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A B S T R A C T

Modern autonomous systems, such as flying, legged, and wheeled robots, are generally characterized by high-
dimensional nonlinear dynamics, which presents challenges for model-based safety-critical control design.
Motivated by the success of reduced-order models in robotics, this paper presents a tutorial on constructive
safety-critical control via reduced-order models and control barrier functions (CBFs). To this end, we provide
a unified formulation of techniques in the literature that share a common foundation of constructing CBFs for
complex systems from CBFs for much simpler systems. Such ideas are illustrated through formal results, simple
numerical examples, and case studies of real-world systems to which these techniques have been experimentally
applied.
1. Introduction

The control stack for modern autonomous systems – from legged
robots to self-driving vehicles – typically consists of a complex inter-
connection of decision-making, planning, and control modules, all of
which may leverage different model representations to strike a balance
between computational efficiency, model uncertainty, and satisfaction
of system-level specifications. Among the various specifications that
such autonomous systems must satisfy, safety – informally thought of
as requiring a system never to do anything ‘‘bad’’ – is often given
precedence, as the violation of specifications deemed to be safety-
critical could result in undesirable behavior. Over the past decade,
control barrier functions (CBFs) (Ames, Coogan, Egerstedt, Notomista,
Sreenath, & Tabuada, 2019; Ames, Grizzle, & Tabuada, 2014; Ames, Xu,
rizzle, & Tabuada, 2017; Xu, Tabuada, Grizzle, & Ames, 2015) have

emerged as a powerful tool for designing controllers that ensure the
safety of autonomous systems. Despite their success, constructing CBFs
for high-dimensional autonomous systems remains an open challenge
since their dynamics may be nontrivial or not even known.

To address these challenges, there has been recent interest in con-
structing CBFs for complex autonomous systems based on reduced-
order models (ROMs) — lower-dimensional representations that are
rich enough to capture the high-level behavior of the full-order system
but that are simple enough to synthesize safety-critical controllers (Mol-
nar & Ames, 2023b; Molnar, Cosner, Singletary, Ubellacker, & Ames,
2022; Singletary, Klingebiel, Bourne, Browning, Tokumaru, & Ames,
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2021). This approach has demonstrated success in controlling seem-
ingly complex systems, such as underactuated and dynamic robotic
systems, in a computationally efficient manner, and naturally integrates
into the existing control stack present in many autonomous systems.

In this paper, we provide a self-contained introduction and detailed
overview of CBF techniques based on ROMs. Here, we highlight the
theoretical foundations of this approach and illustrate its applications
across different domains through a collection of case studies. Before
diving into this discussion, however, we first review current state-of-
the-art techniques in the field of safety-critical control and motivate
the techniques covered and perspective taken in this tutorial.

1.1. The different flavors of control barrier functions

The property of safety is often formalized using the framework of
set invariance (Blanchini & Miani, 2008) in which a system is said
to be safe if its trajectories remain within a desirable set of the state
space (Ames et al., 2019). That is, a closed-loop system is safe if there
exists an invariant set that does not intersect with a set of states deemed
by the user to be dangerous. Such an invariant set is referred to as a
safe set.

By moving from invariant sets to controlled invariant sets – those
that can be rendered forward invariant through the application of
a feedback controller – this notion of safety may also be applied
to systems with control inputs. Control designs in which safety is a
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high-priority requirement are often referred to as safety-critical con-
trollers. Among the various tools that have emerged to address safety-
critical control, including, but not limited to, model predictive control
(MPC) (Borrelli, Bemporad, & Morari, 2017; Hewing, Wabersich, Men-
ner, & Zeilinger, 2020), reachability analysis (Bansal, Chen, Herbert,
& Tomlin, 2017; Mitchell, Bayen, & Tomlin, 2005), and symbolic con-
rol (Belta, Yordanov, & Gol, 2017; Tabuada, 2009), CBFs (Ames et al.,
019, 2017) have demonstrated success in synthesizing safety-critical
ontrollers for high-dimensional nonlinear systems.
Since the introduction of CBFs (Ames et al., 2014, 2017) (see Ames

t al. (2019) for a more in-depth survey on the history of CBFs), there
as been a large body of work in developing various types of CBFs for
ifferent classes of systems and control objectives. Given that CBFs are
model-based tool, and that most models are coarse representations
f the underlying system, many of these developments have been moti-
ated by controlling systems subject to uncertainty (Wabersich, Taylor,
hoi, Sreenath, Tomlin, Ames, & Zeilinger, 2023). These include, for
xample, robust CBFs for systems with unstructured uncertainty (Alan,
aylor, He, Ames, & Orosz, 2023; Alan, Taylor, He, Orosz, & Ames,
022; Jankovic, 2018; Kolathaya & Ames, 2019), adaptive CBFs for
ystems with parametric uncertainty (Cohen & Belta, 2023; Lopez, Slo-
ine, & How, 2021; Taylor & Ames, 2020), data-driven CBFs for systems
ith unknown dynamics (Brunke, Zhou, & Schoellig, 2022; Dhiman,
hojasteh, Franceschetti, & Atanasov, 2023; Taylor, Singletary, Yue,
Ames, 2020), and stochastic CBFs for systems with stochastic dy-
amics (Cosner, Culbertson, Taylor, & Ames, 2023; Santoyo, Dutreix,
Coogan, 2021).
Other lines of work have developed classes of CBFs to account for

ifferent assumptions on systems’ actuation and sensing capabilities.
or example, measurement-robust (Dean, Taylor, Cosner, Recht, &
mes, 2020) and observer-based CBFs (Agrawal & Panagou, 2023;
ang & Xu, 2022) have been developed to design safety-critical con-
rollers for systems with measurement uncertainty, whereas event-
riggered (Long & Wang, 2022; Taylor, Ong, Cortés, & Ames, 2021;
iao, Belta, & Cassandras, 2023; Yang, Belta, & Tron, 2019) and
ampled-data CBFs (Breeden, Garg, & Panagou, 2021; Ghaffari, Abel,
icketts, Lerner, & Krstić, 2018; Taylor, Dorobantu, Cosner, Yue &
mes, 2022) have been developed to enforce safety when one may
nly update control inputs at discrete instances in time. Variants of
BFs have also been developed to address more nuanced notions of
afety including input-to-state safety (ISSf) (Alan et al., 2022; Kolathaya
Ames, 2019) and finite/fixed/prescribed-time safety (Abel, Steeves,
rstić, & Janković, 2023; Garg & Panagou, 2021; Polyakov & Krstic,
023), whereas others have been used to enforce satisfaction of more
eneral temporal logic specifications (Cohen, Serlin, Leahy & Belta,
023; Lindemann & Dimarogonas, 2019; Srinivasan & Coogan, 2021).

.2. Constructive methods for control barrier functions

Although much attention has been given to defining different classes
f CBFs for various systems and control objectives of interest, relatively
ess attention has been given to the construction of such CBFs. As a
esult, there exists a plethora of different types of CBFs, but a lack
f constructive techniques required to obtain such CBFs in the first
lace. This lack of constructive techniques often limits the applicability
f CBFs to relatively simple low-dimensional systems. Motivated by
hese limitations, researchers have begun to investigate constructive
echniques for safety-critical control and CBFs.
A central challenge in constructing a CBF is finding a scalar function

hose time derivative directly depends on the system’s control input
nd whose zero superlevel set defines a controlled invariant subset
f the state space. This challenge highlights the crucial distinction
etween a safe set and a constraint set. The former is a controlled
nvariant set that does not intersect with the set of failure states. The
atter is simply the set of states deemed by the user to not be in
2

iolation of a given safety constraint. These sets need not coincide s
nd, in general, they do not. For example, in robot motion planning
roblems, the ‘‘distance to the obstacle’’ function – depending only on
he robot’s position – defines the obstacle-free space (constraint set) but
s not a CBF (i.e., it does not yield a safe set) unless the derivatives of
he position directly depend on the control inputs.
The challenges mentioned above are related to the relative degree

f the function – the number of times it must be differentiated along
he system dynamics until the input appears – defining the safety
onstraint. A popular approach to address such challenges is through
he use of extended, also called exponential (Nguyen & Sreenath, 2016)
r high-order (Xiao & Belta, 2022), CBFs, which have roots in work
n non-overshooting control (Krstić & Bement, 2006). Here, one dif-
erentiates a high relative degree constraint function until the control
nput appears and then enforces CBF-like conditions upon its highest-
rder derivative. Such an approach has demonstrated success in safety-
ritical control of high-dimensional systems (Xiao, Cassandras & Belta,
023), but also faces challenges in verifying the satisfaction of CBF-like
onditions (Tan, Cortez, & Dimarogonas, 2022).
Some limitations of extended CBFs have been addressed by lever-

ging the structure present in certain classes of systems. For exam-
le, constructive CBF techniques have been developed for robotic
ystems (Cortez & Dimarogonas, 2022; Cortez, Oetomo, Manzie &
hoong, 2021; Cortez, Verginis & Dimarogonas, 2021; Singletary,
olathaya & Ames, 2022) by exploiting structural properties of their
ynamics. Other approaches have sought to extend Lyapunov backstep-
ing (Krstić, Kanellakopoulus, & Kokotović, 1995) to CBFs for systems
n strict-feedback form (Taylor, Ong, Molnar & Ames, 2022).
Other works have sought to address the limitations outlined above

y leveraging implicitly defined CBFs, often constructed by propagating
orward the dynamics of the system in a receding-horizon fashion (Bree-
en & Panagou, 2023) under a ‘‘backup’’ (Chen, Jankovic, Santillo, &
mes, 2021; Gurriet, Mote, Singletary, Nilsson, Feron, & Ames, 2020)
r performance-based policy (Breeden & Panagou, 2022). Such ap-
roaches have close connections with MPC, and, indeed, one may also
everage MPC techniques to construct CBFs in a receding horizon man-
er (Wabersich et al., 2023; Wabersich & Zeilinger, 2022). Although
owerful, these techniques often require additional online computation
hat may prohibit their use for real-time control of high-dimensional
ystems.
To address these limitations, alternative approaches seek to shift

he computational burden of constructing a CBF offline where one
ay leverage powerful optimization tools to build a CBF. For example,
um-of-squares programming has been used to construct CBFs for sys-
ems with polynomial dynamics (Clark, 2021, 2022; Dai & Permenter,
023; Zhao, Ghabcheloo, Cheng, Abdi, & Hovakimyan, 2023). Other
orks have sought to bridge the gap between reachability analysis and
BFs (Choi, Lee, Li, How, Sreenath, Herbert, & Tomlin, 2023; Choi,
ee, Sreenath, Tomlin, & Herbert, 2021; Tonkens & Herbert, 2022), and
llustrate that a CBF for a general class of nonlinear systems can be
onstructed from the value function of a particular discounted optimal
ontrol problem. Although promising, these techniques are limited by
he computation needed to solve sum-of-squares programs or compute
alue functions over a grid, both of which scale poorly with the state
imension.
The computational challenges in constructing CBFs using offline

ptimization have motivated the use of learning-based techniques to
earn CBFs from data. Such approaches model the CBF using a suitable
lass of function approximators, such as neural networks, and train such
model to satisfy the criteria of a CBF either directly (Dawson, Gao, &
an, 2023; Dawson, Qin, Gao, & Fan, 2022; So, Serlin, Mann, Gonzales,
utledge, Roy, & Fan, 2023) or by using data from expert demonstra-
ions (Lindemann, Hu, Robey, Zhang, Dimorogonas, Tu, & Matni, 2020;
obey, Hu, Lindemann, Zhang, Dimorogonas, Tu, & Matni, 2020).
hese learning-based approaches empirically perform well but also face
he challenge of verifying if the trained model satisfies CBF conditions
or safety, which may preclude their application to systems where

afety must be rigorously certified.
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1.3. Control barrier functions via reduced-order models

Modern autonomous systems, such as flying, legged, and wheeled
robots, are generally characterized by high-dimensional nonlinear dy-
namics. Although CBF-based controllers may, in principle, be applied
to such systems, this first requires constructing a CBF for a complex
high-dimensional nonlinear system — a task that many of the afore-
mentioned methods struggle with. Rather than directly constructing a
CBF for a complicated system, an alternative approach is to construct
a CBF for a much simpler system, and then attempt to relate the inputs
that enforce safety of this simpler system back to the inputs of the
original system. That is, one may use a reduced-order representation
f the original, full-order, dynamics for the purpose of control design,
nd then refine such a controller for the full-order system provided its
ynamic behavior is sufficiently captured by the reduced-order model.
Such control designs, despite leveraging simple models, have demon-

trated success in different areas of robotics. In mobile robotics, single
ntegrator (Zhao & Sun, 2017) and unicycle models (Luca, Oriolo, &
endittelli, 2001) are often used as the basis for control designs of
ore complicated nonholonomic systems. In legged robotics, reduced-
rder models such as the spring-loaded inverted pendulum (Raibert,
986), linear inverted pendulum (Kajita, Kanehiro, Kaneko, Fujiwara,
okoi, & Hirukawa, 2002), and hybrid-linear inverted pendulum (Xiong
Ames, 2022) have demonstrated continued success in controlling
alking robots with high-dimensional nonlinear dynamics.
Inspired by their success in robotics, there has been recent interest

n using reduced-order models for safety-critical control design. In the
ontext of CBFs, such ideas were introduced in Singletary et al. (2021),
ingletary, Kolathaya et al. (2022) where CBFs designed for simple
inematic models were used to generate safe velocity commands to
e tracked by more complicated robotic systems, such as drones (Sin-
letary et al., 2021) and manipulators (Singletary, Kolathaya et al.,
022). Such control designs were formalized in Molnar et al. (2022) by
llustrating that the combination of a CBF for a reduced-order model
nd a Lyapunov function certifying tracking of the reduced-order tra-
ectory may be used to establish safety of the full-order system. Further
xtensions and applications of this approach have been reported in Kim,
ee, and Ames (2023), Molnar and Ames (2023b), Singletary, Guffey,
olnar, Sinnet, and Ames (2022). Although not explicitly framed as
afety-critical control based on reduced-order models, CBF backstep-
ing (Taylor, Ong et al., 2022) shares with these approaches the
bility to construct CBFs for complicated systems from CBFs for simple
odels.

.4. Objective of this paper

The primary objective of this paper is to provide a tutorial presenta-
ion of CBF techniques based on reduced-order models. In doing so, we
resent a unified formulation of techniques in the literature that share
common foundation of constructing CBFs for complex systems from
BFs for much simpler systems. These ideas are illustrated through
ormal results, simple numerical examples, and high-level overviews of
ore complicated applications. The majority of the stated theoretical
esults have already been established, in one form or another, in the
arious works cited herein. For illustrative purposes, the proofs of
elected results are provided in the Appendix. Other results are new
ut are also minor extensions or combinations of existing results. For
ompleteness, the proofs of such results are also collected in the Ap-
pendix. All the numerical examples presented in this tutorial can be
reproduced using open-source code available on Github.1

1 https://github.com/maxhcohen/ReducedOrderModelCBFs.jl
3

1.5. Organization and outline

The remainder of this paper is organized as follows.
In Section 2, we provide a self-contained introduction to safety-

critical control via CBFs. First, we review the characterization of
safety via set invariance (Blanchini & Miani, 2008) and barrier func-
tions (Ames et al., 2017) and then discuss how such ideas may be
extended to design safety-critical controllers using CBFs. Next, we
discuss how CBFs may be extended to disturbed systems using the
framework of ISSf (Alan et al., 2023, 2022; Kolathaya & Ames, 2019),
eading to the synthesis of robust safety-critical controllers. Finally, we
eview the concept of a smooth safety filter (Cohen, Ong, Bahati &
mes, 2023) — a class of differentiable CBF-based controllers that will
lay an important role in synthesizing CBFs via ROMs.
In Section 3, we begin our exposition on the construction of CBFs

ia ROMs. Here, we first discuss some of the technical challenges
n constructing CBFs for high-dimensional systems and then outline
arious classes of systems whose structure facilitates the synthesis of
BFs using ROMs.
In Section 4, we present our first constructive technique for CBF

ynthesis, which exploits the idea of CBF backstepping as originally
eveloped in Taylor, Ong et al. (2022). We demonstrate how this
pproach applies to general classes of systems whose dynamics may
e interpreted as a layered control architecture and compare this
ackstepping approach with existing high-order CBF approaches.
In Section 5, we demonstrate how CBF backstepping may be spe-

ialized to robotic systems whose dynamics also exhibit a particularly
seful cascaded structure. When such a system is fully actuated, we
llustrate how one may directly apply the backstepping approach pre-
ented in Section 4 to generate CBFs. We then extend this approach,
ombining it with the notion of an energy-based CBF (Singletary, Ko-
athaya et al., 2022), which further exploits the structure of the robot
ynamics to construct CBFs. Finally, using ideas inspired by those
rom (Spong, 1994), we show how CBFs may be constructed for certain
lasses of underactuated robotic systems.
In Section 6, we illustrate how previous constructions can be un-

erstood as combining a CBF for a ROM with a Lyapunov function
ertifying tracking of the ROM by the full-order dynamics. Such an
pproach relaxes many of the structural requirements imposed in the
revious sections and replaces them with the, perhaps, less strict re-
uirement of the existence of a tracking controller. Moreover, we
emonstrate how this approach leads to the paradigm of model-free
afety-critical control (Molnar et al., 2022) in which one need not
irectly rely on the full-order dynamics to construct safety-critical
ontrollers.
In Section 7, we revisit more complex application examples from

he literature that leverage the constructive CBF techniques outlined
n previous sections. These examples include safety-critical control of
ixed-wing aircraft, flying, legged and wheeled robots, manipulators,
nd heavy-duty trucks — both in simulation and hardware experiments.
In Section 8, we highlight the limitations of the paradigms presented

n this tutorial and provide our perspective on open research directions.

. A primer on safety-critical control

.1. Notation

We use N, R, R≥0, R>0 to denote the set of natural numbers, real
umbers, nonnegative real numbers, and positive real numbers, re-
pectively. The notation R𝑛 denotes the 𝑛-dimensional Euclidean vector
pace. Given a vector 𝐱 ∈ R𝑛 we write 𝐱⊤ ∈ R1×𝑛 to denote its transpose
nd 𝐱 ⋅ 𝐲 = 𝐱⊤𝐲 to denote the inner product between vectors. Given a
ontinuously differentiable scalar function ℎ ∶ R𝑛 → R we denote the
radient of ℎ as ∇ℎ ∶ R𝑛 → R𝑛. We use 𝐿𝐟ℎ(𝐱) ∶= ∇ℎ(𝐱) ⋅ (𝐱) to denote
he Lie derivative of a continuously differentiable scalar function ℎ ∶
𝑛 → R along a vector field 𝐟 ∶ R𝑛 → R𝑛. The same definition applies

https://github.com/maxhcohen/ReducedOrderModelCBFs.jl
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when taking the Lie derivative of ℎ along a matrix-valued function
∶ R𝑛 → R𝑛×𝑚 whose columns can be thought of as vector fields on
𝑛. For a continuously differentiable function 𝐤 ∶ R𝑛 → R𝑚 we use

𝜕𝐤
𝜕𝐱 ∈ R𝑚×𝑛 to denote the Jacobian matrix of 𝐤 evaluated at 𝐱 ∈ R𝑛.
A continuous function 𝛼 ∶ R → R is said to be an extended class ∞
function, denoted by 𝛼 ∈ e

∞, if 𝛼(0) = 0, 𝛼 is strictly increasing, and
lim𝑠→±∞ 𝛼(𝑠) = ±∞. A continuous function 𝛼 ∶ R≥0 → R≥0 is said to
e class ∞ function, denoted by 𝛼 ∈ ∞, if 𝛼(0) = 0, 𝛼 is strictly
ncreasing and lim𝑠→∞ 𝛼(𝑠) = ∞. We use ReLU(𝑥) ∶= max{0, 𝑥} to denote
the ReLU activation function. For a manifold , we use 𝑇𝐪 to denote
the tangent space to  at a point 𝐪 ∈  and 𝑇 to denote the tangent
bundle. We use ‖𝐱‖ to denote the Euclidean norm of a vector 𝐱 ∈ R𝑛

and ‖𝐱‖ ∶= inf𝐲∈ ‖𝐱 − 𝐲‖ to denote the distance between a vector
𝐱 ∈ R𝑛 and a set  ⊂ R𝑛. Given a function ℎ ∶ R𝑛 → R and set  ⊂ R we
denote the restriction of ℎ to  by ℎ| ∶  → R. For a closed set  ⊂ R𝑛,
we use 𝜕 to denote its boundary and Int() to denote its interior. We
use 𝟎 to denote a vector or matrix of zeros of appropriate dimension
and 𝐈 to denote an identity matrix of appropriate dimension, where all
dimensions will be made clear from the context.

2.2. Foundations of safety-critical control

In this subsection, we outline the foundations of safety-critical
control based on the fundamental notion of set invariance. We begin
by considering the dynamical system:

𝐱̇ = 𝐟 (𝐱), (1)

where 𝐱 ∈ R𝑛 is the system state and 𝐟 ∶ R𝑛 → R𝑛 is a locally Lipschitz
vector field. Then, for each initial condition 𝐱0 ∈ R𝑛, the dynamics
in (1) generate a unique continuously differentiable trajectory 𝐱 ∶
𝐼(𝐱0) → R𝑛 defined on some maximal interval of existence 𝐼(𝐱0) ⊆ R≥0
satisfying:

𝐱̇(𝑡) =𝐟(𝐱(𝑡))
𝐱(0) =𝐱0,

(2)

for all 𝑡 ∈ 𝐼(𝐱0) (Khalil, 2002, Ch. 3).
The main property of (1) studied in this paper is safety, which is

formalized by requiring trajectories of (1) to remain within a safe set
⊂ R𝑛 at all times.

efinition 1 (Safety (Ames et al., 2019)). A set  ⊂ R𝑛 is said to be
orward invariant for (1) if for each initial condition 𝐱0 ∈ , the resulting
rajectory 𝐱 ∶ 𝐼(𝐱0) → R𝑛 satisfies 𝐱(𝑡) ∈  for all 𝑡 ∈ 𝐼(𝐱0). System (1)
s said to be safe on a set  ⊂ R𝑛 if  is forward invariant.

Necessary and sufficient conditions for set invariance, and thus
afety, can be characterized using the notion of tangent cones2 (Bony,
969; Brezis, 1970; Nagumo, 1942; Redheffer, 1972). Informally, the
angent cone  (𝐱) ⊂ R𝑛 to a closed set  ⊂ R𝑛 at a point 𝐱 ∈ R𝑛 is
he set of all vectors 𝐯 ∈ R𝑛 emanating from 𝐱 such that if one were to
ove infinitesimally along 𝐯, then one would remain in . Hence, for
∈ Int() we have  (𝐱) = R𝑛, whereas for 𝐱 ∉  we have  (𝐱) = ∅,
mplying the tangent cone is nontrivial only on the boundary of . The
bove ideas can be formalized concisely using the following definition:

 (𝐱) ∶=
{

𝐯 ∈ R𝑛 ∶ lim inf
𝛿→0+

‖𝐱 + 𝛿𝐯‖
𝛿

= 0
}

. (3)

he following result, known as Nagumo’s Theorem, leverages tangent
ones to provide necessary and sufficient conditions for safety.

2 For a general closed set  one may define various classes of tangent
ones, all of which coincide when  is convex. Examples include the Bouligand
angent cone (Bouligand, 1932) and the Clarke tangent cone. In this tutorial,
ur definition corresponds to the Bouligand tangent cone.
4

heorem 1 (Nagumo’s Theorem (Nagumo, 1942)). A closed set  ⊂ R𝑛 is
orward invariant for (1) if and only if for all 𝐱 ∈ 𝜕:

(𝐱) ∈  (𝐱). (4)

Intuitively, Nagumo’s Theorem states that  is forward invariant
f and only if the vector field characterizing (1) points into or is
angent to  for each point on the boundary of . Modern proofs of
agumo’s Theorem can be found in Blanchini and Miani (2008, Ch.

