, however, one must rely
on the unforced dynamics of the system — captured via f — to satisfy the
CBF inequality. This discussion is formalized via the following lemma.

Lemma 2. A continuously differentiable function h : R" - R is a CBF
for (9) on C if and only if zero is a regular value of h and for all x € R":

Lya(x) =0 = Leh(x) > —a(h(x)). (16)

Remark 2 (Input Constraints). Lemma 2 provides necessary and suffi-
cient conditions for 4 to be a CBF when the control input is uncon-
strained, that is, when u may take any value in R”. When additional
inputs bounds are present in the sense that u may only take values
in a strict subset ¥ c R™, Lemma 2 provides necessary®, but not
necessarily sufficient conditions that 4 must satisfy to be a CBF. For
ease of exposition, this tutorial will focus on the construction of CBFs
without additional input bounds. Many of the approaches discussed
herein may be extended to include input bounds through the use of
backup CBFs (Chen et al., 2021; Gurriet et al., 2020), with more details
on the unification of backup CBFs and ROMs discussed in Molnar and
Ames (2023b).

4 If C is compact and 4 is continuously differentiable, then A achieves a local
maximum over C. At such a local maximum the gradient of A must vanish,
implying L,h will also vanish.

5 If h is not a CBF without input bounds, then it certainly will not be with
input bounds.
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For relatively simple systems, Lemma 2 provides a simple condition
that one may check to certify that a continuously differentiable function
h defining a set C as in (5) is indeed a CBF. The following example
demonstrates such a procedure for a canonical example in the CBF
literature: the inverted pendulum.

Example 1 (Inverted Pendulum). We now consider the example of an
inverted pendulum with state x = (6, ) and dynamics:

0 [ 6 0
| T |Esine)| L™

X f(x) g(x)

where 6 € R denotes the angular position of the pendulum, g the
acceleration due to gravity, / the length of the pendulum, and m the
mass of the pendulum. We establish a safety-critical controller for the
inverted pendulum by following the corresponding example in Alan
et al. (2022). Our objective is to design a controller for the above system
that keeps the pendulum upright in the sense that its angular position
satisfies || < 0 for some 0§ € R,,.
To achieve this objective, we propose the CBF candidate:

h(x) = 0> - 6% — %(9 +6)%,

which defines a candidate safe set C c R? as in (5). Note that if
(,6) € C, then |0] <  since:

h(x) >0 = 92—922%(é+a)220 = 6> <5

Hence, enforcing forward invariance of C ensures that |0(¢)| < @ for all
t. To check if A is a CBF we first compute:

-20-(0+0)
Vh(x) = .
® [ -0+0) |’
and verify that zero is a regular value of 4 by investigating the solution
set of the linear system:

o= -}

The matrix in the above linear system is positive definite, thus the only
solution is (#,4) = 0. Since the only point where the gradient of h
vanishes is at the origin, which does not lie on the boundary of C, zero
is a regular value of h. To use Lemma 2 and verify h as a CBF, we must
analyze the behavior of 7 when Lyh(x) = 0. To this end, we note that:
Ldl(x):—% =0 = 0+0=0.

Hence, when Lgh(x) =0, we also have:

Leh(x) =[-20 0] [ —200 =262,

9. —_—
% sin(@)|
and h(x) = 6% — 62, implying that:
Leh(x) + a(h(x)) = 20% + a (9% — 6?).

By taking a(s) = aps as a linear extended class KX, function, we see
that:

Leh(x) + a(h(X)) = (2 — ap)8” + ay6° > 0,

for all x € R? for any ; € (0,2], implying that (12) holds for all
x € R? and, consequently, that h is a CBF for the inverted pendulum.
To accomplish the objective of keeping the pendulum upright, we
synthesize a safety filter k R? — R using the QP in (13) with a
nominal policy of ky(x) = 0 and «, = 1 whose closed-form solution is
given by (15). The closed-loop vector field of the pendulum under the
influence of the safety filter and the corresponding safe set is provided
in Fig. 1.
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Fig. 1. Vector field of the inverted pendulum in Example 1 without any controller (left) and with the safety filter from (15) (right). In each plot, the red ellipse denotes the
boundary of C, the black vertical lines denote 0| = 6 = g, and the arrows of varying color illustrate the system vector field. The varying colors of the arrows characterize the
magnitude of each vector, with lighter colors corresponding to larger magnitudes. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

The previous example illustrates the procedure required to construct
a CBF for relatively simple systems. In Example 1, our CBF was different
than the safety constraint §2—62 > 0 we wished to satisfy and contained
additional terms that depended on both the position and velocity of
the pendulum. For relatively simple systems, such as the inverted
pendulum, appending such terms to the original safety requirement to
obtain a CBF can often be done through intuition or trial-and-error. For
more complex high-dimensional systems, however, constructing such a
“handcrafted” CBF by carefully blending various states of the system
into a single scalar function may be intractable.

Motivated by these challenges, the primary objective of this paper is
to outline a comprehensive methodology for systematically construct-
ing CBFs for high-dimensional nonlinear systems based on reduced-
order models. Ultimately, this methodology enables one to construct
CBFs for complex systems from CBFs for much simpler systems, such
as the inverted pendulum outlined above. Before presenting such con-
structions, we discuss in the following section how the results of the
present section can be extended to handle uncertainties.

2.4. Robust safety-critical control

In the previous subsections, we discussed notions of safety for
dynamical and control systems, implicitly assuming that the dynamics
governing the system are fully known. In reality, however, any system
will be affected by unmodeled dynamics and disturbances, which begs
the question: how do safety properties degrade in the presence of
uncertainties, and how may we design controllers so as to mitigate
the effects of such uncertainties? In this subsection, we discuss robust
variants of CBFs via the notion of input-to-state safety (ISSf) (Alan et al.,
2023, 2022; Kolathaya & Ames, 2019), which provides an answer to
this question.

Our starting point is the uncertain control affine system:

X = f(x) + gx)(u +d), a7

where d € R” is a disturbance. As the disturbance enters the dynamics
through the same channels as the control input, the disturbance is
said to be matched, implying that, if the disturbance were known,
it could simply be canceled by the control input. Given a locally
Lipschitz feedback controller k : R” — R™ and a piecewise continuous
disturbance signal ¢ — d(r), we obtain the closed-loop system:

X =1(x) + gx)kX) + d(1)), (18)

which, for each initial condition x, € R”, admits a piecewise contin-
uously differentiable solution x I(x(,d(-)) — R" defined on some
maximal interval of existence I(x,d(-)) € Ry.

In what follows, we assume bounded disturbance:

lldllg :=sup|ld®)]l <4, 19
20

with some 6 > 0. Given this bound on d, we introduce a family of

inflated safe sets:

Cs := (X ER" : hy(x) >0}, (20)

parameterized by &, where:

hs(x) := h(x) +7(5), 2D

for a y € K, to be specified shortly. Our notion of safety for (18) is
captured via the notion of ISSf.

Definition 6 (Input-to-State Safety (Kolathaya & Ames, 2019)). Sys-
tem (18) is said to be input-to-state safe (ISSf) on a set C c R” as in (5)
if there exists a y € K, such that for all § > 0 and all t — d(r) satisfying
(19) the set CscR” as in (20) is forward invariant for (18).

The ISSf property implies a graceful degradation of safety in the
presence of uncertainties — potential safety violations are bounded by
the magnitude of such uncertainties. Similar to previous subsections,
controllers enforcing such a safety property may be constructed using
CBFs.

Definition 7 (Issf Control Barrier Function (Alan et al, 2022)). A con-
tinuously differentiable function 42 : R" — R defining a set C c R" as
in (20) is said to be an input-to-state safe CBF (ISSf-CBF) for (17) on C
if there exist « € K and € € R, such that for all x € R™:

1
sup {Leh(x) + Lgh(x)u} > —a(h(x)) + ;lngh(x)Hz. (22)
uekm
The main difference between CBFs and ISSf-CBFs is the inclusion of
élngh(x)llz in (22), which imposes a stronger condition on the control
input. This term serves to mitigate the impact of uncertainties via the
tuning parameter £ > 0 as shown in the following result.

Theorem 5 (Alan et al., 2022). If h : R" — R is an ISSf-CBF for (17) on
a set C C R" as in (5), then any locally Lipschitz controller k : R" — R™

satisfying:

Leh() + Lgh(Ok(x) 2 —a(h(x) + + | LghtoP, (23)

renders the closed-loop system (18) ISSf on C with:

r(@®) = —a”! <—%> . 24



M.H. Cohen et al.

According to (24), the inflated set C; can be brought as close as
desired to the original safe set C by decreasing ¢, with C; — C in
the limit as ¢ — 0. Although, in principle, one can take ¢ as close to
zero as desired, doing so generally imposes a stronger condition on
the control input, requiring larger control effort, which may not be
achievable in practice. Similar to CBFs, the ISSf-CBF condition (23) can
be interpreted as an affine constraint that the control input must satisfy,
leading to the construction of ISSf enforcing controllers via QPs as in
(13). Note that when the uncertainties d are matched, as in (17), and
Lyh(x) =0, neither the control input nor uncertainties may impact the
system, implying the criterion for constructing CBFs in Lemma 2 also
applies to ISSf-CBFs.

2.5. Smooth safety filters

In what follows, many of our results will require smooth (differ-
entiable as many times as necessary) CBF controllers. This may seem
restrictive since the vast majority of CBF controllers — including the
ones discussed in this tutorial thus far — are computed as the solution
to an optimization problem and are inherently nonsmooth. However,
when the problem data itself is smooth (i.e., the dynamics f,g, CBF h,
and extended class K, function «), it is always possible to construct a
smooth CBF controller.

Lemma 3 (Cohen, Ong et al., 2023). Consider system (9) with f : R" - R",
g : R" —» R"™" smooth functions and let h : R" - R be a smooth CBF
for (9) on a set C C R" as in (5) with a smooth a € K¢,. Then, there
exists a smooth feedback controller k : R" — R™ such that (11) holds for
all x € R".

The class of smooth controllers considered in this tutorial inherit
the same structure as the closed-form QP controller (15):

k(x) = ky(x) + A(a(x), b(x))Lgh(x)T, (25)

where k; : R" — R™ is a nominal controller and a and b are as in (14).
Any smooth controller of the form (25) satisfying the CBF inequality
(11) is said to be a smooth safety filter. The fact that the QP controller
in (13) is nonsmooth stems from the presence of the ReL.U activation
function in the Lagrange multiplier A in (15), which has the inter-
pretation of “activating” the safety filter when the nominal controller
fails to guarantee satisfaction of the CBF constraint in (11). This non-
smoothness can be removed by modifying the Lagrange multiplier A
using various “smooth universal formulas” such as (Cohen, Ong et al.,
2023):

0 b=0
Ma, b) = { _““/ZZJ“W b0 (Sontag)
0 b=0
Mab)=4 _ . \/2@ b0 (Half-Sontag)
(26)
0 b<0
Ma,b) = _a - (Softplus)
clog(l+e %) b>0
0 b<0
Ma,b) =1 pdf () (Gaussian),
o PoNODAGE)

b>0

ety (%)
where ¢ > 0 and pdf y 1y(-) and cdf )(-) denote the probability
density function and cumulative distribution function of a zero-mean
Gaussian distribution with unit variance (Ong & Cortes, 2019). Each of
these functions can be shown to be smooth on the set®:

S={(a,b)eR? : a>0o0rbh>0},

6 In Cohen, Ong et al. (2023) this set was originally taken as a subset of
R x R, since, in the context of CBFs, b := ||Lgh(x)||2 > 0 for all x € R”, but
can be extended to a subset of R? to discuss smoothness of (26) independent
of their relation to CBFs.
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and may be interpreted as a smooth over-approximation of the orig-
inal Lagrange multiplier from (15) as illustrated in Fig. 2. The safety
properties of these smooth universal formulas - including how closely
they may approximate the QP-based controller (13) — can be established
using the techniques introduced in Cohen, Ong et al. (2023).

Remark 3. In the context of control Lyapunov functions (CLFs), it is
often stated that Sontag’s formula (Sontag, 1989) is smooth everywhere
except possibly the origin, where one can generally only guarantee
continuity under the small control property (Sepulchre et al., 1997,
Ch. 3.5.3). However, this phenomenon is unique to CLFs and does not
arise in the context of CBFs provided one is willing to use a strict
inequality in (12). Indeed, as discussed in Remark 1, to guarantee
even continuity of CBF or CLF based controllers, one must generally
use a strict inequality in the definition of a CBF/CLF, otherwise, the
controller may not be continuous when » = 0. This follows from the
observation that A(a,0) = 0 and the limit of A(a, b) as b approaches zero
is zero under the condition that » = 0 = a > 0, where 1 is any
of the formulas from (15) and (26). In contrast, if one only requires
b =0 = a > 0 this limit may not exist. Now, when using a CLF,
the strict inequality does not hold at the origin since CLFs are positive
definite, and thus one requires an additional property to guarantee
continuity, which comes in the form of the small control property.
However, in the context of CBFs, under the presumption that zero is
a regular value of A, which implicitly holds when defining a CBF as in
(12), the strict inequality holds for all x € R”, which ensures continuity
of the QP-based controller at all points and smoothness of the other
formulas at all points.

As each of the formulas in (26) is an over-approximation of the
Lagrange multiplier from (15), the resulting smooth safety filter in
(25) enforces strict satisfaction of the CBF inequality (11), which will
become important when constructing CBFs from reduced-order models.
Our discussion on smooth safety filters is formalized in the following
result.

Theorem 6 (Cohen, Ong et al., 2023). Let the conditions of Lemma 3 hold.
Then, for each A : R* — R in (26), the controller k : R" — R" in (25)
is smooth and satisfies:

Leh(x) + Lgh(x)k(x) > —a(h(x)), (27)

for all x € R" and therefore renders the set C C R" from (5) forward
invariant for the closed-loop system.

