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Abstract

A high-resolution fourth-order Padé scheme is used to simulate locally isothermal 3D disk turbulence driven by the
vertical shear instability (VSI) using 268.4 M points. In the early nonlinear period of axisymmetric VSI, angular
momentum transport by vertical jets creates correlated N-shaped radial profiles of perturbation vertical and
azimuthal velocity. This implies dominance of positive perturbation vertical vorticity layers and a recently
discovered angular momentum staircase with respect to radius (r). These features are present in 3D in a weaker
form. The 3D flow consists of vertically and azimuthally coherent turbulent shear layers containing small vortices
with all three vorticity components active. Previously observed large persistent vortices in the interior of the
domain driven by the Rossby wave instability are absent. We speculate that this is due to a weaker angular
momentum staircase in 3D in the present simulations compared to a previous simulation. The turbulent viscosity
parameter α(r) increases linearly with r. At intermediate resolution, the value of α(r) at midradius is close to that of
a previous simulation. The specific kinetic energy spectrum with respect to radial wavenumber has a power-law
region with exponent −1.84, close to the value −2 expected for shear layers. The spectrum with respect to
azimuthal wavenumber has a −5/3 region and lacks a −5 region reported in an earlier study. Finally, it is found
that axisymmetric VSI has artifacts at late times, including a very strong angular momentum staircase, which in 3D
is present weakly in the disk’s upper layers.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Hydrodynamical simulations (767);
Hydrodynamics (1963); Accretion (14)

1. Introduction

1.1. General Introduction and Motivation

A question posed by astronomical observations of proto-
planetary disks (PPDs), the history of our own solar system,
and the results of theoretical and numerical modeling is: What
types of flow, temperatures, and magnetic field configurations
occur at different locations and during different periods of disk
evolution, and how do they impact the dynamics and chemistry
of solid particles which eventually form planets? The
traditional motivation for studying flow turbulence in PPDs
was to explain the so-called “anomalous viscosity” that gives
rise to an accretion flow into the central star. More recently,
however, the study of PPD turbulence is also very much
motivated by the desire to explore its role in the pathway from
micron-sized grains to asteroid-sized bodies, called planetesi-
mals, that are believed to be the progenitors of rocky planets,
the putative solid cores of gas giant planets, and whose
remnants are today’s asteroids, comets, and Kuiper Belt
objects. This motivation is reflected in a wide ranging 19-
author review (G. Lesur et al. 2022) examining various aspects
of disk turbulence both in isolation and in interaction with
particles and grains embedded in the gaseous nebula.

With respect to turbulence in isolation, it has come to be
realized that the ionized fraction needed to sustain magnetor-
otational instability (MRI) occurs only at small radii near the
star, large radii where the surface density is sufficiently low,

and the upper layers of the disk (G. Lesur et al. 2022). At the
same time, several hydrodynamic modes of instability have
been identified. These are the subcritical baroclinic instability
(SBI), convective overstability, zombie vortex instability, and
vertical shear instability (VSI), the latter of which is the subject
of the present work. Each of these is active for a certain range
of radiative relaxation time, which depends on the number
density and size distribution of dust grains.
VSI has received the lion’s share of interest over the last few

years since it is thought to be the most active turbulence
generating mechanism within the solar nebula’s midplane
regions during the first million years (e.g., Y. Fukuhara et al.
2021), a time when the first planetesimals were made. Of the
many open questions in this respect, perhaps the most pressing
is the role that turbulence plays in bringing about or thwarting
the formation of planetesimals (e.g., see recent discussions in
U. Schäfer et al. 2020; P. Estrada & O. Umurhan 2023). In
order to answer this, we must develop an understanding of the
strength and structure of turbulence at different length scales in
PPD settings. For example, how much of the turbulent energy
generated by VSI at large scales propagates down to the scales
where particles coalesce to form planetesimals? How does it
subsequently influence particle dynamics at those scales? We
take a much-needed step in this direction by examining VSI
(without particles) at sufficiently high resolution to capture a
larger range of its small-scale structure.

1.2. Physics of VSI and Previous Theoretical Work

The present work employs cylindrical coordinates (z, r, f)
which form a right-handed system with unit vectors satisfying
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ef= ez× er, and ef pointing into the page. The spherical radius
is denoted ( )R z r2 2 1 2= + .

Research on VSI in PPDs has its roots in work involving the
radiative zones of differentially rotating stars (P. Goldreich &
G. Schubert 1967; K. Fricke 1968). In that context, thermal
diffusivity is much larger than kinematic viscosity, allowing
displaced fluid elements to maintain their angular momentum
but not their entropy. As explained by R. P. Nelson et al.
(2013), the latter removes the stabilizing effect of vertical
buoyancy, while the presence of a vertical shear allows the
stabilizing effect of a positive radial gradient of angular
momentum to be overcome for modes that have a sufficiently
short radial wavelength.

V. Urpin & A. Brandenburg (1998) and V. Urpin (2003)
were the first to suggest that VSI could be a source of
turbulence in PPDs and present a local stability analysis,
modeling radiative transfer using Fick’s law for thermal
conduction. The first simulations of VSI were performed by
R. Arlt & V. Urpin (2004) using ZEUS-3D; they also present a
simple local stability analysis for isothermal flow. Their
simulations capture the correct growth rate of the instability
and extend into the nonlinear regime, providing the first
estimates of the turbulent α parameter arising from VSI.
However, their nonlinearly saturated states seem inconclusive,
particularly when comparing turbulent transport characteristics
between their small and large radial domain simulations.

As such, the aforementioned work failed to generate interest
until R. P. Nelson et al. (2013) accidentally encountered the
instability while trying to test the basic state for an MRI
simulation. They presented the first plots of the flow structure
in axisymmetric simulations, as well as in a 3D simulation with
an azimuthal domain size of Δf= π/4. These results
demonstrate that well-developed VSI consists of radially
narrow, vertically oriented structures of vertical velocity with
alternating sign. They modeled radiative effects as a relaxation
to the basic-state temperature and found that the flow is
unstable only when the relaxation time, trad, is comparable to or
shorter than the orbital time. They also extended earlier local
stability analyses into the vertically global regime.

R. P. Nelson et al. (2013) provided the impetus for many
subsequent analytical and numerical investigations. M.-K. Lin
& A. Youdin (2015) performed a detailed linearized analysis of
the effect of radiative relaxation time and obtain the following
local criterion for VSI to be active:

∣ ( ) ∣ ( )t
r z

N
. 1

z
rad 2

¶W ¶

Since the (stabilizing) Brunt–Väisälä frequency Nz increases
more rapidly with |z| than the vertical shear ∂Ω/∂z, surface
modes in the upper regions of the disk are the first to be
damped as trad increases. They obtain a key criterion for global
instability:
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where h≡H/r is the ratio of disk scale height to radius, q is the
radial temperature exponent, and γ is the ratio of specific heats.
Equation (2) says that VSI in thicker disks and those with a
steeper radial temperature is less constrained by the relaxation
time. Based on the assumption of a minimum-mass nebula
model, M.-K. Lin & A. Youdin (2015) express the relaxation

time in terms of an effective thermal opacity and find that VSI
should be active in the intermediate region of the disk from
r= 5 to 50 au. However, follow-up studies show that models
with more massive disks or reduced depletion in the small grain
population can sensitively alter the medium’s opacity, leading
to a larger range of the VSI active region (e.g., Y. Fukuhara
et al. 2021; G. Lesur et al. 2022, Section 5.3).
In the limit where ΩKtrad= h|q|/(γ− 1), linear disturbances

are isothermal. Several authors (R. P. Nelson et al. 2013;
A. J. Barker & H. N. Latter 2015; O. M. Umurhan et al. 2016)
have shown that the resulting system of linear perturbation
equations may then be analytically examined in the radially
local but vertically global limit, which extends previous fully
local analyses (P. Goldreich & G. Schubert 1967;
K. Fricke 1968; R. Arlt & V. Urpin 2004) and Boussinesq
equation treatments (e.g., V. Urpin 2003). The main new
feature contained in these semi-global treatments is that
unstable modes are exponentially growing oscillations.
O. M. Umurhan et al. (2016) show that the most unstable
disturbances have a radial wavelength λr given by

∣ ∣ ( ) ( ) ( )q h r H r , 3r,maxl p=

where H(r) is the local disk scale height. Moreover,
they show that modes become purely oscillatory
(neither growing nor decaying) for disturbance wavelengths

2r r r,marginal ,maxl l l> = .
H. N. Latter & J. Papaloizou’s (2018, henceforth L&P)

theoretical study begins with a simple but informative setup,
namely, incompressible uniform density flow in a local box that
is uniformly sheared radially as well as vertically. This setup
permits Fourier analysis with the wavevector dependent on
time (k= k(t)), a trick due to Lord Kelvin (A. D. D. Craik et al.
1986) that eliminates terms which are linear in the coordinates.
As is known (op. cit.), for such a setup the nonlinear term for
each individual Fourier mode is zero, and therefore each
Fourier mode is also a solution to the nonlinear equations.
Thus, L&P note that a single mode can grow to arbitrary
amplitude. In reality, a perturbation will consist of many
modes, and therefore nonlinear interaction among them can
lead to a saturated turbulent state. An elegant result (near their
Equation (15)) is presented for the angle with respect to the
vertical of the axisymmetric VSI jets. These jets are nearly
vertical and their small tilt depends on the vertical shear.
Another simple result is that the growth rate, σ, of the most
unstable mode is proportional to the vertical shear:

∣ ∣ ( )r z , 4s » ¶W ¶

for small vertical shear. Next, L&P go beyond the uniform
density case to consider uniform stratification with the
Boussinesq approximation and include temperature and
momentum diffusivity. They find that radially short waves
exploit thermal diffusion to circumvent buoyant stabilization.
Finally, L&P consider secondary (or parasitic) instabilities
generated by a primary one with velocity amplitude V> 0. The
axisymmetric parasites take the form of Kelvin–Helmholtz
(KH) modes generated on vertical jet shear layers of the
primary VSI mode. A necessary condition for instability for
moderate V is that the Rossby number

( )kV
Ro 0.9262, 5V º

W

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where k is the wavenumber of the primary VSI mode. The
presence of Ω in the denominator expresses the fact that
rotation is stabilizing. If RoV? 1 such that rotation does not
play a role, then the characteristics of the secondary instability
are like those of classical KH instability. For the nonaxisym-
metric parasites, one must be mindful of the fact that the
primary VSI mode also has azimuthal jets. In fact, if we make
the approximation that kz≈ 0, i.e., that the VSI mode has a
negligible tilt relative to the vertical, then, Equations (11) and
(15) in L&P imply that the amplitude of the azimuthal jets
equals that of the vertical jets. The azimuthal jets are also
susceptible to KH instability. However, the presence of
background shear, rotation, and of both vertical and azimuthal
vorticity modify its characteristics from classical KH instabil-
ity; this will be seen in Section 4.3.

C. Cui & H. N. Latter (2022) continue the L&P analysis of
parasitic modes and begin by noting that the primary VSI mode
observed in global simulations is a standing wave in the
vertical direction and radially propagating. They then look for a
pair of inertial modes that grow by resonant interaction with the
primary and find that there is an infinity of such pairs that can
have much smaller radial wavelength than the primary mode.
Numerical simulations will require many grid cells per primary
wavelength r,maxl to resolve them.

1.3. Previous Numerical Work

Table 1 lists parameters in some previous 3D simulations
without radiative transport and compares them with the present
one. The metric for numerical resolution given in the table,
introduced by N. Manger & H. Klahr (2018), is the number of
grid points per scale height H0 at the midradius of the domain.

The computational study of S. Richard et al. (2016) was
geared to the study of large vortices with vertical vorticity.
They chose parameters to excite both VSI and SBI, which is
known to generate such vortices. Indeed, their simulation
produced elliptical vortices via the Rossby wave instability
(RWI), which was studied by R. V. E. Lovelace et al. (1999)
for razor-thin adiabatic disks. A necessary condition for the
instability is that there be a local maximum of the quantity,

( )⎛⎝ ⎞⎠P
2

, 6
z

2

w
º

S
Sg

g


where Σ is the surface density, ωz the basic-state vertical
vorticity, P the vertically integrated pressure, and γ the
adiabatic exponent. The resulting vortex aspect ratio was
found to depend on trad. Table 1 shows that their radial
resolution is superlative. Even though their radial domain width
is only 2 scale heights, a sufficient number of structures is
accommodated.
There is a series of 3D PLUTO simulations with radiative

transport and stellar irradiation (M. R. Stoll & W. Kley
2014, 2016). The primary results are: (i) persistence of VSI
with radiative transport, and (ii) a peak in the Trf Reynolds
stress away from the midplane. M. R. Stoll et al. (2017)
performed vertically isothermal simulations and studied the
existence of a meridional mean flow due to Reynolds stress
gradients, which we confirm in Section 4.9. Table 1 shows that
these simulations are marginally resolved in the azimuthal
direction, having ≈5 grid points per scale height along the
circumference at midradius. M. Flock et al. (2020) also
performed PLUTO simulations with radiative transport and
stellar irradiation. Parameters were chosen to represent a typical
T Tauri system. They employed a large number of grid points,
1024× 512× 2044 (nR× nθ× nf), which gives 70 grid cells
per scale height. Their main findings were that (i) VSI is able to
vertically loft 1 mm grains such that their scale height ratio
Hgrains(r)/r= 0.037; this is much larger than the value
H/r= 0.007 for the HL Tau system, which is better fit by
nonideal MHD simulations (M. Flock et al. 2017); and (ii) a
large persistent vortex is formed by the RWI at a radial location
near the inner radial boundary, where the thermal relaxation
times becomes low enough that VSI becomes viable. This
causes a peak in the turbulence α(r) parameter, which in turn
leads to a dip in surface density and a maximum in the RWI
indicator function ( )r .
N. Manger & H. Klahr (2018) performed 3D simulations

using PLUTO’S piecewise parabolic scheme. They observed
multiple elliptic eddies in the midplane with anticyclonic
vertical vorticity, lifetimes of hundreds of orbits, and aspect
ratios >8. Such vortices are formed only for sufficiently large
azimuthal domains with Δf= π and Δf= 2π. Their specific
kinetic energy spectrum with respect to the azimuthal
wavenumber m has a steeper than −5/3 power-law region
followed by a −5 power-law region. Our simulations obtain
only the −5/3 range (Section 4.5).

