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Abstract

The Rossby wave instability (RWI) is the fundamental nonaxisymmetric radial shear instability in disks. The RWI
can facilitate disk accretion, set the shape of planetary gaps, and produce large vortices. It arises from density
and/or temperature features, such as radial gaps, bumps, or steps. A general, sufficient condition to trigger the RWI
is lacking, which we address by studying the linear RWI in a suite of simplified models, including incompressible
and compressible shearing sheets and global, cylindrical disks. We focus on enthalpy amplitude and width as the
fundamental properties of disk features with various shapes. We find analytic results for the RWI boundary and
growth rates across a wide parameter space, in some cases with exact derivations and in others as a description of
numerical results. Features wider than a scale height generally become unstable about halfway to Rayleigh
instability, i.e., when the squared epicyclic frequency is about half the Keplerian value, reinforcing our previous
finding. RWI growth rates approximately scale as enthalpy amplitude to the 1/3 power, with a weak dependence
on width, across much of the parameter space. Global disk curvature affects wide planetary gaps, making the outer
gap edge more susceptible to the RWI. Our simplified models are barotropic and height integrated, but the main
results should carry over to more complex and realistic scenarios.

Unified Astronomy Thesaurus concepts: Hydrodynamics (1963); Astrophysical fluid dynamics (101); Planet
formation (1241); Protoplanetary disks (1300)

1. Introduction

The Rossby wave instability (RWI) arises when radial disk
structures, such as bumps or gaps, induce strong pressure
gradients and non-Keplerian radial shear (R. V. E. Lovelace
et al. 1999; H. Li et al. 2000). The RWI can generate large
vortices (H. Li et al. 2001), for instance at the edges of
planetary gaps (M. de Val-Borro et al. 2007), which affects
planet migration (M.-K. Lin & J. C. B. Papaloizou 2010). The
RWI also helps transport matter falling onto accretion disks
(A. Kuznetsova et al. 2022).

Dust is trapped in both RWI-produced vortices and the rings
that trigger the RWI, in agreement with the disk structures
observed by the Atacama Large Millimeter/submillimeter
Array (P. Pinilla & A. Youdin 2017). The RWI thus constrains
observable rings and vortices (E. Chang et al. 2023), for
instance, by regulating planet-carved gaps (N. P. Cimerman &
R. R. Rafikov 2023). Dust trapped in such rings and vortices
can trigger planet formation (E. Chiang & A. N. Youdin 2010;
J. Draż̧kowska & C. P. Dullemond 2018; X. Hu et al. 2018;
W. Lyra et al. 2024).

These significant consequences arise from simple considera-
tions. The RWI does not require vertical motions, baroclinicity,
or cooling, in contrast to the vertical shear instability
(R. P. Nelson et al. 2013; M.-K. Lin & A. N. Youdin 2015)
and other thermal disk instabilities (H. Klahr et al. 2023;
G. Lesur et al. 2023). The RWI can be triggered by zonal flows
arising from these hydrodynamic (N. Manger et al. 2020), or
magnetohydrodynamic (MHD; A. Johansen et al. 2009)
instabilities. RWI analyses that include 3D motions (H. Meheut

et al. 2012; M.-K. Lin 2013), cooling (S. Huang &
C. Yu 2022), dust feedback (H. Liu & X.-N. Bai 2023), and
nonideal MHD (C. Cui et al. 2024) are crucial for a complete
understanding, and generally find modest corrections to
idealized cases.
Even for simple cases, a general criterion for the onset of the

RWI has been elusive. T. Ono et al. (2016) found that the RWI
was triggered partway between the Lovelace and Rayleigh
criteria for a variety of barotropic disk features. The Lovelace
criterion, equivalent to a vortensity extrema in isentropic disks,
is necessary but insufficient for the RWI (R. V. E. Lovelace
et al. 1999). The Rayleigh criterion gives axisymmetric
instability for disks with radially decreasing angular momen-
tum somewhere, i.e., negative squared epicyclic frequency, κ2.
E. Chang et al. (2023) found that disk bumps (barotropic and

baroclinic) triggered RWI when κ2 was locally reduced to
∼60% of the Keplerian value. We colloquially refer to this
criterion as “halfway-to-Rayleigh” instability.
This work aims to develop a more fundamental under-