3. Reduced-order models and layered control architectures

In this section, we begin our formal presentation of synthesizing
CBFs via reduced-order models (ROMs). First, we motivate our eventual
constructions by discussing the challenges associated with synthesizing
CBFs for high-dimensional systems. We then introduce various classes
of control systems that may be interpreted as layered control architec-
tures. These include, for example, robotic systems, where the dynamics
of higher layers act as ROMs for the lower layer dynamics, the states
of which are, in turn, viewed as control inputs to the aforementioned
ROM.

3.1. Challenges in constructing CBFs

Our main focus in this tutorial is on high-dimensional nonlinear
control systems whose dynamics may be viewed as a layered architecture
in which states of lower layers are viewed as control inputs for higher
layers. This perspective is motivated by the fact that constructing
CBFs for high-dimensional systems may be challenging — such CBFs
must generally take into account the behavior of the full-order dynam-
ics to ensure safety. As demonstrated throughout this tutorial, these
challenges can often be overcome by exploiting the layered structure
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Fig. 2. Smooth universal formulas for safety-critical control compared to the ReLU function associated with quadratic programs. The left plot illustrates the variation of A(a,b)
with respect to a for a fixed » > 0 while the right plot illustrates the variation of A(a, b) with respect to b for a fixed a > 0 for each of the formulas in (26).

present in many relevant systems to recursively construct a CBF for a
complex system from a CBF for a much simpler one.

Many of the challenges associated with constructing CBFs are often
related to the relative degree of a function h R"” — R defining a
candidate safe set as in (5).

Definition 8 (Relative degree). A smooth function 2 : R” — R is said to
have relative degree r € N for (9) on a set D C R” if:

1. Lng“'h(x) =0forallxeDandie€{2,..,r};
2. LyL;'h(x) # 0 for some x € D,

where higher-order Lie derivatives are defined as:

; oL 'h
LIh(x) := h(x), Lih(x) := f(x),
ox
._ OL¢h i . OLth
L, L¢h(x) 1= o g(x), LgLih(x) := o g(x).

If the second condition holds for all x € D, then 4 is said to have uniform
relative degree r € N for (9) on D.

When 4 has uniform relative degree 1 for (9) on R”, i.e., if Lyh(x) #
0 for all x € R”, then & is a CBF for (9) (with u € R™) since it is always
possible to pick u € R™ as large or small as necessary to satisfy (12).
When £ has relative degree 1, but not uniform relative degree 1, h is a
CBF for (9) provided L¢h(x) > —a(h(x)) whenever Lyh(x) = 0. When &
has relative degree larger than 1, then L,h(x) = 0 for all x € R” and & is
unlikely to be a CBF for (9) unless the unforced dynamics of the system
are already safe in the sense that L¢A(x) > —a(h(x)) for all x € R". Thus,
the ability to construct a CBF for a given system is tightly coupled to
the construction of a relative degree one function whose zero superlevel
set contains the set of states deemed to be safe.

Example 2 (Double Integrator). We illustrate many of the ideas pre-
sented in this tutorial using the simplest possible example of a higher-
dimensional system — the double integrator with state x = (q, &) € RV
and dynamics:

al _ |¢ 0

HIENHEERE 28)
N~ Y= =

X f(x) g(x)

Here, q € R" represents the position/configuration of the system and
& € RP captures the velocity. Often, one desires to design a feedback
controller for (28) so that the resulting configuration trajectory ¢ — q(z)
satisfies q(r) € C, for all + > 0, where C, c R” is a configuration
constraint set that may, for example, capture the obstacle-free space in
a collision avoidance problem. We assume this set may be characterized
as the zero superlevel set of a continuously differentiable function A :
R" - R as:

Co={qeR" : hy(q) >0}.

Given the objective of keeping the configuration in the above set, and
the ability of CBFs to render such sets forward invariant, one may be
tempted to simply take A(x) = hy(q) and C = Cy xR? as a CBF candidate
and corresponding safe set for (28). Yet, this function may not serve
as a CBF for (28), in general, since it has a relative degree larger than
one:

0
Lgh(x) = [Vhy(q)T 0] [I] =0.
——

Vhx)T ~——
g(x)
To remedy this, one must choose h to additionally depend on &,
which could be done in a similar fashion to Example 1 so that 4 has
relative degree one and defines a set C such that rendering C forward
invariant is sufficient to ensure satisfaction of the original configuration
constraint in C,.

The previous example, although extremely simple, underscores one
of the primary challenges,” in constructing CBFs: a CBF, in general,
must depend on all of the states of the system. For the double integrator
in Example 2 it is often possible to construct a relative degree one
function containing all of the system states to serve as CBF whose cor-
responding safe set contains the configuration constraint set of interest,
as was done in Example 1 for the inverted pendulum. For more complex
systems, however, capturing all of the states necessary to ensure safety
in a single scalar function may be intractable. In the remainder of this
tutorial, we outline various methodologies to systematically build CBFs
for complex systems using ROMs — lower dimensional representations
of the original system that capture its high-level dynamics, but that are
simple enough to construct CBFs for. Naturally, such methodologies
require more structure than is present in the general control affine
system (9) considered thus far. As hinted at earlier, these constructions
are applicable to systems admitting a layered architecture in which the
dynamics of higher layers act as ROMs for the lower-layer dynamics,
the states of which are viewed as control inputs to the higher-layer
dynamics. In the remainder of this section, we outline relevant classes
of dynamics that satisfy such structural assumptions.

3.2. Multi-layer cascaded dynamics
The first layered control architecture we consider is the two-layer
cascaded control system:

q =fo(q) + gy(q)&
E=f(q.8) +g(q.5)u

where q € R” represents the state of the top layer, & € R? represents
the states of the bottom layer, u € R™ is the control input, and f,

(29

7 The other primary challenge is verifying (12) when u e U’ c R".
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R" > R", gy : R" > R™’, f, : R"XR’ > R, g; : R"XR? - R are
locally Lipschitz mappings capturing the dynamics of the multi-layered
system. For many physical systems of interest, ¢ may represent the
system’s position/configuration and £ is the system’s velocity, implying
the top-layer dynamics:

q = fy(q) + go(q)é (30)

capture the kinematics of the system. Note that by defining x :=(q,&) €
R" x R? = RN, we may write (29) in standard control affine form:

a _ fo(q)+go(q)5] [ 0 ] 31
['5] [ fi(q.9), * g(a.0] " Gh
—_—— — ) —

x f(x) g(x)

cf. (28). Here, we view (30) as a ROM, with state q and control input &,
for the multi-layered system (29) with the ultimate objective of building
a CBF for the corresponding control affine system (31) from a CBF for
the ROM (30).

For ease of exposition, most of our discussion will focus on cascaded
dynamics with two-layers as in (29); however, the approaches we
discuss are also applicable to more general multi-layer systems:

q =fo(q) + go(@)&,
& =f(q.&) +2(q. )&,
&) =0,(q.£1.8) + 8,(q. &1, £)E;

(32)

& =1.(a.61.6 - E) + 80616 EDU

with an arbitrary number of layers » € N. In traditional control-
theoretic literature, such systems are said to be in strict feedback form
and can also be put into general control affine form (9) with state

x=(q,§;,...,¢) as:
q fo(@) + go(@)¢, 0
{1 _ fl(q,§1)+.g1(q,§1)§2 N q "
ér fr(q,é,é.z,..-,é,) gr(q,«fl,éz,u.,g,)
X £(x) " gx) .

3.3. Robotic systems

A particularly relevant class of systems whose dynamics exhibit a
layered structure is mechanical systems, which can be used to model
the majority of robotic systems. To introduce the dynamics of such
systems, let q € Q denote the generalized configuration of a mechanical
system with n degrees of freedom, where Q@ C R” is the configura-
tion manifold. The dynamics of such systems are modeled using the
Euler-Lagrange equations:

D(@)§ + C(q. 9 + G(q) = Bu,

where q € T,Q is the generalized velocity, D(q) € R™" is the positive
definite inertia matrix, C(q,q) € R"™" is the Coriolis matrix, G(q) € R"
represents gravitational and other potential effects, and B € R™" is
the actuation matrix. By defining x = (q,q) € TQ C R2" the above
dynamics may be cast in control affine form (9) as:

(33)

q q 0
= . 34
[('j] [_D(Q)l (C(q, D9+ G(q)) * [D(q)“B] " S
N—— ——
X £(x) 2x)

When m = n and B is invertible, the robotic system (33) is said to be
fully actuated, otherwise it is said to be underactuated. The dynamics in
(33) are also a special case of the two-layer cascaded system in (29),
which can be recovered by defining:

fo(@ =0, f,(.d=-D@"'(Cla.0q+G@).

2@ =L g/(q9=D@'B,
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which implies that the ROM for the full-order robotic system (33) takes
the form of a single integrator:

q=2¢. (35)

where the generalized velocity is viewed as a control input.

Although the structure of (33) dictates that its ROM is a single
integrator, one may also employ more general ROMs. In particular, one
may consider more general ROMs for (33) of the form:

q = fo(q@) + go(@)¢, (36)

with control input £ € R?, where f; : R” - R" and g, : R" — R™?
capture the dynamics of the ROM. For example, (36) may be used to
represent unicycle-like dynamics:

X cos(@) O

y| =|sin@ o [5)]
0 0 1

N~ Y—— ¢
q 2(Q)

where (x,y) € R? denotes planar position, 6 € [0,27) heading, v € R
forward velocity, and w € R angular velocity. For ease of exposition,
our presentation regarding robotic systems will focus on the single
integrator ROM, and we will indicate how various results can be
modified to account for more general ROMs, such as those described
by (36).

4. Safe backstepping

Backstepping is a recursive control design tool that has demon-
strated success in constructing control Lyapunov functions (CLFs) (Free-
man & Kokotovi¢, 1992; Krsti¢ et al., 1995) for nonlinear systems that
possess a layered structure (29). The main idea behind backstepping is
to treat the states of lower layers as “virtual” control inputs to the top
layer, and then design a virtual controller for the top layer that would
accomplish the given control objective. However, as this controller is
only “virtual”, in the sense that it cannot be directly applied to the top
layer, one must “backstep" through the dynamics to reach the actual
control input. This backstepping process often requires differentiating
through the virtual controllers designed at intermediate layers until
the original input is reached. Once this input is reached, the control
objective reduces to enforcing convergence of the bottom layer states
to the aforementioned virtual controller, which, ultimately, leads to the
satisfaction of the original control objective. As this procedure implies
the existence of a controller satisfying the control objective for the
overall system, this enables the construction of a certificate function,
such as a CLF, that certifies the ability of the system to complete the
given control objective. Thus, backstepping may be interpreted as a
procedure to generate a certificate function for a potentially complex
high-dimensional system from a certificate function for a much simpler
lower-dimensional system.

In principle, there is nothing preventing one from applying a sim-
ilar methodology to safety-critical control, rather than stabilization.
Yet, backstepping has only recently been explored in the context of
CBFs (Taylor, Ong et al., 2022) despite the fact that CBFs, in their mod-
ern form, have existed for almost a decade (Ames et al., 2014; Xu et al.,
2015). The reason, perhaps, for this delayed adoption of backstepping
in the context of CBFs may be due to the emphasis in the CBF literature
on optimization-based controllers, which are generally nonsmooth.
Other reasons may be the development of viable alternatives, such as
extended CBFs (Nguyen & Sreenath, 2016; Xiao & Belta, 2019, 2022),
that construct CBF-like functions for high-dimensional systems. In the
remainder of this section, we demonstrate how recent results on smooth
CBF-based controllers (Cohen, Ong et al., 2023; Ong & Cortes, 2019),
such as those outlined in Section 2.5, provide a pathway towards the
development of CBF backstepping and illustrate the advantages of such
an approach over existing methods that construct CBFs for high-order
systems.
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4.1. Backstepping with control barrier functions

Now we revisit backstepping in the context of safety-critical control
with CBFs (Taylor, Ong et al., 2022). As a first step, we consider the
top layer in (30) as a ROM, where & - the state of the bottom layer — is
viewed as a “virtual” control input to the top layer. We wish to design
this input to render:

Co :={qeR" : hy(q) >0}, G7)

for some continuously differentiable h, : R" — R, forward invariant
for the top layer. To this end, we assume that A is a CBF for this ROM
in the sense that:

sup { Ly, ho(qQ) + Ly ho(@&} > —a(ho(q)),
E€RP

for all ¢ € R” for some a € K¢ . Provided f), gy, hy, and « are
smooth, Theorem 6 then implies the existence of a smooth controller
k, : R" - R? satisfying:

Lt ho(@) + Ly ho(@ko(@) > —a(hy(q)). (38)

for all ¢ € R”". This controller may be designed, for example, using
the formulas in (25) and (26). The interpretation of (38) is that setting
& = ky(q) would ensure the forward invariance of C, for the top-level
dynamics if we could directly control &.

As we cannot directly control &, however, we must backstep through
k, to determine the inputs u that drive & to ky(q). Hence, the problem
of constructing a CBF for the full-order system is reduced to that of
tracking the output of the ROM. For the full-order dynamics in (29),
we leverage Kk to propose the CBF candidate:

h(a, &) = ho(q) - ﬁu: — k@I, 39)

with parameter y € R, which is used to define the safe set for the
full-order system:

C=1{@& eR™ : h(g,&) = 0). (40)

Importantly, note that (q,&) € C implies q € C, since hy(q) > h(q, &)
for all (q, &) € R"*?. Therefore, rendering C forward invariant for the
full-order dynamics ensures that q(1) € C, for all 1 € I(qg, &).

To determine if the candidate CBF in (39) is indeed a CBF for
the full-order dynamics in (29) with state x = (q,&), we recall from
Lemma 2 that one need only to consider the system behavior when
Lyh(x) = 0. To this end, we compute:

Thoo < [ TR@+ 553 @TE ~ko(@)
- = (€~ ko(@),

and
1

Lgh(x) = ~— (5~ ko(@)'g(q, &),
noting that, if g, (q, &) is pseudo-invertible for all (q, &) € R™*?, then:
Lh(x) =0 = £-ko(@) =0 = h(x) = hy(q).
Thus, when Lyh(x) = 0, we have:
Lyh(x) =Lg ho(q) + Ly ho(@)&

=L¢, ho(q) + Ly ho(@ko(q)

> —a(hy(q)

=—a(h(x)),

which implies that A is a CBF for the full-order dynamics by Lemma 2.
This is formalized via the following theorem, which captures the main
result with regard to CBF backstepping.