Table 1
Resolution Comparison between Representative Previous 3D Simulations (without Radiative Transport) and the Present One

References p q h ΩKtrad nR × nθ × nf nR × nθ × nf per H0 ΔR R0Δθ Δf
or or or or

nr × nz × nf nr × nz × nf per H0 Δr Δz

S. Richard et al. (2016) −1.5 −2 0.20 0.05-0.5 500 × 200 × 300 250 × 20 × 38.2 2H0 10H0 2π/4
M. R. Stoll & W. Kley (2016) −1.5 −1 0.05 0 1024 × 256 × 64 38 × 25.6 × 4.1 27H0 10H0 2π/8
M. R. Stoll et al. (2017) −1.5 −1 0.05 0 600 × 128 × 1024 21 × 12.8 × 8.1 29H0 10H0 2π
N. Manger & H. Klahr (2018) −2/3 −1 0.10 0 256 × 128 × 768 17.1† × 14.6 × 9.8 15H0 8.75H0 2π
N. Manger et al. (2020) −1.5 −1 0.03 0 256 × 128 × 3402 19.2 × 18.3 × 16.2 13.3H0 7H0 2π
N. Manger et al. (2020) −1.5 −1 0.10 0 256 × 128 × 1024 17.1 × 18.3 × 13.0 15H0 7H0 2π
Present −1.5 −1 0.10 0 512 × 512 × 1024 74 × 74 × 16 7H0 7H0 2π

Note. H0: scale height at the midradius of the computational domain. p: radial density exponent. q: radial temperature exponent. h ≡ H0/R0, the disk aspect ratio. R
and r denote the radius in spherical and cylindrical coordinates, respectively. ΔR and Δr denote the width of the radial domain and include sponge regions. The
resolution per scale height (H0) is assessed at the midradius of the computational domain. †: the radial mesh for this simulation is logarithmic in R and the value 17.1
represents an average resolution per H0.
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N. Manger et al. (2020, henceforth M20) constitutes the latest
3D simulations prior to the present work. One of their cases has
the same disk aspect ratio, and exponents of density and
temperature as the present case, namely, h= 0.1, p=− 3/2,
and q=−1, respectively. Compared to their resolution per scale
height in the radial and vertical directions, ours is about 4 times
improved, while being comparable in the azimuthal
direction. In addition, the Padé scheme we employ provides
better resolution for the same number of grid points
(S. K. Lele 1992). Another metric particularly suited to assess
resolution in the meridional plane is the number of grid points
per radial wavelength of the fastest-growing mode r,maxl
introduced in Equation (3). Most of the simulations listed in
Table 1 have a temperature exponent of q=−1, for which case
h(r)=H0/r0, and Equation (3) becomes

( ) ∣ ∣ ( ) ( )r q
H
r

H r . 7r,max
0

0
l p=

Here, q is the radial temperature exponent such that
( ) ( )T r r r q

0µ , H0 is the scale height at midradius (r0), and
H(r) is the local scale height (see Section 2.1). To obtain the
above-stated metric (at midradius), multiply the tabulated
number of grid points per scale height in Table 1 by 0.31 for
the h≡H0/r0= 0.10 cases, and by ≈0.10 for the h= 0.03
case. Doing this implies that for h= 0.10, we have 22.9 points
in the meridional plane per ( )rr,max 0l , while M20 have 5.7
points. For their h= 0.03 case, M20 have 1.9 points.

M20 varied the disk aspect ratio h≡H0/R0 and the density
exponent p (see Equation (9)) and found that the eddy viscosity
parameter α∝ h2.6. They also bolstered their 2018 findings
concerning the specific energy spectrum and the formation of
large persistent vortices (LPVs) in the midplane.

Most recently, J. D. Melon Fuksman et al. (2024a, 2024b,
henceforth MF24a and MF24b, respectively) performed high-
resolution axisymmetric simulations with two-moment radia-
tive transport and frequency-dependent opacities. They find
that as dust is depleted, VSI is excited only in the upper layers
of the disk. They find that the specific angular momentum
jf(r)= ufr develops a staircase profile with respect to r, i.e.,
regions of flattened jf(r) separated by jumps. We confirm that
this occurs in the axisymmetric case and weakly in the 3D case.

2. Setup, Basic State, and Simulation Parameters

2.1. Basic State

The initial condition for the present simulations consists of a
basic state and perturbation. The basic state follows
R. P. Nelson et al. (2013). The temperature, or equivalently
the isothermal sound speed squared, varies as a power law with
cylindrical radius

( ) ( ) ( )c r c r r , 8q
i
2

0
2

0=

where r0 is a reference radius. The temperature gradient is due
to stellar heating. The midplane density is also assumed to
follow a power law:

( ) ( ) ( )r r r . 9p
mid 0 0r r=

The vertical scale height of the disk is

( ) ( ) ( ) ( )H r c r r , 10i K= W

where the Keplerian angular velocity is

( ) ( ) ( ) ( )r r r GM r, . 11K 0 0
3 2

0 0
3 1 2W = W W º-

Substituting Equations (8) and (11) into Equation (10), we
obtain

( ) ( ) ( )( )H r H r r H c, . 12q
0 0

3 2
0 0 0= º W+

We choose q=− 1; for this case, H(r) grows linearly with r.
Therefore, h(r)≡H(r)/r=H0/r0.
Defining the spherical radius ( )R r z2 2 1 2º + , the density

and azimuthal velocity profiles that satisfy vertical hydrostatic
balance and radial centrifugal balance are given by
R. P. Nelson et al. (2013) as

( ) ( )⎜ ⎟⎛⎝ ⎞⎠ ⎡⎣⎢ ⎛⎝ ⎞⎠⎤⎦⎥r z
r
r

GM

c R r
, exp

1 1
, 13
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0
0 i

2
r r= -

( ) ( ) ( ) ( ) ( )⎡⎣⎢ ⎛⎝ ⎞⎠ ⎤⎦⎥u r z u r p q
H
r

q
qr
R

, 1 , 14K

2 1 2

= + + + -f

where ( ) ( )u r GM rK
1 2= is the local Keplerian velocity.

In order to later compare values of the fluctuation vorticity
relative to those in the basic state, Figure 1 plots the two
nonzero components of the basic-state vorticity.

2.2. A Remark on the Basic State for VSI

The VSI basic state has an angular velocity that varies not
only with cylindrical radius r but also with the vertical
direction, z: uf= uf(r, z). As the name implies, VSI is driven
by the vertical gradient ∂zuf of angular velocity. This gradient
corresponds to the existence of a radial vorticity, ωr,

( )
r

u u

z

u

z
1

, 15r
zw
f

=
¶
¶

-
¶

¶
= -

¶

¶
f f

since uz= 0 in the basic state. The presence of ωr is attributed
to a baroclinic torque that arises from the radial temperature
gradient. However, since baroclinic torque produces azimuthal
rather than radial vorticity, the effect is indirect, as we now
explain. For the present case of infinitely rapid cooling, the
equation of state is vertically isothermal:

( ) ( )p c r . 16i
2r=

The rate of baroclinic vorticity production then becomes

( ) ( )ep
c
r z

1 1
. 17

2
i
2

r
r

r
r

 ´  =
¶
¶

¶
¶

f

Equation (17) says that the baroclinic term applied to the basic
state produces azimuthal rather than radial vorticity. Consider-
ing the signs of the right-hand side (rhs), we conclude that
ωf> 0 is produced in the upper disk, while ωf< 0 is produced
in the lower disk. This vorticity induces a radial rather than
azimuthal velocity.
To investigate the reason for the apparent conflict, consider

the f vorticity equation assuming axisymmetry; this is given as
Equation (B11):

( )⎜ ⎟⎛⎝ ⎞⎠D
Dt r r

u

z r
c
r z

1 1
, 18
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2

2
i
2w

r r r
r

=
¶

¶
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¶
¶

¶
¶
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where the second term is the baroclinic torque. If we assume
both hydrostatic and centrifugal balance (uz= ur= 0), then
ωf= 0 and we obtain

( )
u

z
r c

r z
. 19

2
i
2

r
r¶

¶
= -

¶
¶

¶
¶

f

Equation (19) shows that vertical shear (=minus the radial
vorticity) is proportional to the rate of baroclinic generation of
azimuthal vorticity. However, it should be clear from the
derivation that Equation (19) arises from the constraint of
vertical and centrifugal balance. In an actual disk, this
constraint will never be satisfied identically. Therefore, in the
future it may be worthwhile to perform simulations starting
with temperature and Keplerian gradients alone, and allow all
other vorticity components to be freely generated. Presumably,
the final stationary turbulent state will have the same statistics
as with the conventional approach.

For the basic state given by Equation (16), the vertical
Brünt–Väisälä frequency squared N 0z

2 > . This implies that
buoyancy has a stabilizing effect when the flow is adiabatic.
Buoyancy can be suppressed when the temperature of
displaced parcels relaxes sufficiently rapidly to the basic state.
In the present work, we assume that the radiative relaxation
time is zero, i.e., that the vertically isothermal equation of state

( )p c ri
2r= remains valid in the perturbed state.

2.3. Simulation Parameters

The simulation code PADÉ (K. Shariff 2024) uses fourth-
order Padé differentiation (S. K. Lele 1992), which maintains
accuracy for higher wavenumbers than conventional central
finite-difference schemes of the same order. The simulations
solve the hydrodynamic equations for compressible flow in
cylindrical coordinates (r, z, f) with a point-mass source of
gravity at r= z= 0. The equation of state is locally isothermal:

( ) ( )p c r , 20i
2r=

where the isothermal sound speed ci(r) does not vary with time
and has radial dependence given by Equation (8). This assumes
rapid radiative relaxation of thermal fluctuations to the basic
state.
Table 2 lists simulation parameters. The number of grid

points is 512× 512× 1024 (nr× nz× nf). We choose r0 to be
the midradius of the computational domain. The density and
temperature exponents are set to p=−3/2 and q=−1,
respectively. The disk aspect ratio is chosen to be
h≡H0/r0= 0.1. These three parameters were chosen to be
the same as for case p1.5h0.1 in M20.
We are free to set three quantities to unity in the code:

H0= ρ0= T0= 1, where T0 is the Keplerian period at r0.
Therefore, the unit of velocity is H0/T0, i.e., scale heights per
orbital period at r0, and in code units the sound speed
c0=H0Ω0= 2π.

Figure 1. Basic-state vorticity.

Table 2
Parameters for the Main 3D Run

Parameter Value

No. of grid points, nr × nz × nf 512 × 512 × 1024
Density exponent, p −3/2
Temperature exponent, q −1
Disk aspect ratio, H0/r0 0.10
Orbital period, T0, at r0 1
Density, ρ0 at r0 1
Sound speed c0 at r0 2π
Radial domain, [ ]r H r H,min 0 max 0 [6.5, 13.5]
Vertical domain, [ ]z H z H,min 0 max 0 [−3.5, 3.5]
Azimuthal domain f ä [0, 2π]
Sponge width, δsponge/H0 0.5
Decay period, tsponge, for sponge 20 time steps
Number of processors 2048
CPU time per step 1.785 s
Intel processor Haswell
Coeff. of artificial bulk viscosity, Cβ 1.3
Strength of Padé filter, òfilter:
t/T0 ä [0, 300.27) 0.125
t/T0 ä [300.27, 365.84) 0.06
t/T0 ä [365.84, 372.33) 0.03
t/T0 ä [372.33, 479.4] 0.015
No. of time steps 862,584
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The radial and vertical domains are both 7H0 long with a
sponge strip of width δsponge/H0= 0.5 adjacent to each radial
and vertical boundary. The flow field is relaxed to the basic
state in the sponge regions with a characteristic relaxation time
tsponge= 20 time steps. Zero normal velocity boundary
conditions are applied at the radial and vertical boundaries.
The azimuthal domain is a full circle with periodic boundary
conditions. The number of grid points per H0 is therefore
74× 74× 16 in r, z, and f (at r0), respectively. The smaller
resolution in f is justified by the fact that Keplerian shear
elongates vortical structures in this direction. However, a future
check on this assumption should be made. To capture possible
weak shocks in upper layers of the disk, artificial bulk
viscosity, which acts on the dilatation ∇ · u, is activated with
coefficient Cβ= 1.3. However, we now believe this is
unnecessary with a sponge layer at the upper and lower
boundaries, and deactivated it in test simulations not
reported here.