4) and Abraham, Marsden, and Ratiu (1983, Ch. 4). Unfortunately,
btaining a closed-form expression to (3) for general closed sets  is
ften not possible, making the general version of Nagumo’s Theorem
hallenging to apply in practice. To obtain more practical conditions
or safety, we must restrict the class of sets whose invariance we wish
o certify. Throughout this paper, we focus on sets of the form:

 ={𝐱 ∈ R𝑛 ∶ ℎ(𝐱) ≥ 0},

𝜕 ={𝐱 ∈ R𝑛 ∶ ℎ(𝐱) = 0},

nt() ={𝐱 ∈ R𝑛 ∶ ℎ(𝐱) > 0},

(5)

here ℎ ∶ R𝑛 → R is continuously differentiable. Before illustrating
ow such sets yield convenient representations of tangent cones, we
equire the notion of a regular value.

efinition 2 (Regular value (Abraham et al., 1983)). A real number
∈ R is said to be a regular value of a continuously differentiable
unction ℎ ∶ R𝑛 → R if ∇ℎ(𝐱) ≠ 𝟎 whenever ℎ(𝐱) = 𝑎.

When  is defined as in (5) and zero is a regular value of ℎ, the
angent cone is straightforward to compute.

emma 1 (Abraham et al., 1983). Consider a set  ⊂ R𝑛 as in (5) and
uppose that zero is a regular value of ℎ. Then:

 (𝐱) = {𝐯 ∈ R𝑛 ∶ ∇ℎ(𝐱) ⋅ 𝐯 ≥ 0}, ∀𝐱 ∈ 𝜕. (6)

This characterization of tangent cones leads to the following useful
orollary of Nagumo’s Theorem.

orollary 1. Let the conditions of Lemma 1 hold. Then,  is forward
nvariant for (1) if and only if:

(𝐱) = 0 ⟹ ℎ̇(𝐱) = 𝐿𝐟ℎ(𝐱) ≥ 0. (7)

Note that when zero is not a regular value of ℎ, the condition in (7)
does not necessarily imply the forward invariance of  since, in such a
situation, the tangent cone does not coincide with (6).

The preceding developments serve as the foundation for barrier
functions — Lyapunov-like functions that can be used to verify the
safety (rather than stability) of nonlinear systems.

Definition 3 (Barrier function (Xu et al., 2015)). A continuously differ-
entiable function ℎ ∶ R𝑛 → R defining a set  ⊂ R𝑛 as in (5) is said
to be a barrier function for (1) on  if zero is a regular value of ℎ and
there exists 𝛼 ∈ e

∞ such that for all 𝐱 ∈ R𝑛:

ℎ̇(𝐱) = 𝐿𝐟ℎ(𝐱) ≥ −𝛼(ℎ(𝐱)). (8)

Note that since 𝛼(0) = 0, the condition in (8) implies that in (7),
thereby providing a suitable generalization of invariance conditions
beyond just the boundary of . Intuitively, the condition in (8) requires
the system to ‘‘slow down’’ as it approaches the boundary of  and
stop once it reaches the boundary. Although our definition of a barrier
function requires zero to be a regular value of ℎ, this is not strictly
necessary. Indeed, the use of an extended class ∞ function in conjunc-
tion with requiring inequality (8) to hold at points outside of  enables
one to dispense with this regularity condition and establish forward
invariance using the comparison lemma (Konda, Ames, & Coogan,
2021), providing further generalizations of classical invariance tools.
An additional benefit of requiring inequality (8) to hold on a set larger
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than  – in our case, all of R𝑛 – is that such a condition not only enforces
nvariance of , but also attractivity of . That is,  is asymptotically
table3 for (1) with 𝑉 (𝐱) = ReLU(−ℎ(𝐱)) as a Lyapunov function.

heorem 2 (Xu et al., 2015). If ℎ ∶ R𝑛 → R is a barrier function for
1) on a set  ⊂ R𝑛 as in (5), then  is forward invariant. Moreover, if
is compact or the vector field 𝐟 in (1) is forward complete, then  is
symptotically stable.

In the above result, the requirement that (8) holds on all of R𝑛 is
made only for ease of exposition — Theorem 2 and almost all other
barrier-related results presented in this tutorial can be generalized to
hold on a subset  ⊆ R𝑛 such that  ⊂ . Finally, we note that the
characterization of set invariance via barrier functions is tight in the
sense that, under certain conditions, the existence of a barrier function
is necessary and sufficient for forward invariance.

Theorem 3 (Xu et al., 2015). Let ℎ ∶ R𝑛 → R be a continuously
ifferentiable function defining a compact set  ⊂ R𝑛 as in (5) and assume
ero is a regular value of ℎ. Then,  is forward invariant for (1) if and only
f ℎ| ∶  → R is a barrier function for (1) on .

The preceding generalizations of set invariance via barrier functions
lay an important role in synthesizing controllers enforcing safety,
iscussed in the following section.

.3. Control barrier functions

In the previous subsection, we laid the foundation for safety-critical
ontrol using the language of set invariance and illustrated how barrier
unctions provide a useful tool for verifying safety properties of dynam-
cal systems. In this section, we focus our attention on control systems
f the form:

̇ = 𝐟 (𝐱) + 𝐠(𝐱)𝐮, (9)

here 𝐟 ∶ R𝑛 → R𝑛 is a locally Lipschitz vector field modeling the
rift of the system, 𝐠 ∶ R𝑛 → R𝑛×𝑚 is a locally Lipschitz mapping
haracterizing the control directions, and 𝐮 ∈ R𝑚 is the control input.
efining a notion of safety for a control system, such as in (9), rather
han a closed-loop system, such as in (1), requires some modifications.
efinition 1 cannot be directly applied to (9) since the trajectories of
9) cannot be determined, in general, until one specifies a control input
. The definition of safety for (9) is captured via the notion of controlled
nvariance.

efinition 4 (Controlled Invariance (Blanchini & Miani, 2008)). A set
⊂ R𝑛 is said to be feedback controlled invariant for (9) if there exists

a locally Lipschitz feedback controller 𝐤 ∶ R𝑛 → R𝑚 such that  is
forward invariant for the closed-loop system:

𝐱̇ = 𝐟 (𝐱) + 𝐠(𝐱)𝐤(𝐱) ∶= 𝐟cl(𝐱). (10)

Rather than verifying that an a priori designed controller renders 
forward invariant using the barrier conditions outlined in the previous
subsection, our objective in this subsection is to provide a general
methodology to design controllers that enforce safety by construction.
Towards this objective, the aforementioned barrier conditions suggest
designing such a controller so as to satisfy:

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐤(𝐱)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿𝐟clℎ(𝐱)

≥ −𝛼(ℎ(𝐱)), (11)

3 Note that forward invariance is a necessary condition for asymptotic
tability of a set. Thus, barrier functions can also be seen as generalizing
yapunov functions certifying stability of equilibrium points to Lyapunov
unctions certifying stability of sets.
5

implying that such a controller enforces safety of the closed-loop system
by Theorem 2. This observation motivates the concept of a control
barrier function (CBF).

Definition 5 (Control Barrier Function (Ames et al., 2017)). A continu-
ously differentiable function ℎ ∶ R𝑛 → R defining a set  ⊂ R𝑛 as in (5)
is said to be a control barrier function for (9) on  if there exists 𝛼 ∈ e

∞
such that for all 𝐱 ∈ R𝑛:

sup
𝐮∈R𝑚

ℎ̇(𝐱,𝐮) = sup
𝐮∈R𝑚

{

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐮
}

> −𝛼(ℎ(𝐱)). (12)

In contrast to Definition 3, we do not explicitly require zero to be a
regular value of ℎ in the above definition since this property implicitly
follows from the strict inequality in (12). Further motivation behind
the use of this strict inequality is presented in Remark 1, and concerns
the continuity of controllers synthesized from CBFs. The existence of a
CBF implies that for each 𝐱 ∈ R𝑛 there exists an input 𝐮 ∈ R𝑚 enforcing
the inequality:

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐮 > −𝛼(ℎ(𝐱)).

To use such inputs to enforce safety, we must be able to stitch them
together into a locally Lipschitz feedback controller 𝐤 ∶ R𝑛 → R𝑚
satisfying (11). Fortunately, the existence of a CBF implies the existence
of such a controller.

Theorem 4 (Ames et al., 2017). If ℎ ∶ R𝑛 → R is a CBF for (9) on a
set  ⊂ R𝑛 as in (5), then  is feedback controlled invariant. Furthermore,
if a locally Lipschitz feedback controller 𝐤 ∶ R𝑛 → R𝑚 satisfies (11) for all
𝐱 ∈ R𝑛, then  is forward invariant for (10).

Although the above theorem guarantees the existence of a controller
enforcing safety, it does not explicitly state how to construct one.
The most popular approach to constructing CBF-based controllers is
to incorporate (11) as a constraint in an optimization problem pa-
rameterized by the system state. That is, the controller 𝐱 ↦ 𝐤(𝐱) is
itself an optimization problem that returns, for each 𝐱, a control input
𝐮 = 𝐤(𝐱) satisfying (11). This approach is motivated by the fact that
such an inequality defines an affine constraint on the control input,
implying 𝐤(𝐱) can often be cast as a quadratic program (QP) that, in
many situations, admits a closed-form solution.

Perhaps the greatest utility of this QP-based perspective is the ability
to use CBFs as a safety filter for a desired control policy 𝐤d ∶ R𝑛 →
R𝑚 whose safety has not yet been established. Often, it is desirable
to modify such a controller in a minimally invasive fashion while
guaranteeing safety. This leads to the instantiation of safety-critical
controllers via the following optimization problem:

𝐤(𝐱) = argmin
𝐮∈R𝑚

1
2‖𝐮 − 𝐤d(𝐱)‖2

subject to 𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐮 ≥ −𝛼(ℎ(𝐱)),
(13)

which is a QP whose closed-form solution can be obtained by defining:

𝑎(𝐱) ∶=𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐤d(𝐱) + 𝛼(ℎ(𝐱))
𝑏(𝐱) ∶=‖𝐿𝐠ℎ(𝐱)‖2,

(14)

and applying the Karush-Kuhn Tucker conditions (Boyd & Vanden-
berghe, 2004) to yield (Alan et al., 2023):

𝐤(𝐱) =𝐤d(𝐱) + 𝜆(𝑎(𝐱), 𝑏(𝐱))𝐿𝐠ℎ(𝐱)⊤

𝜆(𝑎, 𝑏) ∶=

{

0 𝑏 ≤ 0
ReLU(−𝑎∕𝑏) 𝑏 > 0,

(15)

where 𝜆 is the Lagrange multiplier associated with the constraint in
(13). Note that, by (15), the controller in (13) allows the desired con-
troller 𝐤d to be applied so long as it satisfies the barrier condition (11),
and provides a minimal correction to 𝐤d when such a condition is
not satisfied. Importantly, the closed-form expression to the QP (13)

in (15) obviates the need explicitly solve an optimization problem in
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the control loop, which enables the deployment of such controllers on
hardware with limited computational resources. Although this closed-
form expression is only valid for a single CBF, whereas, in practice,
one must often consider multiple CBFs, one often can combine multiple
CBFs into one, allowing one to leverage the closed form solution even
for arbitrarily complicated safety specifications (Molnar and Ames,
2023a).

Remark 1 (Strict inequality). One may note that in (8) and (11) we
ave used a nonstrict inequality, whereas in the definition of a CBF
12) we have opted for a strict inequality. This difference is subtle but
lays an important role in ensuring Lipschitz continuity of CBF-based
ontrollers (Jankovic, 2018). In short, the strict inequality preserves
ipschitz continuity of CBF-based controllers at points where 𝐿𝐠ℎ(𝐱) = 𝟎
see Sepulchre, Janković, and Kokotović (1997, Ch. 3.5.3) for a similar
iscussion in the context of control Lyapunov functions). Such points
rise often in practice. For example, any compact safe set4 will contain
oints such that 𝐿𝐠ℎ(𝐱) = 𝟎. Note that, as a result, one may use a
onstrict inequality in (12) if 𝐿𝐠ℎ(𝐱) ≠ 𝟎 for all 𝐱 ∈ R𝑛. Finally, we
ote that the strict inequality is a property of the dynamics and safe
et irrespective of any particular controller — its purpose is to restrict
he class of functions that may serve as a CBF to those that can be used
o synthesize a locally Lipschitz feedback controller.

Although constructing a controller given a CBF can be done system-
tically, constructing a CBF is often more challenging. To determine if
candidate CBF ℎ – a continuously differentiable function defining (5)
is indeed a CBF, one must verify that (12) holds for each 𝐱 ∈ R𝑛. To
o so, one may compute the supremum in (12):

sup
∈R𝑚

{

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐮
}

=

{

∞ 𝐿𝐠ℎ(𝐱) ≠ 𝟎
𝐿𝐟ℎ(𝐱) 𝐿𝐠ℎ(𝐱) = 𝟎

nd verify that the above result is strictly greater than −𝛼(ℎ(𝐱)). This
implifies to verifying that:

𝐠ℎ(𝐱) = 𝟎 ⟹ 𝐿𝐟ℎ(𝐱) > −𝛼(ℎ(𝐱)),

or all 𝐱 ∈ R𝑛. Intuitively, the CBF condition (12) is a scalar inequality,
hich, when 𝐿𝐠ℎ(𝐱) ≠ 𝟎, is always possible to satisfy by simply taking 𝐮
s large or small as necessary. When 𝐿𝐠ℎ(𝐱) = 𝟎, however, one must rely
n the unforced dynamics of the system – captured via 𝐟 – to satisfy the
BF inequality. This discussion is formalized via the following lemma.

emma 2. A continuously differentiable function ℎ ∶ R𝑛 → R is a CBF
or (9) on  if and only if zero is a regular value of ℎ and for all 𝐱 ∈ R𝑛:

𝐠ℎ(𝐱) = 𝟎 ⟹ 𝐿𝐟ℎ(𝐱) > −𝛼(ℎ(𝐱)). (16)

emark 2 (Input Constraints). Lemma 2 provides necessary and suffi-
ient conditions for ℎ to be a CBF when the control input is uncon-
trained, that is, when 𝐮 may take any value in R𝑚. When additional
nputs bounds are present in the sense that 𝐮 may only take values
n a strict subset  ⊂ R𝑚, Lemma 2 provides necessary5, but not
ecessarily sufficient conditions that ℎ must satisfy to be a CBF. For
ase of exposition, this tutorial will focus on the construction of CBFs
ithout additional input bounds. Many of the approaches discussed
erein may be extended to include input bounds through the use of
ackup CBFs (Chen et al., 2021; Gurriet et al., 2020), with more details
n the unification of backup CBFs and ROMs discussed in Molnar and
mes (2023b).

4 If  is compact and ℎ is continuously differentiable, then ℎ achieves a local
maximum over . At such a local maximum the gradient of ℎ must vanish,
implying 𝐿𝐠ℎ will also vanish.

5 If ℎ is not a CBF without input bounds, then it certainly will not be with
input bounds.
6

For relatively simple systems, Lemma 2 provides a simple condition
that one may check to certify that a continuously differentiable function
ℎ defining a set  as in (5) is indeed a CBF. The following example
emonstrates such a procedure for a canonical example in the CBF
iterature: the inverted pendulum.

xample 1 (Inverted Pendulum). We now consider the example of an
nverted pendulum with state 𝐱 = (𝜃, 𝜃̇) and dynamics:
[

𝜃̇
𝜃̈

]

⏟⏟
𝐱̇

=
[

𝜃̇
𝑔
𝑙 sin (𝜃)

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐟 (𝐱)

+

[

0
1
𝑚𝑙2

]

⏟⏟⏟
𝐠(𝐱)

𝐮,

where 𝜃 ∈ R denotes the angular position of the pendulum, 𝑔 the
acceleration due to gravity, 𝑙 the length of the pendulum, and 𝑚 the
mass of the pendulum. We establish a safety-critical controller for the
inverted pendulum by following the corresponding example in Alan
et al. (2022). Our objective is to design a controller for the above system
that keeps the pendulum upright in the sense that its angular position
satisfies |𝜃| ≤ 𝜃̄ for some 𝜃̄ ∈ R>0.

To achieve this objective, we propose the CBF candidate:

ℎ(𝐱) = 𝜃̄2 − 𝜃2 − 1
2
(𝜃̇ + 𝜃)2,

hich defines a candidate safe set  ⊂ R2 as in (5). Note that if
𝜃, 𝜃̇) ∈ , then |𝜃| ≤ 𝜃̄ since:

(𝐱) ≥ 0 ⟹ 𝜃̄2 − 𝜃2 ≥ 1
2
(𝜃̇ + 𝜃)2 ≥ 0 ⟹ 𝜃2 ≤ 𝜃̄2.

Hence, enforcing forward invariance of  ensures that |𝜃(𝑡)| ≤ 𝜃̄ for all
. To check if ℎ is a CBF we first compute:

ℎ(𝐱) =
[

−2𝜃 − (𝜃̇ + 𝜃)
−(𝜃̇ + 𝜃)

]

,

nd verify that zero is a regular value of ℎ by investigating the solution
et of the linear system:

ℎ(𝐱) = 𝟎 ⟺

[

3 1
1 1

] [

𝜃
𝜃̇

]

=
[

0
0

]

.

he matrix in the above linear system is positive definite, thus the only
olution is (𝜃, 𝜃̇) = 𝟎. Since the only point where the gradient of ℎ
vanishes is at the origin, which does not lie on the boundary of , zero
is a regular value of ℎ. To use Lemma 2 and verify ℎ as a CBF, we must
analyze the behavior of ℎ̇ when 𝐿𝐠ℎ(𝐱) = 0. To this end, we note that:

𝐿𝐠ℎ(𝐱) = − 𝜃̇ + 𝜃
𝑚𝑙2

= 0 ⟹ 𝜃̇ + 𝜃 = 0.

Hence, when 𝐿𝐠ℎ(𝐱) = 0, we also have:

𝐿𝐟ℎ(𝐱) =
[

−2𝜃 0
]

[

𝜃̇
𝑔
𝑙 sin (𝜃)

]

= −2𝜃𝜃̇ = 2𝜃2,

and ℎ(𝐱) = 𝜃̄2 − 𝜃2, implying that:

𝐿𝐟ℎ(𝐱) + 𝛼(ℎ(𝐱)) = 2𝜃2 + 𝛼(𝜃̄2 − 𝜃2).

y taking 𝛼(𝑠) = 𝛼0𝑠 as a linear extended class ∞ function, we see
hat:

𝐟ℎ(𝐱) + 𝛼(ℎ(𝐱)) = (2 − 𝛼0)𝜃2 + 𝛼0𝜃̄2 > 0,

or all 𝐱 ∈ R2 for any 𝛼0 ∈ (0, 2], implying that (12) holds for all
𝐱 ∈ R2 and, consequently, that ℎ is a CBF for the inverted pendulum.
To accomplish the objective of keeping the pendulum upright, we
synthesize a safety filter 𝐤 ∶ R2 → R using the QP in (13) with a
nominal policy of 𝐤d(𝐱) = 0 and 𝛼0 = 1 whose closed-form solution is
given by (15). The closed-loop vector field of the pendulum under the
influence of the safety filter and the corresponding safe set is provided

in Fig. 1.
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Fig. 1. Vector field of the inverted pendulum in Example 1 without any controller (left) and with the safety filter from (15) (right). In each plot, the red ellipse denotes the
boundary of , the black vertical lines denote |𝜃| = 𝜃̄ = 𝜋

4
, and the arrows of varying color illustrate the system vector field. The varying colors of the arrows characterize the

agnitude of each vector, with lighter colors corresponding to larger magnitudes. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
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The previous example illustrates the procedure required to construct
CBF for relatively simple systems. In Example 1, our CBF was different
han the safety constraint 𝜃̄2−𝜃2 ≥ 0 we wished to satisfy and contained
dditional terms that depended on both the position and velocity of
he pendulum. For relatively simple systems, such as the inverted
endulum, appending such terms to the original safety requirement to
btain a CBF can often be done through intuition or trial-and-error. For
ore complex high-dimensional systems, however, constructing such a
‘handcrafted’’ CBF by carefully blending various states of the system
nto a single scalar function may be intractable.
Motivated by these challenges, the primary objective of this paper is

o outline a comprehensive methodology for systematically construct-
ng CBFs for high-dimensional nonlinear systems based on reduced-
rder models. Ultimately, this methodology enables one to construct
BFs for complex systems from CBFs for much simpler systems, such
s the inverted pendulum outlined above. Before presenting such con-
tructions, we discuss in the following section how the results of the
resent section can be extended to handle uncertainties.

.4. Robust safety-critical control

In the previous subsections, we discussed notions of safety for
ynamical and control systems, implicitly assuming that the dynamics
overning the system are fully known. In reality, however, any system
ill be affected by unmodeled dynamics and disturbances, which begs
he question: how do safety properties degrade in the presence of
ncertainties, and how may we design controllers so as to mitigate
he effects of such uncertainties? In this subsection, we discuss robust
ariants of CBFs via the notion of input-to-state safety (ISSf) (Alan et al.,
023, 2022; Kolathaya & Ames, 2019), which provides an answer to
his question.
Our starting point is the uncertain control affine system:

̇ = 𝐟 (𝐱) + 𝐠(𝐱)(𝐮 + 𝐝), (17)

where 𝐝 ∈ R𝑚 is a disturbance. As the disturbance enters the dynamics
through the same channels as the control input, the disturbance is
said to be matched, implying that, if the disturbance were known,
t could simply be canceled by the control input. Given a locally
ipschitz feedback controller 𝐤 ∶ R𝑛 → R𝑚 and a piecewise continuous
isturbance signal 𝑡↦ 𝐝(𝑡), we obtain the closed-loop system:

̇ = 𝐟 (𝐱) + 𝐠(𝐱)(𝐤(𝐱) + 𝐝(𝑡)), (18)

hich, for each initial condition 𝐱0 ∈ R𝑛, admits a piecewise contin-
ously differentiable solution 𝐱 ∶ 𝐼(𝐱0,𝐝(⋅)) → R𝑛 defined on some
7

aximal interval of existence 𝐼(𝐱0,𝐝(⋅)) ⊆ R≥0.
In what follows, we assume bounded disturbance:

𝐝‖∞ ∶= sup
𝑡≥0

‖𝐝(𝑡)‖ ≤ 𝛿, (19)

ith some 𝛿 ≥ 0. Given this bound on 𝐝, we introduce a family of
nflated safe sets:

𝛿 ∶= {𝐱 ∈ R𝑛 ∶ ℎ𝛿(𝐱) ≥ 0}, (20)

arameterized by 𝛿, where:

𝛿(𝐱) ∶= ℎ(𝐱) + 𝛾(𝛿), (21)

or a 𝛾 ∈ ∞ to be specified shortly. Our notion of safety for (18) is
aptured via the notion of ISSf.

efinition 6 (Input-to-State Safety (Kolathaya & Ames, 2019)). Sys-
em (18) is said to be input-to-state safe (ISSf) on a set  ⊂ R𝑛 as in (5)
f there exists a 𝛾 ∈ ∞ such that for all 𝛿 ≥ 0 and all 𝑡↦ 𝐝(𝑡) satisfying
19) the set 𝛿⊂R𝑛 as in (20) is forward invariant for (18).