Theorem 7 (Taylor, Ong et al,, 2022). Consider the two-layer dynamics
in (29), the constraint set C, C R”" in (37), and suppose there exists
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a continuously differentiable controller k, R" - R and @ € K¢
satisfying (38). If g,(q, &) is pseudo-invertible for all (q,&) € R"*?, then
h @ R"XR? - R as defined in (39) is a CBF for the corresponding control
affine system (31) on the set C c R" X R? as in (40).

The preceding theorem facilitates the construction of CBFs for high-
dimensional nonlinear systems that exhibit a layered structure as in
(29). Although these constructions have been presented for the special
case of a two-layered system, similar to Lyapunov backstepping (Krsti¢
et al.,, 1995), this approach may be recursively used to construct a
CBF for a system with an arbitrary number r € N of layers (Taylor,
Ong et al., 2022) as defined in (32). The following examples illustrate
the steps needed to construct a CBF using backstepping on the double
integrator from Example 2.

Example 3 (Double integrator). Consider a one-dimensional double
integrator with dynamics of the form (29), where q = x € R represents
the position and & = v € R represents velocity, while x = (x,v) is the
full-order state. Let the objective of designing a feedback controller be
to keep the system’s position x in the interval [-1, 1] C R. This objective
can be formalized by requiring the system’s position to remain in the
set:

Co=1{x€R : hy(x)=1-x>>0}.

Recall from Example 2, however, that this function may not serve as
a CBF for the full-order system (31) since, with h(x) = hy(x), we have
Lgh(x) = 0.

To remedy this, we take a backstepping-based approach, where we
view the top-layer dynamics:
x= 0 + 1 xv

—— ——

fo(x) 8o(x)

as a ROM with control input v. To check if 4, is a CBF for the ROM,
we compute:

Lguho(x) = -2x,
so that when Lg hy(x) =0, we have x = 0 and:
Lfoho(x) +a(hy(x) = a(l - xz) =a(l)>0.

Hence, by Lemma 2, hy, is a CBF for the ROM for any « € K¢, which
for simplicity, we take as a(s) = s. As h; is a CBF for the ROM, then,
by Theorem 6, there exists a smooth controller k, : R - R satisfying
(38). Furthermore, since g;(x,v) = 1 is invertible, the function:

1
hx) = h(x,v) = ho(x) = 5= (0= ko(x) .
]
is a CBF for the full-order dynamics on the set:
C={(x,v)eR? : h(x,v) >0}, (41)

by Theorem 7.

This safe set is illustrated for different values of i in Fig. 3, where
the smooth controller k is defined as in (25) with A chosen as the
Softplus universal formula (26) with ¢ = 0.1 and k4(x) = 0. Note that as
u is increased, the safe set C approaches the original constraint set C, at
the cost of including larger velocities, which may require compensation
with larger control efforts.

Example 4 (Obstacle Avoidance (Taylor, Ong et al., 2022)). We now
continue Example 2 but present the details of constructing a CBF for
an obstacle avoidance problem, which is used as an opportunity to
illustrate the effect of the smooth safety filter on the corresponding
CBF. This example was previously presented in the context of safe back-
stepping in Taylor, Ong et al. (2022). As demonstrated in Example 2,
any function that depends only on position is not a CBF for the double
integrator. Yet, by viewing a single integrator q = & as a reduced-order
representation of the full-order double integrator dynamics, we may
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Fig. 3. Safe set constructed for the one-dimensional double integrator via backstepping.
Here, the colored curves represent the zero level set of 4 as defined in (39) for various
u, where k is constructed using the Softplus universal formula from (26) with ¢ =0.1.
Note that as yu is increased the resulting safe set approaches the original constraint set
C, from (37). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

still design a controller that uses a CBF constructed from the function
characterizing the distance to the obstacle:

1
ho(@ = 5 (lla— q.lI> - R?),

where q, € R? is the obstacle’s center and R, € R, is its radius, which
is a valid CBF for the single integrator.

To construct a CBF for the double integrator from its reduced-order
single integrator model, we leverage the safe backstepping approach
outlined in this section. First, we construct a smooth safety filter k; :
R? — R? for the single integrator via (25), where A is chosen as the
Gaussian smooth universal formula (26) and a(s) = s, which filters
out unsafe controls from the desired reduced-order controller k 4(q) :=
K,(q, — q), where q, € R? is a goal location and K, € R, is a gain.
This smooth safety filter is then used to construct a CBF for the double
integrator using (39) with u = 1. Finally, the CBF is used to synthesize
a QP-based safety filter k : R* — R? for the full-order system using
(13).

The results of this procedure are displayed in Fig. 4 that is repeated
from (Taylor, Ong et al., 2022). Simulations are shown for various
choices of ¢ in the smooth universal formula (26). Note that as ¢
approaches zero, the behavior of the smooth safety filter approaches
that of a QP controller, where 1 depends on the ReLU activation
function, leading to less smooth control signals.

4.2. Comparison to extended control barrier functions

Control barrier backstepping may be interpreted as a systematic
methodology to construct a CBF for a high-dimensional system from
a high relative degree safety constraint hy(q) > O that depends only
on the states of the top layer, the end result of which is a relative
degree one CBF h(q, &, ..., &,) for a higher dimensional control system.
The construction of this CBF requires only a CBF for the top layer of
(32) and a few controllability assumptions, namely that each g; for
i €{l,...,r} is pseudo-invertible.

This approach is similar in spirit to other high-order CBF techniques
that build a relative degree one CBF-like function from a high relative
degree safety constraint hy(q) > 0 defining a set C; c R” as in
(37), but have important technical differences as we discuss next. Such
approaches are typically predicated on constructing an extended CBF
(also referred to as an exponential (Nguyen & Sreenath, 2016) or high
order (Xiao & Belta, 2019, 2022) CBF) by computing the derivative
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Fig. 4. Results of the double integrator obstacle avoidance scenario from Example 4.
(a) The trajectories of the double integrator’s position, (b) its velocities, (c) the values
of the safety constraint 4, along the system’s trajectory, and (d) the norm of the control
input over time.

Source: This figure has been adapted from Taylor, Ong et al. (2022)

of hy along the system vector fields until the control input appears,
reminiscent of classical input—output linearization. For example, when
considering the two-layer cascaded system (29), h, has relative degree
two, thus one computes:

h(x) = Lg ho(@) + L, ho(@é + agho(q). 42)

where a; € R, and x = (q, &), as an extended CBF candidate, which
now has relative degree one and defines a set C C R” x R? as its zero
superlevel set.

Note, however, that unlike the backstepping-based approach, ¢, =
Cy xR? is not a subset of C and one must instead consider the intersec-
tion €N C c R" xR? as the candidate safe set of interest. To guarantee
safety, this extended CBF must then satisfy:

sup { Leh(x) + Lgh(X)u} > —a(h(x)),

ueRm”

(43)

for all x € €y n C for some a € K¢, which can be used to develop
feedback controllers enforcing forward invariance of , n C. Similar
to CBFs, the satisfaction of (43) can also be verified by checking that
L¢h(x) > —a(h(x)) whenever Lyh(x) = 0. Unfortunately, as illustrated
in the following example (Cohen & Belta, 2023; Tan et al., 2022), an
extended CBF satisfying (43) may not exist even for relatively simple
safety constraints.

Example 5 (Cohen & Belta, 2023). We now consider the same system
and safety constraint A, and corresponding constraint set C, as in
Example 3, but attempt to construct a safe set using an extended CBF
rather than using backstepping. Since h, has relative degree larger than
one based on Example 2, we calculate the extended CBF candidate
in (42):

h(x) = =2xv+ ay — aoxz,

which defines a set C as its zero superlevel set, and a candidate safe set
as Gy n C with €, = Cy x R. This candidate safe set for different choices
of ay is illustrated in Fig. 5. Similar to Example 3, one may force ¢, nC
closer to €, by increasing «j.



M.H. Cohen et al.

2
ap = 0.5
oy = 1.0
1 n = 2.0 _
ag = 5.0
> 0F —
—1F+ -
-2 |
-1 0 1

T

Fig. 5. Safe set constructed for the one-dimensional double integrator using the
extended CBF approach. Here, the colored curves represent the boundary of C,nC for
different choices of ay, the black lines denote the boundary of ¢,, and the transparent
curves of corresponding color denote the boundary of C for different choices of a,. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

To check if h satisfies the criteria in (43) for all x € éo N C, we must
ensure that Lyh(x) + a(h(x)) > 0 whenever Lyh(x) = 0. To this end, we
compute:

Lyh(x) = [—ZU = 2apx —2x] [(l)] = -2x,
S e
Vh(x)T \f-J
2(x)

noting that Lyh(x)=0 implies x = 0. Hence, when Lgh(x) =0, we also
have:

Leh(x)+a(h(x)) = =20 +a(ay),
implying (43) only holds at points such that:

alay)
< —2

That is, when x = 0, (43) only holds provided the magnitude of the
velocity is bounded above by a function of «, and «. In practice, one
may tune o, and « so that (43) is only violated for arbitrarily large
velocities, yet, such points will still be contained in €, N C (see Fig. 5),
implying (43) does not hold for all x € ¢, N C and, consequently, that
h is not an extended CBF.

The previous example demonstrates that one must take care when
using the extended CBF methodology, as seemingly benign safety con-
straints may generate a function that cannot serve as an extended CBF
no matter the choice of extended class K, functions. The consequence
of this is that controllers synthesized from such invalid extended CBFs
may not be well-defined even in the case when the control input
is unconstrained. In contrast, the backstepping methodology outlined
above produces, by construction, a relative degree one function that is
guaranteed to be a CBF for the full-order system. The price to pay for
this correct-by-construction approach is that it requires the full-order
dynamics to exhibit a particular cascaded structure. In the following
subsection, we extend this approach to a more general class of cascaded
systems.

4.3. Mixed relative degree backstepping

Another advantage of CBF backstepping over existing high order
CBF approaches is the ability to handle layered systems with a mixed
relative degree — that is, systems where inputs may enter not only at
the bottom layer as in (32), but also at intermediate layers. Such mixed
relative degree systems with two layers take the form:

q =fo(q) + g5(@)¢ + gl (quy

; (44)
& =f(q. &) +g\(q, Ouy,
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where x = (q, &) € R" X R? is the system state, u = (uy,u;) € R"0 x R™
is the control input, and f, R" - R”", gg R" — R™P, gt
R" - R™Mo_ £, : R"XRP - R?, g‘l1 : R" x R? - RP¥™ characterize
the dynamics. Similar to the previous layered architecture, this system
admits a control affine representation (9) as:

a _ |fo@ +gi@é [ggm) 0 ] [uo] i
[5] [ £, ]+ 0 2@ [u )
—— ) Y

X £(0 ) u

For this system, we consider a function s, : R" — R on the top
layer states defining a constraint set ¢, C R" as in (37). The mixed
relative degree characterization of (44) follows from the fact that the
safety constraint h, may have different relative degrees with respect
to different components of the control vector u = (uy, u;). To address
this challenge, we suppose the existence of smooth feedback controllers
kg : R" > RP, kp @ R" - R” and a € K satisfying:

Ly ho(@+L ¢ ho(@kE @+ Lo g (@K (@) > —a(ho(@), (46)
0 g, 0 0

for all ¢ € R". With the above condition, we propose the CBF candi-
date (Taylor, Ong et al., 2022):

h@.£) = ho@) = 1€~ K @I, @)

which is used to define a candidate safe set C as in (40). Once again,
note that (q.&) € C implies q € C, since hy(q) > h(q,¢) for all
(q,&) € R" x R?. With these conditions, we may state the following
result formalizing the construction of CBFs for mixed relative degree
systems.

Theorem 8 (Taylor, Ong et al., 2022). Consider the dynamics in (44), the
set C, C R" in (37), and suppose there exist smooth feedback controllers
kg : R" > RP, kg : R" > R™ and a € K, satisfying (46). Ifg;‘(q, &) is
pseudo-invertible for all (q,&) € R"?, then h : R" X R? — R as defined
in (47) is a CBF for the corresponding control affine system (45) on the set
C C R" X R? as in (40).

The proof of this theorem largely follows the same procedure as that
of Theorem 7 and is provided in the Appendix for completeness. Similar
to (32), one may recursively apply Theorem 8 to construct CBFs for
mixed relative degree systems with an arbitrary number of layers:

4 =fo(q) + g5 (QF, + gl (@,
& =fy(q. &) + 8 (a.£)& +g"(q. &),

(48)

& =f(a.8).....&) +8/@. &), ... .EDu,.

Example 6 (Unicycle (Taylor, Ong et al., 2022)). A classic example of a
mixed-relative degree system is the unicycle:

X =vcos (y)

y =vsin(y)

W =,

where (x,y) € R? denote planar position, w € R the heading angle,
v € R the linear velocity, and @ € R the angular velocity. Here, the
state is x := (x,y,y) while the control input is u := (v,®) = (uy, uy).
As written, the above dynamics are not in the form of (44), but can
be transformed into such a system with a few modifications. First, we
define:

_[x] = [ ,= COS(lI/)] _ [51]
4 [y] [42]’ & [sin(w) &’
which implies that:

q=28u :=v,

=[G
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Fig. 6. Simulation results for the unicycle from Example 6. Each plot has a similar
interpretation to those in Fig. 4. This figure has been adapted from Taylor, Ong et al.
(2022).

where v denotes the planar velocity vector. Note that, as opposed
to (44), the first equation is not affine w.r.t. (£, u,) but is affine in v.
Thus we conduct backstepping by viewing the single integrator with
input v as a reduced-order model for the unicycle, and by converting v
to (£, up).