The initial condition is seeded with velocity perturbations of
the form

( ) { ( ) } ( )·ku M z A eRe 21
k

k xi
pert åd = 

for each component, where A(k) is a complex number with unit
amplitude and random phase, k≡ (kr, kz, kf), x≡ (r, z, f), and
M(z) is a modulation. The radial wavenumbers, kr, consist of a
set of 11: a fundamental, seven harmonics, and three
subharmonics. The fundamental has a wavelength of the most
amplified mode:

∣ ∣ ( )q
H
r

H . 22r,fund
0

0
0l p=

The wavenumbers kz and kf both consist of a fundamental
and 11 harmonics. The fundamental wavelengths in the z- and
f-directions equal the domain size in these directions, i.e., Lz
and 2π, respectively. The amplitude was set to òpert= 0.001c0.
Finally, a half-cosine modulation,

( ) ( ) [ ] ( )M z z L z L Lcos , 2, 2 , 23z z zp= Î -

is applied to make perturbations vanish at the top and bottom
boundaries.

2.4. Varying the Strength of the Padé Filter

The kinematic molecular viscosity in disks is so low that one
cannot hope to perform a direct numerical simulation wherein
all spatial scales down to molecular dissipation are resolved.
Therefore, some treatment of unresolved scales is needed. For
this, all simulations to date rely on the dissipation inherent in
shock-capturing schemes to damp small-scale fluctuations. This
is referred to as an “implicit” subgrid treatment (J. P. Boris
et al. 1992; K. Ritos et al. 2018) to distinguish it from the use of
an explicit subgrid model such as that of J. Smagorinsky
(1963). Here, we adopt an implicit subgrid treatment using a
Padé filter (S. K. Lele 1992) whose details and application
procedure are summarized in Appendix A.

The Padé filter requires the setting of a parameter (òfilter)
which determines the strength of the filter. The main part of the
run was for t/T0ä [0, 300.27] during which the strength of the
Padé filter was set to òfilter= 0.125. This value was indicated as
being conservative from test axisymmetric VSI runs presented
in K. Shariff (2024). Figure 2 shows the components of the
disturbance kinetic energy for the 3D run during this period.

Time- and f-averaged statistics of Reynolds stresses were
taken for t/T0ä [54.53, 300.10] during which the flow is
statistically stationary. These stresses, together with the
N. I. Shakura & R. A. Sunyaev (1973) α(r) they imply, will
be shown in Section 4.7.
After the main part of the run was complete, we

experimented with reducing òfilter to see if we could capture
more fine-scale features and extend the power-law range in
spectra without producing spurious 2Δ oscillations; energy
spectra (Section 4.5) and inspections of the flow field
confirmed that this was possible. The variation of òfilter with
time is documented at the bottom of Table 2. The structure of
the 3D flow field and associated energy spectra will be
presented in the period when òfilter= 0.015.

3. Axisymmetric Simulation: Early Nonlinear Stage

For all color contour plots in the paper, pure white pixels
correspond to values that exceed the range of the color map.
The dynamics of axisymmetric VSI at early times are also

present in the 3D case, although with less intensity and
coherence. At later times, axisymmetric VSI contains strong
artifacts (Section 5) that are not present in 3D. To enable a one-
to-one comparison with the 3D case, the axisymmetric run was
chosen to have the same parameters as the 3D run (with
òfilter= 0.125), except for a slight change in the number of grid
points in order to evenly fit the 24 processors available on one
node. The grid is 5762 (nr× nz).

3.1. Perturbation Velocity

The characteristic feature of axisymmetric VSI is the
formation of counter-flowing vertical jets that remain coherent
over the entire vertical extent of the disk; see Figure 3(a). It
should be obvious that buoyancy suppression is needed for the
maintenance of such jets. Upward jets are usually narrow and
fast in the lower half of the disk and then widen and slow down
as they travel into the upper half of the disk. Downward jets are
narrow and fast for z> 0, then widen and slow down as they
travel toward the lower half of the disk. This phenomenon may
simply be due to the larger driving vertical shear for larger |z|.

Figure 2. Time history of the components of the volume-averaged disturbance
kinetic energy (relative to the basic state) for the 3D run in the period t/T0 ä [0,
300.27] during which the strength of the Padé filter was set to òfilter = 0.125.
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As a result, a wider jet is located next to a narrow counter-
flowing jet.

Figure 3(b) shows the azimuthal velocity perturbation, δuf.
As mentioned earlier, the local linear stability analysis of L&P
shows that δuf has the same magnitude as δuz when tilt is
neglected. The same is approximately true here.

Figure 3(c) shows that the product δuzδuf is mostly ¤0 for
z¤ 0. This important fact is explained as follows. The specific
angular momentum jz≡ ufr follows fluid elements for
axisymmetric flow:3

( )Dj

Dt
0. 24z =

Since the basic state jz decreases away from the midplane,
upward jets in z> 0 bring in higher jz, leading to a positive
product. Downward jets in z> 0 bring in lower jz, also leading
to a positive product. Similarly, upward jets in z< 0 bring in
low jz, leading to a negative product. Finally, downward jets in
z< 0 bring in high jf, again leading to a negative product. Note
that this explanation is linear because it involves the advection
of the mean jz by a perturbation uz. This pattern of the δuzδuf
product will be reflected in the Tzf Reynolds stress in 3D
(Section 4.7).

Figure 4(a) was constructed to provide an alternate way of
illustrating the fact, which a contour plot will soon make clear,
that the perturbation (δωz) of vertical vorticity,

( ) ( )
r r

u r
r

j

r
1 1

, 25z
zw º

¶
¶

=
¶

¶
f

is dominated by thin positive layers. (Equation (25) is valid for
axisymmetric flow only.) Figure 4(a) shows that the correlation
between δuf (solid) and δuz (dashed) is more remarkable than
revealed in Figure 3. It also shows that both velocity
components have N-shaped profiles such that regions of
positive slope are much steeper than regions of negative slope.
We note that in the lower half of the disk (not plotted), δuz has
mirrored N waves while δuf has normal N waves. The
azimuthal vorticity is defined as

( )u
z

u
r

, 26r zw º
¶
¶

-
¶
¶

f

where the second term dominates in VSI. Therefore, for z> 0,
an N profile for δuz implies that δωf< 0 shear layers dominate
over δωf> 0 shear layers. The opposite in true for z< 0.

N-shaped profiles for δuf (in both halves of the disk) implies
that layers of positive δωz dominate. This feature is present in
3D but with lower intensity and regularity. The preference for
δωz> 0 is explained as follows. The basic-state jz(r) profile
increases monotonically with r; see the dashed line in
Figure 4(b). Consider the upper disk (z> 0) and an interface
that separates a downward jet on the left and an upward jet on
the right (↓↑). Recalling that the basic-state jz is a maximum at
the midplane, the downward jet on the left will lower jz while
the upward jet on the right will increase jz. This will eventually
lead to a positive jump in jz with respect to r and an increase in

positive ωz since

( ) ( )
r r

u r
r

j

r
1 1

. 27z
zw =

¶
¶

=
¶

¶
f

Similarly, consider an interface that separates an upward jet
on the left and a downward jet to its right (↑↓). This will reduce
the slope of jz(r), leading to the flatter part of the jz staircase and
a lowering of δωz. Each type of interface behaves in the
opposite manner for z< 0. The continuation of a ↓↑ uz interface
into the lower disk will now cause jz(r) to flatten and ωz to
decrease. Similarly, the continuation of a ↑↓ uz interface into
the lower disk will cause jz(r) to steepen and ωz to increase.
This means that regions of ωz> 0 intensification in the upper
disk will appear staggered relative to those in the lower half.
The staircase structure of jz(r) is shown as the solid line in

Figure 4(b). In the 3D case (solid blue line), this pattern is less
intense and coherent. H. Klahr et al. (2023), MF24a,
and MF24b were the first to point out the formation of a jz(r)
staircase for axisymmetric flow. The N waves in uf(r) simply
reflect this staircase structure.
Figure 4(c) repeats Figure 4(a) at the midplane. While δuz is

comparable to its value at z= 2H0, δuf is much weaker, and the
correlation between δuz and δuf observed at z= 2H0 is absent.
This is because the vertical gradient of jz which drives the
creation of δuf vanishes at z= 0.

3.2. Perturbation Vorticity

Figure 5 shows the perturbation vorticity field in the
axisymmetric simulation. It attains values many times that of
the basic-state vorticity with larger values as |z| increases. From
the range of the data, we conclude that the dominant
component is azimuthal (Figure 5(a)). This will be reinforced
below, where we present the probability density function (pdf)
of each perturbation vorticity component. The azimuthal
component is organized into shear layers that form the
boundaries of the vertical jets.
In the upper disk, ωf< 0 (blue) shear layers are dominant.

Such layers are adjacent to a thin sliver of opposite sign (red)
vorticity, followed by a diffuse red region in between the shear
layers. The opposite is true in the lower disk. These patterns
can also be seen in Figure 9 (lower-right panel) of MF24a. The
dominant sign pattern of ωf correlates with the N waves in
δuz(r) discussed in Section 3.1. The shear layers display
vortices created by the KH instability.
Figure 5(b) shows the perturbation, δωz, of the vertical

vorticity relative to the basic-state value. It is dominated by
layers of δωz> 0 consistent with the N waves in δuf and
positive jumps in jf(r) as discussed previously (Section 3.1).
These layers spatially coincide with the shear layers of
azimuthal vorticity.
The radial perturbation vorticity (Figure 5(d)) is the weakest

of the three components. Positive values are dominant in the
upper disk, the opposite being true for z< 0.
Some of the above assertions are confirmed by the pdf of

each vorticity component; see Figure 6, which uses semi-log
axes. One observes that δωf (solid green curve) is indeed
dominant. The inner part of its pdf is fit reasonably well by a
Cauchy distribution (green dashed curve),

( )
( )

( )p s
c

c s
, 28

2 2p
=

+

3 For ( )p c ri
2r= , the baroclinic term does not enter the ωz transport

Equation (B13) for axisymmetric flow, and therefore the circulation Γz = 2πjz
is unaffected by baroclinic torque.
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for c= 4.35. The choice of this distribution was inspired by
J. Jiménez (1996), who obtains a similar result for the inner part
of the velocity gradient pdf in 2D isotropic turbulence and for a
collection of 2D Gaussian core vortices. For large vorticity

Figure 3. Perturbation velocity for the axisymmetric simulation on a 5722

mesh at t/T0 = 36.1. (a) Vertical velocity, uz. (b) Perturbation azimuthal
velocity, δuf. (c) The product, δuzδuf. Pure white regions represent values that
are outside of the range of the color bar/legend.

Figure 4. (a) Perturbation vertical and azimuthal velocities at t/T0 = 36.1
showing their correlation and their N-waveform. (b) Specific angular
momentum jz ≡ ufr at z = 2H0. Solid black line: at t/T0 = 36.1 for the
axisymmetric run. Solid blue line: at t/T0 = 422.10 for the 3D run (azimuthal
location f = 0). (c) Similar to panel (a) except evaluated at z = 0.
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values in 2D isotropic turbulence, the analysis of G. Falkovich
& V. Lebedev (2011) predicts exponential tails, which would
show up as linear behavior on a semi-log plot. It is unclear

whether this is true in the present case for δωf. The red curve in
Figure 6 confirms that δωz is skewed toward positive values
consistent with Figure 5(b). To confirm the sign pattern for ωf,
we plotted ( ( ) )p sgn z dwf (not shown to avoid clutter) and found
it to be skewed toward negative values consistent with the color
contour plot (Figure 5(a)).

3.3. Origin of the Sign Pattern of Azimuthal Vorticity

To understand the origin of the sign pattern of ωf, consider
the two source terms, denoted T1 and T2, on the rhs of the ωf
transport Equation (B11) multiplied through by ρr for
convenience:

( )T
r

u

z
T

c
r z

1
and

log
, 291

2

2
i
2 r

=
¶

¶
=

¶
¶

¶
¶

f

where T1 is due to vertical shear and T2 is the baroclinic term.
The two terms balance in the basic state, i.e., T T 01 2+ =  ,
where a breve accent denotes a basic-state quantity. Therefore,
it is more helpful to consider the deviations, δT1 and δT2, from
the basic state.
Figure 7(a) shows that the vertical shear term δT1 has the

same overall sign pattern in shear layers as ωf. Its values lie in
the range δT1ä [−1200, 1200], which is much larger than the
range T1ä [−50, 50] in the basic state. On the other hand,
Figure 7(b) shows that the baroclinic term δT2 has a range
[−9.9, 8.5] that is much weaker than the basic state and does
not show the same pattern. We therefore attribute the behavior
of ωf≈∂ruz to δT1. Let us further ask: What determines δT1?
We have

( ) ( ) ( ) ( )T
r z

u
r

u
z

u
r

u
z

j
1 2 2

. 30z1
2

2
d d d d=

¶
¶

»
¶
¶

=
¶
¶f f f f 

Hence, the critical quantity is ∂z(δjz), the perturbation in the
vertical gradient of angular momentum, since the factor that
multiplies it is >0 and known from the basic state. The quantity

Figure 5. Perturbation vorticity for the axisymmetric run.