The ISSf property implies a graceful degradation of safety in the
resence of uncertainties — potential safety violations are bounded by
he magnitude of such uncertainties. Similar to previous subsections,
ontrollers enforcing such a safety property may be constructed using
BFs.

efinition 7 (Issf Control Barrier Function (Alan et al., 2022)). A con-
inuously differentiable function ℎ ∶ R𝑛 → R defining a set  ⊂ R𝑛 as
in (20) is said to be an input-to-state safe CBF (ISSf-CBF) for (17) on 
f there exist 𝛼 ∈ e

∞ and 𝜀 ∈ R>0 such that for all 𝐱 ∈ R𝑛:

sup
𝐮∈R𝑚

{

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐮
}

> −𝛼(ℎ(𝐱)) + 1
𝜀
‖𝐿𝐠ℎ(𝐱)‖2. (22)

The main difference between CBFs and ISSf-CBFs is the inclusion of
1
𝜀‖𝐿𝐠ℎ(𝐱)‖2 in (22), which imposes a stronger condition on the control
input. This term serves to mitigate the impact of uncertainties via the
tuning parameter 𝜀 > 0 as shown in the following result.

heorem 5 (Alan et al., 2022). If ℎ ∶ R𝑛 → R is an ISSf-CBF for (17) on
set  ⊂ R𝑛 as in (5), then any locally Lipschitz controller 𝐤 ∶ R𝑛 → R𝑚

satisfying:

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐤(𝐱) ≥ −𝛼(ℎ(𝐱)) + 1
𝜀
‖𝐿𝐠ℎ(𝐱)‖2, (23)

renders the closed-loop system (18) ISSf on  with:

𝛾(𝛿) = −𝛼−1
(

− 𝜀𝛿
2)

. (24)

4
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According to (24), the inflated set 𝛿 can be brought as close as
desired to the original safe set  by decreasing 𝜀, with 𝛿 →  in
the limit as 𝜀 → 0. Although, in principle, one can take 𝜀 as close to
zero as desired, doing so generally imposes a stronger condition on
the control input, requiring larger control effort, which may not be
achievable in practice. Similar to CBFs, the ISSf-CBF condition (23) can
e interpreted as an affine constraint that the control input must satisfy,
eading to the construction of ISSf enforcing controllers via QPs as in
13). Note that when the uncertainties 𝐝 are matched, as in (17), and
𝐠ℎ(𝐱) = 𝟎, neither the control input nor uncertainties may impact the
ystem, implying the criterion for constructing CBFs in Lemma 2 also
applies to ISSf-CBFs.

2.5. Smooth safety filters

In what follows, many of our results will require smooth (differ-
entiable as many times as necessary) CBF controllers. This may seem
restrictive since the vast majority of CBF controllers – including the
ones discussed in this tutorial thus far – are computed as the solution
to an optimization problem and are inherently nonsmooth. However,
when the problem data itself is smooth (i.e., the dynamics 𝐟 , 𝐠, CBF ℎ,
and extended class ∞ function 𝛼), it is always possible to construct a
smooth CBF controller.

Lemma 3 (Cohen, Ong et al., 2023). Consider system (9) with 𝐟 ∶ R𝑛→R𝑛,
𝐠 ∶ R𝑛 → R𝑛×𝑚 smooth functions and let ℎ ∶ R𝑛 → R be a smooth CBF
for (9) on a set  ⊂ R𝑛 as in (5) with a smooth 𝛼 ∈ e

∞. Then, there
exists a smooth feedback controller 𝐤 ∶ R𝑛 → R𝑚 such that (11) holds for
all 𝐱 ∈ R𝑛.

The class of smooth controllers considered in this tutorial inherit
the same structure as the closed-form QP controller (15):

𝐤(𝐱) = 𝐤d(𝐱) + 𝜆(𝑎(𝐱), 𝑏(𝐱))𝐿𝐠ℎ(𝐱)⊤, (25)

where 𝐤d ∶ R𝑛 → R𝑚 is a nominal controller and 𝑎 and 𝑏 are as in (14).
ny smooth controller of the form (25) satisfying the CBF inequality
11) is said to be a smooth safety filter. The fact that the QP controller
n (13) is nonsmooth stems from the presence of the ReLU activation
unction in the Lagrange multiplier 𝜆 in (15), which has the inter-
retation of ‘‘activating’’ the safety filter when the nominal controller
ails to guarantee satisfaction of the CBF constraint in (11). This non-
moothness can be removed by modifying the Lagrange multiplier 𝜆
sing various ‘‘smooth universal formulas’’ such as (Cohen, Ong et al.,
023):

(𝑎, 𝑏) =

{

0 𝑏 = 0
−𝑎+

√

𝑎2+𝜎𝑏2
𝑏 𝑏 ≠ 0

(Sontag)

(𝑎, 𝑏) =

{

0 𝑏 = 0
−𝑎+

√

𝑎2+𝜎𝑏2
2𝑏 𝑏 ≠ 0

(Half-Sontag)

(𝑎, 𝑏) =

{

0 𝑏 ≤ 0
𝜎 log (1 + 𝑒−

𝑎
𝜎𝑏 ) 𝑏 > 0

(Softplus)

(𝑎, 𝑏) =

⎧

⎪

⎨

⎪

⎩

0 𝑏 ≤ 0

𝜎
pdf (0,1)

(

𝑎
𝜎𝑏

)

cdf (0,1)
(

𝑎
𝜎𝑏

) 𝑏 > 0
(Gaussian),

(26)

here 𝜎 > 0 and pdf (0,1)(⋅) and cdf (0,1)(⋅) denote the probability
ensity function and cumulative distribution function of a zero-mean
aussian distribution with unit variance (Ong & Cortes, 2019). Each of
hese functions can be shown to be smooth on the set6:

= {(𝑎, 𝑏) ∈ R2 ∶ 𝑎 > 0 or 𝑏 > 0},

6 In Cohen, Ong et al. (2023) this set was originally taken as a subset of
× R≥0 since, in the context of CBFs, 𝑏 ∶= ‖𝐿𝐠ℎ(𝐱)‖2 ≥ 0 for all 𝐱 ∈ R𝑛, but
an be extended to a subset of R2 to discuss smoothness of (26) independent
of their relation to CBFs.
8

and may be interpreted as a smooth over-approximation of the orig-
inal Lagrange multiplier from (15) as illustrated in Fig. 2. The safety
properties of these smooth universal formulas – including how closely
they may approximate the QP-based controller (13) – can be established
using the techniques introduced in Cohen, Ong et al. (2023).

Remark 3. In the context of control Lyapunov functions (CLFs), it is
often stated that Sontag’s formula (Sontag, 1989) is smooth everywhere
except possibly the origin, where one can generally only guarantee
continuity under the small control property (Sepulchre et al., 1997,
Ch. 3.5.3). However, this phenomenon is unique to CLFs and does not
arise in the context of CBFs provided one is willing to use a strict
inequality in (12). Indeed, as discussed in Remark 1, to guarantee
even continuity of CBF or CLF based controllers, one must generally
use a strict inequality in the definition of a CBF/CLF, otherwise, the
controller may not be continuous when 𝑏 = 0. This follows from the
observation that 𝜆(𝑎, 0) = 0 and the limit of 𝜆(𝑎, 𝑏) as 𝑏 approaches zero
is zero under the condition that 𝑏 = 0 ⟹ 𝑎 > 0, where 𝜆 is any
of the formulas from (15) and (26). In contrast, if one only requires
𝑏 = 0 ⟹ 𝑎 ≥ 0 this limit may not exist. Now, when using a CLF,
the strict inequality does not hold at the origin since CLFs are positive
definite, and thus one requires an additional property to guarantee
continuity, which comes in the form of the small control property.
However, in the context of CBFs, under the presumption that zero is
a regular value of ℎ, which implicitly holds when defining a CBF as in
(12), the strict inequality holds for all 𝐱 ∈ R𝑛, which ensures continuity
of the QP-based controller at all points and smoothness of the other
formulas at all points.

As each of the formulas in (26) is an over-approximation of the
Lagrange multiplier from (15), the resulting smooth safety filter in
(25) enforces strict satisfaction of the CBF inequality (11), which will
become important when constructing CBFs from reduced-order models.
Our discussion on smooth safety filters is formalized in the following
result.

Theorem 6 (Cohen, Ong et al., 2023). Let the conditions of Lemma 3 hold.
Then, for each 𝜆 ∶ R2 → R in (26), the controller 𝐤 ∶ R𝑛 → R𝑚 in (25)
is smooth and satisfies:

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐤(𝐱) > −𝛼(ℎ(𝐱)), (27)

for all 𝐱 ∈ R𝑛 and therefore renders the set  ⊂ R𝑛 from (5) forward
invariant for the closed-loop system.

3. Reduced-order models and layered control architectures

In this section, we begin our formal presentation of synthesizing
CBFs via reduced-order models (ROMs). First, we motivate our eventual
constructions by discussing the challenges associated with synthesizing
CBFs for high-dimensional systems. We then introduce various classes
of control systems that may be interpreted as layered control architec-
tures. These include, for example, robotic systems, where the dynamics
of higher layers act as ROMs for the lower layer dynamics, the states
of which are, in turn, viewed as control inputs to the aforementioned
ROM.

3.1. Challenges in constructing CBFs

Our main focus in this tutorial is on high-dimensional nonlinear
control systems whose dynamics may be viewed as a layered architecture
in which states of lower layers are viewed as control inputs for higher
layers. This perspective is motivated by the fact that constructing
CBFs for high-dimensional systems may be challenging — such CBFs
must generally take into account the behavior of the full-order dynam-
ics to ensure safety. As demonstrated throughout this tutorial, these
challenges can often be overcome by exploiting the layered structure
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𝐿

Fig. 2. Smooth universal formulas for safety-critical control compared to the ReLU function associated with quadratic programs. The left plot illustrates the variation of 𝜆(𝑎, 𝑏)
with respect to 𝑎 for a fixed 𝑏 > 0 while the right plot illustrates the variation of 𝜆(𝑎, 𝑏) with respect to 𝑏 for a fixed 𝑎 > 0 for each of the formulas in (26).
present in many relevant systems to recursively construct a CBF for a
complex system from a CBF for a much simpler one.

Many of the challenges associated with constructing CBFs are often
related to the relative degree of a function ℎ ∶ R𝑛 → R defining a
candidate safe set as in (5).

Definition 8 (Relative degree). A smooth function ℎ ∶ R𝑛 → R is said to
have relative degree 𝑟 ∈ N for (9) on a set  ⊆ R𝑛 if:

1. 𝐿𝐠𝐿𝑟−𝑖𝐟 ℎ(𝐱) = 𝟎 for all 𝐱 ∈  and 𝑖 ∈ {2,… , 𝑟};
2. 𝐿𝐠𝐿𝑟−1𝐟 ℎ(𝐱) ≠ 𝟎 for some 𝐱 ∈ ,

where higher-order Lie derivatives are defined as:

𝐿0
𝐟 ℎ(𝐱) ∶= ℎ(𝐱), 𝐿𝑖𝐟ℎ(𝐱) ∶=

𝜕𝐿𝑖−1𝐟 ℎ
𝜕𝐱

𝐟 (𝐱),

𝐠𝐿𝐟ℎ(𝐱) ∶=
𝜕𝐿𝐟ℎ
𝜕𝐱

𝐠(𝐱), 𝐿𝐠𝐿
𝑖
𝐟ℎ(𝐱) ∶=

𝜕𝐿𝑖𝐟ℎ
𝜕𝐱

𝐠(𝐱).

If the second condition holds for all 𝐱 ∈ , then ℎ is said to have uniform
relative degree 𝑟 ∈ N for (9) on .

When ℎ has uniform relative degree 1 for (9) on R𝑛, i.e., if 𝐿𝐠ℎ(𝐱) ≠
𝟎 for all 𝐱 ∈ R𝑛, then ℎ is a CBF for (9) (with 𝐮 ∈ R𝑚) since it is always
possible to pick 𝐮 ∈ R𝑚 as large or small as necessary to satisfy (12).
When ℎ has relative degree 1, but not uniform relative degree 1, ℎ is a
CBF for (9) provided 𝐿𝐟ℎ(𝐱) > −𝛼(ℎ(𝐱)) whenever 𝐿𝐠ℎ(𝐱) = 𝟎. When ℎ
has relative degree larger than 1, then 𝐿𝐠ℎ(𝐱) = 𝟎 for all 𝐱 ∈ R𝑛 and ℎ is
unlikely to be a CBF for (9) unless the unforced dynamics of the system
are already safe in the sense that 𝐿𝐟ℎ(𝐱) > −𝛼(ℎ(𝐱)) for all 𝐱 ∈ R𝑛. Thus,
the ability to construct a CBF for a given system is tightly coupled to
the construction of a relative degree one function whose zero superlevel
set contains the set of states deemed to be safe.

Example 2 (Double Integrator). We illustrate many of the ideas pre-
sented in this tutorial using the simplest possible example of a higher-
dimensional system — the double integrator with state 𝐱 = (𝐪, 𝝃) ∈ R𝑁
and dynamics:
[

𝐪̇
𝝃̇

]

⏟⏟⏟
𝐱̇

=
[

𝝃
𝟎

]

⏟⏟⏟
𝐟 (𝐱)

+
[

𝟎
𝐈

]

⏟⏟⏟
𝐠(𝐱)

𝐮. (28)

Here, 𝐪 ∈ R𝑛 represents the position/configuration of the system and
𝝃 ∈ R𝑝 captures the velocity. Often, one desires to design a feedback
controller for (28) so that the resulting configuration trajectory 𝑡↦ 𝐪(𝑡)
satisfies 𝐪(𝑡) ∈ 0 for all 𝑡 ≥ 0, where 0 ⊂ R𝑛 is a configuration
constraint set that may, for example, capture the obstacle-free space in
a collision avoidance problem. We assume this set may be characterized
as the zero superlevel set of a continuously differentiable function ℎ0 ∶
R𝑛 → R as:

 = {𝐪 ∈ R𝑛 ∶ ℎ (𝐪) ≥ 0}.
9

0 0
Given the objective of keeping the configuration in the above set, and
the ability of CBFs to render such sets forward invariant, one may be
tempted to simply take ℎ(𝐱) = ℎ0(𝐪) and  = 0×R𝑝 as a CBF candidate
and corresponding safe set for (28). Yet, this function may not serve
as a CBF for (28), in general, since it has a relative degree larger than
one:

𝐿𝐠ℎ(𝐱) =
[

∇ℎ0(𝐪)⊤ 𝟎
]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∇ℎ(𝐱)⊤

[

𝟎
𝐈

]

⏟⏟⏟
𝐠(𝐱)

= 𝟎.

To remedy this, one must choose ℎ to additionally depend on 𝝃,
which could be done in a similar fashion to Example 1 so that ℎ has
relative degree one and defines a set  such that rendering  forward
invariant is sufficient to ensure satisfaction of the original configuration
constraint in 0.

The previous example, although extremely simple, underscores one
of the primary challenges,7 in constructing CBFs: a CBF, in general,
must depend on all of the states of the system. For the double integrator
in Example 2 it is often possible to construct a relative degree one
function containing all of the system states to serve as CBF whose cor-
responding safe set contains the configuration constraint set of interest,
as was done in Example 1 for the inverted pendulum. For more complex
systems, however, capturing all of the states necessary to ensure safety
in a single scalar function may be intractable. In the remainder of this
tutorial, we outline various methodologies to systematically build CBFs
for complex systems using ROMs — lower dimensional representations
of the original system that capture its high-level dynamics, but that are
simple enough to construct CBFs for. Naturally, such methodologies
require more structure than is present in the general control affine
system (9) considered thus far. As hinted at earlier, these constructions
are applicable to systems admitting a layered architecture in which the
dynamics of higher layers act as ROMs for the lower-layer dynamics,
the states of which are viewed as control inputs to the higher-layer
dynamics. In the remainder of this section, we outline relevant classes
of dynamics that satisfy such structural assumptions.

3.2. Multi-layer cascaded dynamics

The first layered control architecture we consider is the two-layer
cascaded control system:

𝐪̇ =𝐟0(𝐪) + 𝐠0(𝐪)𝝃
𝝃̇ =𝐟1(𝐪, 𝝃) + 𝐠1(𝐪, 𝝃)𝐮.

(29)

where 𝐪 ∈ R𝑛 represents the state of the top layer, 𝝃 ∈ R𝑝 represents
the states of the bottom layer, 𝐮 ∈ R𝑚 is the control input, and 𝐟0 ∶

7 The other primary challenge is verifying (12) when 𝐮 ∈  ⊂ R𝑚.
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⏟

R𝑛 → R𝑛, 𝐠0 ∶ R𝑛 → R𝑛×𝑝, 𝐟1 ∶ R𝑛 ×R𝑝 → R𝑝, 𝐠1 ∶ R𝑛 ×R𝑝 → R𝑝×𝑚 are
locally Lipschitz mappings capturing the dynamics of the multi-layered
system. For many physical systems of interest, 𝐪 may represent the
system’s position/configuration and 𝝃 is the system’s velocity, implying
the top-layer dynamics:

𝐪̇ = 𝐟0(𝐪) + 𝐠0(𝐪)𝝃 (30)

capture the kinematics of the system. Note that by defining 𝐱 ∶= (𝐪, 𝝃) ∈
R𝑛 × R𝑝 = R𝑁 , we may write (29) in standard control affine form:
[

𝐪̇
𝝃̇

]

⏟⏟⏟
𝐱̇

=
[

𝐟0(𝐪) + 𝐠0(𝐪)𝝃
𝐟1(𝐪, 𝝃),

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟 (𝐱)

+
[

𝟎
𝐠1(𝐪, 𝝃)

]

⏟⏞⏞⏟⏞⏞⏟
𝐠(𝐱)

𝐮, (31)

cf. (28). Here, we view (30) as a ROM, with state 𝐪 and control input 𝝃,
for the multi-layered system (29) with the ultimate objective of building
a CBF for the corresponding control affine system (31) from a CBF for
the ROM (30).

For ease of exposition, most of our discussion will focus on cascaded
dynamics with two-layers as in (29); however, the approaches we
discuss are also applicable to more general multi-layer systems:

𝐪̇ =𝐟0(𝐪) + 𝐠0(𝐪)𝝃1
𝝃̇1 =𝐟1(𝐪, 𝝃1) + 𝐠1(𝐪, 𝝃1)𝝃2
𝝃̇2 =𝐟2(𝐪, 𝝃1, 𝝃2) + 𝐠2(𝐪, 𝝃1, 𝝃2)𝝃3

⋮

𝝃̇𝑟 =𝐟𝑟(𝐪, 𝝃1, 𝝃2,… , 𝝃𝑟) + 𝐠𝑟(𝐪, 𝝃1, 𝝃2,… , 𝝃𝑟)𝐮,

(32)

with an arbitrary number of layers 𝑟 ∈ N. In traditional control-
theoretic literature, such systems are said to be in strict feedback form
and can also be put into general control affine form (9) with state
𝐱 = (𝐪, 𝝃1,… , 𝝃𝑟) as:

⎡

⎢

⎢

⎢

⎢

⎣

𝐪̇
𝝃̇1
⋮
𝝃̇𝑟

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟
𝐱̇

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐟0(𝐪) + 𝐠0(𝐪)𝝃1
𝐟1(𝐪, 𝝃1) + 𝐠1(𝐪, 𝝃1)𝝃2

⋮
𝐟𝑟(𝐪, 𝝃1, 𝝃2,… , 𝝃𝑟)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟 (𝐱)

+

⎡

⎢

⎢

⎢

⎢

⎣

𝟎
𝟎
⋮

𝐠𝑟(𝐪, 𝝃1, 𝝃2,… , 𝝃𝑟)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐠(𝐱)

𝐮.

3.3. Robotic systems

A particularly relevant class of systems whose dynamics exhibit a
layered structure is mechanical systems, which can be used to model
the majority of robotic systems. To introduce the dynamics of such
systems, let 𝐪 ∈  denote the generalized configuration of a mechanical
system with 𝑛 degrees of freedom, where  ⊆ R𝑛 is the configura-
tion manifold. The dynamics of such systems are modeled using the
Euler–Lagrange equations:

𝐃(𝐪)𝐪̈ + 𝐂(𝐪, 𝐪̇)𝐪̇ +𝐆(𝐪) = 𝐁𝐮, (33)

where 𝐪̇ ∈ 𝑇𝐪 is the generalized velocity, 𝐃(𝐪) ∈ R𝑛×𝑛 is the positive
definite inertia matrix, 𝐂(𝐪, 𝐪̇) ∈ R𝑛×𝑛 is the Coriolis matrix, 𝐆(𝐪) ∈ R𝑛
represents gravitational and other potential effects, and 𝐁 ∈ R𝑛×𝑚 is
the actuation matrix. By defining 𝐱 = (𝐪, 𝐪̇) ∈ 𝑇 ⊆ R2𝑛, the above
dynamics may be cast in control affine form (9) as:
[

𝐪̇
𝐪̈

]

⏟⏟⏟
𝐱̇

=

[

𝐪̇
−𝐃(𝐪)−1

(

𝐂(𝐪, 𝐪̇)𝐪̇ +𝐆(𝐪)
)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟 (𝐱)

+
[

𝟎
𝐃(𝐪)−1𝐁

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐠(𝐱)

𝐮. (34)

When 𝑚 = 𝑛 and 𝐁 is invertible, the robotic system (33) is said to be
fully actuated, otherwise it is said to be underactuated. The dynamics in
(33) are also a special case of the two-layer cascaded system in (29),
which can be recovered by defining:

𝐟0(𝐪) =𝟎, 𝐟1(𝐪, 𝐪̇) = −𝐃(𝐪)−1
(

𝐂(𝐪, 𝐪̇)𝐪̇ +𝐆(𝐪)
)

,
−1
10

𝐠0(𝐪) =𝐈, 𝐠1(𝐪, 𝐪̇) = 𝐃(𝐪) 𝐁,
which implies that the ROM for the full-order robotic system (33) takes
the form of a single integrator:

𝐪̇ = 𝝃, (35)

where the generalized velocity is viewed as a control input.
Although the structure of (33) dictates that its ROM is a single

integrator, one may also employ more general ROMs. In particular, one
may consider more general ROMs for (33) of the form:

𝐪̇ = 𝐟0(𝐪) + 𝐠0(𝐪)𝝃, (36)

with control input 𝝃 ∈ R𝑝, where 𝐟0 ∶ R𝑛 → R𝑛 and 𝐠0 ∶ R𝑛 → R𝑛×𝑝
capture the dynamics of the ROM. For example, (36) may be used to
represent unicycle-like dynamics:

⎡

⎢

⎢

⎣

𝑥̇
𝑦̇
𝜃̇

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐪̇

=
⎡

⎢

⎢

⎣

cos (𝜃) 0
sin (𝜃) 0

0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐠0(𝐪)

[

𝑣
𝜔

]

⏟⏟⏟
𝝃

,

where (𝑥, 𝑦) ∈ R2 denotes planar position, 𝜃 ∈ [0, 2𝜋) heading, 𝑣 ∈ R
forward velocity, and 𝜔 ∈ R angular velocity. For ease of exposition,
our presentation regarding robotic systems will focus on the single
integrator ROM, and we will indicate how various results can be
modified to account for more general ROMs, such as those described
by (36).