Our control objective for this system is the same as that in Exam-
ple 4: we wish to design a controller that enforces convergence of the
position to a goal location while avoiding an obstacle. This obstacle
avoidance task can be captured using the same safety constraint &, as in
Example 4. We then synthesize a smooth safety filter k, : R? — R? for
the single integrator using the same approach as in Example 4, which
outputs safe velocity commands v = k;(q). To use such commands in

backstepping, we decompose v = Kk((q) into & = k‘f(q) and u, = k“(q) as:
ko(@) = ———— ||ko(q)
o(q ”k( )” ko (@1l
— e K@)
K5 (@)

which is valid so long as ky(q) # 0. Then the desired value kg(q) of & is
used to construct a CBF for the full-order system as in (47). This CBF
is subsequently used to synthesize a safety filter k : R? — R? for the
unicycle equipped with the desired controller:

Kp”q_qg“

k = ’
a®) —K,, (sin (y) — sin (w(q)))

where K, K, € R, are gains and v : R? - R, defined by kg(q) =
[cos (wo(@)  sin(wy(q)] T, computes the desired heading angle. The
results of applying such a controller u k(x) to the unicycle are
provided in Fig. 6, where all extended class K, functions involved are
chosen as the identity function.

5. Constructive safety for robotic systems

We now turn our attention to a special case of the cascaded control
systems considered in the previous section — robotic systems with
dynamics in (33). These dynamics comply with the structure outlined in
Section 4, implying the developed backstepping results may be applied
to (33) by converting such systems into the form of (29) as detailed
in Section 3. However, given the relevance of CBFs in the context of
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robotics, and the fact that (33) possess certain structural properties that
further facilitate the construction of CBFs, we outline in this section
how the previous developments may be specialized to robotic systems.

As in the previous section, we wish to design a feedback controller
for the full-order system that keeps the system inside a subset of the
configuration space:

ho(q) = 0},

where & Q — R is a continuously differentiable configuration
constraint. Although we wish to keep the configuration in C;, such an
objective may not be possible without taking into account the full-order
dynamics (33). That is, similar to Example 2, C, is unlikely to be a
controlled invariant set for (33) since for A(x) = hy(q) we would have:

Cy:={qeQ : (49)

0
Loh(x) = [Vhy(q)T 0] [D(q)‘lB] =0,

for all x € TQ. In what follows, we outline various approaches to
construct CBFs for the full-order dynamics (33) from the configuration
constraint (49) under different assumptions regarding the system’s
actuation capability.

5.1. Safe backstepping for robotic systems

To remedy that h, is not a CBF, we first follow the backstepping-
based approach outlined in the previous section, where we suppose

the existence of a continuously differentiable controller k, : QO — R”
satisfying:
Vhy(Q) - ko(q) > —a(hy(qQ)), (50)

for all ¢ € Q. Similar to Section 4, we think of (35) as a reduced-
order model for the full-order system (33) with input ¢ € R" and
k) representing a controller we would apply to the reduced-order
dynamics if we could simply set q = k((q). Thus, k, may be interpreted
as a desired velocity that we wish the full-order system to track. This
controller is used to construct the energy-based CBF candidate:

h(a, @) = hy(@) — ﬁV(q, @, 1)
where y € R, and:
V(@@ = 3~ k(@) D@ — k(@) (52)

whose form is inspired by that of the system’s kinetic energy. This
energy-based CBF candidate defines:

h(gq.q) > 0},

as a candidate safe set, which ensures that q € C, whenever (q,q) € C
since hy(q) > h(q,q) for all (q,q) € TQ. Verifying this CBF candidate
requires checking the behavior of 7 when Lyh(x) =0, whereg : TQ —
R™m js defined as in (34) and x = (q, q). To this end, we compute:

C:={(q.qeTQ : (53)

2 (q.4) =~ (4~ ko(@) D@,
q H

noting that:

Lho =@ @) 5@.a) [D(q‘)’_lB]
——

Vhx)T g(x)

1 .
=-—(G-ko(a)'B.
U
Thus, when (33) is fully actuated, we have:
Lyh(x) = hy(®),

=0 = q-k(@=0 = h(q,Q

so that, when Lgh(x) =

Vhy(q) - q = Vhy(q) - kKo(q) > — a(hy(q)
- a(h(q, q)),

0, we have:

Lih(x) =
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which implies that 4 is a CBF for the corresponding control affine
dynamics (34) by Lemma 2. The preceding discussion is formalized in
the following lemma.

Lemma 4. Consider system (33), a configuration constraint h, : Q - R
defining a set C, C Q as in (49), and suppose there exists a continuously
differentiable function k, : O — R satisfying (50). If (33) is fully actuated,
then h : TQ — R as in (51) is a CBF for the corresponding control affine
system (34) on C C TQ as in (53).

Remark 4. The preceding result can also be applied to reduced-order
models other than the single integrator in (35), such as the general
control affine ROM in (36). To construct a CBF for (33) from this
reduced-order model, however, one must modify (50) to:

Vhy(q) - (fo(@) + go(@ko(@) > —a(hy(q)),
—_—

=fp c1(@)
and (52) to:

V@@ = 5@~ o @) D@ — fo(@).

Example 7 (Double pendulum). To illustrate the systematic construction
of CBFs for robotic systems, we apply the results of this subsection to a
fully actuated double pendulum with configuration q = (6,, 6,) denoting
the angular position of the first 6, and second 6, link. Our objective is
to design a feedback controller that keeps the x-component of Cartesian
position (x, y) of the pendulum’s tip within a certain range |x| < x. To
this end, we first define p : Q — R? associating to each configuration
q € Q the Cartesian position of the pendulum’s tip as:

sin (6,) + [ =H‘
y

—cos (6;) 2

sin (6, + 6,)
—cos (0; +0,)

p(@ =1, [
Denoting by p,(q) = x, we propose:

ho(q) = %% — p,(q)?,

as a configuration constraint defining the configuration constraint set
Cy C Q as in (49), which we use as a CBF to define a smooth safety
filter k, : Q — R2 as in (25) for the single integrator reduced-order
model (35) using the Softplus universal formula (26) with ¢ = 0.1 and
a(s) = s. This system is fully actuated, hence:

h(a, @) = ho(q) - i(q — ko(@) TD(@)({ — ko(q).

is a CBF for the full-order dynamics (34) by Lemma 4. This CBF is then
used to construct a QP-based safety filter (13) for the corresponding
control affine system (34) and nominal controller ky(q,q) = —¢q that
adds damping to the system. To demonstrate the effectiveness of this
CBF, we simulate the system from an upright position with the objective
of bringing the pendulum to a downward position while keeping the
pendulum within the safe set, the results of which are provided in
Fig. 7. Note that the pendulum initially falls towards the boundary of
the safe set, stops itself before crossing the boundary, and then allows
the tip of the pendulum to slide along the boundary of the safe set until
reaching a downward position.

5.2. Energy-based control barrier functions

At this point, one could directly use 4 from (51) as a CBF for
the control affine representation of the robot dynamics (34); however,
such an approach presents certain limitations. In particular, such an
approach requires computing the vector fields f and g in (34), requiring
inversions of the inertia matrix D, which may be costly for high-
dimensional robotic systems. In what follows, we demonstrate how
one may directly leverage (33) without first converting such dynamics
into control affine form to compute controllers enforcing safety. Such
constructions are facilitated by the formal notion of an energy-based
CBF.
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Fig. 7. Simulation results corresponding to the double pendulum from Example 7.
The left plot illustrates the evolution of the pendulum in Cartesian space, where the
red lines denote the boundary of the configuration constraint set, while the right plot
illustrates the value of the configuration constraint along the system’s trajectory. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Definition 9. The continuously differentiable function # : TQ — R
defined as in (51) that defines a set C ¢ TQ as in (53) is said to be an
energy-based control barrier function for (33) on C if there exists a € K¢
such that for all (q,q) € TQ

sup
ueRm

1 . T ok . X
=(q-ko(@) | D(@—(@q+ C(q, Pky(q)
H aq

+G(q) - Bu] +Vhy(@) - q }> —a(h(q, Q).

By defining:
L. . 1 . T ak() .
a(q.q) :=Vhy(q)-q+ ;(q —ko(@) D(q)a(q)q

+ C(q, Pko(q) + G(q)] +a(h(q, ), (54)

bg, §) :=p%||(q—ko<q>>TBu2,

the validity of an energy-based CBF candidate may be assessed using
the same approach as for standard CBFs. Namely, & is an energy-based
CBF provided that:

b(q,q) =0 = a(q,q) > 0.

When k, : Q —» R" and @ € K¢ satisfy (50), and (33) is fully actuated,
the above condition holds since:

b(a,@) =0 = (@-ky@)B=0 = ¢=Kko@),
so that when b(q, q) = 0, we have:

a(q, q) =Vhy(q) - q + a(h(q, Q)
=Vh(q) - ko(q) + a(hy(q)) > 0,

where the second equality follows from q = ky(q) and the inequality
from (50). With the above calculations, we have the following result
regarding the construction of energy-based CBFs.

Lemma 5. Let the assumptions of Lemma 4 hold. Then, h : TQ — R
as defined in (51) is an energy-based CBF for (33) on the set C C TQ as
defined in (53).

Although the above result formalizes the construction of energy-
based CBFs, we have yet to show that they may be used to synthesize
controllers enforcing safety. The following theorem shows that this is
indeed the case.

Theorem 9. If h TQ — R is an energy-based CBF for (33) on a
set C C TQ as in (5), the any locally Lipschitz controller k : TQ — R™
satisfying:

1 . T ak() N .

=@ —ko(@) | D(@)——(q)q + C(q, Dko(q)

H oq (55)

+G(q) - Bk(q, ) ] +Vho(Q) - 4 2 —a(h(q. Q).
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for all (q,q) € TQ renders C forward invariant for the closed-loop system
(33) with u = k(q, q).

The proof of this result, presented in the Appendix, exploits the
following property of robotic systems in (33).
Property 1. The inertia and Coriolis matrices in (33) satisfy the skew-
symmetric property:
vI(D(g.9) - 2C(q. P)v =0, (56)
for dll (q,q) € TQ and any v € R".

Once an energy-based CBF has been constructed, a controller sat-
isfying (55) may be synthesized by incorporating (55) as a constraint
into an optimization problem to instantiate the safety filter:

1 .
7l = ky(q, Dl

min
uekm
1 N T ak() N .
s.t. ;(q —ko(q) D(q)x(q)q + C(q, Pky(q) (57)
+ G(q) - BU] +Vho(@) - 4 2 —a(h(q,q))
where k; : TQ — R™ is a desired control policy, whose closed-form

solution is given similarly to (15) by:
. . 1 . . .
k(q. ) = k4(q.q) - ;l (a(q, ), b(g, @) BT (4 — ko (@),

where a TQ - Rand b : TQ — R are defined as in (54), and
A R? - R is defined with the ReLU activation function as in (15).
This controller no longer contains the inverse of the inertia matrix D.
Another advantage of directly leveraging the robot dynamics in (33) is
that this approach enables the use of safety-enforcing controllers other
than the QP-based controller in (57). For example, when « € K¢ is
Lipschitz continuous with Lipschitz constant # € R, and (33) is fully
actuated, one can verify that:

ok
k(q.q) =B~ D<q>a—°(q>q + C(q. ko (q) + G(q)
q
(58)
+ 1V (@) ~ ZD(@)(@ ~ ko(@) |.

satisfies (55) for any y > 7.

Remark 5. The energy-based CBFs outlined in this section are a
generalization of those originally introduced in Singletary, Kolathaya
et al. (2022). In particular, earlier notions of such CBFs are recovered
by taking ky(q) = 0 in (51) to obtain:

h(a, @) = ho(Q) — ﬁqTD(qm. (59)

A limitation of the above CBF candidate becomes evident when verify-
ing if (59) is indeed a CBF via Lemma 2. When (33) is fully actuated,
we have:

Lyh(x) = -quB =0 = =0,

U
implying that when Lyh(x) = 0, we also have:
Leh(x) + a(h(x)) =Vho(qQ) - 4 + a(hy(Q) = alhy(q),

which is only strictly greater than zero on the interior of the safe set
and is thus not a CBF on any set® D 2 C. Although, in principle, one
may relax the strict inequality in Definition 5 to a nonstrict one so that
(59) may serve as a CBF on C, the lack of the strict satisfaction of (12)
may lead to controllers that are discontinuous when q = 0.

8 Recall that although Definition 5 requires (12) to hold for all x € R", one
may also require (12) to only hold on a set D containing C.
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5.3. Underactuated robotic systems

The previous results in this section formalize the construction of
CBFs for fully actuated robotic systems and illustrate that when the
control input is unconstrained, it is always possible to construct a
CBF for the full-order dynamics (33) by simply building a CBF for a
reduced-order model. These results are not surprising given that fully
actuated systems are feedback equivalent to double integrators — a
class of systems for which CBFs can be readily constructed as detailed
in Section 4. The construction of CBFs becomes more challenging when
(33) is underactuated; however, under certain assumptions, similar
approaches to those outlined thus far may still be employed with the
help of ideas introduced in Spong (1994) (see also (Tedrake, 2023, Ch.
3)). To introduce these ideas, we rewrite (33) as:

D(q)g + H(q,q) = Bu,

where D and B are as in (33) and H(q,q) := C(q,q)q + G(q) collects
the Coriolis and gravitational terms from (33). We now suppose that
(60) is underactuated (i.e., m < n) and that the configuration can be
partitioned into actuated q; € Q; c R™ and passive q, € 9, C R™
components in the sense that {; may be directly influenced by the
control input while ¢, may only be indirectly influenced through the
evolution of q;. Under this assumption, we may represent the dynamics

as:
DIZ(Q)] [('11] + [Hl(Q=Q)] _ [Bl] u
Dp(@)] |4 H,(q.q) (U

[DII(Q)

Dy (@)

where Dj(q) € R"* and D,,(q) € R"™*™ are uniformly positive
definite since D is as well. We now suppose that our configuration
constraint set C, C Q can be characterized as the zero superlevel set
of a continuously differentiable function h, Q — R as in (49)
that depends only on either the actuated or passive components of the
configuration. For example, if our component of interest is q;, — the
actuated component — we assume that:

Co={qeQ : hy(q)) >0},

whereas if our component of interest is q, — the passive component —
we assume that:

Co=1{q€eQ : hyy(qy) 20},

where h; 9, - R, i € {1,2} is continuously differentiable.
Our objective is now to use the decomposition in (61) to derive a
new set of equations that depends only on the acceleration of one of
the components of the configuration, depending on the configuration
constraint.