Figure 6. Probability density function of perturbation vorticity components for
the axisymmetric run at t/T0 = 36.1. The parameter c in the Cauchy
distribution (Equation (28)) was set to c = 4.35 to obtain the green dashed
curve.
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∂z(δjz) is obtained from the transport equation for jz,

( )j

t
u

j

z
0, 31z

z
z¶

¶
+
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¶
»



which is linearized about the basic state and assumes that
vertical transport dominates radial transport. Differentiating
Equation (31) with respect to z gives

( ) ( )
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 

We denote the two terms on the rhs of Equation (32) by T3
and T4.

Figure 7. (a) Deviations from the basic state of the vertical shear term T1 on the
rhs of the transport Equation (B11) for azimuthal vorticity. (b) Similarly, the
deviation T2 (baroclinic term). In panel (b), values exceeding the range of the
color legend are rendered in white. The actual range of values is indicated in
the headings.

Figure 8. Terms in the transport Equation (32) for ∂z(δjz).

10

The Astrophysical Journal, 977:272 (26pp), 2024 December 20 Shariff & Umurhan



Figure 8 shows that T3+ T4 does indeed have the sign
pattern of δT1. By far, the greater contribution is from T3.
Finally, note that since ωr=−∂uf/∂z, we can also write

( )T
r

u
2

. 33r1d dw» - f

If we refer back to Figure 5(c), we see that the sign pattern of
δωr is indeed the opposite of δT1.

3.4. Increase of Wavelength with Time

For the present case of q=−1 and H0/R0= 0.1,
Equation (7) for the most amplified linear instability wave-
length becomes

( )r
100

, 34r,maxl
p

=

which equals 0.24H0 at r= 7.5H0, the midpoint of the interval
to be plotted below. On the other hand, if we inspect
Figure 5(b) we find that the radial wavelength is more than
twice larger, being about 0.59H0 at the same radial location. To
investigate this further, we ran the same case with a white-noise
initial perturbation instead of a superposition of waves with
random phases as described in Section 2.3. This change was
made to eliminate any artifact that might be present due to the
presence of subharmonics of r,maxl in the wavy initial
condition.

We find that wavelength increase is also observed with a
white-noise perturbation. Figure 9 depicts profiles of uz(r) at
two instants (for z/H0=−2) near the left end of the domain
where the growth rate is the largest. An increase of wavelength
with time is visually apparent. A value for the wavelength was
obtained as the distance between downward zero crossings. At
t/T0= 10.2 (blue curve), the average of the three wavelengths
in the interval plotted is λr= 0.24, which equals the most
linearly amplified wavelength at the midpoint of the interval.
On the other hand, at t/T0= 35.6, the average of the two
wavelengths is larger, namely, λr= 0.37. A temporal increase
of wavelength can occur either due to nonlinearity or
nonconstant coefficients in the linear phase, i.e., spatial
variation of the basic-state gradient. Our guess is that the

wavelength increase is due to nonlinearity and is related to a
putative inverse cascade in axisymmetric VSI, discussed
further in Section 5. Radial wavelength increase is also
observed in the radiative hydrodynamic axisymmetric simula-
tions of MF24b (their Figure 11).
T. Pfeil & H. Klahr (2021) performed an axisymmetric

radiative hydrodynamics simulation using flux-limited diffu-
sion and observed a sinusoidal vertical velocity at the midplane
with amplitude increasing with radius; see their Figures 19 and
20. Their Figure 20 shows that the wavenumber krH(r)
decreases from 24 and 14 with increasing radius. On the other
hand, the wavenumber from linear stability is

( )
∣ ∣

( )k H r
q

R
H

2
37, 35r

0

0
= »

since their q=−1 and H0/R0= 0.054. Hence, their wave-
lengths are between a factor of 1.5 to 2.6 larger than for linear
instability (for the locally isothermal equation of state).
Curiously, their Figure 19 does not show any tendency for
the wavelength to increase with time. This is at odds with the
axisymmetric radiative hydrodynamic simulations of MF24b
and should be investigated.

4. 3D Simulation

4.1. Perturbation Vorticity in a Meridional Plane

We now turn to the 3D simulation. Figure 10 shows
components of the perturbation vorticity ( wd ) in a meridional
(rz) plane at t/T0= 444.64 during the period when the strength
of the Padé filter has been reduced to òfilter= 0.015. As in the
axisymmetric case, the strongest component is δωf (panel (b))
and consists of at least six turbulent shear layers (TSLs) that
extend across the vertical extent of the disk; they are numbered
from right to left and alternate in the dominant sign of δωf. The
predilection for negative layers for z> 0 and positive layers for
z< 0 observed in the axisymmetric case (Figure 5(a)) is still
noticeable. A more accurate description is that half of each TSL
with predominantly δωf£ 0 is more organized for z¤ 0,
undergoes KH instability, and becomes disorganized or
filamentary for z£ 0. This was also true in the axisym-
metric case.
The vertical component (δωz, Figure 10(c)) is the next

strongest; however, its values are about one-third as large as in
the axisymmetric case (compare with Figure 5(b)). Inspection
of the vertical velocity (not shown) indicates that each TSL
forms the boundary of a vertical jet. The numerical labels in
panel (c) are placed at the same locations as in panel (b). One
observes that δωz is dominated by positive values and exists on
either the upper or lower half of each TSL. This makes δωz

regions in the upper and lower halves staggered relative to each
other. The explanation for this was given in Section 3.1. To the
extent that the δωz TSLs remain coherent in the azimuthal
direction (which is the case in the upper layers of the disk, as
will be seen later), they correspond to a change in angular
momentum as shown earlier (Figure 4, blue line). This is much
weaker than in the axisymmetric case. We will see later that
some of these layers undergo KH-type instability as predicted
in the L&P analysis.

Figure 9. Profiles of uz(r) near the rmin boundary at z/H0 = −2 for the
axisymmetric run with a white-noise initial perturbation.
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One can define the Rossby number (Ro) as the ratio of ∣ ∣wd
to the local Keplerian vorticity; in code units, we have

| |
( )

( )
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10

. 36
3 2

wd
p

º
-/ /

We find that Ro≈ 10 in filaments that cross the midplane,
and reaches values of 20 in KH eddies near the midplane. In the
upper layers of the disk, Ro attains values as high as 125. A
high value of Ro in a vortex or vortex layer indicates that it is
minimally unaffected by Keplerian rotation and mean shear.
Figure 11 plots the pdf of perturbation vorticity components

at t/T0= 444.64 sampled on 128 constantf = planes. As in
the axisymmetric case, δωf (green curve) is dominant. The
preference for δωz> 0 (red curve) is still present but to a
smaller extent than in the axisymmetric case.

4.2. Midplane Vorticity

Since particles settle to the midplane, the turbulence there is
of special interest. Figure 12 shows components of the
perturbation vorticity relative to the basic state. The plot
window is centered at f= 0 to allow comparison with the
f= 0 meridional plane shown in Figure 10. The numerical
labels are at the same positions as in Figure 10. The dotted lines
indicate regions of width Δr/H0= 1 near the radial boundaries
where the flow is affected by boundary conditions, as indicated
later (Section 4.8) by anomalous local peaks in the turbulent
α(r). The flow consists of bands where the flow is most
nonaxisymmetric, i.e., not sheared along the azimuth. The
bands correspond roughly to where the six TSLs observed in
the meridional plane cross the midplane. Each band consists of
lower-aspect-ratio δωz vortices of length 0.4H0. At outer
radii, δωz vortices of both signs having similar aspect ratio are
observed. However, at inner radii, δωz> 0 is more filamentary
because cyclonic δωz is easily sheared (S. Kida 1981) by the
Keplerian mean (which is stronger at inner radii). Adjacent to
each band is a region where perturbation vorticity is more
sheared. One also observes that dw


weakens with decreasing r;

it is also more sheared, likely because the Keplerian shear
increases as r decreases. It is emphasized that the δωz structures

Figure 10. 3D run. Magnitude and components of the perturbation vorticity
(relative to the basic state) in the f = 0 meridional plane at t/T0 = 444.64.
Turbulent shear layers are numbered (1)–(6) at the midplane and (A)–(B) at
z/H0 = 2.

Figure 11. Perturbation vorticity pdf for the 3D run at t/T0 = 444.64 sampled
at 128 meridional planes.
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that have low aspect ratio (i.e., that are not elongated) are often
associated with large values of δωf and δωr.

The perturbation vorticity is dominated by the azimuthal
component (Figure 12(b)), consistent with what is observed in
a meridional plane and in pdfs (Figure 11). This component is
associated with the jets of vertical velocity and is generally

more sheared than δωz. However, there are intermittent
locations where ωf has smaller-aspect-ratio structures where,
as mentioned above, other vorticity components are also active.
Figure 12(c) shows the perturbation radial vorticity. It has

the lowest values among the three and is occasionally
associated with other vorticity components. It most likely
arises from the tilting and stretching of ωz by ωf KH vortices.

Figure 12. Components of the perturbation vorticity (relative to the basic state)
in the midplane at t/T0 = 444.64. The dotted lines indicate regions of width
Δr/H0 adjacent to each radial boundary that are affected by boundary
conditions, as indicated later in the plot of the turbulent α(r) parameter.

Figure 13. Components of the perturbation vorticity (relative to the basic state)
at z = 2H0 and t/T0 = 444.64.
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An important difference in our simulations compared to M20
is the lack of LPVs. This difference will be discussed in
Section 6.

4.3. Vorticity in a Horizontal Plane at Two Scale Heights

Perturbation vorticity components increase in magnitude
away from the midplane and are therefore able to withstand the
stabilizing effects of Keplerian rotation and shear.

Figure 13 shows components of wd at z= 2H0. The letters
(A)–(D) are placed at the same locations as in the meridional
plane plots (Figure 10). Panel (a) depicts the vertical
component; it is more than 3 times stronger than at the
midplane. It is dominated by δωz> 0 layers and displays KH-
like instability for larger r, presumably because rotation and
shear weaken as r increases. A few small elliptical δωz< 0
structures are also present. Figure 13(b) shows that the δωz> 0
layers are associated with negative ωf, just as in the
axisymmetric case (Section 3.2). Recall from the axisymmetric
case that the lower half of the disk has ωf> 0 in these layers.
The values of ωf are about 3 times larger than at the midplane.
Figure 13(c) shows that the weakest component, δωr, is also
about thrice as large as it is at the midplane.

4.4. Radial Wavelength in 3D

The δωz layers in Figure 13(a) (labeled (A)–(D)) can be used
to infer a wavelength. These layers are coherent over a large
azimuthal extent. We find that the ratio of the interlayer spacing
ℓr to the local instability wavelength is 4.4 for layers (A) and
(B), 4.5 for (B) and (C), and 2.4 for (C) and (D). Figure 14
shows δωz centered at f= 90°: the spacing ratio for layers (E)
and (F) is 1.5. Therefore, the spacing ratio increases with
radius. This means that the spacing ℓr(r) increases with r faster
than H(r) does. The inexorable radial wavelength growth with
time present in axisymmetric VSI is halted in 3D and a time-
invariant local radial length scale is established. An interesting
question is whether ℓr(r) is an appropriate length scale for
determining the turbulent viscosity νt.

4.5. Specific Kinetic Energy Spectra in the Midplane

Spectra of velocity squared (which we refer to as the specific
kinetic energy) with respect to the radial and azimuthal

directions are defined as

( ) ( ) · ( ) ( )u uS k k k , 37uu r r r=  *
( ) ( ) · ( ) ( )u uS m m m , 38uu =  *

where the hat denotes a real to complex Fourier transform, a
star denotes the complex conjugate, and m is the azimuthal
wavenumber. To obtain Suu(kr), a Hanning window was
applied in r since it is not a periodic direction, after which an
average was taken in f. For Suu(m), an average was taken in r.
Note that spatial inhomogeneity of the flow in r precludes a
rigorous mathematical interpretation of these spectra.
Remark. Dr. J. David Melon Fuksman (2024, private

communication) has suggested that since the flow has nonuni-
form density, it would be more appropriate to consider the
quantity

( ) { ( ) · ( )} ( )k u k u kE Re . 39rº  *
Note that since ( ) ( )fg f gRe Re=* * it does not matter

whether we conjugate ur or u. J. Dutton (1963) has shown that
the integral of Equation (39) with respect to k is proportional to
the kinetic energy when the support of the velocity field u(x) is
compact.

Figure 14. δωz at z = 2H0 centered at f = 90° (t/T0 = 444.64).