4. Safe backstepping

Backstepping is a recursive control design tool that has demon-
strated success in constructing control Lyapunov functions (CLFs) (Free-
man & Kokotović, 1992; Krstić et al., 1995) for nonlinear systems that
possess a layered structure (29). The main idea behind backstepping is
to treat the states of lower layers as ‘‘virtual’’ control inputs to the top
layer, and then design a virtual controller for the top layer that would
accomplish the given control objective. However, as this controller is
only ‘‘virtual’’, in the sense that it cannot be directly applied to the top
layer, one must ‘‘backstep" through the dynamics to reach the actual
control input. This backstepping process often requires differentiating
through the virtual controllers designed at intermediate layers until
the original input is reached. Once this input is reached, the control
objective reduces to enforcing convergence of the bottom layer states
to the aforementioned virtual controller, which, ultimately, leads to the
satisfaction of the original control objective. As this procedure implies
the existence of a controller satisfying the control objective for the
overall system, this enables the construction of a certificate function,
such as a CLF, that certifies the ability of the system to complete the
given control objective. Thus, backstepping may be interpreted as a
procedure to generate a certificate function for a potentially complex
high-dimensional system from a certificate function for a much simpler
lower-dimensional system.

In principle, there is nothing preventing one from applying a sim-
ilar methodology to safety-critical control, rather than stabilization.
Yet, backstepping has only recently been explored in the context of
CBFs (Taylor, Ong et al., 2022) despite the fact that CBFs, in their mod-
ern form, have existed for almost a decade (Ames et al., 2014; Xu et al.,
2015). The reason, perhaps, for this delayed adoption of backstepping
in the context of CBFs may be due to the emphasis in the CBF literature
on optimization-based controllers, which are generally nonsmooth.
Other reasons may be the development of viable alternatives, such as
extended CBFs (Nguyen & Sreenath, 2016; Xiao & Belta, 2019, 2022),
that construct CBF-like functions for high-dimensional systems. In the
remainder of this section, we demonstrate how recent results on smooth
CBF-based controllers (Cohen, Ong et al., 2023; Ong & Cortes, 2019),
such as those outlined in Section 2.5, provide a pathway towards the
development of CBF backstepping and illustrate the advantages of such
an approach over existing methods that construct CBFs for high-order

systems.
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4.1. Backstepping with control barrier functions

Now we revisit backstepping in the context of safety-critical control
with CBFs (Taylor, Ong et al., 2022). As a first step, we consider the
op layer in (30) as a ROM, where 𝝃 – the state of the bottom layer – is
viewed as a ‘‘virtual’’ control input to the top layer. We wish to design
this input to render:

0 ∶= {𝐪 ∈ R𝑛 ∶ ℎ0(𝐪) ≥ 0}, (37)

for some continuously differentiable ℎ0 ∶ R𝑛 → R, forward invariant
for the top layer. To this end, we assume that ℎ0 is a CBF for this ROM
in the sense that:

sup
𝝃∈R𝑝

{

𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝝃
}

> −𝛼(ℎ0(𝐪)),

for all 𝐪 ∈ R𝑛 for some 𝛼 ∈ 𝑒
∞. Provided 𝐟0, 𝐠0, ℎ0, and 𝛼 are

smooth, Theorem 6 then implies the existence of a smooth controller
𝐤0 ∶ R𝑛 → R𝑝 satisfying:

𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝐤0(𝐪) > −𝛼(ℎ0(𝐪)), (38)

for all 𝐪 ∈ R𝑛. This controller may be designed, for example, using
the formulas in (25) and (26). The interpretation of (38) is that setting
𝝃 = 𝐤0(𝐪) would ensure the forward invariance of 0 for the top-level
dynamics if we could directly control 𝝃.

As we cannot directly control 𝝃, however, we must backstep through
𝐤0 to determine the inputs 𝐮 that drive 𝝃 to 𝐤0(𝐪). Hence, the problem
of constructing a CBF for the full-order system is reduced to that of
tracking the output of the ROM. For the full-order dynamics in (29),
we leverage 𝐤0 to propose the CBF candidate:

ℎ(𝐪, 𝝃) ∶= ℎ0(𝐪) −
1
2𝜇

‖𝝃 − 𝐤0(𝐪)‖2, (39)

with parameter 𝜇 ∈ R>0, which is used to define the safe set for the
full-order system:

 = {(𝐪, 𝝃) ∈ R𝑛+𝑝 ∶ ℎ(𝐪, 𝝃) ≥ 0}. (40)

mportantly, note that (𝐪, 𝝃) ∈  implies 𝐪 ∈ 0 since ℎ0(𝐪) ≥ ℎ(𝐪, 𝝃)
or all (𝐪, 𝝃) ∈ R𝑛+𝑝. Therefore, rendering  forward invariant for the
ull-order dynamics ensures that 𝐪(𝑡) ∈ 0 for all 𝑡 ∈ 𝐼(𝐪0, 𝝃0).
To determine if the candidate CBF in (39) is indeed a CBF for

he full-order dynamics in (29) with state 𝐱 = (𝐪, 𝝃), we recall from
emma 2 that one need only to consider the system behavior when
𝐠ℎ(𝐱) = 𝟎. To this end, we compute:

ℎ(𝐱) =
[

∇ℎ0(𝐪) +
1
𝜇
𝜕𝐤0
𝜕𝐪 (𝐪)⊤(𝝃 − 𝐤0(𝐪))

− 1
𝜇 (𝝃 − 𝐤0(𝐪)),

]

nd

𝐠ℎ(𝐱) = − 1
𝜇
(𝝃 − 𝐤0(𝐪))⊤𝐠1(𝐪, 𝝃),

oting that, if 𝐠1(𝐪, 𝝃) is pseudo-invertible for all (𝐪, 𝝃) ∈ R𝑛+𝑝, then:

𝐠ℎ(𝐱) = 𝟎 ⟹ 𝝃 − 𝐤0(𝐪) = 𝟎 ⟹ ℎ(𝐱) = ℎ0(𝐪).

hus, when 𝐿𝐠ℎ(𝐱) = 𝟎, we have:

𝐿𝐟ℎ(𝐱) =𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝝃

=𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝐤0(𝐪)

> − 𝛼(ℎ0(𝐪))
= − 𝛼(ℎ(𝐱)),

which implies that ℎ is a CBF for the full-order dynamics by Lemma 2.
This is formalized via the following theorem, which captures the main
result with regard to CBF backstepping.

Theorem 7 (Taylor, Ong et al., 2022). Consider the two-layer dynamics
𝑛

11

in (29), the constraint set 0 ⊂ R in (37), and suppose there exists r
a continuously differentiable controller 𝐤0 ∶ R𝑛 → R𝑝 and 𝛼 ∈ e
∞

satisfying (38). If 𝐠1(𝐪, 𝝃) is pseudo-invertible for all (𝐪, 𝝃) ∈ R𝑛+𝑝, then
ℎ ∶ R𝑛 ×R𝑝 → R as defined in (39) is a CBF for the corresponding control
affine system (31) on the set  ⊂ R𝑛 × R𝑝 as in (40).

The preceding theorem facilitates the construction of CBFs for high-
dimensional nonlinear systems that exhibit a layered structure as in
(29). Although these constructions have been presented for the special
case of a two-layered system, similar to Lyapunov backstepping (Krstić
et al., 1995), this approach may be recursively used to construct a
CBF for a system with an arbitrary number 𝑟 ∈ N of layers (Taylor,
Ong et al., 2022) as defined in (32). The following examples illustrate
the steps needed to construct a CBF using backstepping on the double
integrator from Example 2.

Example 3 (Double integrator). Consider a one-dimensional double
integrator with dynamics of the form (29), where 𝐪 = 𝑥 ∈ R represents
the position and 𝝃 = 𝑣 ∈ R represents velocity, while 𝐱 = (𝑥, 𝑣) is the
full-order state. Let the objective of designing a feedback controller be
to keep the system’s position 𝑥 in the interval [−1, 1] ⊂ R. This objective
can be formalized by requiring the system’s position to remain in the
set:

0 = {𝑥 ∈ R ∶ ℎ0(𝑥) = 1 − 𝑥2 ≥ 0}.

Recall from Example 2, however, that this function may not serve as
a CBF for the full-order system (31) since, with ℎ(𝐱) = ℎ0(𝑥), we have
𝐿𝐠ℎ(𝐱) = 0.

To remedy this, we take a backstepping-based approach, where we
view the top-layer dynamics:

𝑥̇ = 0
⏟⏟⏟
𝑓0(𝑥)

+ 1
⏟⏟⏟
𝑔0(𝑥)

×𝑣

as a ROM with control input 𝑣. To check if ℎ0 is a CBF for the ROM,
we compute:

𝐿𝑔0ℎ0(𝑥) = −2𝑥,

so that when 𝐿𝑔0ℎ0(𝑥) = 0, we have 𝑥 = 0 and:

𝐿𝑓0ℎ0(𝑥) + 𝛼(ℎ0(𝑥)) = 𝛼(1 − 𝑥2) = 𝛼(1) > 0.

Hence, by Lemma 2, ℎ0 is a CBF for the ROM for any 𝛼 ∈ e
∞, which

for simplicity, we take as 𝛼(𝑠) = 𝑠. As ℎ0 is a CBF for the ROM, then,
by Theorem 6, there exists a smooth controller 𝑘0 ∶ R → R satisfying
(38). Furthermore, since 𝑔1(𝑥, 𝑣) = 1 is invertible, the function:

ℎ(𝐱) = ℎ(𝑥, 𝑣) = ℎ0(𝑥) −
1
2𝜇

(

𝑣 − 𝑘0(𝑥)
)2,

is a CBF for the full-order dynamics on the set:

 = {(𝑥, 𝑣) ∈ R2 ∶ ℎ(𝑥, 𝑣) ≥ 0}, (41)

by Theorem 7.
This safe set is illustrated for different values of 𝜇 in Fig. 3, where

the smooth controller 𝑘0 is defined as in (25) with 𝜆 chosen as the
Softplus universal formula (26) with 𝜎 = 0.1 and 𝑘d(𝑥) = 0. Note that as
𝜇 is increased, the safe set  approaches the original constraint set 0 at
he cost of including larger velocities, which may require compensation
ith larger control efforts.

xample 4 (Obstacle Avoidance (Taylor, Ong et al., 2022)). We now
ontinue Example 2 but present the details of constructing a CBF for
n obstacle avoidance problem, which is used as an opportunity to
llustrate the effect of the smooth safety filter on the corresponding
BF. This example was previously presented in the context of safe back-
tepping in Taylor, Ong et al. (2022). As demonstrated in Example 2,
ny function that depends only on position is not a CBF for the double
ntegrator. Yet, by viewing a single integrator 𝐪̇ = 𝝃 as a reduced-order

epresentation of the full-order double integrator dynamics, we may
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Fig. 3. Safe set constructed for the one-dimensional double integrator via backstepping.
ere, the colored curves represent the zero level set of ℎ as defined in (39) for various

𝜇, where 𝑘0 is constructed using the Softplus universal formula from (26) with 𝜎 = 0.1.
Note that as 𝜇 is increased the resulting safe set approaches the original constraint set
0 from (37). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

still design a controller that uses a CBF constructed from the function
characterizing the distance to the obstacle:

ℎ0(𝐪) =
1
2
(

‖𝐪 − 𝐪o‖2 − 𝑅2
o
)

,

where 𝐪o ∈ R2 is the obstacle’s center and 𝑅o ∈ R>0 is its radius, which
is a valid CBF for the single integrator.

To construct a CBF for the double integrator from its reduced-order
single integrator model, we leverage the safe backstepping approach
outlined in this section. First, we construct a smooth safety filter 𝐤0 ∶
R2 → R2 for the single integrator via (25), where 𝜆 is chosen as the
Gaussian smooth universal formula (26) and 𝛼(𝑠) = 𝑠, which filters
out unsafe controls from the desired reduced-order controller 𝐤0,d(𝐪) ∶=
𝐾p(𝐪g − 𝐪), where 𝐪g ∈ R2 is a goal location and 𝐾p ∈ R>0 is a gain.
This smooth safety filter is then used to construct a CBF for the double
integrator using (39) with 𝜇 = 1. Finally, the CBF is used to synthesize
a QP-based safety filter 𝐤 ∶ R4 → R2 for the full-order system using
(13).

The results of this procedure are displayed in Fig. 4 that is repeated
rom (Taylor, Ong et al., 2022). Simulations are shown for various
hoices of 𝜎 in the smooth universal formula (26). Note that as 𝜎
pproaches zero, the behavior of the smooth safety filter approaches
hat of a QP controller, where 𝜆 depends on the ReLU activation
unction, leading to less smooth control signals.

.2. Comparison to extended control barrier functions

Control barrier backstepping may be interpreted as a systematic
ethodology to construct a CBF for a high-dimensional system from
high relative degree safety constraint ℎ0(𝐪) ≥ 0 that depends only
n the states of the top layer, the end result of which is a relative
egree one CBF ℎ(𝐪, 𝝃1,… , 𝝃𝑟) for a higher dimensional control system.
he construction of this CBF requires only a CBF for the top layer of
32) and a few controllability assumptions, namely that each 𝐠𝑖 for
∈ {1,… , 𝑟} is pseudo-invertible.
This approach is similar in spirit to other high-order CBF techniques

hat build a relative degree one CBF-like function from a high relative
egree safety constraint ℎ0(𝐪) ≥ 0 defining a set 0 ⊂ R𝑛 as in
(37), but have important technical differences as we discuss next. Such
approaches are typically predicated on constructing an extended CBF
(also referred to as an exponential (Nguyen & Sreenath, 2016) or high
12

order (Xiao & Belta, 2019, 2022) CBF) by computing the derivative
Fig. 4. Results of the double integrator obstacle avoidance scenario from Example 4.
(a) The trajectories of the double integrator’s position, (b) its velocities, (c) the values
of the safety constraint ℎ0 along the system’s trajectory, and (d) the norm of the control
input over time.
Source: This figure has been adapted from Taylor, Ong et al. (2022)

of ℎ0 along the system vector fields until the control input appears,
reminiscent of classical input–output linearization. For example, when
considering the two-layer cascaded system (29), ℎ0 has relative degree
two, thus one computes:

ℎ(𝐱) = 𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝝃 + 𝛼0ℎ0(𝐪), (42)

where 𝛼0 ∈ R>0 and 𝐱 = (𝐪, 𝝃), as an extended CBF candidate, which
now has relative degree one and defines a set  ⊂ R𝑛 × R𝑝 as its zero
superlevel set.

Note, however, that unlike the backstepping-based approach, ̂0 =
0 ×R𝑝 is not a subset of  and one must instead consider the intersec-
tion ̂0 ∩ ⊂ R𝑛 ×R𝑝 as the candidate safe set of interest. To guarantee
safety, this extended CBF must then satisfy:

sup
𝐮∈R𝑚

{

𝐿𝐟ℎ(𝐱) + 𝐿𝐠ℎ(𝐱)𝐮
}

> −𝛼(ℎ(𝐱)), (43)

for all 𝐱 ∈ ̂0 ∩  for some 𝛼 ∈ 𝑒
∞, which can be used to develop

feedback controllers enforcing forward invariance of ̂0 ∩ . Similar
to CBFs, the satisfaction of (43) can also be verified by checking that
𝐿𝐟ℎ(𝐱) > −𝛼(ℎ(𝐱)) whenever 𝐿𝐠ℎ(𝐱) = 𝟎. Unfortunately, as illustrated
in the following example (Cohen & Belta, 2023; Tan et al., 2022), an
extended CBF satisfying (43) may not exist even for relatively simple
safety constraints.

Example 5 (Cohen & Belta, 2023). We now consider the same system
and safety constraint ℎ0 and corresponding constraint set 0 as in
Example 3, but attempt to construct a safe set using an extended CBF
rather than using backstepping. Since ℎ0 has relative degree larger than
one based on Example 2, we calculate the extended CBF candidate
in (42):

ℎ(𝐱) = −2𝑥𝑣 + 𝛼0 − 𝛼0𝑥2,

which defines a set  as its zero superlevel set, and a candidate safe set
as ̂0 ∩  with ̂0 = 0 × R. This candidate safe set for different choices
of 𝛼0 is illustrated in Fig. 5. Similar to Example 3, one may force ̂0 ∩
closer to ̂ by increasing 𝛼 .
0 0
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Fig. 5. Safe set constructed for the one-dimensional double integrator using the
xtended CBF approach. Here, the colored curves represent the boundary of ̂0 ∩  for
different choices of 𝛼0, the black lines denote the boundary of ̂0, and the transparent
curves of corresponding color denote the boundary of  for different choices of 𝛼0. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

To check if ℎ satisfies the criteria in (43) for all 𝐱 ∈ ̂0 ∩ , we must
ensure that 𝐿𝐟ℎ(𝐱) + 𝛼(ℎ(𝐱)) > 0 whenever 𝐿𝐠ℎ(𝐱) = 0. To this end, we
compute:

𝐿𝐠ℎ(𝐱) =
[

−2𝑣 − 2𝛼0𝑥 −2𝑥
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∇ℎ(𝐱)⊤

[

0
1

]

⏟⏟⏟
𝐠(𝐱)

= −2𝑥,

noting that 𝐿𝐠ℎ(𝐱) = 0 implies 𝑥 = 0. Hence, when 𝐿𝐠ℎ(𝐱) = 0, we also
have:

𝐿𝐟ℎ(𝐱)+𝛼(ℎ(𝐱)) = −2𝑣2+𝛼(𝛼0),

implying (43) only holds at points such that:

𝑣2 <
𝛼(𝛼0)
2

.

hat is, when 𝑥 = 0, (43) only holds provided the magnitude of the
elocity is bounded above by a function of 𝛼0 and 𝛼. In practice, one
ay tune 𝛼0 and 𝛼 so that (43) is only violated for arbitrarily large
elocities, yet, such points will still be contained in ̂0 ∩  (see Fig. 5),
mplying (43) does not hold for all 𝐱 ∈ ̂0 ∩  and, consequently, that
is not an extended CBF.

The previous example demonstrates that one must take care when
sing the extended CBF methodology, as seemingly benign safety con-
traints may generate a function that cannot serve as an extended CBF
o matter the choice of extended class ∞ functions. The consequence
f this is that controllers synthesized from such invalid extended CBFs
ay not be well-defined even in the case when the control input
s unconstrained. In contrast, the backstepping methodology outlined
bove produces, by construction, a relative degree one function that is
uaranteed to be a CBF for the full-order system. The price to pay for
his correct-by-construction approach is that it requires the full-order
ynamics to exhibit a particular cascaded structure. In the following
ubsection, we extend this approach to a more general class of cascaded
ystems.

.3. Mixed relative degree backstepping

Another advantage of CBF backstepping over existing high order
BF approaches is the ability to handle layered systems with a mixed
elative degree — that is, systems where inputs may enter not only at
he bottom layer as in (32), but also at intermediate layers. Such mixed
elative degree systems with two layers take the form:

̇ =𝐟0(𝐪) + 𝐠𝝃0(𝐪)𝝃 + 𝐠𝐮0 (𝐪)𝐮0
𝐮

(44)
13

𝝃̇ =𝐟1(𝐪, 𝝃) + 𝐠1 (𝐪, 𝝃)𝐮1,
here 𝐱 = (𝐪, 𝝃) ∈ R𝑛 × R𝑝 is the system state, 𝐮 = (𝐮0,𝐮1) ∈ R𝑚0 × R𝑚1

is the control input, and 𝐟0 ∶ R𝑛 → R𝑛, 𝐠𝝃0 ∶ R𝑛 → R𝑛×𝑝, 𝐠𝐮0 ∶
R𝑛 → R𝑛×𝑚0 , 𝐟1 ∶ R𝑛 × R𝑝 → R𝑝, 𝐠𝐮1 ∶ R𝑛 × R𝑝 → R𝑝×𝑚1 characterize
the dynamics. Similar to the previous layered architecture, this system
admits a control affine representation (9) as:
[

𝐪̇
𝝃̇

]

⏟⏟⏟
𝐱̇

=

[

𝐟0(𝐪) + 𝐠𝝃0(𝐪)𝝃
𝐟1(𝐪, 𝝃)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐟 (𝐱)

+
[

𝐠𝐮0 (𝐪) 𝟎
𝟎 𝐠𝐮1 (𝐪, 𝝃)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐠(𝐱)

[

𝐮0
𝐮1

]

⏟⏟⏟
𝐮

. (45)

For this system, we consider a function ℎ0 ∶ R𝑛 → R on the top
layer states defining a constraint set 0 ⊂ R𝑛 as in (37). The mixed
relative degree characterization of (44) follows from the fact that the
safety constraint ℎ0 may have different relative degrees with respect
to different components of the control vector 𝐮 = (𝐮0,𝐮1). To address
this challenge, we suppose the existence of smooth feedback controllers
𝐤𝝃0 ∶ R𝑛 → R𝑝, 𝐤𝐮0 ∶ R𝑛 → R𝑚 and 𝛼 ∈ e

∞ satisfying:

𝐿𝐟0ℎ0(𝐪)+𝐿𝐠𝝃0
ℎ0(𝐪)𝐤

𝝃
0(𝐪)+𝐿𝐠𝐮0

ℎ0(𝐪)𝐤𝐮0 (𝐪) > −𝛼(ℎ0(𝐪)), (46)

for all 𝐪 ∈ R𝑛. With the above condition, we propose the CBF candi-
date (Taylor, Ong et al., 2022):

ℎ(𝐪, 𝝃) = ℎ0(𝐪) −
1
2𝜇

‖𝝃 − 𝐤𝝃0(𝐪)‖
2, (47)

which is used to define a candidate safe set  as in (40). Once again,
note that (𝐪, 𝝃) ∈  implies 𝐪 ∈ 0 since ℎ0(𝐪) ≥ ℎ(𝐪, 𝝃) for all
(𝐪, 𝝃) ∈ R𝑛 × R𝑝. With these conditions, we may state the following
result formalizing the construction of CBFs for mixed relative degree
systems.

Theorem 8 (Taylor, Ong et al., 2022). Consider the dynamics in (44), the
set 0 ⊂ R𝑛 in (37), and suppose there exist smooth feedback controllers
𝐤𝝃0 ∶ R𝑛 → R𝑝, 𝐤𝐮0 ∶ R𝑛 → R𝑚 and 𝛼 ∈ e

∞ satisfying (46). If 𝑔𝐮1 (𝐪, 𝝃) is
pseudo-invertible for all (𝐪, 𝝃) ∈ R𝑛+𝑝, then ℎ ∶ R𝑛 × R𝑝 → R as defined
in (47) is a CBF for the corresponding control affine system (45) on the set
 ⊂ R𝑛 × R𝑝 as in (40).

The proof of this theorem largely follows the same procedure as that
of Theorem 7 and is provided in the Appendix for completeness. Similar
to (32), one may recursively apply Theorem 8 to construct CBFs for
mixed relative degree systems with an arbitrary number of layers:

𝐪̇ =𝐟0(𝐪) + 𝐠𝝃0(𝐪)𝝃1 + 𝐠𝐮0 (𝐪)𝐮0
𝝃̇1 =𝐟1(𝐪, 𝝃1) + 𝐠𝝃1(𝐪, 𝝃1)𝝃2 + 𝐠𝐮1 (𝐪, 𝝃1)𝐮1

⋮

𝝃̇𝑟 =𝐟𝑟(𝐪, 𝝃1,… , 𝝃𝑟) + 𝐠𝐮𝑟 (𝐪, 𝝃1,… , 𝝃𝑟)𝐮𝑟.