We begin with the simpler situation in which our configuration
constraint depends on the actuated components of the configuration.
Our objective is to derive an equivalent representation of (60) that
depends only on ¢, . To this end, we note that since D,,(q) is invertible,
we may use the second equation in (61) to solve for §, as:

(60)

(61)

(62)

(63)

i = —Dyp(@~" Dy (@i +Hy(q. )] . (64)

This expression may now be substituted back into the first equation to
obtain:

D (@)4; +H,(q.9) = Bju, (65)
which depends only on {;, where

D;(q) :=Dy;(@) - D> (@D (@) ' Dy (@),
H,(q,9) :=H,(q, ) — D;,(@D () ' Hy(q, @)

Note that D, is simply the Schur complement of D and is symmetric and
positive definite since D is as well (Spong, 1994). Given the dynamics
in (65), we propose the CBF candidate:

hq,q) =hy,(q;)

1. = . (66)
- ﬂ(ql —ko.1(a) "Dy (@)(@; — kg1 (q)).
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where u € R, and ko
controller satisfying:

: Q, —» R™ is a continuously differentiable

Vhy1(q)) - Ko 1(q;) > —a(hy ;(q,)), (67)

for all q; € Q, for some « € K¢ . This CBF candidate may be used to
define a candidate safe set C c T'Q for the robotic system as in (53). The
following theorem illustrates that this function is a CBF for the control
affine representation of this underactuated robotic system.

Theorem 10. Consider system (61) and a configuration constraint set
Cy C Q as in (62). Provided B; € R"*" is pseudo-invertible and k
Q, —» R™ satisfies (67), then the function h : TQ — R as defined in (66)
is a CBF for the corresponding control affine system (34).

A proof of this theorem is provided in the Appendix and follows
a similar argument to the results of Section 5.1. Note that, under the
assumption that B, is pseudo-invertible, system (65) effectively acts as
a fully actuated system since one may directly command any desired
{, to achieve the control objective, and is reminiscent of the collocated
feedback linearization method outlined in Spong (1994).

The fact that we may construct a CBF for the actuated subsystem in
(61) under similar assumptions to those in the previous section should
not be too surprising. A more interesting situation, however, arises
when our configuration constraint is a function of the passive compo-
nents of the configuration as in (63). Under the following condition,
a similar approach to that just introduced may be used to construct a
CBF from a configuration constraint on the passive components of the
configuration.

Definition 10 (Spong, 1994). System (61) is said to strongly inertially
coupled on a set D c Q if D,,(q) is pseudo-invertible for all q € D.

Provided the above condition is satisfied, we may rewrite the first
equation in (61) in terms of §, by first solving the second equation in
(61) for ¢, to obtain:

i, = -D,,(@)' Dy (@i, + Hy(q, @),

where D,;(q)" denotes the pseudo-inverse of D,;(q). The above expres-
sion can then be substituted into the first equation in (61) to obtain:

D,(q)d, + Hy(q. §) =Bju, (68)

where

D,(q) :=D5(q) — D, (q)Dy;(q) Dy (q)
H,(q,q) :=H;(q,q) — D;; (@)D, (@) " H,(q, ),

which now depends only on §,, and is a valid representation of (61) on
the set where (61) is strongly inertially coupled. As discussed in Spong
(1994), D, also has full rank on the set where the strong inertial
coupling condition holds. Given the dynamics in (68), we propose the
CBF candidate:

h(a, @) =ho(a) - ﬁ D5(@)(@; — koa(a)| (69)

where 4 € R, and ky, : Q, — R™ is a continuously differentiable
controller satisfying:

Vhyo(4qy) - Ko2(qa) > —alhy(qy)), (70)

for all q, € Q, for some a € K¢ . As in the previous case, this CBF
candidate may be used to define a candidate safe set C c TQ for the
robotic system as in (53). Now, under the additional assumption that
(61) is strongly inertially coupled on C,, Theorem 10 may be extended
to construct a CBF from a configuration constraint that depends on the
passive components of the configuration.
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Theorem 11. Consider system (61) and a configuration constraint set
Cy € Q as in (63). Provided B, € R"*" is pseudo-invertible, k,, : Q, —
R"2 satisfies (67), and (61) is strongly inertially coupled on C,, then the
function h : TQ — R as defined in (69) is a CBF for the corresponding
control affine system (34).

The above theorem, whose proof follows the same steps as those
in the proof of Theorem 10, is, effectively, an extension of the non-
collocated feedback linearization method from (Spong, 1994) to safety-
critical control. The following example illustrates how one may apply
these results to a classic underactuated robotic system.

Example 8 (Cartpole). We now demonstrate the design of CBFs for
underactuated robotic systems using an example borrowed from (Sin-
gletary, Kolathaya et al., 2022), which involves designing a safety-
critical controller for the cartpole system as illustrated in Fig. 8. The
configuration of this system is given by q = (x, ), where x € R is the
position of the cart and ¢ € [0,27) the angular position of the pole, and
the input corresponds to a force applied to the cart. The dynamics are
of the form (33) with:

_ | me+my mplcos 0) [

D@ = [mplcos ) mpl2 - B= o’
[0 —myfsin(d) _ 0

Clq. ¢ = [0 "o ] . G = [mpgl sin (9)]

where m. € R,, denotes the mass of the cart, m, € R, denotes
the mass of the pole, I € R,, denotes the length of the pole, and
g € R, is the acceleration due to gravity. These dynamics may also
be represented as in (61) with x and 6 corresponding to the actuated
and passive components of the configuration, respectively, implying
one may directly influence % via control inputs, whereas § may only
be indirectly influenced by actuating the cart. Our control objective is
to constrain the angular position of the pole to lie within 6 € [%”, %"],
which may be expressed as the safety constraint:

2
ho®) = (%) - ©-m2
where § = r corresponds to the pole being upright, which defines a
configuration constraint set C, C Q as in (63). As our safety constraint
depends only on 6, we attempt to rewrite the cartpole dynamics as in
(68). To do so, we must ensure that the cartpole dynamics are strongly
inertially coupled, at least on C,, which follows from the fact that
D;;(q) = my,lcos(9) is only zero for § = +x/2 and is not contained in
C,. Hence, we represent the cartpole dynamics as in (68) for all q € C,
with:

5 ; 0 (m, + mp)mpl2

2(q@) =m,,l cos (0) — —mplcos %)
(m. + mp)(mpgl sin (0))

mpl cos (0)

Hy(q.q) = — m,16% sin (9) — .
which are valid so long as cos (6) # 0. With this representation of the
dynamics, we form our CBF candidate as in (69), where k,, : [0,27) —
R is constructed using the Softplus universal formula from Section 2.5.
Since the dynamics are strongly inertially coupled on C, and B, = 1
is invertible, the function s from (69) is a CBF for the control-affine
representation of this system (34). This CBF is used to construct a
QP-based safety filter k as in (13) for the nominal controller:

kq(@. @) = —K,(8 — 64(0) — K9,

where K,,K; € R, are gains, which attempts to track a desired
trajectory 6; : Ry, — R for the pole’s angular position. The results
of applying this safety filter to the cartpole are provided in Fig. 8. Note
that the desired pole position lies outside of C, so that the performance
objective is directly in conflict with the safety objective. Despite this,
and the fact that one cannot directly actuate the angular position of the
pole, safety is guaranteed through the careful construction of a CBF.
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Fig. 8. Results of the cartpole simulation from Example 8. Here, the left plot displays
the evolution of the pole’s position and the right plot illustrates the evolution of the
configuration constraint along the trajectory of the system, both of which demonstrate
the resulting safe behavior.

6. Stable tracking of safe reduced order models

In the previous sections, we outlined various methodologies to
construct CBFs for high-dimensional systems with cascaded dynamics.
Although these approaches enable the systematic construction of CBFs
for relevant classes of systems, they are heavily model-dependent in
the sense that one must leverage the full-order dynamics of the system
to compute controllers enforcing safety. In practice, such models may
be imperfect or may be computationally intensive to compute, limiting
their use in controllers that must run in real time. Moreover, in many
situations, one may not even have direct access to the control input for
the full-order system, and may only be able to pass reference commands
to black-box modules within the existing autonomy stack that compute
such control inputs.

In this section, we present a suite of techniques to address these
aforementioned challenges. Such techniques are, in a certain sense,
a generalization of the ideas introduced thus far and enable the ap-
plication of these ideas to more complex systems, but also lead to a
fundamentally different approach to safety-critical control. Our devel-
opments here are facilitated by the realization that the paradigm of
safety-critical control based on ROMs can be understood as certifying
the ability of the full-order system to track a suitably designed ROM.
Earlier, we implicitly combined a CBF for a ROM with a Lyapunov-like
function to produce a CBF for the overall system. In this section, we
make such an idea more explicit.

The benefit of making this unification of barrier and Lyapunov
functions explicit lies in the ability to decouple the design of the safety-
critical control architecture from the full-order model. This decoupling
leads to a notion of model-free safety-critical control in the sense that the
safety-critical component of the control architecture may be designed
and implemented independent of the full-order dynamics. Safety of the
full-order dynamics can then be guaranteed so long as such dynamics
track commands generated by the ROM. The synthesis of such tracking
controllers may require knowledge of the full-order dynamics; however,
tracking controllers for many relevant classes of systems, such as those
in robotics, are well established and may be readily applied within this
model-free safety-critical control paradigm to enforce safety.

6.1. Lyapunov-certified tracking

To illustrate the ideas introduced earlier in a more general context,
consider again the two-layered system from (29), which may also be
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written in standard control affine form (9) with state x = (q, £) as noted
in (31). As we did earlier, we consider the top-level dynamics:

q = fo(q) + go(Q)é,

as a reduced-order representation of the full-order system for which we
wish to design a smooth controller k, : R” — R? that would enforce
safety of the ROM if its dynamics were directly controllable. Rather
than leveraging k, to backstep through these dynamics to compute a
safe controller, here we consider the existence of a tracking controller
k : R" xR — R™ that is able drive the state £ to k,(q). Accordingly,
we assume that there exists a Lyapunov function V' : R” X R? — Ry,
for the full-order dynamics:

q =fy(q@) + go(q)¢
& =f,(q. &) + 2,(q. Ok(q, &),

satisfying:
71lIE = k@I < V(q,8) < 1€ — ko> (71a)
V(q.8) = LV (%) + LV (0KX) < —7V(q. &), (71b)

for positive constants y,y,,y > 0. This Lyapunov function certifies
the ability of the full-order dynamics to track commands generated by
the reduced dynamics, represented as the outputs of the reduced-order
controller k, : R" - RP”.

To see how this tracking controller and corresponding Lyapunov
function may be used to establish safety of the overall system, we write
the top layer dynamics from (29) as:

q = fy(q) + go(Q(ky(q) + d), (72)
where:
d =& -Kky(q), (73)

is the tracking error for the full order system, which is treated as a
disturbance that must be rejected by the top layer to ensure safety. To
account for this disturbance, we now require k; to satisfy:

Lty @) + Ly ho@ho(@) > ~aho(@) + 1L ho(@)IP, 74)

where h; : R"” — R defines the set C, ¢ R” as in (37) and a,¢ > 0. That
is, rather than requiring A, to be a CBF for the top layer dynamics, we
now require i, to be an ISSf-CBF (see Section 2.4) for the top layer.
Following a similar procedure as before, we now define:

h(q, &) = ho(@) - ——V(q, &), 75)
HY1

as a candidate barrier function for the closed-loop system, which de-
fines the candidate safe set:

C={(q.8)eR" xR : h(q,$) 20}, (76)

as its zero superlevel set. As V is positive definite, we have h(q,&) >
0 = hy(q) > 0 so that enforcing forward invariance of C in (76) is
sufficient to ensure that hy(q(#)) > 0. The following theorem provides
conditions under which 4 is a barrier function for the closed-loop
system.

Theorem 12. Consider the dynamics in (29), the constraint set C;, C R"
in (37), and suppose there exists a continuously differentiable controller
k, : R" - R? and positive constants a, e > 0 satisfying (74). Furthermore,
suppose there exists a tracking controller k : R" xRP — R" and Lyapunov

function v/ R" x R? — Ry satisfying (71) for positive constants
71,72, ¥ > 0. Provided:
y2>a+ %, 77

then C c R" xR? as defined in (76) is forward invariant for the closed-loop
control affine system (31) with u = k(q, £).
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The previous theorem, whose proof is provided in the Appendix,
states that, with good enough tracking performance, safety may be
enforced on the full-order dynamics by simply tracking the outputs of a
safe ROM. The condition in (77) requires that the rate of convergence
of the tracking error — captured via y — must be larger than the rate
at which the ROM may approach the boundary of the constraint set
- captured via a. For a fixed tracking controller, one may satisfy (77)
by designing an appropriate ROM by decreasing «, which limits how
quickly the ROM may approach the boundary of the constraint set,
and decreasing ¢, which corresponds to robustifying the ROM to larger
tracking errors. Hence, for a fixed tracking controller satisfying (71),
one may always ensure safety at the cost of using a more conservative
ROM.

As argued earlier, the benefit of the preceding result is that the
safety-critical portion of the control architecture only relies on the
reduced-order dynamics. As opposed, the results from earlier sections
established the existence of CBF for the full-order system, the dynam-
ics of which one must ultimately leverage to synthesize a controller
enforcing safety. Here, one may instead leverage an existing tracking
controller that may already be integrated into the system’s autonomy
stack to track commands produced by the reduced-order controller and
guarantee safety.