Figure 15. Effect of the strength of the Padé filter (òfilter) on specific energy
spectra in the midplane. (a)With respect to the radial wavenumber, kr. (b) With
respect to the azimuthal wavenumber, m. The units of Suu are those of velocity
squared, i.e., ( )H T0 0

2.
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Figure 15 shows the effect of the filter strength òfilter on
spectra. When òfilter is lowered, more of the power-law region
(inertial range) is resolved without a significant upturn near the
Nyquist wavenumber, which indicates that 2Δ oscillations are
under control. This was confirmed by zooming in on vorticity
contour plots: There are some isolated 2Δ oscillations, but they
are not widespread.

Next, we investigate the anisotropy of the turbulence by
plotting spectra of the different velocity components for the
smallest filter strength (òfilter= 0.015). To reduce statistical
noise, spectra were computed for 50 fields in the period
t/T0ä [400.20, 452.55] and averaged.

Figure 16(a) displays the spectrum with respect to kr and
shows that uz dominates the kinetic energy for most of the
wavenumber range. A bump corresponding to energy injection
by VSI is clearly observed at krH0≈ 4.5, which corresponds to
a wavelength of ℓr≈ 1.4H0. On the other hand, the most
linearly unstable wavelength is 0.31r,maxl = at the midradius
of the domain. This bump is followed by a short (about 0.7 of a
decade) power-law range with a slope of ≈−1.84. This is close
to the −2 slope that a jump in velocity across a shear layer
would produce (A. A. Townsend & G. Taylor 1951).

Figure 16(b) displays spectra with respect to the azimuthal
wavenumber m. The total energy (blue) has a slope close to the
Kolmogorov value of −5/3. However, there is a small dip
(relative to a straight line) at m≈ 40, which corresponds to a
wavelength of ≈9°; we see that the dip arises from the radial
component (purple line). Again, uz (red) is the dominant
component, though not as strongly as was the case for kr
spectra. Radial velocity fluctuations (violet) are not much
smaller than vertical velocity fluctuations (red) in the inertial
(power-law) range. Azimuthal velocity fluctuations (green)
have the least amplitude throughout the wavenumber range.
The azimuthal spectrum of N. Manger & H. Klahr (2018,

their Figure 13) shows a broken power law consisting of a
steeper than −5/3 slope followed by a slope of −5. On the
other hand, we observe a a single power-law slope ≈−5/3
without a region of slope =−5. Also, whereas our spectra have
a dissipation range in which the spectra fall off faster than any
power law, the spectra of N. Manger & H. Klahr (2018) lack
such a range. The reasons for these discrepancies remain to be
investigated.

Figure 16. Specific energy spectra of individual velocity components in
the midplane. Averaged over the time interval t/T0 ä [400.20,
452.55]; òfilter = 0.015. (a) With respect to the radial wavenumber, kr. (b)
With respect to the azimuthal wavenumber, m.

Figure 17. Specific energy spectra (all velocity components included) at
different heights averaged over samples in the time interval t/T0 ä [444.6,
479.3] with spacing δt/T0 = 0.5; strength of Padé filter òfilter = 0.015. (a) With
respect to the radial wavenumber, kr. (b) With respect to the azimuthal
wavenumber, m.

15

The Astrophysical Journal, 977:272 (26pp), 2024 December 20 Shariff & Umurhan



4.6. Specific Kinetic Energy Spectra at Different Heights

Figure 17 shows radial and azimuthal spectra (with all
velocity components included) at three different heights. The
specific energy increases with height at each radial and
azimuthal wavenumber. The radial spectrum has the same
slope in the power-law region at all three heights. On the other
hand, at higher |z|, the azimuthal spectrum displays a greater
dip at about m= 30.

4.7. Reynolds Stresses

Here, we present maps of the Reynolds stress tensor, Tab, in
the meridional plane. The role of Tab in the mean flow
equations and the calculation of Tab from simulation data is
described in Appendices C and D, respectively. Time averaging
was performed in the interval t ä [54.53, 300.19] with samples
spaced Δt/T0≈ 0.5 apart. Off-diagonal components of the
Reynolds stress tensor are shown in the top row of Figure 18.
Note that the component Trf enters the mean angular
momentum Equation (C16). Away from the radial ends of
the computational domain, where the flow is influenced by
artificial numerical boundary conditions, Trf peaks away from
the midplane at slightly above z/H(r)≈ 1. An off-midplane
peak was also observed in M. R. Stoll & W. Kley (2014, their
Figure 5). As will be seen in Section 4.9, this does not mean
that the starward accretion mass flow peaks away from the
midplane. The largest off-diagonal component is Tfz. To
explain its sign pattern, positive and negative above and below
the midplane, respectively, we invoke the mechanism given in
Section 3.1 for the sign pattern of the product δuzδuf in
axisymmetric VSI, namely, the transport of a vertically varying
mean specific angular momentum ( j 0z¶ ¹f ) by vertical jets.

Figure 18 plots the normal components. One observes that
the peak value of Tzz is about 3 times as large as that of Trr and
Tff, reflecting the dominance of vertical jet-like fluctuations. In
addition, Tzz peaks at the midplane. This is due to the presence
of density (ρ) in the definition of the stresses, which rises faster
toward the midplane than the vertical velocity rms decreases.
On the other hand, Trr and Tff peak above the midplane at
z≈ 1.5H0. This is consistent with the peak in Trf above the
midplane. In fact, the correlation coefficient,

( )
( )C

T

T T
, 40r

r

rr
1 2

ºf
f

ff

was found to be almost constant at ≈0.2–0.3 throughout the
domain. This suggests that the shapes of the structures
responsible for Trf are similar at all locations of the domain;
only their intensity and/or size varies. The trace Tkk (not
shown), which is twice the kinetic energy, peaks at the
midplane but maintains high values up to z≈ 1.5H0. Strong
peaks in all the stresses near the left and right radial boundaries
are considered to be artifacts due to boundary conditions.

4.8. The Turbulence α Parameter

The α parameter introduced by N. I. Shakura & R. A. Sunyaev
(1973) is a nondimensional turbulent viscosity in vertically
integrated accretion disk theory. Specifically,

( ) ( )
( ) ( )

( )r
r

c r H r
, 41t

s
a

n
º

where νt(r) is the turbulent viscosity. In our calculation, we
took cs(r) and H(r) to be the isothermal sound speed and scale

Figure 18. Reynolds stress tensor. Averaging was performed in the period t/T0 ä [54.53, 300.19]. A region of Δr/H0 ≈ 1 at each radial boundary should be
considered contaminated by boundary conditions.
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height of the basic state, respectively. In vertically integrated
accretion disk analysis, which uses cylindrical coordinates, the
vertically integrated turbulent torque appears as

( ) ( )dz
r r

r T
1

. 42r
2òt =

¶
¶

- f
-¥

¥

The torque is then modeled using a turbulent viscosity as

( )⎜ ⎟⎛⎝ ⎞⎠r r
r r

r
1

, 432
tt n=

¶
¶

S
¶W
¶

where W is the Reynolds-averaged vertically integrated angular
rotation rate; the difference in α(r) was found to be very small
when W was replaced by the Keplerian value. Comparing
Equations (42) and (43), one obtains

( )
( )

dz T

r r
, 44

r
t

ò
n =

-

S ¶W ¶

f-¥

¥

which when substituted into Equation (41) allows us to
calculate α(r).

The solid black curve in Figure 19 shows α(r) for the most
refined simulation. Away from the region affected by radial
boundaries, we obtain linearly increasing behavior:

( ) [ ( )] ( )r r H2.0 0.28 10 10 . 450
4a = + - ´ -

An explanation one might initially suggest for the increase is
the fact that the appropriate velocity scale for νt should be the
driving vertical shear Δuf(r)= |uf(r, z=H)− uf(r, z= 0)|
rather than the sound speed as assumed by N. I. Shakura &
R. A. Sunyaev (1973). Unfortunately, however, Δuf(r)∝ ci(r)
for the VSI basic state. Another explanation one might suggest
is that the radial wavelength ℓr(r) increases with r faster than
H(r) does (Section 4.4).

Figure 19 shows that with increasing resolution (starting
with the brown curve) α initially rapidly increases to the green
curve but then decreases to the blue and black curves.
Inspection of the vorticity field for the brown case reveals
minimal radial waviness of shear layers, which would
contribute to a suppression of Tfr. Why should the highest-
resolution case (black curve) have lower α(r) than the less
resolved blue and green cases? We conjecture that large-scale
waviness present at lower resolution breaks down into smaller

vortices at higher resolution, leading to a smaller Trf
correlation.
M20 use an alternate alpha parameter, defined as

( )
( )

( )r
dz T

c r dz
, 46

R
1

i
2

ò

ò
a

r
º

f-¥

¥

-¥

¥

where TRf is a stress in spherical coordinates and r is the mean
density.4 To calculate α1(r) from our data in cylindrical
coordinates, we use the fact that

( )T T Tsin cos , 47R r zq q= +f f f

where θ is the polar angle in spherical coordinates.
Figure 20 plots α1(r) for the same cases as in Figure 19. Run

p.1.5h0.1 of M20 has the same disk parameters as us. In their
Table 2, they report a radially averaged value of
α1= (9.5± 2.1)× 10−4, where the ±2.1× 10−4 represents
the amplitude of temporal fluctuations. This value corresponds
to the period from 600 to 1000 orbits in their simulation. The
temporal average α1= 9.5× 10−4 is shown as the d symbol in
Figure 20. In their Table A1, they report a value of
α1= (7.2± 1.5)× 10−4, which corresponds to the value in a
putative stationary state at an earlier time of the simulation
(H. Klahr 2024, private communication); this value also
corresponds to the values plotted in their Figure 1 (bottom).
Figure 20 shows that both of these values are close to our value
at midradius for a lower resolution of 192× 192× 512 grid
points (green curve). Note that α1(r)> α(r) due to the
additional contribution of the Tzf stress component.
Finally, we mention in passing that H. H. Klahr & P. Bod-

enheimer (2003), M. R. Stoll & W. Kley (2016), and M20
calculate TRf using (their Equations (23), (6), and (4),
respectively)

( )T u u u u , 48R R Rr r= -f f f

Figure 19. Shakura–Sunyaev turbulent viscosity parameter α(r) for runs
with different resolutions. The straight dashed black line is ( )ra =
[ ( )]r H2.0 0.28 10 100

4+ - ´ - .

Figure 20. Turbulent viscosity parameter α1(r) (in spherical coordinates) as
defined by M20; see Equation (46). The lines are for the same cases as in
Figure 19. d: value from Table 2 of M20. ,: value from Table A1 of M20.

4 We had not noticed this until Dr. J. David Melon Fuksman pointed it out
to us.

17

The Astrophysical Journal, 977:272 (26pp), 2024 December 20 Shariff & Umurhan



which does not obey the symmetry property of the Reynolds
stress. On the other hand, Equation (D8) gives

( )T u u
u u

, 49r r
rr

r r
r

= -f f
f

which is symmetric. When density fluctuations are small,
which is true in the present case, the error in Equation (48) is
small.

4.9. Mean Radial Mass Flux

Figure 21(a) shows the mean radial mass flux (per unit
height),

( )m r u2 , 50rp rº

obtained from the simulation. This flux is starward (<0) for
approximately |z|<H0 and radially outward otherwise. Such a
mean radial flow was first identified by M. R. Stoll et al. (2017,
their Figure 1).
This flux arises from turbulent stress gradients and can be

derived from the Reynolds-averaged angular momentum
Equation (C16). For stationary turbulence in which statistics
do not depend on time, this equation becomes

[ ( ¯ ˜ ˜ )] ( ¯ ˜ ˜ ) ( )
r

r u u T r
z

u u T 0. 51r r z z
2 2r r

¶
¶

+ +
¶
¶

+ =f f f f

Taking the derivative with respect to r, using the Reynolds-
averaged mass conservation equation,

( ) ( ) ( )
r r

r u
z

u
1

0, 52r zr r
¶
¶

+
¶
¶

= 

solving for ur , and using the definition in Equation (50), one
obtains

( )
( ) ( )

( )
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r T
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r T r u
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Figure 21(b) shows that the mass flux given by
Equation (53) agrees with the simulation (as it should) apart
from statistical error. This gives us confidence in the
computation of the stress tensor. If one introduces the
assumption that uf varies weakly with z, then the last term in
Equation (53) disappears. If one further assumes that it is nearly
Keplerian, i.e., ( )u u GM rK

1 2» =f , then we get

( ) ( ) ( )⎡⎣ ⎤⎦m
u r

r T
z

r T
4

. 54r z
K

2 2p
» -

¶
¶

-
¶
¶

f f

Equation (54) is analogous to Equation (7) in M. R. Stoll
et al. (2017). Figure 21(c) shows that the result of
Equation (54) agrees well with the exact result, except near
the right end of the domain where it overpredicts the mass flux.
Note that because Tfz(z) is antisymmetric about z= 0, the

second term in Equation (54) is nonzero even at the midplane.
Therefore, gradients of both Tfr and Tfz determine the
accretion flow even at the midplane. If one integrates
Equation (54) with respect to z one gets the result that the
net mass flow rate depends only on Tfr, which is consistent
with vertically integrated accretion disk theory.
The present result implies that turbulence can lead to

secondary meridional flows that can be more complex than
merely a starward accretion flow. This fact is important for the

Figure 21. Mean radial mass flux m r u2 rp r= . (a) Simulation. (b) From
Equation (50), a consequence of the Reynolds-averaged angular momentum
equation. (c) From Equation (50), after assuming that the Favre-averaged
velocity uf is Keplerian.
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transport of solids in disks; however, we emphasize, as have
M. R. Stoll et al. (2017), that solids can be transported by
turbulent diffusion alone without the presence of a mean flow.