(48)

Example 6 (Unicycle (Taylor, Ong et al., 2022)). A classic example of a
mixed-relative degree system is the unicycle:

𝑥̇ =𝑣 cos (𝜓)

𝑦̇ =𝑣 sin (𝜓)

̇ =𝜔,

where (𝑥, 𝑦) ∈ R2 denote planar position, 𝜓 ∈ R the heading angle,
𝑣 ∈ R the linear velocity, and 𝜔 ∈ R the angular velocity. Here, the
state is 𝐱 ∶= (𝑥, 𝑦, 𝜓) while the control input is 𝐮 ∶= (𝑣, 𝜔) = (𝑢0, 𝑢1).
As written, the above dynamics are not in the form of (44), but can
be transformed into such a system with a few modifications. First, we
define:

𝐪 ∶=
[

𝑥
𝑦

]

=
[

𝑞1
𝑞2

]

, 𝝃 ∶=
[

cos (𝜓)
sin (𝜓)

]

=
[

𝜉1
𝜉2

]

,

which implies that:

𝐪̇ = 𝝃𝑢0 ∶= 𝐯,

𝝃̇ =
[

−𝜉2
]

𝑢1.
𝜉1
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Fig. 6. Simulation results for the unicycle from Example 6. Each plot has a similar
interpretation to those in Fig. 4. This figure has been adapted from Taylor, Ong et al.
(2022).

where 𝐯 denotes the planar velocity vector. Note that, as opposed
to (44), the first equation is not affine w.r.t. (𝝃, 𝑢0) but is affine in 𝐯.
Thus we conduct backstepping by viewing the single integrator with
input 𝐯 as a reduced-order model for the unicycle, and by converting 𝐯
to (𝝃, 𝑢0).

Our control objective for this system is the same as that in Exam-
ple 4: we wish to design a controller that enforces convergence of the
position to a goal location while avoiding an obstacle. This obstacle
avoidance task can be captured using the same safety constraint ℎ0 as in
Example 4. We then synthesize a smooth safety filter 𝐤0 ∶ R2 → R2 for
the single integrator using the same approach as in Example 4, which
outputs safe velocity commands 𝐯 = 𝐤0(𝐪). To use such commands in
backstepping, we decompose 𝐯 = 𝐤0(𝐪) into 𝝃 = 𝐤𝝃0(𝐪) and 𝑢0 = 𝑘𝐮0 (𝐪) as:

𝐤0(𝐪) =
𝐤0(𝐪)

‖𝐤0(𝐪)‖
⏟⏞⏟⏞⏟

𝐤𝝃0 (𝐪)

‖𝐤0(𝐪)‖
⏟⏟⏟
𝑘𝐮0 (𝐪)

,

hich is valid so long as 𝐤0(𝐪) ≠ 𝟎. Then the desired value 𝐤𝝃0(𝐪) of 𝝃 is
sed to construct a CBF for the full-order system as in (47). This CBF
s subsequently used to synthesize a safety filter 𝐤 ∶ R3 → R2 for the
nicycle equipped with the desired controller:

d(𝐱) =
[

𝐾p‖𝐪 − 𝐪g‖
−𝐾𝜓

(

sin (𝜓) − sin (𝜓0(𝐪))
)

]

,

where 𝐾p, 𝐾𝜓 ∈ R>0 are gains and 𝜓0 ∶ R2 → R, defined by 𝐤𝝃0(𝐪) =
[

cos (𝜓0(𝐪)) sin (𝜓0(𝐪))
] ⊤, computes the desired heading angle. The

results of applying such a controller 𝐮 = 𝐤(𝐱) to the unicycle are
provided in Fig. 6, where all extended class ∞ functions involved are
chosen as the identity function.

5. Constructive safety for robotic systems

We now turn our attention to a special case of the cascaded control
systems considered in the previous section — robotic systems with
dynamics in (33). These dynamics comply with the structure outlined in
Section 4, implying the developed backstepping results may be applied
to (33) by converting such systems into the form of (29) as detailed
n Section 3. However, given the relevance of CBFs in the context of
14
obotics, and the fact that (33) possess certain structural properties that
urther facilitate the construction of CBFs, we outline in this section
ow the previous developments may be specialized to robotic systems.
As in the previous section, we wish to design a feedback controller

or the full-order system that keeps the system inside a subset of the
onfiguration space:

0 ∶= {𝐪 ∈  ∶ ℎ0(𝐪) ≥ 0}, (49)

here ℎ0 ∶  → R is a continuously differentiable configuration
onstraint. Although we wish to keep the configuration in 0, such an
bjective may not be possible without taking into account the full-order
ynamics (33). That is, similar to Example 2, 0 is unlikely to be a
ontrolled invariant set for (33) since for ℎ(𝐱) = ℎ0(𝐪) we would have:

𝐠ℎ(𝐱) =
[

∇ℎ0(𝐪)⊤ 𝟎
]

[

𝟎
𝐃(𝐪)−1𝐁

]

= 𝟎,

or all 𝐱 ∈ 𝑇. In what follows, we outline various approaches to
onstruct CBFs for the full-order dynamics (33) from the configuration
onstraint (49) under different assumptions regarding the system’s
ctuation capability.

.1. Safe backstepping for robotic systems

To remedy that ℎ0 is not a CBF, we first follow the backstepping-
ased approach outlined in the previous section, where we suppose
he existence of a continuously differentiable controller 𝐤0 ∶  → R𝑛
atisfying:

ℎ0(𝐪) ⋅ 𝐤0(𝐪) > −𝛼(ℎ0(𝐪)), (50)

or all 𝐪 ∈ . Similar to Section 4, we think of (35) as a reduced-
rder model for the full-order system (33) with input 𝝃 ∈ R𝑛 and
0 representing a controller we would apply to the reduced-order
ynamics if we could simply set 𝐪̇ = 𝐤0(𝐪). Thus, 𝐤0 may be interpreted
s a desired velocity that we wish the full-order system to track. This
ontroller is used to construct the energy-based CBF candidate:

(𝐪, 𝐪̇) = ℎ0(𝐪) −
1
𝜇
𝑉 (𝐪, 𝐪̇), (51)

here 𝜇 ∈ R>0 and:

(𝐪, 𝐪̇) ∶= 1
2
(𝐪̇ − 𝐤0(𝐪))⊤𝐃(𝐪)(𝐪̇ − 𝐤0(𝐪)), (52)

hose form is inspired by that of the system’s kinetic energy. This
nergy-based CBF candidate defines:

∶= {(𝐪, 𝐪̇) ∈ 𝑇 ∶ ℎ(𝐪, 𝐪̇) ≥ 0}, (53)

s a candidate safe set, which ensures that 𝐪 ∈ 0 whenever (𝐪, 𝐪̇) ∈ 
ince ℎ0(𝐪) ≥ ℎ(𝐪, 𝐪̇) for all (𝐪, 𝐪̇) ∈ 𝑇. Verifying this CBF candidate
equires checking the behavior of ℎ̇ when 𝐿𝐠ℎ(𝐱) = 𝟎, where 𝐠 ∶ 𝑇 →
𝑛×𝑚 is defined as in (34) and 𝐱 = (𝐪, 𝐪̇). To this end, we compute:
𝜕ℎ
𝜕𝐪̇

(𝐪, 𝐪̇) = − 1
𝜇
(𝐪̇ − 𝐤0(𝐪))⊤𝐃(𝐪),

noting that:

𝐿𝐠ℎ(𝐱) =
[

𝜕ℎ
𝜕𝐪 (𝐪, 𝐪̇)

𝜕ℎ
𝜕𝐪̇ (𝐪, 𝐪̇)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∇ℎ(𝐱)⊤

[

𝟎
𝐃(𝐪)−1𝐁

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐠(𝐱)

= − 1
𝜇
(𝐪̇ − 𝐤0(𝐪))⊤𝐁.

Thus, when (33) is fully actuated, we have:

𝐿𝐠ℎ(𝐱) = 𝟎 ⟹ 𝐪̇ − 𝐤0(𝐪) = 𝟎 ⟹ ℎ(𝐪, 𝐪̇) = ℎ0(𝐪),

so that, when 𝐿𝐠ℎ(𝐱) = 𝟎, we have:

𝐿𝐟ℎ(𝐱) = ∇ℎ0(𝐪) ⋅ 𝐪̇ = ∇ℎ0(𝐪) ⋅ 𝐤0(𝐪) > − 𝛼(ℎ0(𝐪))

= − 𝛼(ℎ(𝐪, 𝐪̇)),
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which implies that ℎ is a CBF for the corresponding control affine
dynamics (34) by Lemma 2. The preceding discussion is formalized in
the following lemma.

Lemma 4. Consider system (33), a configuration constraint ℎ0 ∶  → R
defining a set 0 ⊂  as in (49), and suppose there exists a continuously
differentiable function 𝐤0 ∶  → R satisfying (50). If (33) is fully actuated,
then ℎ ∶ 𝑇 → R as in (51) is a CBF for the corresponding control affine
system (34) on  ⊂ 𝑇 as in (53).

Remark 4. The preceding result can also be applied to reduced-order
models other than the single integrator in (35), such as the general
control affine ROM in (36). To construct a CBF for (33) from this
reduced-order model, however, one must modify (50) to:

∇ℎ0(𝐪) ⋅ (𝐟0(𝐪) + 𝐠0(𝐪)𝐤0(𝐪)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝐟0,cl(𝐪)

) > −𝛼(ℎ0(𝐪)),

and (52) to:

𝑉 (𝐪, 𝐪̇) = 1
2
(𝐪̇ − 𝐟0,cl(𝐪))⊤𝐃(𝐪)(𝐪̇ − 𝐟0,cl(𝐪)).

Example 7 (Double pendulum). To illustrate the systematic construction
of CBFs for robotic systems, we apply the results of this subsection to a
fully actuated double pendulum with configuration 𝐪 = (𝜃1, 𝜃2) denoting
he angular position of the first 𝜃1 and second 𝜃2 link. Our objective is
o design a feedback controller that keeps the 𝑥-component of Cartesian
osition (𝑥, 𝑦) of the pendulum’s tip within a certain range |𝑥| ≤ 𝑥̄. To
his end, we first define 𝐩 ∶  → R2 associating to each configuration
∈  the Cartesian position of the pendulum’s tip as:

(𝐪) = 𝑙1

[

sin (𝜃1)
− cos (𝜃1)

]

+ 𝑙2

[

sin (𝜃1 + 𝜃2)
− cos (𝜃1 + 𝜃2)

]

=
[

𝑥
𝑦

]

.

enoting by 𝑝𝑥(𝐪) = 𝑥, we propose:

0(𝐪) = 𝑥̄2 − 𝑝𝑥(𝐪)2,

s a configuration constraint defining the configuration constraint set
0 ⊂  as in (49), which we use as a CBF to define a smooth safety
filter 𝐤0 ∶  → R2 as in (25) for the single integrator reduced-order
odel (35) using the Softplus universal formula (26) with 𝜎 = 0.1 and

𝛼(𝑠) = 𝑠. This system is fully actuated, hence:

ℎ(𝐪, 𝐪̇) = ℎ0(𝐪) −
1
2𝜇

(𝐪̇ − 𝐤0(𝐪))⊤𝐃(𝐪)(𝐪̇ − 𝐤0(𝐪)),

is a CBF for the full-order dynamics (34) by Lemma 4. This CBF is then
used to construct a QP-based safety filter (13) for the corresponding
ontrol affine system (34) and nominal controller 𝐤d(𝐪, 𝐪̇) = −𝐪̇ that
dds damping to the system. To demonstrate the effectiveness of this
BF, we simulate the system from an upright position with the objective
f bringing the pendulum to a downward position while keeping the
endulum within the safe set, the results of which are provided in
ig. 7. Note that the pendulum initially falls towards the boundary of
the safe set, stops itself before crossing the boundary, and then allows
the tip of the pendulum to slide along the boundary of the safe set until
reaching a downward position.

5.2. Energy-based control barrier functions

At this point, one could directly use ℎ from (51) as a CBF for
the control affine representation of the robot dynamics (34); however,
uch an approach presents certain limitations. In particular, such an
pproach requires computing the vector fields 𝐟 and 𝐠 in (34), requiring
nversions of the inertia matrix 𝐃, which may be costly for high-
imensional robotic systems. In what follows, we demonstrate how
ne may directly leverage (33) without first converting such dynamics
nto control affine form to compute controllers enforcing safety. Such
onstructions are facilitated by the formal notion of an energy-based
BF.
15
Fig. 7. Simulation results corresponding to the double pendulum from Example 7.
The left plot illustrates the evolution of the pendulum in Cartesian space, where the
red lines denote the boundary of the configuration constraint set, while the right plot
illustrates the value of the configuration constraint along the system’s trajectory. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Definition 9. The continuously differentiable function ℎ ∶ 𝑇 → R
defined as in (51) that defines a set  ⊂ 𝑇 as in (53) is said to be an
energy-based control barrier function for (33) on  if there exists 𝛼 ∈ 𝑒

∞
such that for all (𝐪, 𝐪̇) ∈ 𝑇

sup
𝐮∈R𝑚

{

1
𝜇
(𝐪̇ − 𝐤0(𝐪))⊤

[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇ + 𝐂(𝐪, 𝐪̇)𝐤0(𝐪)

+𝐆(𝐪) − 𝐁𝐮
]

+∇ℎ0(𝐪) ⋅ 𝐪̇
}

> −𝛼(ℎ(𝐪, 𝐪̇)).

By defining:

(𝐪, 𝐪̇) ∶=∇ℎ0(𝐪) ⋅ 𝐪̇ + 1
𝜇
(𝐪̇ − 𝐤0(𝐪))⊤

[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇

+ 𝐂(𝐪, 𝐪̇)𝐤0(𝐪) +𝐆(𝐪)
]

+𝛼(ℎ(𝐪, 𝐪̇)),

𝑏(𝐪, 𝐪̇) ∶= 1
𝜇2

‖(𝐪̇ − 𝐤0(𝐪))⊤𝐁‖2,

(54)

he validity of an energy-based CBF candidate may be assessed using
he same approach as for standard CBFs. Namely, ℎ is an energy-based
BF provided that:

(𝐪, 𝐪̇) = 0 ⟹ 𝑎(𝐪, 𝐪̇) > 0.

hen 𝐤0 ∶  → R𝑛 and 𝛼 ∈ 𝑒
∞ satisfy (50), and (33) is fully actuated,

he above condition holds since:

(𝐪, 𝐪̇) = 0 ⟹ (𝐪̇ − 𝐤0(𝐪))⊤𝐁 = 𝟎 ⟹ 𝐪̇ = 𝐤0(𝐪),

o that when 𝑏(𝐪, 𝐪̇) = 0, we have:

(𝐪, 𝐪̇) =∇ℎ0(𝐪) ⋅ 𝐪̇ + 𝛼(ℎ(𝐪, 𝐪̇))
=∇ℎ0(𝐪) ⋅ 𝐤0(𝐪) + 𝛼(ℎ0(𝐪)) > 0,

here the second equality follows from 𝐪̇ = 𝐤0(𝐪) and the inequality
rom (50). With the above calculations, we have the following result
egarding the construction of energy-based CBFs.

emma 5. Let the assumptions of Lemma 4 hold. Then, ℎ ∶ 𝑇 → R
as defined in (51) is an energy-based CBF for (33) on the set  ⊂ 𝑇 as
defined in (53).

Although the above result formalizes the construction of energy-
based CBFs, we have yet to show that they may be used to synthesize
controllers enforcing safety. The following theorem shows that this is
indeed the case.

Theorem 9. If ℎ ∶ 𝑇 → R is an energy-based CBF for (33) on a
set  ⊂ 𝑇 as in (5), the any locally Lipschitz controller 𝐤 ∶ 𝑇 → R𝑚
atisfying:

1
𝜇
(𝐪̇ − 𝐤0(𝐪))⊤

[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇ + 𝐂(𝐪, 𝐪̇)𝐤0(𝐪)

𝐆(𝐪) − 𝐁𝐤(𝐪, 𝐪̇)
]

+∇ℎ0(𝐪) ⋅ 𝐪̇ ≥ −𝛼(ℎ(𝐪, 𝐪̇)),
(55)
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for all (𝐪, 𝐪̇) ∈ 𝑇 renders  forward invariant for the closed-loop system
33) with 𝐮 = 𝐤(𝐪, 𝐪̇).

The proof of this result, presented in the Appendix, exploits the
ollowing property of robotic systems in (33).

Property 1. The inertia and Coriolis matrices in (33) satisfy the skew-
symmetric property:

𝐯⊤(𝐃̇(𝐪, 𝐪̇) − 2𝐂(𝐪, 𝐪̇))𝐯 = 0, (56)

or all (𝐪, 𝐪̇) ∈ 𝑇 and any 𝐯 ∈ R𝑛.

Once an energy-based CBF has been constructed, a controller sat-
sfying (55) may be synthesized by incorporating (55) as a constraint
nto an optimization problem to instantiate the safety filter:

min
∈R𝑚

1
2
‖𝐮 − 𝐤d(𝐪, 𝐪̇)‖2

s.t. 1
𝜇
(𝐪̇ − 𝐤0(𝐪))⊤

[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇ + 𝐂(𝐪, 𝐪̇)𝐤0(𝐪)

+ 𝐆(𝐪) − 𝐁𝐮
]

+∇ℎ0(𝐪) ⋅ 𝐪̇ ≥ −𝛼(ℎ(𝐪, 𝐪̇))

(57)

here 𝐤d ∶ 𝑇 → R𝑚 is a desired control policy, whose closed-form
olution is given similarly to (15) by:

(𝐪, 𝐪̇) = 𝐤d(𝐪, 𝐪̇) −
1
𝜇
𝜆 (𝑎(𝐪, 𝐪̇), 𝑏(𝐪, 𝐪̇))𝐁⊤(𝐪̇ − 𝐤0(𝐪)),

where 𝑎 ∶ 𝑇 → R and 𝑏 ∶ 𝑇 → R are defined as in (54), and
𝜆 ∶ R2 → R is defined with the ReLU activation function as in (15).
his controller no longer contains the inverse of the inertia matrix 𝐃.
Another advantage of directly leveraging the robot dynamics in (33) is
hat this approach enables the use of safety-enforcing controllers other
han the QP-based controller in (57). For example, when 𝛼 ∈ 𝑒

∞ is
ipschitz continuous with Lipschitz constant 𝓁 ∈ R>0 and (33) is fully
ctuated, one can verify that:

(𝐪, 𝐪̇) =𝐁−1
[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇ + 𝐂(𝐪, 𝐪̇)𝐤0(𝐪) +𝐆(𝐪)

+ 𝜇∇ℎ0(𝐪) −
𝛾
2
𝐃(𝐪)(𝐪̇ − 𝐤0(𝐪))

]

,
(58)

atisfies (55) for any 𝛾 ≥ 𝓁.

emark 5. The energy-based CBFs outlined in this section are a
eneralization of those originally introduced in Singletary, Kolathaya
t al. (2022). In particular, earlier notions of such CBFs are recovered
y taking 𝐤0(𝐪) = 𝟎 in (51) to obtain:

(𝐪, 𝐪̇) = ℎ0(𝐪) −
1
2𝜇

𝐪̇⊤𝐃(𝐪)𝐪̇. (59)

limitation of the above CBF candidate becomes evident when verify-
ng if (59) is indeed a CBF via Lemma 2. When (33) is fully actuated,
e have:

𝐠ℎ(𝐱) = − 1
𝜇
𝐪̇⊤𝐁 = 𝟎 ⟹ 𝐪̇ = 𝟎,

implying that when 𝐿𝐠ℎ(𝐱) = 𝟎, we also have:

𝐿𝐟ℎ(𝐱) + 𝛼(ℎ(𝐱)) =∇ℎ0(𝐪) ⋅ 𝐪̇ + 𝛼(ℎ0(𝐪)) = 𝛼(ℎ0(𝐪)),

which is only strictly greater than zero on the interior of the safe set
and is thus not a CBF on any set8  ⊇ . Although, in principle, one
may relax the strict inequality in Definition 5 to a nonstrict one so that
(59) may serve as a CBF on , the lack of the strict satisfaction of (12)
may lead to controllers that are discontinuous when 𝐪̇ = 𝟎.

8 Recall that although Definition 5 requires (12) to hold for all 𝐱 ∈ R𝑛, one
ay also require (12) to only hold on a set  containing .
16
.3. Underactuated robotic systems

The previous results in this section formalize the construction of
BFs for fully actuated robotic systems and illustrate that when the
ontrol input is unconstrained, it is always possible to construct a
BF for the full-order dynamics (33) by simply building a CBF for a
educed-order model. These results are not surprising given that fully
ctuated systems are feedback equivalent to double integrators — a
lass of systems for which CBFs can be readily constructed as detailed
n Section 4. The construction of CBFs becomes more challenging when
33) is underactuated; however, under certain assumptions, similar
pproaches to those outlined thus far may still be employed with the
elp of ideas introduced in Spong (1994) (see also (Tedrake, 2023, Ch.
)). To introduce these ideas, we rewrite (33) as:

𝐃(𝐪)𝐪̈ +𝐇(𝐪, 𝐪̇) = 𝐁𝐮, (60)

where 𝐃 and 𝐁 are as in (33) and 𝐇(𝐪, 𝐪̇) ∶= 𝐂(𝐪, 𝐪̇)𝐪̇ + 𝐆(𝐪) collects
the Coriolis and gravitational terms from (33). We now suppose that
(60) is underactuated (i.e., 𝑚 < 𝑛) and that the configuration can be
artitioned into actuated 𝐪1 ∈ 1 ⊂ R𝑛1 and passive 𝐪2 ∈ 2 ⊂ R𝑛2
omponents in the sense that 𝐪̈1 may be directly influenced by the
ontrol input while 𝐪̈2 may only be indirectly influenced through the
volution of 𝐪1. Under this assumption, we may represent the dynamics
s:
[

𝐃11(𝐪) 𝐃12(𝐪)
𝐃21(𝐪) 𝐃22(𝐪)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐃(𝐪)

[

𝐪̈1
𝐪̈2

]

⏟⏟⏟
𝐪̈

+
[

𝐇1(𝐪, 𝐪̇)
𝐇2(𝐪, 𝐪̇)

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐇(𝐪,𝐪̇)

=
[

𝐁1
𝟎

]

⏟⏟⏟
𝐁

𝐮, (61)

where 𝐃11(𝐪) ∈ R𝑛1×𝑛1 and 𝐃22(𝐪) ∈ R𝑛2×𝑛2 are uniformly positive
definite since 𝐃 is as well. We now suppose that our configuration
constraint set 0 ⊂  can be characterized as the zero superlevel set
of a continuously differentiable function ℎ0 ∶  → R as in (49)
that depends only on either the actuated or passive components of the
configuration. For example, if our component of interest is 𝐪1 – the
actuated component – we assume that:

0 = {𝐪 ∈  ∶ ℎ0,1(𝐪1) ≥ 0}, (62)

whereas if our component of interest is 𝐪2 – the passive component –
we assume that:

0 = {𝐪 ∈  ∶ ℎ0,2(𝐪2) ≥ 0}, (63)

where ℎ0,𝑖 ∶ 𝑖 → R, 𝑖 ∈ {1, 2} is continuously differentiable.
Our objective is now to use the decomposition in (61) to derive a
new set of equations that depends only on the acceleration of one of
the components of the configuration, depending on the configuration
constraint.