These safety guarantees, of course, are conditioned on the ability
of such a tracking controller to perfectly track reference commands. In
practice, however, perfect tracking — the satisfaction of (71b) - is often
not achievable and instead, our tracking controller k may only achieve:

V(q,8) < —rV(Q. &) +3, (78)

for positive constants y,5 > 0. That is, the tracking controller enforces
input-to-state-stability (ISS) of the tracking error dynamics rather than
exponential stability as in (71b). The inability of the full-order dynam-
ics to perfectly track the reduced-order model leads us to consider the
modified barrier candidate:

ha.8) = ho@ - —— (V@6 - 2), 79
HY1 a

which defines a candidate safe set C as in (76). Compared to (75),
the above barrier candidate inflates the original safe set proportional
to 6 to account for imperfect tracking. The following result illustrates
that under similar conditions to those in Theorem 12, this tracking
controller enforces ISSf of the overall system with respect to the ISSf
barrier function (79).

Theorem 13. Consider the dynamics in (29), the constraint set C, C R"
in (37), and suppose there exists a continuously differentiable controller
k, : R" - R? and positive constants a, e > 0 satisfying (74). Furthermore,
suppose there exists a tracking controller k : R" xR? — R" and Lyapunov
function V R" X R? — R, satisfying (78) and (71a) for positive
constants y,y,,v,6 > 0. Provided (77) holds, then C C R" X R? as defined
in (76), with h : R" xR? — R from (79), is forward invariant for the
closed-loop control affine system (31) with u = k(q, &).

The proof of this result follows the same steps as those employed in
the proof of Theorem 12. As this result establishes forward invariance of
an inflated safe set, rather than the original safe set defined by (75), it
effectively establishes ISSf of the full-order dynamics. Note that for both
Theorems 12 and 13 the parameters of the ROM and tracking controller
must satisfy the same condition (77); however, the safe sets for each
of these results — characterized as the zero superlevel sets of (75) and
(79), respectively — are different. Compared to (75), the safe set defined
by (79) is inflated by an additional margin proportional to 6/a. One
can bring the resulting inflated safe set closer to the original safe set
by increasing a, resulting in a more “aggressive” ROM; however, to
guarantee ISSf, the increase in @ must be compensated for with larger
v, which requires the tracking controller to enforce faster convergence
of the system to commanded references. Furthermore, by increasing
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robustness through decreasing ¢, one may take larger values of u
in (77), making the corresponding forward invariant set given by (79)
closer to the original constraint set given by h,. Before proceeding,
we illustrate how one may apply these results with the help of the
following example.

Example 9 (Planar Segway). We demonstrate the model-free safety-
critical control paradigm by using the example of a Segway control
problem from (Molnar et al., 2022). Consider the planar Segway model
in Fig. 10(a) with configuration q = (p, ¢) € Q@ = R x [0,27) including
the position p and pitch angle ¢ of the Segway. We seek to drive
the Segway with a desired speed p, until reaching a wall at position
Pmax Where the Segway must stop automatically such that p < p.... The
dynamics of the Segway are given by (33) with u € R being the voltage
on the Segway’s motors and:

m mL cos @
D(q)= 0 =
@ [mL cos @ Jo ]’ G@ [—mgL sin (p]’
. b,/R —b —mL@sin K., /R
C(q,q)=[i/b ' bR(p (p], Bz[_“k/ ]
t t m

where R and L are geometric dimensions, m, m,, J, are mass and
inertia parameters, g is acceleration from gravity, while b, and K,
are motor parameters, all given in Molnar et al. (2022). Note that
although these dynamics are in the form of (33), they are underactu-
ated, which complicates the backstepping-like methods developed in
previous sections.

To address this challenge, we proceed to leverage the model-free
safety-critical control approach developed in this section, where we use
the single integrator q = £ as a ROM to provide safety against collision
with the wall, with desired controller kg 4(q) = [5y 0] T and CBF:

ho(‘l) = Pmax — P>

that satisfies Lg, ho(q) # 0. This CBF is then used to construct a smooth
safety filter k, : Q — R? as in Section 2.5 for the ROM. The output
of this smooth safety filter represents a safe velocity for the Segway:
the robot may travel with the desired speed p, until getting close to
the wall, where it must reduce its speed according to its distance from
the wall. The safe velocity can be tracked by an on-board controller
designed for the full system (33) that also stabilizes the Segway upright:

k(q. 4) = K,(p — ko(@) + K, + K. 80)

with gains K;, K,, K,, where ky(q) is the first component of ky(q)
and represents a safe forward velocity. This controller satisfies the
conditions of Theorem 13 using:

V(@9 = 3 - k(@) D@)d - k(@)

as an ISS Lyapunov function, wherein the constants y and § from (78)
may be determined using a similar analysis to that performed in Molnar
et al. (2022).

The results of applying this controller to the Segway for different
choices of gains in (80) and different choices of a and & used in
synthesizing the smooth safety filter k, are provided in Fig. 9. In
particular, the left and right columns in Fig. 9 illustrate the behavior
of the system for K, = 50 and K; = 30, respectively, for different
choices of a and e. Here, safety is maintained for larger K, resulting
in larger y in (78), whereas safety is violated for small values of
K. Intuitively, larger values of K, allow the full-order dynamics to
respond faster to commands generated by the ROM and maintain safety
(cf. (77)). This highlights the fact that, although the controller (80)
ultimately applied to this system does not directly leverage the full-
order Segway dynamics, tuning this tracking controller to enforce safety
may require exploiting model knowledge. In practice, however, it may
not be possible to modify an existing tracking controller to satisfy
(77) as it may represent a “black-box” module already be integrated
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time, #(s)

Fig. 9. Model-free safety-critical control of the planar Segway from Example 9. The
plots display the evolution of the Segway’s position generated by the controller in (80)
with K, =50 (left) and K, =30 (right) for different choices of « and ¢. The curves of
different colors represent the trajectories under different smooth safety filters for the
ROM, where the colors have the same interpretation as in Fig. 2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

into the system’s autonomy stack. In such a situation, one can only
tune the behavior of the reduced-order model via a and ¢, to satisfy
the conditions required by (77). The effect of changing « for the two
tracking controllers is illustrated in the middle row of Fig. 9, where
the tracking controller that originally did not enforce safety (K, =
30) maintains safety with a lower value of «. Intuitively, decreasing
a causes the reduced-order model to approach the boundary of the
constraint set more slowly, requiring less aggressive tracking by the
full-order dynamics to ensure safety. Alternatively, one may tune the
reduced-order model by decreasing £ (bottom row of Fig. 9), which
effectively adds an additional robustness margin to the reduced-order
model, causing it to stop short of the original constraint boundary.

6.2. Safely tracking nonsmooth ROMs

Thus far, the safety-critical control via ROM paradigm has relied
on the use of smooth ROMs, implying that one must leverage the
smooth safety filters from Section 2.5 to design a safe ROM controller
k, : R" — RP. Although these smooth safety filters can be tuned to
approximate the QP-based safety filter from (13) arbitrarily closely, in
practice, such controllers tend to be more conservative than their QP
counterparts. Our restriction to smooth controllers at the ROM level
was necessary in our backstepping approach since such controllers were
explicitly used to define a CBF for the full-order system, which must
be continuously differentiable’. Smoothness also played an important
role in the previous subsection wherein we explicitly combined a ROM

9 Note that nonsmooth versions of CBFs do exist (Glotfelter, Cortés, &
Egerstedt, 2017; Usevitch, Garg, & Panagou, 2020) and have been used to
address multiple safety constraints (Glotfelter, Cortés, & Egerstedt, 2020).
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Fig. 10. Model-free safety-critical control of a Segway in simulation, with results
from (Molnar et al.,, 2022). A planar Segway model is controlled to stop in front of
a wall, by the help of a CBF-based safe velocity command and a velocity-tracking
controller.

CBF and a smooth Lyapunov function to build a CBF for the full-order
system; however, as shown in this subsection, the existence of a smooth
Lyapunov function is not necessary to establish such results.

We now relax this smoothness requirement, which facilitates the use
of QP-based controllers for the ROM, by assuming that the tracking
error d is bounded as:

|2 < Me™"" +6, (81)

for nonnegative constants M,y,§ > 0. This bound reflects the ability of
the full-order system to exponentially track the reduced-order model
up to a bound 6 and is analogous to the ISS condition in (78), albeit
without the explicit use of a Lyapunov function. One may set various
constants in (81) equal to zero to reflect the tracking capabilities of the
full-order system: 5 = 0O reflects perfect tracking and M = 0 reflects
bounded, but not convergent tracking. Rather than building a barrier
function for the full-order system from a Lyapunov function, we directly
utilize (81) to propose the time-varying barrier candidate:

£6
+—,

4a (82)

M _
h(q, &, 1) = hy(q) - 76‘ "
for a positive constant u > 0, which defines the time-varying safe set:

C@t) :={(q. &) e R"xR” : h(q,&,1) >0}, (83)

associating to each time ¢ a set C(r) c R" x RP of safe states. The
following theorem shows that, under similar conditions to the preced-
ing results, 4 as in (82) is an ISSf barrier function for the closed-loop
system.

Theorem 14. Consider the dynamics in (29), the constraint set C, C R"
in (37), and suppose there exists a controller k, : R" — R? and positive
constants a,e > 0 satisfying (74). Furthermore, suppose there exists a
tracking controller k : R"xR? — R™ enforcing the tracking error bound in
(81) for constants M,y, s > 0. Provided that (77) holds then C(t) C R" X R?
as defined in (83) is forward invariant for the corresponding closed-loop
control affine system (31) with u = k(q, £).

For completeness, the proof of this theorem is provided in the Ap-
pendix. The following example shows how the preceding results allow
for leveraging a QP-based controller for the ROM from Example 9.

Example 10 (Planar Segway). We now return to Example 9, where
we seek to use a QP-based controller (13) for the ROM rather than
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a smooth safety filter. The QP solution (15) leads to the following
safety-critical controller for the ROM:

k
ko(q) = [ O(()q)

] 5 k()(‘l) = min{[jd, a(pmax - p) - é}’
with a > 0. Although this controller is nonsmooth, we may leverage the
same exact tracking controller (80) as in the previous example, and
leverage Theorem 14 to establish safety of the full-order dynamics.
Fig. 10 shows the corresponding simulation results from (Molnar
et al., 2022). The Segway’s motion is safe, as established by Theo-
rem 14. Once again, the safe velocity expression does not use the full
model (33), but only exploits the underlying multi-layer structure with
a corresponding trivial ROM that has no parameters. This ultimately
leads to a model-free method with a simple explicit “min” formula to
provide safety for a robotic system. Meanwhile, the tracking controller
does not involve the expressions in the model (33) either, however,
as discussed in Example 9, appropriate selection of the gains K, K,
K, may require model information. Furthermore, when directly tuning
the gains of the tracking controller is not feasible, one may directly
modify the parameters of the reduced-order model to ensure safety as
demonstrated in Example 9.

7. Case studies

Thus far, we have introduced a variety of different CBF techniques
based on the idea of leveraging ROMs to extend a CBF for a simple
system to one for a complex system. In each of our illustrations of
these techniques, we have chosen relatively simple examples that are
just rich enough to capture the main ideas introduced herein. Yet, the
motivation for introducing such ideas in the first place was to provide a
viable pathway to safety-critical control of complex, high-dimensional
autonomous systems.

The safety-critical controllers established above through the use of
CBF theory have been implemented on a wide variety of such systems,
and, in this section, we revisit more complex application examples
from the literature that use these methods. These examples include
safety-critical control of fixed-wing aircraft, flying, legged and wheeled
robots, manipulators, and heavy-duty trucks — both in simulation and
hardware experiments.

7.1. Run-time assurance on fixed-wing aircraft

We demonstrate the application of safe backstepping with CBFs
by revisiting the work in Molnar et al. (2024), wherein a fixed-wing
aircraft was controlled in a safety-critical fashion with the objective
of preventing collision with other aircraft or entry into a restricted
airspace bounded by a “geofence”. The overall control pipeline is
illustrated in Fig. 11. The aircraft uses a desired flight controller, that
tracks a trajectory with stable flight, and a run-time assurance (RTA)
system, that overrides this desired flight controller whenever necessary
for collision avoidance and geofencing. The RTA is formulated as a
safety filter using CBFs constructed by backstepping.

The controller synthesis is based on a kinematic model, that is used
to design acceleration and angular velocity commands for the aircraft in
a provably safe fashion. This model has a multi-layer cascaded structure
similar to (48):

F=v({),
§ =16 A1,0),
b= 145, ¢,0.P),

with state x=(r, {, ) €R” and input u=(Ar, P, Q) €R3; see detailed de-
scription in Molnar et al. (2024). According to this model, the position
r € R3 evolves according to the expression of the velocity v, given
by the state ¢ € R? that includes speed, pitch angle and yaw angle.
The evolution of ¢ depends on the roll angle ¢ € R, the longitudinal
acceleration At € R and the angular velocity O € R about the right
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Fig. 11. Run-time assurance on fixed-wing aircraft to guarantee safety with respect to
collision avoidance and geofencing. The results — repeated from Molnar et al. (2024)
— demonstrate that safety-critical flight controllers, which use backstepping-based CBFs
and leverage the multi-layer structure of the underlying dynamics, are able to generate
maneuvers to prevent collision with other aircraft and entry into restricted airspace.

axis of the aircraft (related to pitching up or down), where A; and Q
are viewed as control inputs. Finally, the evolution of the last state ¢
involves the angular velocity P about the front axis (related to rolling),
which is considered to be the third control input. Overall, the dynamics
have a 3-layer cascaded structure, where inputs enter at the second and
third layers. Importantly, the right-hand side functions f, and f, are
affine in the control inputs Ar, P, O and in certain expressions of the
states.

This structure can be exploited to synthesize a CBF via backstepping
for use in collision avoidance and geofencing. For collision avoidance,
consider the distance:

hoi(r) = |lr —x;|l = p;,

between the controlled aircraft and multiple other aircraft with index i,
whose position is r; € R3, while p; > 0 are collision radii. For geofenc-
ing, the distance between the aircraft and a planar geofence boundary
with position r; and normal vector n; can be utilized:

ho; () =nl(x - 1)) = p,,

where index i refers to multiple geofence constraints, that is, geofences
with more complex geometry. These functions can be combined into a
single CBF candidate and used to construct the CBF & via backstepping.
This process takes multiple steps; the details are found in Molnar et al.
(2024).
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Fig. 12. Safety-critical indoor flight tests with a quadrotor (Singletary et al., 2021). The quadrotor is controlled to traverse obstacle courses with various obstacle arrangements
while maintaining a collision-free flight. The single integrator is used as ROM for the quadrotor’s dynamics, while the distance from the obstacle is considered as the CBF. By
incorporating these into a safety filter, safe velocity commands are computed, which are then tracked by the onboard flight controller. The end result is collision-free motion in

each scenario.