5. Late-time Artifacts in the Axisymmetric Simulation

Two artifacts arise at late times when the flow is constrained
to be axisymmetric. These are (i) the specific angular
momentum, jz= ufr, develops a high-amplitude and vertically
coherent staircase structure, first observed by H. Klahr et al.
(2023), MF24a, and MF24b; this is present only very weakly in
the 3D case (Figure 4(b), blue curve) in the upper layers; and
(ii) vortical structures merge into larger structures, and the flow
resembles the inverse cascade of 2D turbulence. We now
discuss these features.

Figure 22 shows the domain-averaged fluctuation kinetic
energy components relative to the basic state. Compared to the
3D run (Figure 2), a statistically stationary state is reached very
much later (at about t/T0≈ 300). This observation is not
without precedent. The high-resolution axisymmetric VSI
simulation (dg3c4_1024) of MF24a (their Figure 12, red
curve) does not reach a stationary state even after about 1300
orbits when the simulation stops. It should also be noted that
this case has a false and temporary stationary state up to about
600 orbits, after which the energy begins to rise again. Their
lower-resolution case (dg3c4_512) exhibits a false period of
stationarity up to 3000 orbits, after which the kinetic energy
begins to rise again. The axisymmetric runs of L. Flores-Rivera
et al. (2020) reach a stationary state after 100 orbits and were
run to a final time of 200 orbits. Given the potential for false
and temporary periods of stationarity in axisymmetric runs,
caution must be exercised before concluding that a true
stationary state has been reached.

Given that flow length scales increase with time in our
simulation (see below) as well as in the simulations of M24a,
i.e., that there is an inverse cascade, the time to reach
stationarity in any given simulation would depend on the radial
domain size.

Figure 22. Time history of the volume-averaged perturbation kinetic energy for
the axisymmetric run.

Figure 23. Axisymmetric simulation at t/T0 = 197.6. This is a late time but is
prior to the stationary state. In panel (a), the completely white regions have
vorticity values beyond the range shown in the legend.
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One also observes that, compared to the 3D run (see
Figure 2), the volume-averaged perturbation energy values are
much larger, and the individual components are less isotropic.
The vertical component, which is the strongest for t/T0< 25,
now takes a back seat to the other two.

Figure 23 shows the perturbation azimuthal and vertical
vorticity components at t/T0= 197.6, which is at a late time
but prior to the stationary state. Their structure is very different
from the 3D case and what is observed at early times in the
axisymmetric case. The dominant component now is δωz rather
than ωf, which translates to a larger magnitude of the azimuthal
velocity perturbation compared to the vertical velocity. The
shear layers of ωf that formed the edges of vertical jets at
earlier times are still present, as is the pattern ωf£ 0 for z¤ 0
within these shear layers. However, the flow between the shear
layers consists of large eddies and is reminiscent of 2D
turbulence. Panel (b) shows that the ≈seven layers of vertical
vorticity seen at t/T0= 36.1 (Figure 5) have now intensified,
and only four remain. At a later time (t/T0= 403.7, not shown)
only two such layers remain. In other words, flow length scales
increase with time. The layers of strong δωz are associated with
jumps in the total specific angular momentum jz= ufr (panel
(c)), which has a strong vertically coherent staircase profile
with respect to r.

This can be seen more clearly in Figure 24, which shows the
midplane profiles of jz(r) at t/T0= 197.6 and t/T0= 403.7. The
latter is in the stationary state and has only two jumps in jz. As
shown earlier (Figure 4, blue line), in 3D there is no large-scale
rearrangement of angular momentum, rather only a weak one in
the upper layers of the disk. The circulation, Γz= 2πjz, of
circular material lines is proportional to jz. Hence, by Stokes’
theorem, a region of nearly constant Γz(r) must be irrotational.
For inviscid barotropic flow, Kelvin’s theorem asserts that
Γz/Dt= 0 for each circular material line. Hence, there are three
possible mechanisms for the formation of the staircase
structure: vertical transport of jz(z) given its vertical gradient
(this being the mechanism that operates at early times), radial
mixing of jz(r) by eddies between the shear layers, or baroclinic
torque. For a circular material line, we have that

( ) ( )z
D
Dt

p dS
1

, 55z

A 2ò r
r

G
=  ´  ⋅ ^

where A is the circular surface enclosed by the circle and ẑ is
the unit vector normal to the surface. However, the z-
component of the baroclinic term in the integrand is zero for
axisymmetric flow. The vertical gradient of jz is weaker than its
radial gradient, and radial velocity fluctuations are larger than
vertical ones at late times. Hence, we conclude that radial
mixing of jz by eddies in regions bounded by vertical shear
layers is responsible for the staircase profile of jz at late times.
Accretion disk theory tells us that when angular momentum

is redistributed, so is mass. Specifically, a fluid element that has
a super-Keplerian jz will move radially outward, and the
opposite for sub-Keplerian jz. A jz(r) profile that has flattened
from a radially increasing Keplerian profile will cause mass to
accumulate.
Figure 25 shows that mass becomes concentrated in the

uniform-jz regions observed in Figure 24.
In the axisymmetric simulations of MF24a there is also a

clear difference between early and late times. Let us focus on
their dg3c4_2048 simulation. Their Figures 1 (left-hand
plots) and 2 (top) show very many small steps in the jz staircase
at an earlier time. On the other hand, their Figure 11 shows the
same run at 1360 orbits. Clearly, an increase of length scales
has taken place, leading to only three jumps in jz.

6. Present Lack of Large Persistent Vortices in the Interior
of the Domain

Previous VSI simulations (N. Manger & H. Klahr 2018;
M. Flock et al. 2020; M20; T. Pfeil & H. Klahr 2021) have
reported the existence of one or more large persistent vortices
(LPVs) and attributed their formation to a secondary RWI. We
do not observe such vortices in the region not influenced by
radial boundary conditions. The purpose of this section is to
discuss this inconsistency in more detail.

6.1. Caveats for Applying RWI to VSI Simulations

RWI was first studied by R. V. E. Lovelace et al. (1999)
assuming a razor-thin disk and conservation of the entropy,

( )S P , 56= Sg

Figure 24. Axisymmetric run at late times. Specific angular momentum profile,
jz = ufr, at the midplane.

Figure 25. Density field for the axisymmetric simulation at t/T0 = 197.6.
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following fluid particles. Here, P is the vertically integrated
pressure, Σ is the surface density, and γ is the adiabatic
exponent. A necessary condition for RWI is that, in the basic
state, the function

( ) ( )
( )

[ ( )] ( )r
r
r

S r
2

57
z

2

w
=

S g

has a local maximum. The thin-disk assumption is valid only
for motions whose horizontal length scale ℓ?H(r). On the
other hand, the radial size of LPVs observed in simulations is
about H(r). In addition, the locally isothermal equation of state,

( )p c ri
2r= , assumed in the present and other VSI simulations

implies that radial motions fail to conserve S following fluid
particles. Likewise, it remains to be shown whether radiative
hydrodynamic VSI simulations that invoke RWI (e.g.,
M. Flock et al. 2020) possess an effective adiabatic exponent.
Despite the lack of adiabaticity, previous works plot a vertically
averaged ( )r , presumably setting γ= 1.4. In spite of these
caveats, it appears that the presence of LPVs in VSI
simulations is correlated with some (but not all) local maxima
in ( )r , and we will discuss these simulations in the next
subsection.

In previous VSI simulations, a diagnostic version of ( )r is
defined using averages. For our case of a locally isothermal
equation of state, ( )p c ri

2r= , we define the diagnostic
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with γ= 1.4 and where, for example, . ztá ñf denotes an average
with respect to f, z, and t.

6.2. Previous VSI Simulations that Produced LPVs

The simulations of M. Flock et al. (2020) employed radiative
hydrodynamics and produced a peak in α(r) (their Figure 2) in a
region adjacent to the inner radial boundary. They explain the
peak as being due to a radial decrease in thermal relaxation time
(their Figure 13) to values that make VSI viable. The peak in α(r)
led to a local dip in Σ(r) (their Figure 1) and a pronounced
maximum in the vertical vortensity ωz(r, z= 0)/Σ (their Figure 5).
These features in turn led to pronounced extrema in the RWI
indicator function ( )r (their Figure B1), which is associated with
one LPV. No other LPVs are generated in the rest of the domain.
In summary, the trigger for an LPV in M. Flock et al. (2020) is a
local α(r) peak induced by a favorable gradient in radiative
relaxation time rather than by VSI dynamics.

More relevant is the work of M20, who for the same disk
parameters as us observed the formation of multiple LPVs far
from radial boundaries; see the lower-right panels in their
Figures 8 and 10. Their t–R vortex trajectory plot (their Figure
12, lower-right panel) shows that the vortices have lifetimes of
hundreds of orbits. Their Figure B1 (right-hand column) shows
that the radial locations of these vortices are close to some, but
not all, of the many maxima of their  diagnostic.

6.3. Present Simulations

Figure 26 plots ωz/ΩK(r) in the midplane for our main run;
this is the same quantity plotted by M20. Note that their color
map is such that values of ωz/ΩK(r)> 0.5 have the same color

(yellow) as ωz/ΩK(r)= 0.5, and values of ωz/ΩK(r)< 0 have
the same color (dark blue) as ωz/ΩK(r)= 0. As a result, their
vortices appear darker than in our rendering. The background
Keplerian value is ωz/ΩK(r)= 0.5 and is rendered light green
in Figure 26. The only large-scale coherent structure present is
indicated by the box; it consists of several little whirls and
filaments. It is centered at r/H0≈ 8.2, which is close to a local
minimum in α(r); see black curve in Figure 19. This minimum
is a result of proximity to the left radial boundary. A similar
structure is present at this radial location as early as
t/T0= 69.5.
Figure 27 plots the RWI diagnostic ( )rdiag (black line)

normalized by its value at r0: It has a local maximum at
r/R0= 8.03, which is close to the radial location of the vortex
structure. The red line in Figure 27 shows that the surface
density is a local minimum at this location. Another local
maximum in ( )rdiag is present at r/H0≈ 12 but is not
associated with a large vortex.
Besides RWI, another mechanism known to produce LPVs

is the SBI. The first requirement for instability is that the radial
Brunt–Väisälä frequency squared,

( )⎜ ⎟⎛⎝ ⎞⎠N
p
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Figure 26. ωz/ΩK(r) in the midplane for the highest-resolution run.
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be negative. For the present basic state (Section 2.1), we have
at the midplane that

( )[ ( ) ]( ) ( )N
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r
p q p q r r1 . 60r

q2 0
2

0
2 0

2

g
g= + - - -

For our case of p=−3/2 and q=−1, the coefficient in
Equation (60) involving p and q equals −1; the first
requirement is therefore satisfied. However, SBI also requires
intermediate cooling times, trad (G. Lesur & J. C. B. Papaloizou
2010; P. Barge et al. 2016), whereas we have assumed that
trad= 0.

6.4. Speculation

Why do M20 observe LPVs in the interior of the domain for
the same disk parameters but we do not? The answer may lie in
the link, discussed by MF24b, between maxima in ( )r and the
jz(r) staircase that is prominent in axisymmetric jz(r).
Specifically, a region of flattened jz(r)= ufr corresponds to
more irrotational flow (u rconst»f ) and therefore suppressed
ωz. Since mass also accumulates in these regions, a local
maximum is created in the first factor (Σ/2ωz) of . Therefore,
one possibility is that M20 has a stronger jz(r) staircase in 3D
than the present simulation, which leads to several ( )r
maxima in the interior of the domain. It is tempting to attribute
this to M20ʼs lower resolution; however, our low-resolution
simulations also failed to produce LPVs away from boundaries.
Further effort is required to ascertain the reasons for this
difference between our and the M20 simulation.

7. Closing Remarks

This work studied the vortical structure, Reynolds stresses,
and midplane spectra of 3D turbulence driven by VSI (in the
locally isothermal limit) for disk parameters h= 0.1, p= –1.5,
and q=−1. The salient points are as follows:

1. Radial wavelength. In axisymmetric VSI, the radial
wavelength at early times corresponds to the most
amplified linear mode, but then inexorably increases in

time. In 3D, the ratio

( )
( )

[ ∣ ∣( )] ( )
( )

( )ℓ r
r

q H R
ℓ r
H r

61r

r

r

,max
0 0

1

l
p= -

of the radial wavelength, ℓr(r), to the most linearly
amplified wavelength ( r,maxl ) increases from 2.4 to 4.4 as
r increases from 8.6H0 to 11.6H0.