We begin with the simpler situation in which our configuration
constraint depends on the actuated components of the configuration.
Our objective is to derive an equivalent representation of (60) that
epends only on 𝐪̈1. To this end, we note that since 𝐃22(𝐪) is invertible,
e may use the second equation in (61) to solve for 𝐪̈2 as:

̈ 2 = −𝐃22(𝐪)−1
[

𝐃21(𝐪)𝐪̈1 +𝐇2(𝐪, 𝐪̇)
]

. (64)

his expression may now be substituted back into the first equation to
btain:
̄ 1(𝐪)𝐪̈1 + 𝐇̄1(𝐪, 𝐪̇) = 𝐁1𝐮, (65)

hich depends only on 𝐪̈1, where

𝐃̄1(𝐪) ∶=𝐃11(𝐪) − 𝐃12(𝐪)𝐃22(𝐪)−1𝐃21(𝐪),
̄ 1(𝐪, 𝐪̇) ∶=𝐇1(𝐪, 𝐪̇) − 𝐃12(𝐪)𝐃22(𝐪)−1𝐇2(𝐪, 𝐪̇).

ote that 𝐃̄1 is simply the Schur complement of 𝐃 and is symmetric and
ositive definite since 𝐃 is as well (Spong, 1994). Given the dynamics
n (65), we propose the CBF candidate:

(𝐪, 𝐪̇) =ℎ0,1(𝐪1)

− 1 (𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐃̄1(𝐪)(𝐪̇1 − 𝐤0,1(𝐪1)),
(66)
2𝜇
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where 𝜇 ∈ R>0 and 𝐤0,1 ∶ 1 → R𝑛1 is a continuously differentiable
ontroller satisfying:

ℎ0,1(𝐪1) ⋅ 𝐤0,1(𝐪1) > −𝛼(ℎ0,1(𝐪1)), (67)

or all 𝐪1 ∈ 1 for some 𝛼 ∈ 𝑒
∞. This CBF candidate may be used to

efine a candidate safe set  ⊂ 𝑇 for the robotic system as in (53). The
ollowing theorem illustrates that this function is a CBF for the control
ffine representation of this underactuated robotic system.

heorem 10. Consider system (61) and a configuration constraint set
0 ⊂  as in (62). Provided 𝐁1 ∈ R𝑛1×𝑚 is pseudo-invertible and 𝐤0,1 ∶
1 → R𝑛1 satisfies (67), then the function ℎ ∶ 𝑇 → R as defined in (66)
s a CBF for the corresponding control affine system (34).

A proof of this theorem is provided in the Appendix and follows
similar argument to the results of Section 5.1. Note that, under the
ssumption that 𝐁1 is pseudo-invertible, system (65) effectively acts as
fully actuated system since one may directly command any desired

̈ 1 to achieve the control objective, and is reminiscent of the collocated
eedback linearization method outlined in Spong (1994).
The fact that we may construct a CBF for the actuated subsystem in

61) under similar assumptions to those in the previous section should
ot be too surprising. A more interesting situation, however, arises
hen our configuration constraint is a function of the passive compo-
ents of the configuration as in (63). Under the following condition,
similar approach to that just introduced may be used to construct a
BF from a configuration constraint on the passive components of the
onfiguration.

efinition 10 (Spong, 1994). System (61) is said to strongly inertially
oupled on a set  ⊂  if 𝐃21(𝐪) is pseudo-invertible for all 𝐪 ∈ .

Provided the above condition is satisfied, we may rewrite the first
quation in (61) in terms of 𝐪̈2 by first solving the second equation in
61) for 𝐪̈1 to obtain:

̈ 1 = −𝐃21(𝐪)†
[

𝐃22(𝐪)𝐪̈2 +𝐇2(𝐪, 𝐪̇)
]

,

here 𝐃21(𝐪)† denotes the pseudo-inverse of 𝐃21(𝐪). The above expres-
ion can then be substituted into the first equation in (61) to obtain:

̄ 2(𝐪)𝐪̈2 + 𝐇̄2(𝐪, 𝐪̇) = 𝐁1𝐮, (68)

here

𝐃̄2(𝐪) ∶=𝐃12(𝐪) − 𝐃11(𝐪)𝐃21(𝐪)†𝐃22(𝐪)
̄ 2(𝐪, 𝐪̇) ∶=𝐇1(𝐪, 𝐪̇) − 𝐃11(𝐪)𝐃21(𝐪)†𝐇2(𝐪, 𝐪̇),

hich now depends only on 𝐪̈2, and is a valid representation of (61) on
he set where (61) is strongly inertially coupled. As discussed in Spong
1994), 𝐃̄2 also has full rank on the set where the strong inertial
oupling condition holds. Given the dynamics in (68), we propose the
BF candidate:

(𝐪, 𝐪̇) =ℎ0,2(𝐪2) −
1
2𝜇

‖

‖

𝐃̄2(𝐪)(𝐪̇2 − 𝐤0,2(𝐪2))‖‖
2 (69)

here 𝜇 ∈ R>0 and 𝐤0,2 ∶ 2 → R𝑛2 is a continuously differentiable
controller satisfying:

∇ℎ0,2(𝐪2) ⋅ 𝐤0,2(𝐪2) > −𝛼(ℎ0,2(𝐪2)), (70)

for all 𝐪2 ∈ 2 for some 𝛼 ∈ 𝑒
∞. As in the previous case, this CBF

candidate may be used to define a candidate safe set  ⊂ 𝑇 for the
robotic system as in (53). Now, under the additional assumption that
(61) is strongly inertially coupled on 0, Theorem 10 may be extended
to construct a CBF from a configuration constraint that depends on the
passive components of the configuration.
17
Theorem 11. Consider system (61) and a configuration constraint set
0 ⊂  as in (63). Provided 𝐁1 ∈ R𝑛1×𝑚 is pseudo-invertible, 𝐤0,2 ∶ 2 →
R𝑛2 satisfies (67), and (61) is strongly inertially coupled on 0, then the
function ℎ ∶ 𝑇 → R as defined in (69) is a CBF for the corresponding
control affine system (34).

The above theorem, whose proof follows the same steps as those
in the proof of Theorem 10, is, effectively, an extension of the non-
collocated feedback linearization method from (Spong, 1994) to safety-
critical control. The following example illustrates how one may apply
these results to a classic underactuated robotic system.

Example 8 (Cartpole). We now demonstrate the design of CBFs for
underactuated robotic systems using an example borrowed from (Sin-
gletary, Kolathaya et al., 2022), which involves designing a safety-
critical controller for the cartpole system as illustrated in Fig. 8. The
configuration of this system is given by 𝐪 = (𝑥, 𝜃), where 𝑥 ∈ R is the
position of the cart and 𝜃 ∈ [0, 2𝜋) the angular position of the pole, and
the input corresponds to a force applied to the cart. The dynamics are
of the form (33) with:

𝐃(𝐪) =
[

𝑚c + 𝑚p 𝑚p𝑙 cos (𝜃)
𝑚p𝑙 cos (𝜃) 𝑚p𝑙2

]

, 𝐁 =
[

1
0

]

,

𝐂(𝐪, 𝐪̇) =
[

0 −𝑚p𝑙𝜃̇ sin (𝜃)
0 0

]

, 𝐆(𝐪) =
[

0
𝑚p𝑔𝑙 sin (𝜃)

]

where 𝑚c ∈ R>0 denotes the mass of the cart, 𝑚p ∈ R>0 denotes
the mass of the pole, 𝑙 ∈ R>0 denotes the length of the pole, and
𝑔 ∈ R>0 is the acceleration due to gravity. These dynamics may also
be represented as in (61) with 𝑥 and 𝜃 corresponding to the actuated
and passive components of the configuration, respectively, implying
one may directly influence ẍ via control inputs, whereas 𝜃̈ may only
be indirectly influenced by actuating the cart. Our control objective is
to constrain the angular position of the pole to lie within 𝜃 ∈ [ 5𝜋6 ,

7𝜋
6 ],

hich may be expressed as the safety constraint:

0(𝜃) =
(𝜋
6

)2
− (𝜃 − 𝜋)2,

here 𝜃 = 𝜋 corresponds to the pole being upright, which defines a
configuration constraint set 0 ⊂  as in (63). As our safety constraint
epends only on 𝜃, we attempt to rewrite the cartpole dynamics as in
68). To do so, we must ensure that the cartpole dynamics are strongly
nertially coupled, at least on 0, which follows from the fact that
𝐷21(𝐪) = 𝑚p𝑙 cos (𝜃) is only zero for 𝜃 = ±𝜋∕2 and is not contained in
0. Hence, we represent the cartpole dynamics as in (68) for all 𝐪 ∈ 0
ith:

𝐷̄2(𝐪) =𝑚p𝑙 cos (𝜃) −
(𝑚c + 𝑚p)𝑚p𝑙2

𝑚p𝑙 cos (𝜃)

𝐻̄2(𝐪, 𝐪̇) = − 𝑚p𝑙𝜃̇
2 sin (𝜃) −

(𝑚c + 𝑚p)(𝑚p𝑔𝑙 sin (𝜃))
𝑚p𝑙 cos (𝜃)

,

which are valid so long as cos (𝜃) ≠ 0. With this representation of the
ynamics, we form our CBF candidate as in (69), where 𝑘0,2 ∶ [0, 2𝜋) →

R is constructed using the Softplus universal formula from Section 2.5.
Since the dynamics are strongly inertially coupled on 0 and 𝐵1 = 1
s invertible, the function ℎ from (69) is a CBF for the control-affine
epresentation of this system (34). This CBF is used to construct a
P-based safety filter 𝐤 as in (13) for the nominal controller:

d(𝐪, 𝐪̇) = −𝐾𝜃(𝜃 − 𝜃d(𝑡)) −𝐾𝜃̇ 𝜃̇,

here 𝐾𝜃 , 𝐾𝜃̇ ∈ R>0 are gains, which attempts to track a desired
rajectory 𝜃d ∶ R≥0 → R for the pole’s angular position. The results
f applying this safety filter to the cartpole are provided in Fig. 8. Note
hat the desired pole position lies outside of 0 so that the performance
bjective is directly in conflict with the safety objective. Despite this,
nd the fact that one cannot directly actuate the angular position of the
ole, safety is guaranteed through the careful construction of a CBF.
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Fig. 8. Results of the cartpole simulation from Example 8. Here, the left plot displays
the evolution of the pole’s position and the right plot illustrates the evolution of the
configuration constraint along the trajectory of the system, both of which demonstrate
the resulting safe behavior.

6. Stable tracking of safe reduced order models

In the previous sections, we outlined various methodologies to
construct CBFs for high-dimensional systems with cascaded dynamics.
Although these approaches enable the systematic construction of CBFs
for relevant classes of systems, they are heavily model-dependent in
the sense that one must leverage the full-order dynamics of the system
to compute controllers enforcing safety. In practice, such models may
be imperfect or may be computationally intensive to compute, limiting
their use in controllers that must run in real time. Moreover, in many
situations, one may not even have direct access to the control input for
the full-order system, and may only be able to pass reference commands
to black-box modules within the existing autonomy stack that compute
such control inputs.

In this section, we present a suite of techniques to address these
aforementioned challenges. Such techniques are, in a certain sense,
a generalization of the ideas introduced thus far and enable the ap-
plication of these ideas to more complex systems, but also lead to a
fundamentally different approach to safety-critical control. Our devel-
opments here are facilitated by the realization that the paradigm of
safety-critical control based on ROMs can be understood as certifying
the ability of the full-order system to track a suitably designed ROM.
Earlier, we implicitly combined a CBF for a ROM with a Lyapunov-like
function to produce a CBF for the overall system. In this section, we
make such an idea more explicit.

The benefit of making this unification of barrier and Lyapunov
functions explicit lies in the ability to decouple the design of the safety-
critical control architecture from the full-order model. This decoupling
leads to a notion of model-free safety-critical control in the sense that the
safety-critical component of the control architecture may be designed
and implemented independent of the full-order dynamics. Safety of the
full-order dynamics can then be guaranteed so long as such dynamics
track commands generated by the ROM. The synthesis of such tracking
controllers may require knowledge of the full-order dynamics; however,
tracking controllers for many relevant classes of systems, such as those
in robotics, are well established and may be readily applied within this
model-free safety-critical control paradigm to enforce safety.

6.1. Lyapunov-certified tracking

To illustrate the ideas introduced earlier in a more general context,
18

consider again the two-layered system from (29), which may also be
written in standard control affine form (9) with state 𝐱 = (𝐪, 𝝃) as noted
n (31). As we did earlier, we consider the top-level dynamics:

̇ = 𝐟0(𝐪) + 𝐠0(𝐪)𝝃,

s a reduced-order representation of the full-order system for which we
ish to design a smooth controller 𝐤0 ∶ R𝑛 → R𝑝 that would enforce
afety of the ROM if its dynamics were directly controllable. Rather
han leveraging 𝐤0 to backstep through these dynamics to compute a
afe controller, here we consider the existence of a tracking controller
∶ R𝑛 × R𝑝 → R𝑚 that is able drive the state 𝝃 to 𝐤0(𝐪). Accordingly,
e assume that there exists a Lyapunov function 𝑉 ∶ R𝑛 × R𝑝 → R≥0
or the full-order dynamics:

̇ =𝐟0(𝐪) + 𝐠0(𝐪)𝝃
𝝃̇ =𝐟1(𝐪, 𝝃) + 𝐠1(𝐪, 𝝃)𝐤(𝐪, 𝝃),

atisfying:

1‖𝝃 − 𝐤0(𝐪)‖2 ≤ 𝑉 (𝐪, 𝝃) ≤ 𝛾2‖𝝃 − 𝐤0(𝐪)‖2 (71a)
̇ (𝐪, 𝝃) = 𝐿𝐟𝑉 (𝐱) + 𝐿𝐠𝑉 (𝐱)𝐤(𝐱) ≤ −𝛾𝑉 (𝐪, 𝝃), (71b)

for positive constants 𝛾1, 𝛾2, 𝛾 > 0. This Lyapunov function certifies
he ability of the full-order dynamics to track commands generated by
he reduced dynamics, represented as the outputs of the reduced-order
ontroller 𝐤0 ∶ R𝑛 → R𝑝.
To see how this tracking controller and corresponding Lyapunov

unction may be used to establish safety of the overall system, we write
he top layer dynamics from (29) as:

̇ = 𝐟0(𝐪) + 𝐠0(𝐪)(𝐤0(𝐪) + 𝐝), (72)

here:

∶= 𝝃 − 𝐤0(𝐪), (73)

s the tracking error for the full order system, which is treated as a
isturbance that must be rejected by the top layer to ensure safety. To
ccount for this disturbance, we now require 𝐤0 to satisfy:

𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝐤0(𝐪) ≥ −𝛼ℎ0(𝐪) +
1
𝜀
‖𝐿𝐠0ℎ0(𝐪)‖

2, (74)

where ℎ0 ∶ R𝑛 → R defines the set 0 ⊂ R𝑛 as in (37) and 𝛼, 𝜀 > 0. That
s, rather than requiring ℎ0 to be a CBF for the top layer dynamics, we
ow require ℎ0 to be an ISSf-CBF (see Section 2.4) for the top layer.
ollowing a similar procedure as before, we now define:

(𝐪, 𝝃) = ℎ0(𝐪) −
1
𝜇𝛾1

𝑉 (𝐪, 𝝃), (75)

as a candidate barrier function for the closed-loop system, which de-
fines the candidate safe set:

 = {(𝐪, 𝝃) ∈ R𝑛 × R𝑝 ∶ ℎ(𝐪, 𝝃) ≥ 0}, (76)

as its zero superlevel set. As 𝑉 is positive definite, we have ℎ(𝐪, 𝝃) ≥
0 ⟹ ℎ0(𝐪) ≥ 0 so that enforcing forward invariance of  in (76) is
sufficient to ensure that ℎ0(𝐪(𝑡)) ≥ 0. The following theorem provides
conditions under which ℎ is a barrier function for the closed-loop
system.

Theorem 12. Consider the dynamics in (29), the constraint set 0 ⊂ R𝑛

in (37), and suppose there exists a continuously differentiable controller
𝐤0 ∶ R𝑛 → R𝑝 and positive constants 𝛼, 𝜀 > 0 satisfying (74). Furthermore,
suppose there exists a tracking controller 𝐤 ∶ R𝑛 ×R𝑝 → R𝑚 and Lyapunov
function 𝑉 ∶ R𝑛 × R𝑝 → R≥0 satisfying (71) for positive constants
𝛾1, 𝛾2, 𝛾 > 0. Provided:

𝛾 ≥ 𝛼 +
𝜀𝜇
4
, (77)

then  ⊂ R𝑛 ×R𝑝 as defined in (76) is forward invariant for the closed-loop
control affine system (31) with 𝐮 = 𝐤(𝐪, 𝝃).
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The previous theorem, whose proof is provided in the Appendix,
states that, with good enough tracking performance, safety may be
enforced on the full-order dynamics by simply tracking the outputs of a
safe ROM. The condition in (77) requires that the rate of convergence
of the tracking error – captured via 𝛾 – must be larger than the rate
at which the ROM may approach the boundary of the constraint set
– captured via 𝛼. For a fixed tracking controller, one may satisfy (77)
y designing an appropriate ROM by decreasing 𝛼, which limits how
uickly the ROM may approach the boundary of the constraint set,
nd decreasing 𝜀, which corresponds to robustifying the ROM to larger
racking errors. Hence, for a fixed tracking controller satisfying (71),
ne may always ensure safety at the cost of using a more conservative
OM.
As argued earlier, the benefit of the preceding result is that the

afety-critical portion of the control architecture only relies on the
educed-order dynamics. As opposed, the results from earlier sections
stablished the existence of CBF for the full-order system, the dynam-
cs of which one must ultimately leverage to synthesize a controller
nforcing safety. Here, one may instead leverage an existing tracking
ontroller that may already be integrated into the system’s autonomy
tack to track commands produced by the reduced-order controller and
uarantee safety.
These safety guarantees, of course, are conditioned on the ability

f such a tracking controller to perfectly track reference commands. In
ractice, however, perfect tracking – the satisfaction of (71b) – is often
ot achievable and instead, our tracking controller 𝐤 may only achieve:

̇ (𝐪, 𝝃) ≤ −𝛾𝑉 (𝐪, 𝝃) + 𝛿, (78)

or positive constants 𝛾, 𝛿 > 0. That is, the tracking controller enforces
nput-to-state-stability (ISS) of the tracking error dynamics rather than
xponential stability as in (71b). The inability of the full-order dynam-
cs to perfectly track the reduced-order model leads us to consider the
odified barrier candidate:

(𝐪, 𝝃) = ℎ0(𝐪) −
1
𝜇𝛾1

(

𝑉 (𝐪, 𝝃) − 𝛿
𝛼

)

, (79)

hich defines a candidate safe set  as in (76). Compared to (75),
he above barrier candidate inflates the original safe set proportional
o 𝛿 to account for imperfect tracking. The following result illustrates
hat under similar conditions to those in Theorem 12, this tracking
ontroller enforces ISSf of the overall system with respect to the ISSf
arrier function (79).

heorem 13. Consider the dynamics in (29), the constraint set 0 ⊂ R𝑛
n (37), and suppose there exists a continuously differentiable controller
0 ∶ R𝑛 → R𝑝 and positive constants 𝛼, 𝜀 > 0 satisfying (74). Furthermore,
uppose there exists a tracking controller 𝐤 ∶ R𝑛 ×R𝑝 → R𝑚 and Lyapunov
unction 𝑉 ∶ R𝑛 × R𝑝 → R≥0 satisfying (78) and (71a) for positive
onstants 𝛾1, 𝛾2, 𝛾, 𝛿 > 0. Provided (77) holds, then  ⊂ R𝑛 × R𝑝 as defined
n (76), with ℎ ∶ R𝑛 × R𝑝 → R from (79), is forward invariant for the
losed-loop control affine system (31) with 𝐮 = 𝐤(𝐪, 𝝃).

The proof of this result follows the same steps as those employed in
he proof of Theorem 12. As this result establishes forward invariance of
n inflated safe set, rather than the original safe set defined by (75), it
ffectively establishes ISSf of the full-order dynamics. Note that for both
heorems 12 and 13 the parameters of the ROM and tracking controller
ust satisfy the same condition (77); however, the safe sets for each
f these results – characterized as the zero superlevel sets of (75) and
79), respectively – are different. Compared to (75), the safe set defined
y (79) is inflated by an additional margin proportional to 𝛿∕𝛼. One
an bring the resulting inflated safe set closer to the original safe set
y increasing 𝛼, resulting in a more ‘‘aggressive’’ ROM; however, to
uarantee ISSf, the increase in 𝛼 must be compensated for with larger
, which requires the tracking controller to enforce faster convergence
f the system to commanded references. Furthermore, by increasing
19

(

obustness through decreasing 𝜀, one may take larger values of 𝜇
n (77), making the corresponding forward invariant set given by (79)
loser to the original constraint set given by ℎ0. Before proceeding,
e illustrate how one may apply these results with the help of the
ollowing example.

xample 9 (Planar Segway). We demonstrate the model-free safety-
ritical control paradigm by using the example of a Segway control
roblem from (Molnar et al., 2022). Consider the planar Segway model
n Fig. 10(a) with configuration 𝐪 = (𝑝, 𝜑) ∈  = R × [0, 2𝜋) including
he position 𝑝 and pitch angle 𝜑 of the Segway. We seek to drive
he Segway with a desired speed 𝑝̇d until reaching a wall at position
max where the Segway must stop automatically such that 𝑝 ≤ 𝑝max. The
ynamics of the Segway are given by (33) with 𝑢 ∈ R being the voltage
n the Segway’s motors and:

𝐃(𝐪)=
[

𝑚0 𝑚𝐿 cos𝜑
𝑚𝐿 cos𝜑 𝐽0

]

, 𝐆(𝐪)=
[

0
−𝑚𝑔𝐿 sin𝜑

]

,

(𝐪, 𝐪̇)=
[

𝑏t∕𝑅 −𝑏t − 𝑚𝐿𝜑̇ sin𝜑
−𝑏t 𝑏t𝑅

]

, 𝐁=
[

𝐾m∕𝑅
−𝐾m

]

,

here 𝑅 and 𝐿 are geometric dimensions, 𝑚, 𝑚0, 𝐽0 are mass and
nertia parameters, 𝑔 is acceleration from gravity, while 𝑏t and 𝐾m
re motor parameters, all given in Molnar et al. (2022). Note that
lthough these dynamics are in the form of (33), they are underactu-
ted, which complicates the backstepping-like methods developed in
revious sections.
To address this challenge, we proceed to leverage the model-free

afety-critical control approach developed in this section, where we use
he single integrator 𝐪̇ = 𝝃 as a ROM to provide safety against collision
ith the wall, with desired controller 𝐤0,d(𝐪) =

[

𝑝̇d 0
] ⊤ and CBF:

0(𝐪) = 𝑝max − 𝑝,

hat satisfies 𝐿𝐠0ℎ0(𝐪) ≠ 𝟎. This CBF is then used to construct a smooth
afety filter 𝐤0 ∶  → R2 as in Section 2.5 for the ROM. The output
f this smooth safety filter represents a safe velocity for the Segway:
he robot may travel with the desired speed 𝑝̇d until getting close to
he wall, where it must reduce its speed according to its distance from
he wall. The safe velocity can be tracked by an on-board controller
esigned for the full system (33) that also stabilizes the Segway upright:

(𝐪, 𝐪̇) = 𝐾𝑝̇(𝑝̇ − 𝑘0(𝐪)) +𝐾𝜑𝜑 +𝐾𝜑̇𝜑̇. (80)

ith gains 𝐾𝑝̇, 𝐾𝜑, 𝐾𝜑̇, where 𝑘0(𝐪) is the first component of 𝐤0(𝐪)
nd represents a safe forward velocity. This controller satisfies the
onditions of Theorem 13 using:

(𝐪, 𝐪̇) = 1
2
(𝐪̇ − 𝐤0(𝐪))⊤𝐃(𝐪)(𝐪̇ − 𝐤0(𝐪)),

s an ISS Lyapunov function, wherein the constants 𝛾 and 𝛿 from (78)
ay be determined using a similar analysis to that performed in Molnar
t al. (2022).
The results of applying this controller to the Segway for different

hoices of gains in (80) and different choices of 𝛼 and 𝜀 used in
ynthesizing the smooth safety filter 𝐤0 are provided in Fig. 9. In
articular, the left and right columns in Fig. 9 illustrate the behavior
f the system for 𝐾𝑝̇ = 50 and 𝐾𝑝̇ = 30, respectively, for different
hoices of 𝛼 and 𝜀. Here, safety is maintained for larger 𝐾𝑝̇, resulting
n larger 𝛾 in (78), whereas safety is violated for small values of
𝑝̇. Intuitively, larger values of 𝐾𝑝̇ allow the full-order dynamics to
espond faster to commands generated by the ROM and maintain safety
cf. (77)). This highlights the fact that, although the controller (80)
ltimately applied to this system does not directly leverage the full-
rder Segway dynamics, tuning this tracking controller to enforce safety
ay require exploiting model knowledge. In practice, however, it may
ot be possible to modify an existing tracking controller to satisfy
77) as it may represent a ‘‘black-box’’ module already be integrated



Annual Reviews in Control 57 (2024) 100947M.H. Cohen et al.

s
𝐤
a
p
c
w
e
b
r

E

Fig. 9. Model-free safety-critical control of the planar Segway from Example 9. The
plots display the evolution of the Segway’s position generated by the controller in (80)
with 𝐾𝑝̇ = 50 (left) and 𝐾𝑝̇ = 30 (right) for different choices of 𝛼 and 𝜀. The curves of
different colors represent the trajectories under different smooth safety filters for the
ROM, where the colors have the same interpretation as in Fig. 2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

into the system’s autonomy stack. In such a situation, one can only
tune the behavior of the reduced-order model via 𝛼 and 𝜀, to satisfy
the conditions required by (77). The effect of changing 𝛼 for the two
tracking controllers is illustrated in the middle row of Fig. 9, where
the tracking controller that originally did not enforce safety (𝐾𝑝̇ =
30) maintains safety with a lower value of 𝛼. Intuitively, decreasing
𝛼 causes the reduced-order model to approach the boundary of the
constraint set more slowly, requiring less aggressive tracking by the
full-order dynamics to ensure safety. Alternatively, one may tune the
reduced-order model by decreasing 𝜀 (bottom row of Fig. 9), which
effectively adds an additional robustness margin to the reduced-order
model, causing it to stop short of the original constraint boundary.