The CBF can be used in the QP-based controller (15) to achieve
safety-critical behavior. The resulting motion is demonstrated in Fig. 11
by the simulation of simultaneous collision avoidance and geofencing
scenario. The controlled aircraft seeks to track a straight trajectory,
and its run-time assurance system intervenes to guarantee safety. The
aircraft first accelerates, pitches up, and turns left to avoid collision
with the other aircraft, and then it is forced to turn right to avoid
crossing the two geofence boundaries. This behavior is generated by
the backstepping-based CBF h, which was kept nonnegative throughout
the motion. As a result, the three position-based CBF candidates hy; are
also kept nonnegative, which indicates that the underlying maneuvers
are executed with guaranteed safety.

7.2. Safety-critical control of quadrotors

Next, we illustrate safe behavior on another important class of
aircraft: quadrotors. We revisit the results of Singletary et al. (2021),
where the techniques discussed in Section 6 were first demonstrated by
hardware experiments on drones. The quadrotor shown in Fig. 12 was
utilized in indoor flight tests to traverse obstacle fields with various
obstacle arrangements (see bottom panels). In each scenario, the drone
used an onboard flight controller to track velocity commands. To obtain
these commands, first, a desired velocity was provided by a high-level
desired controller. Then, using a single integrator as a ROM of the
full quadrotor dynamics, a safety filter modified the desired velocity
to a safe velocity command. The CBF underlying this safety filter
was the distance between the quadrotor and the obstacle. Tracking of
the resulting velocity resulted in collision-free flight, as the theory in
Section 6 suggests.

22

Importantly, safety filters can also be implemented to prevent a
human pilot from crashing a drone. The flight tests in Singletary et al.
(2021) also demonstrated a case where a human was piloting the drone
manually. These experimental results are shown in the top right panel
of Fig. 12. Here, a human pilot provides the desired velocity commands
for traversing the field such that the drone is actively driven towards the
obstacles. Yet, even when the human pilot intends to hit the obstacles,
the safety filter intervenes and prevents a collision. As such, human
pilots usually provide high-level commands for robotic systems like this
drone, hence a high-level safety filter — operating based on ROMs and
CBFs - is suitable for keeping the system safe.

7.3. Safe flying, legged and wheeled robots

The control strategy discussed for quadrotors can be extended to a
wide range of robotic systems. We demonstrate this by revisiting the
results from (Molnar et al., 2022) where flying, legged, and wheeled
robots were controlled via the same approach: stable tracking of safe
ROM:s. This approach leverages the fact that many robotic systems have
multi-layer structures in their dynamics, where the top layer captures
the relationship between the configuration and velocity of robots while
the bottom layer relates velocities to forces or torques. As such, the
top-level dynamics can be viewed as ROMs describing the evolution of
the configuration. If safety is captured by a set C, in the configuration
space (that is the case e.g. for collision avoidance), then CBFs for
these ROMs can be used to find safe velocity commands, which can be
tracked by existing on-board controllers that make the robot fly, walk
or drive. This yields a simple method to guarantee safety of various
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Fig. 13. Illustration of the model-free safety-critical control paradigm from Molnar et al. (2022). An obstacle avoidance task is executed on three fundamentally different systems:
flying, legged, and wheeled robots. Each robot is controlled safely based on reduced-order (i.e., single integrator or unicycle) kinematics, by calculating safe velocity commands
using CBFs and tracking these commands using on-board flight, walking, and driving controllers. (a) Hardware experiments on Drone, (b,c) hardware experiments on Quadruped,

(d) high-fidelity simulations on Segway.

robots. Moreover, as was highlighted for quadrotors, the ROMs are
often trivial equations with no parameters, like the single integrator
in (35). Such ROMs lead to simple geometric expressions for the safe
velocity, regardless of how complex the full model is. We refer to this
approach as model-free safety-critical control.

The model-free safety-critical control paradigm is illustrated in
Fig. 13. Three fundamentally different robots — a custom-built racing
drone, a Unitree Al quadruped, and a Ninebot E+ Segway — are con-
trolled with the model-free approach to accomplish a reach-avoid task
similar to that in Fig. 4. Using single integrator or unicycle reduced-
order kinematics, CBF-based safe velocity expressions are computed
for each robot, which are commanded as a reference signal to be
tracked by the controller that flies the drone (established in Singletary,
Swann, Chen and Ames (2022)), locomotes the quadruped (developed
in Ubellacker, Csomay-Shanklin, Molnar, and Ames (2021)) and drives
the Segway (described in Gurriet et al. (2020), Molnar et al. (2022)),
respectively. The velocity tracking error, observed in the right panels,
satisfies the bound (81), thus safety can be established according to
Theorem 14. Indeed, safe behavior was observed in hardware experi-
ments (drone and quadruped) and high-fidelity simulations (segway),
as indicated by the positive value of the CBF & of the reduced-order
kinematics. Note that these results from Molnar et al. (2022) did not
include the robustness term with & in (74) (i.e., € = co was taken),
hence a different variant of Theorem 14 with more restrictive assump-
tions was required to prove safety. We will highlight the relevance of
robustness terms in the upcoming subsections where CBFs are used on
industrial manipulators and heavy-duty vehicles.

23

7.4. CBFs in collaborative robotics

In the previous case study (Molnar et al., 2022), we demonstrated
how ROMs may be used to develop safety-critical controllers for a
variety of robotic systems, including legged robots. In the context of
safe legged locomotion, this approach leveraged the system’s existing
control architecture, developed in Ubellacker et al. (2021), and allowed
to control a rather complex robotic system by simply passing safe
reference commands, generated by models such as a single integrator
or unicycle, to the existing architecture. In the present case study,
we further explore how CBFs may integrate into a system’s overall
autonomy stack in the context of collaborative legged locomotion (Kim,
Lee et al., 2023) as portrayed in Fig. 14.

Here, the objective is for a team of holonomically constrained
robots, in this case, a team of quadrupeds, to collaborate and safely
navigate around obstacles before arriving at a goal location. These
holonomic constraints could represent, for example, a payload that
these robots seek to transport, which constrains the team’s overall
formation. To complete this task, the control architecture is broken
down into three layers, each leveraging a more detailed model of the in-
terconnected robotic system. The top layer represents each quadruped
as a double integrator and leverages CBFs to simultaneously enforce the
holonomic constraints and obstacle avoidance. The outputs of the top
layer are thus safe position and velocity trajectories that also respect the
holonomic constraints imposed on the full-order dynamics. The middle
layer seeks to bridge the gap between these reduced-order trajectories
and the full-order dynamics by representing the robotic team as an
interconnection of single rigid bodies (SRBs). At this level, the outputs
of the top layer are used as reference commands for the center of mass
of each SRB, which are tracked by a model predictive controller that
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Fig. 14. Simulation and hardware results corresponding the to collaborative locomotion case study, originally reported in Kim, Lee et al. (2023).

outputs ground reaction forces (GRFs). These GRFs are input to the
bottom layer, which leverages a high-fidelity model of each quadruped
and a virtual constraint-based QP controller (Hamed, Kim, & Pandala,
2020; Kim, Fawcett, Ramidi, Ames & Hamed, 2023) to generate torque
inputs that impose the commanded GRFs and track the safe position
and velocity trajectories generated by higher layers.

The control architecture outlined above was implemented on a pair
of Unitree Al quadrupeds in both simulation and experimentally (Kim,
Lee et al., 2023), where the objective is for a pair of interconnected
quadrupeds to navigate around obstacles to a goal location. As shown
in Fig. 14, in both simulation and hardware, the interconnected robotic
system successfully navigates through simple (Fig. 14a) and cluttered
environments (Fig. 14c). This is achieved by decomposing the control
architecture into multiple layers and reasoning about both the system’s
holonomic constraints — representing the interconnection of the robots
- and safety constraints at each layer using different model represen-
tations. Ultimately, this decomposition enables the implementation of
safe and real-time collaborative locomotion.

7.5. Collision-free food preparation with manipulators

Next, we showcase the efficacy of utilizing CBFs and ROMs in
the context of safe robotic manipulation. In particular, we present a
real-world industrial application, reported in Singletary et al. (2022),
wherein a manipulator is employed in a kitchen for automated food
preparation that must be executed in a collision-free manner. The ma-
nipulator, shown in Fig. 15, is a Miso Robotics Flippy2 robot. This robot
is intended to manipulate kitchen equipment in order to pick up, deep
fry, and dispense food while avoiding collision with its environment.
Executing such behaviors requires sophisticated motion plans, which
are computed for various environmental factors and initial conditions.
Many of the required motion plans are similar trajectories with only
slight deviations, accounting for the fact that food baskets may move
and deform slightly, workers may push the equipment, or the robot may
have a slightly different initial configuration. Therefore, rather than
replanning a trajectory in each slightly different situation, it is more
efficient to use a CBF-based safety filter to modify a nominal trajectory
online and provide formal safety guarantees.
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Importantly, the manipulator has an efficient low-level control sys-
tem that enables the tracking of trajectories and, in particular, velocity
commands. Hence, this architecture is well-suited for utilizing the
approach outlined in Section 6. Specifically, the kinematic equations
of the robot can be used as a ROM to design safe velocity commands
via CBF-based safety filters, which can be tracked by the low-level
controller. Ensuring safety at the ROM level via velocity commands —
rather than for the full dynamics by filtering the low-level controller
— was also motivated by the fact that the details of the low-level
controller were proprietary, and could not be modified. At the same
time, the industrial low-level controller is well-designed for velocity
tracking and capable of keeping the tracking error bounded as in (81).
As established by Theorem 14, this enables safe behavior for the full
dynamics by the appropriate choice of a ROM-based safety filter.

In particular, the work in Singletary et al. (2022) used the signed
distance between the closest point of the robot and its environment as
CBF candidate h,, and implemented the safety filter:

Ko(q,7) = argmin ||v — ko q(q, D]
veR”?

st n(Q) @V > —ahy(Q) + 2J G

that minimally modifies a desired velocity k 4(q,?) given by a nominal
motion plan to a safe velocity ky(q,?). Here, safety is achieved by
enforcing a CBF-based inequality constraint analogous to (74). The
term on the left-hand side of this constraint is an approximation of the
derivative of function h, along the kinematic ROM (with the Jacobian
J and a normal vector n), while the last term on the right-hand side is
intended to provide robustness against disturbances and approximation
errors (with the bounds J,,,, and ¢, on Jacobian and velocity norms).
The resulting safe velocity was finally tracked by the robot’s low-level
controller to execute collision-free cooking.

The performance of the manipulator employing this control archi-
tecture is illustrated by hardware experiments in Fig. 15. The objective
of the robot is to pick up a food basket that has finished cooking and
move it from the fryer to a hanger, allowing the oil to drip off the basket
before serving. Throughout this motion, the robot needs to operate in
a dense workspace, where collision must be avoided with food baskets,
fryers, the hood vent over the fryers, and a glass pane separating the
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Fig. 15. Collision-free food preparation with a Flippy2 robot, with results from Singletary et al. (2022). Nominal motion plans that manipulate baskets of food are minimally
modified using CBFs, in order to avoid collision between the robot and the kitchen equipment. Specifically, the reduced-order kinematics of the robot are used to synthesize a

safe velocity using CBFs, which then were tracked by industrial low-level controllers.

manipulator from humans, leading to 36 collision objects in total. Al-
though the manipulation is done in a tight space with a few centimeters
of clearance between the robot and the surrounding environment, the
manipulator manages to accomplish the task without collision, thanks
to the use of a safety filter at the reduced-order kinematics level. This
can be confirmed by the value of the underlying CBF candidate h,
highlighted at the bottom right of Fig. 15, which is positive during the
motion while its maximum value is only 11 centimeters. Importantly,
the resulting behavior is reproducible: (Singletary et al., 2022) reported
that the use of CBFs led to collision-free behavior consistently in 100
subsequent test cases.

7.6. Input-to-state safety on connected automated trucks

Finally, we demonstrate safety-critical control of heavy-duty vehi-
cles as originally reported in Alan et al. (2023). Consider the connected
automated truck in Fig. 16 that is controlled longitudinally to follow
another vehicle on a straight road. Throughout the motion, the truck
must maintain a safe distance to avoid front-end collision, which may
be crucial in situations like emergency braking.

The truck is equipped with a low-level control system discussed
in He et al. (2020) that regulates gas, brake pressure, and gear shifts to
track acceleration commands. Thus, the truck’s desired acceleration is
viewed as a high-level control input, and double integrator models (or
variants thereof, involving resistance terms and other physical effects)
can be used as ROMs to control the truck’s motion. For example, the
following ROM was employed in Alan et al. (2023):

D=y —v,

v=u+d,

U, =ag,
where D € R is the distance of the vehicles, v € R is the speed of
the truck, u € R is its desired acceleration, d € R is a disturbance,
vy € R is the speed of the lead vehicle, and a; € R is its acceleration.
Furthermore, we have q = (D,v,v;) and ¢ = u with our previous no-

tations. Using the ROM, longitudinal car-following controllers can be
designed at the acceleration level by measuring D, v, vy and g using
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on-board range sensors like radar, as well as GPS and vehicle-to-vehicle
connectivity.

With the estimated states, a desired connected cruise controller (Zhang
& Orosz, 2016) can be utilized to execute car following:

koa(@) = A(V(D) - v) + BOW (uv) —v),

where A, B € R, are control gains, V' : R — R is the range policy that
provides a desired velocity based on the distance, and W : R — R is
the speed policy that takes the speed limit into account. This desired
controller can be incorporated into a CBF-based safety filter, where the
CBF of the ROM:

ho(q) = D — p(v,vy)

involves a safe distance expression that depends on the speeds as
given by p : R? > R,. The corresponding safety filter generates safe
acceleration commands, that can ultimately be tracked by the truck in
order to maintain a safe distance. If the tracking error is bounded, this
leads to safe behavior as highlighted by Theorem 14.