2. Layers of positive δωz. Axisymmetric VSI has coherent
vertical layers of δωz> 0 that increase in strength with |z|
and are coincident with interfaces between the upward
and downward jets (Figure 5). Their formation and the
preference for δωz> 0 can be explained by the vertical
transport of specific angular momentum jz≡ ufr by the
vertical jets. This phenomenon is equivalent to the
formation of a staircase profile of jz(r) first discovered
by H. Klahr et al. (2023), MF24a, and MF24b in their
axisymmetric simulations. We find that these layers are
also present in 3D but with much weaker jumps in
specific angular momentum compared to the axisym-
metric case (Figure 4(b)). These layers become stronger
and more azimuthally coherent with increasing |z| and
undergo KH-like instability (Figure 13(a)), likely mod-
ified by background shear and rotation. The resulting
vortices are small and possess all three vorticity
components.

3. Lack of large persistent ωz vortices. Absent are the large
persistent RWI-driven vortices in the interior of the
domain obtained by M20 for the same disk parameters.
Rather, we observe only one large coherent structure
(containing finer-scale features) near the left boundary of
the domain where α(r) has an anomalous minimum due
to boundary effects; the RWI diagnostic ( )rdiag has a
local maximum at this location (Figure 27). Flat regions
in a jz(r) staircase, which is prominent in axisymmetric
VSI, have a suppressed ωz and accumulate mass that
leads to peaks in the RWI indicator ( )r (MF24b). One
may speculate that, due to lower resolution, M20 obtain a
more pronounced jz staircase in 3D than we do. However,
our lower-resolution simulations also fail to display large
persistent vortices. Therefore, further effort is needed to
sort out this issue.

4. Azimuthal vorticity. In the axisymmetric case at early
times, there is the following sign preference in the jet
shear layers: ωf£ 0 for z¤ 0. By examining the two
terms in the transport equation for ωf, we conclude that
the perturbation in the vertical shear term is the dominant
contributor to the production of ωf. The sign preference
noted above is also visually noticeable in 3D.

5. Midplane vorticity. In 3D, the midplane contains many
sheared filamentary vortical layers as well as many
compact (nonfilamentary) vortices of roughly elliptical
shape, having δωz< 0 and comparable values of δωr and
δωf.

6. Variation of α with r. There is a linear increase of α(r)
with radius with a slope (at the highest resolution) of
about 14% the midradius value per scale height. This
increase currently lacks an explanation; it may be related
to the increase of radial spacing, ℓr(r), with r that is faster
than H(r) (see item 1, which itself requires an
explanation).

7. Variation of α with resolution. As the resolution is
increased from a low value, α at first increases but then

Figure 27. Black line: the diagnostic ( )rdiag for the RWI. Red line: vertical
vorticity ωz averaged with respect to t, f, and z. Green line: surface density Σ
averaged with respect to t and f. (Main run with a resolution of 5122 × 1024.)
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decreases. M20 (their Table A1) observe an increase in α
as resolution in increased for the same disk parameters as
in the present work. Our value of α for an intermediate-
resolution case is close to the value obtained by M20 for
their highest-resolution case. It would be desirable in the
future to obtain an α(r) that is converged as the grid is
refined.

8. Meridional flow. We confirm the finding of M. R. Stoll
et al. (2017) that there is a mean meridional radial flow
toward the star for |z|<H0 and outward for |z|>H0, and
that this flow is created by gradients of Reynolds shear
stresses.

9. Radial spectrum. The spectrum of specific kinetic energy
(velocity squared) at the midplane with respect to the
radial wavenumber (kr) was found to have a power-law
region with an exponent of −1.82, close to the value of
−2 for shear layers (A. A. Townsend & G. Taylor 1951).
The spectrum is strongly dominated by the vertical
velocity component.

10. Azimuthal spectrum. The spectrum with respect to the
azimuthal wavenumber has a −5/3 power-law range, but
with a small depression due to radial velocity fluctua-
tions. Unlike M20 (their Figure 6), we do not find a −5
range.

11. Late-time artifacts in axisymmetric VSI. As discussed
above, some features of the 3D simulation can be
understood by appealing to physics in the early stage of
the axisymmetric simulation. However, at late times the
axisymmetric simulations have artifacts that are not
present in 3D. These include increasing flow length
scales and a strong staircase pattern in the specific angular
momentum jf= ufr with an accompanying redistribution
of mass.
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Appendix A
Padé Filter

This appendix briefly describes the fourth-order Padé filter
(S. K. Lele 1992) which is applied after every time step as an
implicit subgrid treatment. More details can be found in
K. Shariff (2024). The attractiveness of Padé filters is their
sharp cutoff. For a given unfiltered quantity ui, its filtered
outcome Ui on either a periodic domain or within the interior
section of a nonperiodic domain is given by the solution of the
following system of equations for every line of data in the
mesh:

( )
( ) ( )

aU U aU P u u
Q u u Ru , A1

j j j j j

j j j

1 1 2 2

1 1

+ + = +
+ + +

- + - +

- +

for j= 1, K, n, where n is the number of points along the line.
For nonperiodic directions, the equations to be used at two

points adjacent to each boundary are given in K. Shariff (2024).
Equation (A1) constitutes a tridiagonal system that is solved
along each data line in the mesh using the Thomas algorithm.
Regarding the coefficient Q in Equation (A1) as a free

parameter, the condition that the leading-order difference
between Uj and uj be h4, where h is the grid spacing, gives
the rest of the coefficients as

( )

( ) ( )

a Q

R a Q

P a Q

1
2

2 ,

1
2

2 3 3 ,

1
4

. A2

= - +

= + -

= -

There is no filtering when Q= 1/2. To specify the strength
of the filter, the code uses the parameter òfilter such that

( )Q
1
2

1
4

. A3filter= - 

The transfer function T(k) of the filter versus wavenumber
can be obtained by substituting u ej

ikxj= and ( )U T k ej
ikxj=

(with xj= jh) into Equation (A1). Figure 28 shows T(k) for
values of òfilter that cover the range òfilter ä [0.015, 0.125] used
in the present simulations.

Appendix B
Vorticity Equation for Axisymmetric VSI

For conservative body forces, the vorticity equation is given
by

· · ·

( )

u u u
t

p
.

B1

2

w w w w r
r

¶
¶

+  = -  +  +
 ´ 

The terms on the rhs of Equation (B1) represent the change
of vorticity by volumetric compression or expansion, tilting
and stretching, and baroclinic torque. The compression/
expansion term can be eliminated by introducing ζ≡ω/ρ.

Figure 28. Transfer function for the Padé filter for various òfilter covering the
range used in the present simulations.
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Equation (B1) then becomes

· · ( )u u
t

p
. B2

3

z z z r
r

¶
¶

+  =  +
 ´ 

Using the expressions for n ·∇F in cylindrical coordinates
given in G. Batchelor (1967, Appendix 2), we have

· ( · )

· ·

( )

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠
u u e

u e u e
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z z
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z z
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f
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r
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z z

 = 

+  - +  +f f
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f

For ( )p c ri
2r= , the baroclinic term becomes

( )e
p

z
c
r

1
. B5

3 2
i
2r

r r
r ´ 

=
¶
¶

¶
¶

f

Note that the baroclinic term acts only in the azimuthal
direction. Let us begin by working on the f vorticity equation.
Using the fact that

( ) ( )u

z r r
ru

1
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1
, B6r zz

r
z

r
= -

¶

¶
=

¶
¶

f
f

we get that
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¶
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f

f f f

This term, which survives below, represents the tilting of ζr
and ζz into ζf. Since ζz includes the strong Keplerian vorticity,
this is an important effect. So far, therefore, the f vorticity
equation becomes

( )
D

Dt

u

r

u

r r

u

z z
c
r

1
2

1
. B8r r
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2
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This can be simplified further by noting that
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Dt r r
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This gives
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Finally, introducing the expression in Equation (B6) for ζr
into this gives the f vorticity equation:

( )⎜ ⎟⎛⎝ ⎞⎠D
Dt r r

u

z r
c
r z

1 1
. B11
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2
i
2w

r r r
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=
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¶
+

¶
¶

¶
¶

f f

Note that if the flow is nearly incompressible, i.e., Dρ/Dt≈ 0,
then ρ can be removed from under the D/Dt. The hint for writing
Equation (B11) in this form is an exercise in G. Batchelor (1967).
The presence of r in the quantity being transported simply reflects
the fact that, for axisymmetric flow, the stretching of ωf is purely
geometric, i.e., as a circular vortex line increases in radius by a

certain ratio, its ωf would increase by the same ratio if the rhs of
Equation (B11) were zero. Equation (B11) implies that the
creation of azimuthal vorticity, which takes the form of vertical
jets in VSI, is influenced by both vertical shear and baroclinic
torque. In the basic state, the two terms on the rhs of
Equation (B11) oppose each other to give a zero left-hand side,
and the signs of the two terms above and below the midplane are

( )0 , B12=
---
+++

+
+++
---

where a horizontal line represents the midplane. The z and r
vorticity equations are

· ( )u
D
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u
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u
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w
w w w=

¶
¶

+
¶
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- 

The three terms on each rhs represent tilting, stretching, and
volumetric compression, respectively. Note again that the
baroclinic term enters only the ωf equation.

Appendix C
Reynolds-averaged Conservation Equations Using the

Favre Decomposition

The purpose of Appendices C and D is to rigorously derive
the residual stress that arises when the governing equations are
Reynolds averaged. The presentation is necessary given the
different expressions used in the simulation literature.
In the absence of magnetic torques and when the gravita-

tional potential (Φ) is axisymmetric, the inviscid equations for
conservation of mass and momentum equations read

· ( ) ( )u
t

0, C1
r

r
¶
¶

+  =

( ) · ( ) ( )u
t

u r u r
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p
z z

, C4z zr r r
¶
¶

+  = -
¶
¶

-
¶F
¶

where the divergence operator is
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F
z r r

rF
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F1 1
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 ⋅ º
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¶

+
¶
¶
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¶
=f

We take the average of these equations with respect to
azimuth and time over a period [t1, t2] long enough to ensure
converged statistics and during which the flow has attained
statistical stationarity in time. The averaging operator, denoted
by a bar, is therefore

( )
( )

( ) ( )f r z
t t

d dtf r z t,
1

2
, , , . C6

t

t

2 1 0

2

1

2

ò òp
f f=

-

p

This average satisfies all the axioms required for being a
Reynolds average. Throughout, one can omit the time average
if desired; the only change this results in is the appearance of
∂/∂t of mean quantities in Equations (C15)–(C18).
Consider the Reynolds average, uvr , of a generic triple

product which appears in the momentum equations. If we
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introduce the Reynolds decomposition u u u= + ¢ and
v v v= + ¢, we get

¯ ¯ ¯ ¯ ¯ ( )uv u v u v u v v u . C7r r r r r= + ¢ ¢ + ¢ + ¢

The last two terms make this unwieldy. Note that M. R. Stoll
& W. Kley (2014, Equation (15)) and R. P. Nelson et al. (2013)
ignore the last two terms in their computation of the rf
Reynolds stress and perform the averaging over the inhomo-
geneous radial direction.

To allow averages of triple products involving the density ρ
to be written compactly, one introduces a density-weighted
average, denoted by a tilde, which is known as a A. Favre
(1969) average:

( )f
f

. C8
r
r

º

Fluctuations with respect to the Favre average are denoted by
double primes:

( )f f f . C9= + 

An important relation which we shall use below is that

( ) ( )f f f f f f f C10r r r r r r = - = - = -  

( )f
f

0, C11r
r
r
r= - =

since f is already an average. Specifically, Equation (C11)
allows one to write triple products as

( )uv u v u v uv u v C12r r r r r= +   +  +    

( )u v u v u v v u C13r r r r= +   +  +    

( )u v u v , C14r r= +   

which is a little more compact than Equation (C7).
Decomposing flow variables as in Equation (C9), applying

the bar average to the conservation Equations (C1)–(C4), using
the above relations, assuming statistical stationarity and that the
gravitational potential has no fluctuation, gives

· ( ) ( )u 0, C15rz r =

· ( ) ( )u uu r u r 0, C16rz r r +   =f f 
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z z
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 

where ∇rz · denotes the divergence operator equation (C5)
restricted to the rz plane. The above equations contain the
Reynolds stresses

{ } ( )T u u a b z r, , , , . C19ab a br f=   Î

Appendix D
Calculation of Reynolds Stresses

This appendix explains how to efficiently calculate Reynolds
stresses with fluctuations defined with respect to the time-f
averaged flow. By efficiently, we mean without having to store

entire flow fields in order to obtain the time mean. The
Reynolds stress is defined as

( )T u u , D1ab a brº  

where the bar denotes an average with respect to f and t, while
a and b represent the cylindrical coordinate indices r, z, or f. A
double prime denotes a Favre fluctuation, e.g.,

( )u u u , D2a a a = - 

where the tilde signifies the Favre average:

( )u u . D3a ar rº

As a simulation proceeds, one does not have the time
average and therefore cannot calculate the temporal fluctuations
needed to accumulate Tab. However, the following simple
algebra allows one to store only f averages at sample times and
calculate the time average as a post-processing step. Using
Equation (D2), we have

( )( ) ( )T u u u u u u . D4ab a b a a b br rº   = - - 
Expanding Equation (D4) gives

( )T u u u u u u u u . D5ab a b a b a b a br r r r= + - -   
Now, every Favre average such as ua is independent of f and

t and can be pulled out from under the bar operation, giving

( )T u u u u u u u u . D6ab a b a b a b b ar r r r= + - -   
Next, using the definition of the Favre average gives

( )T u u
u u u

u
u

u . D7ab a b
a b a

b
b

ar r
r
r

r
r

r
r

r
r
r

r= + - -

Finally, the second and third terms cancel, giving the final
expression:

( )T u u u u
1

. D8ab a b a br
r
r r= -

To compute Equation (D8) we store f averages of ρuaub,
ρua, and ρ at a sample of times during the simulation, during
the period when statistical stationarity has been achieved. Then,
as a post-processing step, a further time average is computed to
complete the bar operation. Finally, the Reynolds stresses are
obtained using Equation (D8). Equation (D8) can also be used
when the time average is skipped and only a f average is
included.