6.2. Safely tracking nonsmooth ROMs

Thus far, the safety-critical control via ROM paradigm has relied
on the use of smooth ROMs, implying that one must leverage the
mooth safety filters from Section 2.5 to design a safe ROM controller
0 ∶ R𝑛 → R𝑝. Although these smooth safety filters can be tuned to
pproximate the QP-based safety filter from (13) arbitrarily closely, in
ractice, such controllers tend to be more conservative than their QP
ounterparts. Our restriction to smooth controllers at the ROM level
as necessary in our backstepping approach since such controllers were
xplicitly used to define a CBF for the full-order system, which must
e continuously differentiable9. Smoothness also played an important
ole in the previous subsection wherein we explicitly combined a ROM

9 Note that nonsmooth versions of CBFs do exist (Glotfelter, Cortés, &
gerstedt, 2017; Usevitch, Garg, & Panagou, 2020) and have been used to
address multiple safety constraints (Glotfelter, Cortés, & Egerstedt, 2020).
20
Fig. 10. Model-free safety-critical control of a Segway in simulation, with results
from (Molnar et al., 2022). A planar Segway model is controlled to stop in front of
a wall, by the help of a CBF-based safe velocity command and a velocity-tracking
controller.

CBF and a smooth Lyapunov function to build a CBF for the full-order
system; however, as shown in this subsection, the existence of a smooth
Lyapunov function is not necessary to establish such results.

We now relax this smoothness requirement, which facilitates the use
of QP-based controllers for the ROM, by assuming that the tracking
error 𝐝 is bounded as:

‖𝐝‖2 ≤𝑀𝑒−𝛾𝑡 + 𝛿, (81)

for nonnegative constants 𝑀, 𝛾, 𝛿 ≥ 0. This bound reflects the ability of
the full-order system to exponentially track the reduced-order model
up to a bound 𝛿 and is analogous to the ISS condition in (78), albeit
without the explicit use of a Lyapunov function. One may set various
constants in (81) equal to zero to reflect the tracking capabilities of the
full-order system: 𝛿 = 0 reflects perfect tracking and 𝑀 = 0 reflects
bounded, but not convergent tracking. Rather than building a barrier
function for the full-order system from a Lyapunov function, we directly
utilize (81) to propose the time-varying barrier candidate:

ℎ(𝐪, 𝝃, 𝑡) = ℎ0(𝐪) −
𝑀
𝜇
𝑒−𝛾𝑡 + 𝜀𝛿

4𝛼
, (82)

for a positive constant 𝜇 > 0, which defines the time-varying safe set:

(𝑡) ∶= {(𝐪, 𝝃) ∈ R𝑛 × R𝑝 ∶ ℎ(𝐪, 𝝃, 𝑡) ≥ 0}, (83)

associating to each time 𝑡 a set (𝑡) ⊂ R𝑛 × R𝑝 of safe states. The
following theorem shows that, under similar conditions to the preced-
ing results, ℎ as in (82) is an ISSf barrier function for the closed-loop
system.

Theorem 14. Consider the dynamics in (29), the constraint set 0 ⊂ R𝑛
in (37), and suppose there exists a controller 𝐤0 ∶ R𝑛 → R𝑝 and positive
constants 𝛼, 𝜀 > 0 satisfying (74). Furthermore, suppose there exists a
tracking controller 𝐤 ∶ R𝑛×R𝑝 → R𝑚 enforcing the tracking error bound in
(81) for constants𝑀, 𝛾, 𝛿 ≥ 0. Provided that (77) holds then (𝑡) ⊂ R𝑛×R𝑝
as defined in (83) is forward invariant for the corresponding closed-loop
control affine system (31) with 𝐮 = 𝐤(𝐪, 𝝃).

For completeness, the proof of this theorem is provided in the Ap-
pendix. The following example shows how the preceding results allow
for leveraging a QP-based controller for the ROM from Example 9.

Example 10 (Planar Segway). We now return to Example 9, where

we seek to use a QP-based controller (13) for the ROM rather than
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a smooth safety filter. The QP solution (15) leads to the following
safety-critical controller for the ROM:

𝐤0(𝐪) =
[

𝑘0(𝐪)
0

]

, 𝑘0(𝐪) = min{𝑝̇d, 𝛼(𝑝max − 𝑝) −
1
𝜀 },

ith 𝛼 > 0. Although this controller is nonsmooth, we may leverage the
ame exact tracking controller (80) as in the previous example, and
everage Theorem 14 to establish safety of the full-order dynamics.
Fig. 10 shows the corresponding simulation results from (Molnar

t al., 2022). The Segway’s motion is safe, as established by Theo-
em 14. Once again, the safe velocity expression does not use the full
odel (33), but only exploits the underlying multi-layer structure with
corresponding trivial ROM that has no parameters. This ultimately
eads to a model-free method with a simple explicit ‘‘min’’ formula to
rovide safety for a robotic system. Meanwhile, the tracking controller
oes not involve the expressions in the model (33) either, however,
s discussed in Example 9, appropriate selection of the gains 𝐾𝑝̇, 𝐾𝜑,
𝜑̇ may require model information. Furthermore, when directly tuning
he gains of the tracking controller is not feasible, one may directly
odify the parameters of the reduced-order model to ensure safety as
emonstrated in Example 9.

. Case studies

Thus far, we have introduced a variety of different CBF techniques
ased on the idea of leveraging ROMs to extend a CBF for a simple
ystem to one for a complex system. In each of our illustrations of
hese techniques, we have chosen relatively simple examples that are
ust rich enough to capture the main ideas introduced herein. Yet, the
otivation for introducing such ideas in the first place was to provide a
iable pathway to safety-critical control of complex, high-dimensional
utonomous systems.
The safety-critical controllers established above through the use of

BF theory have been implemented on a wide variety of such systems,
nd, in this section, we revisit more complex application examples
rom the literature that use these methods. These examples include
afety-critical control of fixed-wing aircraft, flying, legged and wheeled
obots, manipulators, and heavy-duty trucks — both in simulation and
ardware experiments.

.1. Run-time assurance on fixed-wing aircraft

We demonstrate the application of safe backstepping with CBFs
y revisiting the work in Molnar et al. (2024), wherein a fixed-wing
ircraft was controlled in a safety-critical fashion with the objective
f preventing collision with other aircraft or entry into a restricted
irspace bounded by a ‘‘geofence’’. The overall control pipeline is
llustrated in Fig. 11. The aircraft uses a desired flight controller, that
racks a trajectory with stable flight, and a run-time assurance (RTA)
ystem, that overrides this desired flight controller whenever necessary
or collision avoidance and geofencing. The RTA is formulated as a
afety filter using CBFs constructed by backstepping.
The controller synthesis is based on a kinematic model, that is used

o design acceleration and angular velocity commands for the aircraft in
provably safe fashion. This model has a multi-layer cascaded structure
imilar to (48):

𝐫̇ = 𝐯(𝜻),
𝜻̇ = 𝐟𝜻 (𝜻 , 𝜙, 𝐴T, 𝑄),

𝜙̇ = 𝑓𝜙(𝜻 , 𝜙,𝑄, 𝑃 ),

with state 𝐱=(𝐫, 𝜻 , 𝜙)∈R7 and input 𝐮=(𝐴T, 𝑃 ,𝑄)∈R3; see detailed de-
cription in Molnar et al. (2024). According to this model, the position
𝐫 ∈ R3 evolves according to the expression of the velocity 𝐯, given
by the state 𝜻 ∈ R3 that includes speed, pitch angle and yaw angle.
The evolution of 𝜻 depends on the roll angle 𝜙 ∈ R, the longitudinal
acceleration 𝐴 ∈ R and the angular velocity 𝑄 ∈ R about the right
21

T

Fig. 11. Run-time assurance on fixed-wing aircraft to guarantee safety with respect to
collision avoidance and geofencing. The results – repeated from Molnar et al. (2024)
– demonstrate that safety-critical flight controllers, which use backstepping-based CBFs
and leverage the multi-layer structure of the underlying dynamics, are able to generate
maneuvers to prevent collision with other aircraft and entry into restricted airspace.

axis of the aircraft (related to pitching up or down), where 𝐴T and 𝑄
are viewed as control inputs. Finally, the evolution of the last state 𝜙
involves the angular velocity 𝑃 about the front axis (related to rolling),
which is considered to be the third control input. Overall, the dynamics
have a 3-layer cascaded structure, where inputs enter at the second and
third layers. Importantly, the right-hand side functions 𝐟𝜻 and 𝑓𝜙 are
affine in the control inputs 𝐴T, 𝑃 , 𝑄 and in certain expressions of the
states.

This structure can be exploited to synthesize a CBF via backstepping
for use in collision avoidance and geofencing. For collision avoidance,
consider the distance:

ℎ0,𝑖(𝐫) = ‖𝐫 − 𝐫𝑖‖ − 𝜌𝑖,

between the controlled aircraft and multiple other aircraft with index 𝑖,
hose position is 𝐫𝑖 ∈ R3, while 𝜌𝑖 > 0 are collision radii. For geofenc-

ing, the distance between the aircraft and a planar geofence boundary
with position 𝐫𝑖 and normal vector 𝐧𝑖 can be utilized:

ℎ0,𝑖(𝐫) = 𝐧⊤𝑖 (𝐫 − 𝐫𝑖) − 𝜌𝑖,

where index 𝑖 refers to multiple geofence constraints, that is, geofences
with more complex geometry. These functions can be combined into a
single CBF candidate and used to construct the CBF ℎ via backstepping.
This process takes multiple steps; the details are found in Molnar et al.

).
(2024



Annual Reviews in Control 57 (2024) 100947M.H. Cohen et al.

s
b
s
a
a
w
c
t
t
a
a

7

a
w
h
u
o
u
t
d
f
t
w
t
S

Fig. 12. Safety-critical indoor flight tests with a quadrotor (Singletary et al., 2021). The quadrotor is controlled to traverse obstacle courses with various obstacle arrangements
while maintaining a collision-free flight. The single integrator is used as ROM for the quadrotor’s dynamics, while the distance from the obstacle is considered as the CBF. By
incorporating these into a safety filter, safe velocity commands are computed, which are then tracked by the onboard flight controller. The end result is collision-free motion in
each scenario.
h
(

The CBF can be used in the QP-based controller (15) to achieve
afety-critical behavior. The resulting motion is demonstrated in Fig. 11
y the simulation of simultaneous collision avoidance and geofencing
cenario. The controlled aircraft seeks to track a straight trajectory,
nd its run-time assurance system intervenes to guarantee safety. The
ircraft first accelerates, pitches up, and turns left to avoid collision
ith the other aircraft, and then it is forced to turn right to avoid
rossing the two geofence boundaries. This behavior is generated by
he backstepping-based CBF ℎ, which was kept nonnegative throughout
he motion. As a result, the three position-based CBF candidates ℎ0,𝑖 are
lso kept nonnegative, which indicates that the underlying maneuvers
re executed with guaranteed safety.

.2. Safety-critical control of quadrotors

Next, we illustrate safe behavior on another important class of
ircraft: quadrotors. We revisit the results of Singletary et al. (2021),
here the techniques discussed in Section 6 were first demonstrated by
ardware experiments on drones. The quadrotor shown in Fig. 12 was
tilized in indoor flight tests to traverse obstacle fields with various
bstacle arrangements (see bottom panels). In each scenario, the drone
sed an onboard flight controller to track velocity commands. To obtain
hese commands, first, a desired velocity was provided by a high-level
esired controller. Then, using a single integrator as a ROM of the
ull quadrotor dynamics, a safety filter modified the desired velocity
o a safe velocity command. The CBF underlying this safety filter
as the distance between the quadrotor and the obstacle. Tracking of
he resulting velocity resulted in collision-free flight, as the theory in
ection 6 suggests.
22
Importantly, safety filters can also be implemented to prevent a
uman pilot from crashing a drone. The flight tests in Singletary et al.
2021) also demonstrated a case where a human was piloting the drone
manually. These experimental results are shown in the top right panel
of Fig. 12. Here, a human pilot provides the desired velocity commands
for traversing the field such that the drone is actively driven towards the
obstacles. Yet, even when the human pilot intends to hit the obstacles,
the safety filter intervenes and prevents a collision. As such, human
pilots usually provide high-level commands for robotic systems like this
drone, hence a high-level safety filter – operating based on ROMs and
CBFs – is suitable for keeping the system safe.

7.3. Safe flying, legged and wheeled robots

The control strategy discussed for quadrotors can be extended to a
wide range of robotic systems. We demonstrate this by revisiting the
results from (Molnar et al., 2022) where flying, legged, and wheeled
robots were controlled via the same approach: stable tracking of safe
ROMs. This approach leverages the fact that many robotic systems have
multi-layer structures in their dynamics, where the top layer captures
the relationship between the configuration and velocity of robots while
the bottom layer relates velocities to forces or torques. As such, the
top-level dynamics can be viewed as ROMs describing the evolution of
the configuration. If safety is captured by a set 0 in the configuration
space (that is the case e.g. for collision avoidance), then CBFs for
these ROMs can be used to find safe velocity commands, which can be
tracked by existing on-board controllers that make the robot fly, walk
or drive. This yields a simple method to guarantee safety of various



Annual Reviews in Control 57 (2024) 100947M.H. Cohen et al.

i

Fig. 13. Illustration of the model-free safety-critical control paradigm from Molnar et al. (2022). An obstacle avoidance task is executed on three fundamentally different systems:
flying, legged, and wheeled robots. Each robot is controlled safely based on reduced-order (i.e., single integrator or unicycle) kinematics, by calculating safe velocity commands
using CBFs and tracking these commands using on-board flight, walking, and driving controllers. (a) Hardware experiments on Drone, (b,c) hardware experiments on Quadruped,
(d) high-fidelity simulations on Segway.
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robots. Moreover, as was highlighted for quadrotors, the ROMs are
often trivial equations with no parameters, like the single integrator
in (35). Such ROMs lead to simple geometric expressions for the safe
velocity, regardless of how complex the full model is. We refer to this
approach as model-free safety-critical control.

The model-free safety-critical control paradigm is illustrated in
Fig. 13. Three fundamentally different robots – a custom-built racing
drone, a Unitree A1 quadruped, and a Ninebot E+ Segway – are con-
trolled with the model-free approach to accomplish a reach-avoid task
similar to that in Fig. 4. Using single integrator or unicycle reduced-
order kinematics, CBF-based safe velocity expressions are computed
for each robot, which are commanded as a reference signal to be
tracked by the controller that flies the drone (established in Singletary,
Swann, Chen and Ames (2022)), locomotes the quadruped (developed
in Ubellacker, Csomay-Shanklin, Molnar, and Ames (2021)) and drives
the Segway (described in Gurriet et al. (2020), Molnar et al. (2022)),
respectively. The velocity tracking error, observed in the right panels,
satisfies the bound (81), thus safety can be established according to
Theorem 14. Indeed, safe behavior was observed in hardware experi-
ments (drone and quadruped) and high-fidelity simulations (segway),
as indicated by the positive value of the CBF ℎ0 of the reduced-order
kinematics. Note that these results from Molnar et al. (2022) did not
nclude the robustness term with 𝜀 in (74) (i.e., 𝜀 → ∞ was taken),
hence a different variant of Theorem 14 with more restrictive assump-
tions was required to prove safety. We will highlight the relevance of
robustness terms in the upcoming subsections where CBFs are used on
industrial manipulators and heavy-duty vehicles.
23

o

7.4. CBFs in collaborative robotics

In the previous case study (Molnar et al., 2022), we demonstrated
how ROMs may be used to develop safety-critical controllers for a
variety of robotic systems, including legged robots. In the context of
safe legged locomotion, this approach leveraged the system’s existing
control architecture, developed in Ubellacker et al. (2021), and allowed
to control a rather complex robotic system by simply passing safe
reference commands, generated by models such as a single integrator
or unicycle, to the existing architecture. In the present case study,
we further explore how CBFs may integrate into a system’s overall
autonomy stack in the context of collaborative legged locomotion (Kim,
Lee et al., 2023) as portrayed in Fig. 14.

Here, the objective is for a team of holonomically constrained
obots, in this case, a team of quadrupeds, to collaborate and safely
avigate around obstacles before arriving at a goal location. These
olonomic constraints could represent, for example, a payload that
hese robots seek to transport, which constrains the team’s overall
ormation. To complete this task, the control architecture is broken
own into three layers, each leveraging a more detailed model of the in-
erconnected robotic system. The top layer represents each quadruped
s a double integrator and leverages CBFs to simultaneously enforce the
olonomic constraints and obstacle avoidance. The outputs of the top
ayer are thus safe position and velocity trajectories that also respect the
olonomic constraints imposed on the full-order dynamics. The middle
ayer seeks to bridge the gap between these reduced-order trajectories
nd the full-order dynamics by representing the robotic team as an
nterconnection of single rigid bodies (SRBs). At this level, the outputs
f the top layer are used as reference commands for the center of mass
f each SRB, which are tracked by a model predictive controller that
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Fig. 14. Simulation and hardware results corresponding the to collaborative locomotion case study, originally reported in Kim, Lee et al. (2023).
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outputs ground reaction forces (GRFs). These GRFs are input to the
bottom layer, which leverages a high-fidelity model of each quadruped
and a virtual constraint-based QP controller (Hamed, Kim, & Pandala,
2020; Kim, Fawcett, Ramidi, Ames & Hamed, 2023) to generate torque
inputs that impose the commanded GRFs and track the safe position
and velocity trajectories generated by higher layers.

The control architecture outlined above was implemented on a pair
of Unitree A1 quadrupeds in both simulation and experimentally (Kim,
Lee et al., 2023), where the objective is for a pair of interconnected
quadrupeds to navigate around obstacles to a goal location. As shown
in Fig. 14, in both simulation and hardware, the interconnected robotic
system successfully navigates through simple (Fig. 14a) and cluttered
environments (Fig. 14c). This is achieved by decomposing the control
architecture into multiple layers and reasoning about both the system’s
holonomic constraints – representing the interconnection of the robots
– and safety constraints at each layer using different model represen-
tations. Ultimately, this decomposition enables the implementation of
safe and real-time collaborative locomotion.

7.5. Collision-free food preparation with manipulators

Next, we showcase the efficacy of utilizing CBFs and ROMs in
the context of safe robotic manipulation. In particular, we present a
real-world industrial application, reported in Singletary et al. (2022),
herein a manipulator is employed in a kitchen for automated food
reparation that must be executed in a collision-free manner. The ma-
ipulator, shown in Fig. 15, is a Miso Robotics Flippy2 robot. This robot
s intended to manipulate kitchen equipment in order to pick up, deep
ry, and dispense food while avoiding collision with its environment.
xecuting such behaviors requires sophisticated motion plans, which
re computed for various environmental factors and initial conditions.
any of the required motion plans are similar trajectories with only
light deviations, accounting for the fact that food baskets may move
nd deform slightly, workers may push the equipment, or the robot may
ave a slightly different initial configuration. Therefore, rather than
eplanning a trajectory in each slightly different situation, it is more
fficient to use a CBF-based safety filter to modify a nominal trajectory
24

nline and provide formal safety guarantees. f
Importantly, the manipulator has an efficient low-level control sys-
em that enables the tracking of trajectories and, in particular, velocity
ommands. Hence, this architecture is well-suited for utilizing the
pproach outlined in Section 6. Specifically, the kinematic equations
of the robot can be used as a ROM to design safe velocity commands
via CBF-based safety filters, which can be tracked by the low-level
controller. Ensuring safety at the ROM level via velocity commands –
rather than for the full dynamics by filtering the low-level controller
– was also motivated by the fact that the details of the low-level
controller were proprietary, and could not be modified. At the same
time, the industrial low-level controller is well-designed for velocity
tracking and capable of keeping the tracking error bounded as in (81).
As established by Theorem 14, this enables safe behavior for the full
dynamics by the appropriate choice of a ROM-based safety filter.

In particular, the work in Singletary et al. (2022) used the signed
istance between the closest point of the robot and its environment as
BF candidate ℎ0, and implemented the safety filter:

0(𝐪, 𝑡) = argmin
𝐯∈R𝑛

‖𝐯 − 𝐤0,d(𝐪, 𝑡)‖2

s.t. 𝐧(𝐪)⊤𝐉(𝐪)𝐯 ≥ −𝛼ℎ0(𝐪) + 2𝐽max𝑞̇max,

hat minimally modifies a desired velocity 𝐤0,d(𝐪, 𝑡) given by a nominal
otion plan to a safe velocity 𝐤0(𝐪, 𝑡). Here, safety is achieved by
nforcing a CBF-based inequality constraint analogous to (74). The
erm on the left-hand side of this constraint is an approximation of the
erivative of function ℎ0 along the kinematic ROM (with the Jacobian
and a normal vector 𝐧), while the last term on the right-hand side is
ntended to provide robustness against disturbances and approximation
rrors (with the bounds 𝐽max and 𝑞̇max on Jacobian and velocity norms).
he resulting safe velocity was finally tracked by the robot’s low-level
ontroller to execute collision-free cooking.
The performance of the manipulator employing this control archi-

ecture is illustrated by hardware experiments in Fig. 15. The objective
f the robot is to pick up a food basket that has finished cooking and
ove it from the fryer to a hanger, allowing the oil to drip off the basket
efore serving. Throughout this motion, the robot needs to operate in
dense workspace, where collision must be avoided with food baskets,

ryers, the hood vent over the fryers, and a glass pane separating the
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Fig. 15. Collision-free food preparation with a Flippy2 robot, with results from Singletary et al. (2022). Nominal motion plans that manipulate baskets of food are minimally
modified using CBFs, in order to avoid collision between the robot and the kitchen equipment. Specifically, the reduced-order kinematics of the robot are used to synthesize a
safe velocity using CBFs, which then were tracked by industrial low-level controllers.
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manipulator from humans, leading to 36 collision objects in total. Al-
though the manipulation is done in a tight space with a few centimeters
of clearance between the robot and the surrounding environment, the
manipulator manages to accomplish the task without collision, thanks
to the use of a safety filter at the reduced-order kinematics level. This
can be confirmed by the value of the underlying CBF candidate ℎ0,
highlighted at the bottom right of Fig. 15, which is positive during the
motion while its maximum value is only 11 centimeters. Importantly,
the resulting behavior is reproducible: (Singletary et al., 2022) reported
that the use of CBFs led to collision-free behavior consistently in 100
subsequent test cases.