Importantly, accurate tracking of accelerations is challenging on
heavy-duty trucks, since they have large inertia and response time,
as well as complicated underlying dynamics in the engine, powertrain
and brake systems. As a result, significant tracking errors inevitably
occur that propagate as disturbance d to the ROM. This necessitates the
use of safety-critical controllers that are robust to disturbances. Specif-
ically, (Alan et al., 2023) leveraged the concept of tunable input-to-state
safety proposed in Alan et al. (2022), and enforced:

I Ly, ho(@II*
e(ho(@)
as a constraint in QP-based safety filters. This constraint is a tunable
counterpart of (74), where ¢ R — R,y is a tunable function
of h, to provide robustness near the boundary of the safe set only
(while being less robust to disturbances when safety is not in danger
of violation). The tunability facilitates reducing the conservativeness

of the controller, to allow the truck to keep shorter distances.
The end result is shown in Fig. 16, which presents emergency
braking experiments on a Navistar ProStar+ Class-8 truck as reported

Ly, ho(@)+ Ly ho(@ko(q) 2 —ahy(q)+ , (84
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Fig. 16. Input-to-state safety on heavy-duty trucks in emergency braking. A connected automated truck is controlled to track acceleration commands designed in a safety-critical
fashion using a double integrator as ROM. The tracking errors act as a significant disturbance, hence robust safety-critical controllers are required to guarantee safe behavior. By
utilizing tunable input-to-state CBFs, proposed in Alan et al. (2022), for robust safety-critical control design, the truck safely executes the emergency braking maneuver without
maintaining an overly conservative distance. Remarkably, this was not possible by traditional CBFs without added robustness.

Source: These results and figures have been adapted from Alan et al. (2023)

in Alan et al. (2023). The lead vehicle brakes to a full stop (black lines),
and the truck responds to this event with various controllers (colored
lines). The desired controller is unsafe during such a harsh maneuver
(blue lines). Similarly, a safety filter that enforces (38) without a robust-
ness term (i.e., without the term of ¢), although performing better, still
cannot maintain safety (red lines). This is due to the fact that the track-
ing of acceleration commands is imperfect and a significant disturbance
arises (see purple arrow), while the underlying controller is not robust
to disturbances. The robust safety-critical controller that enforces (84),
on the other hand, successfully guarantees safety. This demonstrates the
power of CBFs and ROMs in guaranteeing safe behavior on real-world
systems and highlights that robustness against discrepancies between
the ROM and the full system is crucial to achieving safety in practice.

8. Discussion and conclusions

Inspired by the success of reduced-order models in robotics, and
the need for constructive techniques for CBFs, this paper presented
a tutorial on using reduced-order models for safety-critical control.
The core idea behind this methodology is to extend a CBF for a
relatively simple system to a CBF for a complex system whose behav-
ior, at a high level, is captured by its corresponding reduced-order
model. We demonstrated different techniques, such as backstepping
and Lyapunov-certified tracking, for constructing CBFs for relevant
classes of control systems whose dynamics admit a particular layered
structure. These systems include but are not limited to those encoun-
tered in robotics such as wheeled, legged, and flying robots. The central
ideas of this approach were illustrated through theoretical results,
numerical examples, and case studies that demonstrated the successful
application of the ideas presented herein across various domains.

Although the methods covered in this tutorial provide a fairly gen-
eral way to construct CBFs for relevant classes of systems, they also pos-
sess several limitations that should be investigated in future research.
Perhaps the greatest limitation the approaches presented herein is
that CBFs were synthesized under the assumption of unlimited control
authority. In reality, any physical system will possess actuator limits
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and designing CBFs that take into account such limits is of paramount
importance. Popular approaches to constructing CBFs that account
for actuation limits include backup CBFs (Chen et al., 2021; Gurriet
et al., 2018), input-constrained CBFs (Agrawal & Panagou, 2021), and
integral CBFs (Ames, Notomista, Wardi, & Egerstedt, 2021), among
others. It may be possible to unite the ideas presented herein with
such methods to systematically synthesize CBFs for high-dimensional
systems with actuation limits. Initial steps towards this unification have
been presented in Molnar and Ames (2023b) wherein the methods
introduced in Section 6 were combined with backup CBFs to develop
safety-critical controllers based on reduced-order models that also ac-
count for actuation limits. Alternative approaches to accounting for
actuation limits may involve the interplay between planning and con-
trol within a multi-rate framework (Csomay-Shanklin, Taylor, Rosolia,
& Ames, 2022) in which trajectories of the reduced-order model are
designed to be compatible with a lower-level controller with limited
actuation authority.

Another question raised by the developments in this tutorial is:
how does one choose a suitable reduced-order model? The results in
Sections 4 and 5 (with the exception of Section 5.3) effectively require
the full-order dynamics to be fully actuated, and demonstrate that,
in such a situation, one may simply take the reduced-order model as
a single integrator. The procedure in Section 5.3 demonstrates how
CBFs may be constructed for underactuated systems under a certain
set of assumptions, but falls far short of a complete characterization of
synthesizing CBFs for underactuated systems. The challenges presented
by underactuated systems are implicitly bypassed in Section 6 by
assuming the existence of a low-level controller that tracks commands
generated by a reduced-order model. However, the ability to construct
such a controller will inevitably depend heavily on both the actuation
capability of the system and on the richness of the reduced-order
model. Fully characterizing when a reduced-order model is “good”
in the sense that its behavior may be roughly replicated by the full-
order dynamics is an important open question that deserves a more
thorough investigation. We believe classical tools from nonlinear con-
trol theory (Isidori, 1995) such as the zero dynamics (Isidori, 2013),
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virtual constraints (Hamed & Ames, 2020; Maggiore & Consolini, 2013;
Westervelt, Grizzle, Chevallereau, Choi, & Morris, 2007), and out-
put regulation (Di Benedetto & Grizzle, 1994; Grizzle, Di Benedetto,
& Lamnabhi-Lagarrigue, 1994; Isidori & Byrnes, 1990) may play an
important role in answering such questions.

While there are important theoretical questions that remain unan-
swered, the case studies presented in Section 7 indicate that the meth-
ods outlined in this tutorial tend to perform well in practice (i.e., when
deployed on hardware) even when many of our standing assumptions,
such as unlimited actuation capability, are violated. Ultimately, we
believe developing principled approaches to handle such situations will
only further improve the performance of the methods presented herein
and facilitate their applications to a broader set of autonomous systems.
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Appendix. Proofs

Proof of Theorem 8. We leverage Lemma 2 to show that 4 as in (47)
is a CBF for the corresponding control affine representation (45) of the
mixed relative degree system (44). We begin by computing the gradient
of h as:

q
Vhx) = | V0@ + ﬁ%(qf(é - K@)
— (€=~ Ki(@).

Thus, the Lie derivative of # along g as in (45) is:

Lguh LK 0T - KE Qe
Leh(o)T = | 78 o(Q)T;E(q) (€ - kj(@)gy(@)
— 1€ - K (@)g}(q. §)-

We now analyze the behavior of 4 when:

“ho(Q)+ "
—1 (€ -k (@)g] (.8
It thus follows from the assumption that g} is pseudo-invertible and the
second equation in the above system that, when Lyh(x) = 0, we must
have & — kg(q) = 0. It then follows from the first equation of the above
system that, when Lyh(x) = 0, we must also have ng hy(q) = 0. Now,
computing the Lie derivative of 4 along f as in (45) when Loh(x) = 0
we have:

4
Lyh(x) = [Vhy(q) 0] [fo(q; ;ggmg]
1\4

=Liyho(@ + L g ho(@é
=Ly ho(@ + Lgho(@k; @
> = alhy(@) = Lys ho(@k (@)

= — a(hy(@))
= - a(h(x)),

™ @7 - K5 @)gl (@) | _ [0]
ol
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where the third line follows from & = k‘f(q), the fourth from (46), the
fifth from L nho(q) = 0, and the sixth from hy(q) = h(x) (provided
Lyh(x) = 0). It follows from Lemma 2 that A is a CBF for (45) on C
as in (40). O

Proof of Theorem 9. We establish this result by showing that the
function » : TQ — R as defined in (51) satisfies the barrier-like
inequality A(q, q) > —a(h(q, @)) for the closed-loop system, allowing one
to invoke the comparison lemma (Khalil, 2002, Lemma 3.4) to establish
forward invariance of C. To do so, we compute:

h(a, @) =ho(q, §) — %V(q, @,
noting that hy(q, q) = Vhy(q) - ¢ and:
. . . T .. 0k0 .
V(@.9) =@ — k(@) [D@ii - D(@) 52 (@)
q
+ 3= Ko@) Dl DG — kol@)
. T ak() N L e
=—-(q - ky(@) [ D(q)x(q)q +C(q, 9)q
+ 6@ - Bk(@.d) |
+ 3= Ko@) Dl DG~ kol@)
. T ak() N .
=~ @~ k@" | D@72 @i+ Cla, k(@)

+ 6@ - Bk@.4) [,

where the second equality follows from substituting in the dynamics
(33) and the third from Property 1. Hence, 4 may be expressed as:

. @) =Vho(@) -4+ 1@ = k(@) [D(q) 2@

+ C(a. k(@) + 6@ - Bkq.4) |
2 — a(h(q, Q)

where the inequality follows from (55). It then follows from the com-
parison lemma that h(q(r), 4(1)) > h(qy. q,) for all r € I(q,.q) so that if
the system’s initial condition satisfies (q, q,) € C, then hA(q(?),q(?)) > 0
for all r € I(qy, q), implying the forward invariance of C. [
Proof of Theorem 10. We use an argument similar to Lemma 2 to
show that & as defined in (66) is a CBF. We begin by computing the
time derivative of & to obtain:
; . 1 . TA dkg |
h(x,u) =Vhg(q)) - q;+=(q; —Kko,(q;)) Di(@—=—¢q,
H aq
1. = .
- ;(ql —k0,1(Q1))TD1(Q)ql
1. = L
- ﬂ((h —Kko,1(q)"™D(q, @)@, — kg (q)))
. 1. TA okg |
=Vhy,(qp) - q;+=(q; — ko 1(q,)) D]((l)—a q
H q
1 . T
- ;((h —Kkp1(q;)) Bju
1 . Th )
+ ;(‘h —Kko1(q1)) Hi(q. Q)
1. = L
- ﬂ(‘h —Ko.1(a) "Dy (q, @)(q; — Ko 1(q))).

Collecting various terms in the above, we see that:
. 1 . - .
Leh(x) =Vhg 1(qp) - 4, + ;(‘h —Kko,1(q))"H; (g, 9)
1 . A okg
+ =@ —ko1(q) Di(@——4q
A 1195, @
1 . = L
- ﬂ(‘h - ko,l(ql))TD1(q, Q@ - ko,l(ql))

Leh(x) = — 2(@, — ko, (@) "B,
"
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where x = (q,q) and f and g are as in (34). Now, since B, is
pseudo-invertible, we have:

Lgh(x) =0 <= (q; — kg (q,))'B; =0
=q = ko,1(‘11)-

Hence, when Lyh(x) =0, we have:

Lih(x) =Vhg,(q1) - ko1 (a1)
> —a(hy,(q,))
= —a(h(q,q),

which implies that 4 is a CBF for (34). [

Proof of Theorem 12. Computing the time derivative of 4 yields:
; . 1 .
h(q,8) =hy(q.&) - —V(q,9)
HY1
1.
=L ho(@) + Lg ho(q)€ — WV((L 9]
1
1 .
=Lg ho(q) + Ly ho(@)(Ko(q) + d) — o Vig,$)
1
> Ly, ho(@) + Ly, ho(@)(ko(q) + d) + ﬁ V(.8
1

1
2 = ahy(@) + | Lg, ho(@II*
)4
= ILg, ho@Illldll + =V (. §),
w10 MY 4

where the first inequality follows from (71b) and the second from (74).
After completing squares and further bounding i, we have:

ha.&) 2 = aho(@ = S1dI° + -V (@.9)
HY1
>~ ahy(@ - 7=V (@9 + —-V(@.5)
41 MYy

- SO
=-ah@d+ - (r-a= T )V@o.

where the second inequality follows from (71a) and the final equality
from (75). Hence, provided (77) holds, then:

h(q,&) = —ah(q, &),

implying 4 is a barrier function for (31) with u = k(x) on C as in (76),
which implies that C is forward invariant for the closed-loop system by
Theorem 2. [

Proof of Theorem 14. Taking the time derivative of & from (82) yields:
. . M
h(@. 6.0 =ho(@ &) + Z=e
M

=Ly, ho(@) + Ly ho(@) + %e-”

— }IM —yt

_Lfo ho(q) + Lgo ho(q)(ko(q) +d) + Te .
Lower bounding the above using (74) yields:
. 1
h(q.6.0) 2 — ahy(@ + - | Lg, o(@II* = Il Lg, Ro(@IlId]

+ ﬂe—}’l’
U

which, after completing squares, may be further bounded as:

. M _
(@600 2 = ahg@ = I + E5e

It then follows from the above and the bound on d from (81) that:

; eM _,, & ,YM _
1) > — _ S et 22 L ot
h(q.8.1) 2 — ahy(@) — —;~e Tt
- M _EHNy_ €S
=—ahy(q) + u (]/ 7 )e T

Using the definition of 4 from (82), we then have:

Q.61 > — ah(q,£.1) + % (r-a-L)er.
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Thus, provided (77) holds, then:

hq,&1) > —ah(q, & 1.

It then follows from the comparison lemma that A(q(?), £(t), 1) > h(qy, &,
0) for all + € I(qy, &) so that if the system’s initial condition satisfies
(qg, &y) € C(0), then h(q(1), &), 1) > 0 for all t € I(qy, &), implying the
forward invariance of C(t). [J
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