ORCID iDs

Karim Shariff https://orcid.org/0000-0002-7256-2497
Orkan M. Umurhan https://orcid.org/0000-0001-5372-4254

References

Arlt, R., & Urpin, V. 2004, A&A, 426, 755
Barge, P., Richard, S., & Le Dizès, S. 2016, A&A, 592, A136
Barker, A. J., & Latter, H. N. 2015, MNRAS, 450, 21
Batchelor, G. 1967, An Introduction to Fluid Dynamics (Cambridge:

Cambridge Univ. Press)
Boris, J. P., Grinstein, F. F., Oran, E. S., & Kolbe, R. L. 1992, FlDyR, 10, 199
Craik, A. D. D., Criminale, W. O., & Gaster, M. 1986, RSPSA, 406, 13
Cui, C., & Latter, H. N. 2022, MNRAS, 512, 1639
Dutton, J. 1963, JAtS, 20, 107
Estrada, P., & Umurhan, O. 2023, ApJ, 946, 15
Falkovich, G., & Lebedev, V. 2011, PhRvE, 83, 045301
Favre, A. 1969, Problems of Hydrodynamics and Continuum Mechanics,

Contributions in Honor of the 60th Birthday of L.I. Sedov, 14th Nov. 1967
(Philadelphia, PA: Soc. for Industrial and Applied Mathematics), 231

25

The Astrophysical Journal, 977:272 (26pp), 2024 December 20 Shariff & Umurhan

https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0002-7256-2497
https://orcid.org/0000-0001-5372-4254
https://orcid.org/0000-0001-5372-4254
https://orcid.org/0000-0001-5372-4254
https://orcid.org/0000-0001-5372-4254
https://orcid.org/0000-0001-5372-4254
https://orcid.org/0000-0001-5372-4254
https://orcid.org/0000-0001-5372-4254
https://orcid.org/0000-0001-5372-4254
https://doi.org/10.1051/0004-6361:20035896
https://ui.adsabs.harvard.edu/abs/2004A&A...426..755A/abstract
https://doi.org/10.1051/0004-6361/201628381
https://ui.adsabs.harvard.edu/abs/2016A&A...592A.136B/abstract
https://doi.org/10.1093/mnras/stv640
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450...21B/abstract
https://doi.org/10.1016/0169-5983(92)90023-P
https://ui.adsabs.harvard.edu/abs/1992FlDyR..10..199B/abstract
https://doi.org/10.1098/rspa.1986.0061
https://ui.adsabs.harvard.edu/abs/1986RSPSA.406...13C/abstract
https://doi.org/10.1093/mnras/stac279
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.1639C/abstract
https://doi.org/10.1175/1520-0469(1963)020%3C0107:TROCOT%3E2.0.CO;2
https://ui.adsabs.harvard.edu/abs/1963JAtS...20..107D/abstract
https://doi.org/10.3847/1538-4357/acb7db
https://ui.adsabs.harvard.edu/abs/2023ApJ...946...15E/abstract
https://doi.org/10.1103/PhysRevE.83.045301
https://ui.adsabs.harvard.edu/abs/2011PhRvE..83d5301F/abstract


Flock, M., Fromang, S., Turner, N. J., & Benisty, M. 2017, ApJ, 835, 230
Flock, M., Turner, N., Nelson, R., et al. 2020, ApJ, 897, 155
Flores-Rivera, L., Flock, M., & Nakatani, R. 2020, A&A, 644, A50
Fricke, K. 1968, ZAp, 68, 317
Fukuhara, Y., Okuzumi, S., & Ono, T. 2021, ApJ, 914, 132
Goldreich, P., & Schubert, G. 1967, ApJ, 150, 571
Jiménez, J. 1996, JFM, 313, 223
Kida, S. 1981, JPSJ, 50, 3517
Klahr, H., Baehr, H., & Fuksman, J. M. 2023, arXiv:2305.08165
Klahr, H. H., & Bodenheimer, P. 2003, ApJ, 582, 869
Latter, H. N., & Papaloizou, J. 2018, MNRAS, 474, 3110
Lele, S. K. 1992, JCoPh, 103, 16
Lesur, G., Flock, M., Ercolano, B., et al. 2022, in ASP Conf. Ser.. 534,

Protostars and Planets VII, ed. S. Inutsuka et al. (San Francisco, CA:
ASP), 465

Lesur, G., & Papaloizou, J. C. B. 2010, A&A, 513, A60
Lin, M.-K., & Youdin, A. 2015, ApJ, 811, 17
Lovelace, R. V. E., Li, H., Colgate, S. A., & Nelson, A. F. 1999, ApJ, 513, 805
Manger, N., & Klahr, H. 2018, MNRAS, 480, 2125

Manger, N., Klahr, H., Kley, W., & Flock, M. 2020, MNRAS, 499, 1841
Melon Fuksman, J. D., Flock, M., & Klahr, H. 2024a, A&A, 682, A140
Melon Fuksman, J. D., Flock, M., & Klahr, H. 2024b, A&A, 682, A139
Nelson, R. P., Gressel, O., & Umurhan, O. M. 2013, MNRAS, 435, 2610
Pfeil, T., & Klahr, H. 2021, ApJ, 915, 130
Richard, S., Nelson, R. P., & Umurhan, O. M. 2016, MNRAS, 456,

3571
Ritos, K., Kokkinakis, I., & Drikakis, D. 2018, CF, 173, 307
Schäfer, U., Johansen, A., & Banerjee, R. 2020, A&A, 635, A190
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Shariff, K. 2024, ApJS, 273, 37
Smagorinsky, J. 1963, MWRv, 91, 99
Stoll, M. R., & Kley, W. 2014, A&A, 572, A77
Stoll, M. R., & Kley, W. 2016, A&A, 594, A57
Stoll, M. R., Kley, W., & Picogna, G. 2017, A&A, 599, L6
Townsend, A. A., & Taylor, G. 1951, RSPSA, 208, 534
Umurhan, O. M., Nelson, R. P., & Gressel, O. 2016, A&A, 586, A33
Urpin, V. 2003, A&A, 404, 397
Urpin, V., & Brandenburg, A. 1998, MNRAS, 294, 399

26

The Astrophysical Journal, 977:272 (26pp), 2024 December 20 Shariff & Umurhan

https://doi.org/10.3847/1538-4357/835/2/230
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..230F/abstract
https://doi.org/10.3847/1538-4357/ab9641
https://ui.adsabs.harvard.edu/abs/2020ApJ...897..155F/abstract
https://doi.org/10.1051/0004-6361/202039294
https://ui.adsabs.harvard.edu/abs/2020A&A...644A..50F/abstract
https://ui.adsabs.harvard.edu/abs/1968ZA.....68..317F/abstract
https://doi.org/10.3847/1538-4357/abfe5c
https://ui.adsabs.harvard.edu/abs/2021ApJ...914..132F/abstract
https://doi.org/10.1086/149360
https://ui.adsabs.harvard.edu/abs/1967ApJ...150..571G/abstract
https://doi.org/10.1017/S0022112096002194
https://ui.adsabs.harvard.edu/abs/1996JFM...313..223J/abstract
https://doi.org/10.1143/JPSJ.50.3517
https://ui.adsabs.harvard.edu/abs/1981JPSJ...50.3517K/abstract
http://arxiv.org/abs/2305.08165
https://doi.org/10.1086/344743
https://ui.adsabs.harvard.edu/abs/2003ApJ...582..869K/abstract
https://doi.org/10.1093/mnras/stx3031
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.3110L/abstract
https://doi.org/10.1016/0021-9991(92)90324-R
https://ui.adsabs.harvard.edu/abs/1992JCoPh.103...16L/abstract
https://ui.adsabs.harvard.edu/abs/2023ASPC..534..465L/abstract
https://doi.org/10.1051/0004-6361/200913594
https://ui.adsabs.harvard.edu/abs/2010A&A...513A..60L/abstract
https://doi.org/10.1088/0004-637X/811/1/17
https://ui.adsabs.harvard.edu/abs/2015ApJ...811...17L/abstract
https://doi.org/10.1086/306900
https://ui.adsabs.harvard.edu/abs/1999ApJ...513..805L/abstract
https://doi.org/10.1093/mnras/sty1909
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.2125M/abstract
https://doi.org/10.1093/mnras/staa2943
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1841M/abstract
https://doi.org/10.1051/0004-6361/202346555
https://ui.adsabs.harvard.edu/abs/2024A&A...682A.140M/abstract
https://doi.org/10.1051/0004-6361/202346554
https://ui.adsabs.harvard.edu/abs/2024A&A...682A.139M/abstract
https://doi.org/10.1093/mnras/stt1475
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2610N/abstract
https://doi.org/10.3847/1538-4357/ac0054
https://ui.adsabs.harvard.edu/abs/2021ApJ...915..130P/abstract
https://doi.org/10.1093/mnras/stv2898
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.3571R/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.456.3571R/abstract
https://doi.org/10.1016/j.compfluid.2018.01.030
https://doi.org/10.1051/0004-6361/201937371
https://ui.adsabs.harvard.edu/abs/2020A&A...635A.190S/abstract
https://ui.adsabs.harvard.edu/abs/1973A&A....24..337S/abstract
https://doi.org/10.3847/1538-4365/ad5af3
https://ui.adsabs.harvard.edu/abs/2024ApJS..273...37S/abstract
https://doi.org/10.1175/1520-0493(1963)0912.3.CO;2
https://doi.org/10.1051/0004-6361/201424114
https://ui.adsabs.harvard.edu/abs/2014A&A...572A..77S/abstract
https://doi.org/10.1051/0004-6361/201527716
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..57S/abstract
https://doi.org/10.1051/0004-6361/201630226
https://ui.adsabs.harvard.edu/abs/2017A&A...599L...6S/abstract
https://doi.org/10.1098/rspa.1951.0179
https://ui.adsabs.harvard.edu/abs/1951RSPSA.208..534T/abstract
https://doi.org/10.1051/0004-6361/201526494
https://ui.adsabs.harvard.edu/abs/2016A&A...586A..33U/abstract
https://doi.org/10.1051/0004-6361:20030513
https://ui.adsabs.harvard.edu/abs/2003A&A...404..397U/abstract
https://doi.org/10.1111/j.1365-8711.1998.01118.x
https://ui.adsabs.harvard.edu/abs/1998MNRAS.294..399U/abstract

	1. Introduction
	1.1. General Introduction and Motivation
	1.2. Physics of VSI and Previous Theoretical Work
	1.3. Previous Numerical Work

	2. Setup, Basic State, and Simulation Parameters
	2.1. Basic State
	2.2. A Remark on the Basic State for VSI
	2.3. Simulation Parameters
	2.4. Varying the Strength of the Padé Filter

	3. Axisymmetric Simulation: Early Nonlinear Stage
	3.1. Perturbation Velocity
	3.2. Perturbation Vorticity
	3.3. Origin of the Sign Pattern of Azimuthal Vorticity
	3.4. Increase of Wavelength with Time

	4.3D Simulation
	4.1. Perturbation Vorticity in a Meridional Plane
	4.2. Midplane Vorticity
	4.3. Vorticity in a Horizontal Plane at Two Scale Heights
	4.4. Radial Wavelength in 3D
	4.5. Specific Kinetic Energy Spectra in the Midplane
	4.6. Specific Kinetic Energy Spectra at Different Heights
	4.7. Reynolds Stresses
	4.8. The Turbulence α Parameter
	4.9. Mean Radial Mass Flux

	5. Late-time Artifacts in the Axisymmetric Simulation
	6. Present Lack of Large Persistent Vortices in the Interior of the Domain
	6.1. Caveats for Applying RWI to VSI Simulations
	6.2. Previous VSI Simulations that Produced LPVs
	6.3. Present Simulations
	6.4. Speculation

	7. Closing Remarks
	Appendix APadé Filter
	Appendix BVorticity Equation for Axisymmetric VSI
	Appendix CReynolds-averaged Conservation Equations Using the Favre Decomposition
	Appendix DCalculation of Reynolds Stresses
	References