7.6. Input-to-state safety on connected automated trucks

Finally, we demonstrate safety-critical control of heavy-duty vehi-
cles as originally reported in Alan et al. (2023). Consider the connected
automated truck in Fig. 16 that is controlled longitudinally to follow
nother vehicle on a straight road. Throughout the motion, the truck
ust maintain a safe distance to avoid front-end collision, which may
e crucial in situations like emergency braking.
The truck is equipped with a low-level control system discussed

n He et al. (2020) that regulates gas, brake pressure, and gear shifts to
rack acceleration commands. Thus, the truck’s desired acceleration is
iewed as a high-level control input, and double integrator models (or
ariants thereof, involving resistance terms and other physical effects)
an be used as ROMs to control the truck’s motion. For example, the
ollowing ROM was employed in Alan et al. (2023):

𝐷̇ = 𝑣L − 𝑣,

𝑣̇ = 𝑢 + 𝑑,

𝑣̇L = 𝑎L,

where 𝐷 ∈ R is the distance of the vehicles, 𝑣 ∈ R is the speed of
he truck, 𝑢 ∈ R is its desired acceleration, 𝑑 ∈ R is a disturbance,
L ∈ R is the speed of the lead vehicle, and 𝑎L ∈ R is its acceleration.
urthermore, we have 𝐪 = (𝐷, 𝑣, 𝑣L) and 𝜉 = 𝑢 with our previous no-
ations. Using the ROM, longitudinal car-following controllers can be
esigned at the acceleration level by measuring 𝐷, 𝑣, 𝑣 and 𝑎 using
25

L L b
n-board range sensors like radar, as well as GPS and vehicle-to-vehicle
onnectivity.
With the estimated states, a desired connected cruise controller (Zhang
Orosz, 2016) can be utilized to execute car following:

0,d(𝐪) = 𝐴(𝑉 (𝐷) − 𝑣) + 𝐵(𝑊 (𝑣L) − 𝑣),

where 𝐴,𝐵 ∈ R>0 are control gains, 𝑉 ∶ R → R is the range policy that
provides a desired velocity based on the distance, and 𝑊 ∶ R → R is
he speed policy that takes the speed limit into account. This desired
ontroller can be incorporated into a CBF-based safety filter, where the
BF of the ROM:

0(𝐪) = 𝐷 − 𝜌(𝑣, 𝑣L)

involves a safe distance expression that depends on the speeds as
given by 𝜌 ∶ R2 → R≥0. The corresponding safety filter generates safe
cceleration commands, that can ultimately be tracked by the truck in
rder to maintain a safe distance. If the tracking error is bounded, this
eads to safe behavior as highlighted by Theorem 14.
Importantly, accurate tracking of accelerations is challenging on

eavy-duty trucks, since they have large inertia and response time,
s well as complicated underlying dynamics in the engine, powertrain
nd brake systems. As a result, significant tracking errors inevitably
ccur that propagate as disturbance 𝑑 to the ROM. This necessitates the
se of safety-critical controllers that are robust to disturbances. Specif-
cally, (Alan et al., 2023) leveraged the concept of tunable input-to-state
safety proposed in Alan et al. (2022), and enforced:

𝐿𝐟0ℎ0(𝐪)+𝐿𝐠0ℎ0(𝐪)𝐤0(𝐪) ≥ −𝛼ℎ0(𝐪)+
‖𝐿𝐠0ℎ0(𝐪)‖

2

𝜀(ℎ0(𝐪))
, (84)

as a constraint in QP-based safety filters. This constraint is a tunable
counterpart of (74), where 𝜀 ∶ R → R>0 is a tunable function
f ℎ0 to provide robustness near the boundary of the safe set only
while being less robust to disturbances when safety is not in danger
f violation). The tunability facilitates reducing the conservativeness
f the controller, to allow the truck to keep shorter distances.
The end result is shown in Fig. 16, which presents emergency

raking experiments on a Navistar ProStar+ Class-8 truck as reported
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Fig. 16. Input-to-state safety on heavy-duty trucks in emergency braking. A connected automated truck is controlled to track acceleration commands designed in a safety-critical
ashion using a double integrator as ROM. The tracking errors act as a significant disturbance, hence robust safety-critical controllers are required to guarantee safe behavior. By
tilizing tunable input-to-state CBFs, proposed in Alan et al. (2022), for robust safety-critical control design, the truck safely executes the emergency braking maneuver without
aintaining an overly conservative distance. Remarkably, this was not possible by traditional CBFs without added robustness.
ource: These results and figures have been adapted from Alan et al. (2023)
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in Alan et al. (2023). The lead vehicle brakes to a full stop (black lines),
and the truck responds to this event with various controllers (colored
lines). The desired controller is unsafe during such a harsh maneuver
(blue lines). Similarly, a safety filter that enforces (38) without a robust-
ness term (i.e., without the term of 𝜀), although performing better, still
cannot maintain safety (red lines). This is due to the fact that the track-
ing of acceleration commands is imperfect and a significant disturbance
arises (see purple arrow), while the underlying controller is not robust
to disturbances. The robust safety-critical controller that enforces (84),
on the other hand, successfully guarantees safety. This demonstrates the
power of CBFs and ROMs in guaranteeing safe behavior on real-world
systems and highlights that robustness against discrepancies between
the ROM and the full system is crucial to achieving safety in practice.

8. Discussion and conclusions

Inspired by the success of reduced-order models in robotics, and
the need for constructive techniques for CBFs, this paper presented
a tutorial on using reduced-order models for safety-critical control.
The core idea behind this methodology is to extend a CBF for a
relatively simple system to a CBF for a complex system whose behav-
ior, at a high level, is captured by its corresponding reduced-order
model. We demonstrated different techniques, such as backstepping
and Lyapunov-certified tracking, for constructing CBFs for relevant
classes of control systems whose dynamics admit a particular layered
structure. These systems include but are not limited to those encoun-
tered in robotics such as wheeled, legged, and flying robots. The central
ideas of this approach were illustrated through theoretical results,
numerical examples, and case studies that demonstrated the successful
application of the ideas presented herein across various domains.

Although the methods covered in this tutorial provide a fairly gen-
eral way to construct CBFs for relevant classes of systems, they also pos-
sess several limitations that should be investigated in future research.
Perhaps the greatest limitation the approaches presented herein is
that CBFs were synthesized under the assumption of unlimited control
authority. In reality, any physical system will possess actuator limits
26
and designing CBFs that take into account such limits is of paramount
importance. Popular approaches to constructing CBFs that account
for actuation limits include backup CBFs (Chen et al., 2021; Gurriet
et al., 2018), input-constrained CBFs (Agrawal & Panagou, 2021), and
integral CBFs (Ames, Notomista, Wardi, & Egerstedt, 2021), among
others. It may be possible to unite the ideas presented herein with
such methods to systematically synthesize CBFs for high-dimensional
systems with actuation limits. Initial steps towards this unification have
been presented in Molnar and Ames (2023b) wherein the methods
ntroduced in Section 6 were combined with backup CBFs to develop
afety-critical controllers based on reduced-order models that also ac-
ount for actuation limits. Alternative approaches to accounting for
ctuation limits may involve the interplay between planning and con-
rol within a multi-rate framework (Csomay-Shanklin, Taylor, Rosolia,
Ames, 2022) in which trajectories of the reduced-order model are

designed to be compatible with a lower-level controller with limited
actuation authority.

Another question raised by the developments in this tutorial is:
how does one choose a suitable reduced-order model? The results in
Sections 4 and 5 (with the exception of Section 5.3) effectively require
the full-order dynamics to be fully actuated, and demonstrate that,
in such a situation, one may simply take the reduced-order model as
a single integrator. The procedure in Section 5.3 demonstrates how
CBFs may be constructed for underactuated systems under a certain
set of assumptions, but falls far short of a complete characterization of
synthesizing CBFs for underactuated systems. The challenges presented
by underactuated systems are implicitly bypassed in Section 6 by
assuming the existence of a low-level controller that tracks commands
generated by a reduced-order model. However, the ability to construct
such a controller will inevitably depend heavily on both the actuation
capability of the system and on the richness of the reduced-order
model. Fully characterizing when a reduced-order model is ‘‘good’’
in the sense that its behavior may be roughly replicated by the full-
order dynamics is an important open question that deserves a more
thorough investigation. We believe classical tools from nonlinear con-

trol theory (Isidori, 1995) such as the zero dynamics (Isidori, 2013),
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virtual constraints (Hamed & Ames, 2020; Maggiore & Consolini, 2013;
Westervelt, Grizzle, Chevallereau, Choi, & Morris, 2007), and out-
put regulation (Di Benedetto & Grizzle, 1994; Grizzle, Di Benedetto,
& Lamnabhi-Lagarrigue, 1994; Isidori & Byrnes, 1990) may play an
important role in answering such questions.

While there are important theoretical questions that remain unan-
swered, the case studies presented in Section 7 indicate that the meth-
ods outlined in this tutorial tend to perform well in practice (i.e., when
deployed on hardware) even when many of our standing assumptions,
such as unlimited actuation capability, are violated. Ultimately, we
believe developing principled approaches to handle such situations will
only further improve the performance of the methods presented herein
and facilitate their applications to a broader set of autonomous systems.
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Appendix. Proofs

Proof of Theorem 8. We leverage Lemma 2 to show that ℎ as in (47)
is a CBF for the corresponding control affine representation (45) of the
mixed relative degree system (44). We begin by computing the gradient
of ℎ as:

∇ℎ(𝐱) =
⎡

⎢

⎢

⎣

∇ℎ0(𝐪) +
1
𝜇
𝜕𝐤𝝃0
𝜕𝐪 (𝐪)⊤(𝝃 − 𝐤𝝃0(𝐪))

− 1
𝜇 (𝝃 − 𝐤𝝃0(𝐪)).

⎤

⎥

⎥

⎦

Thus, the Lie derivative of ℎ along 𝐠 as in (45) is:

𝐿𝐠ℎ(𝐱)⊤ =
⎡

⎢

⎢

⎣

𝐿𝐠𝐮0
ℎ0(𝐪) +

1
𝜇
𝜕𝐤𝝃0
𝜕𝐪 (𝐪)⊤(𝝃 − 𝐤𝝃0(𝐪))𝐠

𝐮
0 (𝐪)

− 1
𝜇 (𝝃 − 𝐤𝝃0(𝐪))𝐠

𝐮
1 (𝐪, 𝝃).

⎤

⎥

⎥

⎦

We now analyze the behavior of ℎ̇ when:

⎡

⎢

⎢

⎣

𝐿𝐠𝐮0
ℎ0(𝐪) +

1
𝜇
𝜕𝐤𝝃0
𝜕𝐪 (𝐪)⊤(𝝃 − 𝐤𝝃0(𝐪))𝐠

𝐮
0 (𝐪)

− 1
𝜇 (𝝃 − 𝐤𝝃0(𝐪))𝐠

𝐮
1 (𝐪, 𝝃)

⎤

⎥

⎥

⎦

=
[

𝟎
𝟎

]

.

t thus follows from the assumption that 𝐠𝐮1 is pseudo-invertible and the
econd equation in the above system that, when 𝐿𝐠ℎ(𝐱) = 𝟎, we must
ave 𝝃 − 𝐤𝝃0(𝐪) = 𝟎. It then follows from the first equation of the above
system that, when 𝐿𝐠ℎ(𝐱) = 𝟎, we must also have 𝐿𝐠𝐮0

ℎ0(𝐪) = 𝟎. Now,
computing the Lie derivative of ℎ along 𝐟 as in (45) when 𝐿𝐠ℎ(𝐱) = 𝟎,
we have:

𝐿𝐟ℎ(𝐱) =
[

∇ℎ0(𝐪) 𝟎
]

[

𝐟0(𝐪) + 𝐠𝝃0(𝐪)𝝃
𝐟1(𝐪, 𝝃)

]

=𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠𝝃0
ℎ0(𝐪)𝝃

=𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠𝝃0
ℎ0(𝐪)𝐤

𝝃
0(𝐪)

> − 𝛼(ℎ0(𝐪)) − 𝐿𝐠𝐮0
ℎ0(𝐪)𝐤𝐮0 (𝐪)

= − 𝛼(ℎ0(𝐪))
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= − 𝛼(ℎ(𝐱)),
where the third line follows from 𝝃 = 𝐤𝝃0(𝐪), the fourth from (46), the
fifth from 𝐿𝐠𝐮0

ℎ0(𝐪) = 𝟎, and the sixth from ℎ0(𝐪) = ℎ(𝐱) (provided
𝐿𝐠ℎ(𝐱) = 𝟎). It follows from Lemma 2 that ℎ is a CBF for (45) on 
as in (40). □

Proof of Theorem 9. We establish this result by showing that the
function ℎ ∶ 𝑇 → R as defined in (51) satisfies the barrier-like
inequality ℎ̇(𝐪, 𝐪̇) ≥ −𝛼(ℎ(𝐪, 𝐪̇)) for the closed-loop system, allowing one
to invoke the comparison lemma (Khalil, 2002, Lemma 3.4) to establish
forward invariance of . To do so, we compute:

ℎ̇(𝐪, 𝐪̇) =ℎ̇0(𝐪, 𝐪̇) −
1
𝜇
𝑉̇ (𝐪, 𝐪̇),

oting that ℎ̇0(𝐪, 𝐪̇) = ∇ℎ0(𝐪) ⋅ 𝐪̇ and:

𝑉̇ (𝐪, 𝐪̇) =(𝐪̇ − 𝐤0(𝐪))⊤
[

𝐃(𝐪)𝐪̈ − 𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇
]

+ 1
2
(𝐪̇ − 𝐤0(𝐪))⊤𝐃̇(𝐪, 𝐪̇)(𝐪̇ − 𝐤0(𝐪))

= − (𝐪̇ − 𝐤0(𝐪))⊤
[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇ + 𝐂(𝐪, 𝐪̇)𝐪̇

+ 𝐆(𝐪) − 𝐁𝐤(𝐪, 𝐪̇)
]

+ 1
2
(𝐪̇ − 𝐤0(𝐪))⊤𝐃̇(𝐪, 𝐪̇)(𝐪̇ − 𝐤0(𝐪))

= − (𝐪̇ − 𝐤0(𝐪))⊤
[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇ + 𝐂(𝐪, 𝐪̇)𝐤0(𝐪)

+ 𝐆(𝐪) − 𝐁𝐤(𝐪, 𝐪̇)
]

,

here the second equality follows from substituting in the dynamics
33) and the third from Property 1. Hence, ℎ̇ may be expressed as:

̇ (𝐪, 𝐪̇) =∇ℎ0(𝐪) ⋅ 𝐪̇ + 1
𝜇
(𝐪̇ − 𝐤0(𝐪))⊤

[

𝐃(𝐪)
𝜕𝐤0
𝜕𝐪

(𝐪)𝐪̇

+ 𝐂(𝐪, 𝐪̇)𝐤0(𝐪) +𝐆(𝐪) − 𝐁𝐤(𝐪, 𝐪̇)
]

≥ − 𝛼(ℎ(𝐪, 𝐪̇)),

here the inequality follows from (55). It then follows from the com-
arison lemma that ℎ(𝐪(𝑡), 𝐪̇(𝑡)) ≥ ℎ(𝐪0, 𝐪̇0) for all 𝑡 ∈ 𝐼(𝐪0, 𝐪̇0) so that if
he system’s initial condition satisfies (𝐪0, 𝐪̇0) ∈ , then ℎ(𝐪(𝑡), 𝐪̇(𝑡)) ≥ 0
or all 𝑡 ∈ 𝐼(𝐪0, 𝐪̇0), implying the forward invariance of . □

roof of Theorem 10. We use an argument similar to Lemma 2 to
how that ℎ as defined in (66) is a CBF. We begin by computing the
ime derivative of ℎ to obtain:

̇ (𝐱,𝐮) =∇ℎ0,1(𝐪1) ⋅ 𝐪̇1+
1
𝜇
(𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐃̄1(𝐪)

𝜕𝐤0,1
𝜕𝐪1

𝐪̇1

− 1
𝜇
(𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐃̄1(𝐪)𝐪̈1

− 1
2𝜇

(𝐪̇1 − 𝐤0,1(𝐪1))⊤ ̇̄𝐃1(𝐪, 𝐪̇)(𝐪̇1 − 𝐤0,1(𝐪1))

=∇ℎ0,1(𝐪1) ⋅ 𝐪̇1+
1
𝜇
(𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐃̄1(𝐪)

𝜕𝐤0,1
𝜕𝐪1

𝐪̇1

− 1
𝜇
(𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐁1𝐮

+ 1
𝜇
(𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐇̄1(𝐪, 𝐪̇)

− 1
2𝜇

(𝐪̇1 − 𝐤0,1(𝐪1))⊤ ̇̄𝐃1(𝐪, 𝐪̇)(𝐪̇1 − 𝐤0,1(𝐪1)).

ollecting various terms in the above, we see that:

𝐿𝐟ℎ(𝐱) =∇ℎ0,1(𝐪1) ⋅ 𝐪̇1 +
1
𝜇
(𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐇̄1(𝐪, 𝐪̇)

+ 1
𝜇
(𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐃̄1(𝐪)

𝜕𝐤0,1
𝜕𝐪1

𝐪̇1

− 1
2𝜇

(𝐪̇1 − 𝐤0,1(𝐪1))⊤ ̇̄𝐃1(𝐪, 𝐪̇)(𝐪̇1 − 𝐤0,1(𝐪1))

𝐠ℎ(𝐱) = − 1 (𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐁1,
𝜇
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where 𝐱 = (𝐪, 𝐪̇) and 𝐟 and 𝐠 are as in (34). Now, since 𝐁1 is
pseudo-invertible, we have:

𝐿𝐠ℎ(𝐱) = 𝟎 ⟺ (𝐪̇1 − 𝐤0,1(𝐪1))⊤𝐁1 = 𝟎
⟺ 𝐪̇1 = 𝐤0,1(𝐪1).

Hence, when 𝐿𝐠ℎ(𝐱) = 𝟎, we have:

𝐿𝐟ℎ(𝐱) =∇ℎ0,1(𝐪1) ⋅ 𝐤0,1(𝐪1)
> −𝛼(ℎ0,1(𝐪1))
= −𝛼(ℎ(𝐪, 𝐪̇)),

which implies that ℎ is a CBF for (34). □

Proof of Theorem 12. Computing the time derivative of ℎ yields:

ℎ̇(𝐪, 𝝃) =ℎ̇0(𝐪, 𝝃) −
1
𝜇𝛾1

𝑉̇ (𝐪, 𝝃)

=𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝝃 −
1
𝜇𝛾1

𝑉̇ (𝐪, 𝝃)

=𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)(𝐤0(𝐪) + 𝐝) − 1
𝜇𝛾1

𝑉̇ (𝐪, 𝝃)

≥𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)(𝐤0(𝐪) + 𝐝) + 𝛾
𝜇𝛾1

𝑉 (𝐪, 𝝃)

≥ − 𝛼ℎ0(𝐪) +
1
𝜀
‖𝐿𝐠0ℎ0(𝐪)‖

2

− ‖𝐿𝐠0ℎ0(𝐪)‖‖𝐝‖ +
𝛾
𝜇𝛾1

𝑉 (𝐪, 𝝃),

where the first inequality follows from (71b) and the second from (74).
After completing squares and further bounding ℎ̇, we have:

ℎ̇(𝐪, 𝝃) ≥ − 𝛼ℎ0(𝐪) −
𝜀
4
‖𝐝‖2 + 𝛾

𝜇𝛾1
𝑉 (𝐪, 𝝃)

≥ − 𝛼ℎ0(𝐪) −
𝜀
4𝛾1

𝑉 (𝐪, 𝝃) + 𝛾
𝜇𝛾1

𝑉 (𝐪, 𝝃)

= − 𝛼ℎ(𝐪, 𝝃) + 1
𝜇𝛾1

(

𝛾 − 𝛼 −
𝜀𝜇
4

)

𝑉 (𝐪, 𝝃),

where the second inequality follows from (71a) and the final equality
from (75). Hence, provided (77) holds, then:

ℎ̇(𝐪, 𝝃) ≥ −𝛼ℎ(𝐪, 𝝃),

implying ℎ is a barrier function for (31) with 𝐮 = 𝐤(𝐱) on  as in (76),
hich implies that  is forward invariant for the closed-loop system by
heorem 2. □

roof of Theorem 14. Taking the time derivative of ℎ from (82) yields:

ℎ̇(𝐪, 𝝃, 𝑡) =ℎ̇0(𝐪, 𝝃) +
𝛾𝑀
𝜇
𝑒−𝛾𝑡

=𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)𝝃 +
𝛾𝑀
𝜇
𝑒−𝛾𝑡

=𝐿𝐟0ℎ0(𝐪) + 𝐿𝐠0ℎ0(𝐪)(𝐤0(𝐪) + 𝐝) + 𝛾𝑀
𝜇
𝑒−𝛾𝑡.

Lower bounding the above using (74) yields:

ℎ̇(𝐪, 𝝃, 𝑡) ≥ − 𝛼ℎ0(𝐪) +
1
𝜀
‖𝐿𝐠0ℎ0(𝐪)‖

2 − ‖𝐿𝐠0ℎ0(𝐪)‖‖𝐝‖

+
𝛾𝑀
𝜇
𝑒−𝛾𝑡,

hich, after completing squares, may be further bounded as:

̇ (𝐪, 𝝃, 𝑡) ≥ − 𝛼ℎ0(𝐪) −
𝜀
4
‖𝐝‖2 + 𝛾𝑀

𝜇
𝑒−𝛾𝑡.

It then follows from the above and the bound on 𝐝 from (81) that:

ℎ̇(𝐪, 𝝃, 𝑡) ≥ − 𝛼ℎ0(𝐪) −
𝜀𝑀
4
𝑒−𝛾𝑡 − 𝜀𝛿

4
+
𝛾𝑀
𝜇
𝑒−𝛾𝑡

= − 𝛼ℎ0(𝐪) +
𝑀
𝜇

(

𝛾 −
𝜀𝜇
4

)

𝑒−𝛾𝑡 − 𝜀𝛿
4
.

Using the definition of ℎ from (82), we then have:

ℎ̇(𝐪, 𝝃, 𝑡) ≥ − 𝛼ℎ(𝐪, 𝝃, 𝑡) + 𝑀 (

𝛾 − 𝛼 −
𝜀𝜇)

𝑒−𝛾𝑡.
28

𝜇 4
Thus, provided (77) holds, then:

ℎ̇(𝐪, 𝝃, 𝑡) ≥ −𝛼ℎ(𝐪, 𝝃, 𝑡).

t then follows from the comparison lemma that ℎ(𝐪(𝑡), 𝝃(𝑡), 𝑡) ≥ ℎ(𝐪0, 𝝃0,
0) for all 𝑡 ∈ 𝐼(𝐪0, 𝝃0) so that if the system’s initial condition satisfies
(𝐪0, 𝝃0) ∈ (0), then ℎ(𝐪(𝑡), 𝝃(𝑡), 𝑡) ≥ 0 for all 𝑡 ∈ 𝐼(𝐪0, 𝝃0), implying the
forward invariance of (𝑡). □
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