standing of the RWI boundary and growth rates, including the
halfway-to-Rayleigh criterion. We develop scaling relations
using the strength and width of disk features in enthalpy, the
relevant thermodynamic quantity for radial shear. We start with
simplified shearing-sheet models, which yield more analytic
results and require fewer parameters, allowing for a more
complete examination of parameter space. We then test against
global disk models. This approach is motivated by previous
shearing-sheet models studying incompressible (Y. Lithw-
ick 2007) and compressible (R. Vanon & G. I. Ogilvie 2016)
shear instability, linear Rossby modes (O. M. Umurhan et al.
2016), and nonlinear RWI with cooling (J. Fung &
T. Ono 2021).
We present our method for studying the RWI with shearing-

sheet models in Section 2. Sections 3 and 4 present our results
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for the incompressible and compressible sheets, respectively.
We compare to global disks in Section 5. A suggested starting
point is the summary of our main results in Section 6.

2. Shearing-sheet RWI Models

2.1. The Compressible Shearing Sheet

The shearing sheet models a disk patch centered at radius Rc,
rotating at the local Keplerian frequency, Ω, with Cartesian x-,
y-, and z-coordinates oriented radially, azimuthally, and
vertically. Vertical averaging gives the equations of motion
(P. Goldreich & S. Tremaine 1978; B. M. Johnson &
C. F. Gammie 2005)

· ( )S
= -S v

D
Dt

, 1a

⎛⎝ ⎞⎠ˆ ˆ ( )+ W ´ = W -
S
v

D
Dt

z xx P2 3
1

, 1b2

( ) ( )S =gD P Dt 0 1c

for fluid velocity v, surface density Σ, and (height-averaged)
pressure P, with D/Dt= ∂/∂t+ v ·∇. An ideal gas with
adiabatic index γ, adiabatic motions, and no self-gravity or
viscosity are assumed.

Combining Equations (1a) and (1b),

· ˆ ( )=
S ´ 

S
Dq
Dt

P
z , 2

3

shows that vortensity, ( ˆ · )º W +  ´ Svq z2 , is conserved
in the absence of baroclinic effects.

We consider an axisymmetric equilibrium with linear
perturbations (using 0, 1 subscripts, respectively) as

( ) ( ) ( ) ˆ ˆ ˆS = S + S = + = + +vx P P x P v x y u x v y, ,0 1 0 1 0 1 1 .
Perturbed quantities have a Fourier dependence, e.g.,

˜ ( ) [ ( )]w= -u u x ı k y texp y1 1 . We henceforth drop the tilde.
The equilibrium orbital motion is

( )= - W + D = - W +
W

P
v x v x

d
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3
2

3
2

1
2

, 30 0
0

where Π0 is the equilibrium enthalpy, and Π= ∫dP/Σ gives the
non-Keplerian motion, Δv0. The equilibrium vortensity,
q0= κ2/(2ΩΣ0), depends on the squared epicyclic frequency

⎛⎝ ⎞⎠ ( )k = W W + = W +
Pdv

dx
d
dx

2 2 . 42 0 2
2

0
2

The linear equations of motion for the Fourier amplitudes
(given the same symbols as perturbed quantities for simplicity)
are

( ) ( )w- D S = - S - Sı
d
dx

u ık v , 5ay1 0 1 0 1
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with Doppler-shifted frequency,Δω≡ ω− v0(x)ky. We define a
squared sound speed gº Sc P0

2
0 0, scale height H0≡ c0/Ω,

(inverse) entropy length scale of

( ) ( )
g

º
Sg

-L
d P

dx
1 ln

6S
1 0 0

and radial buoyancy frequency of

( ) ( ) ( )
g g
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Manipulations yield an ordinary differential equation (ODE)
for Ψ≡ P1/Σ0,

( ) ( ) ( )Y + Y¢ = YB x C x , 8

the shearing-sheet version of Equation (15) in H. Li et al.
(2000) with primes for the x-derivatives, ºB d dxln , and
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This work considers isentropic equilibria with C2= 1/LS =
N2= 0.
The corotation resonance at Δω= 0 defines a corotation

radius, xc, where [ ( )]R wD =x 0c . At the Lindblad resonances,
where Δω2= κ2+N2 and  =1 0, B is singular.
The Schrödinger form of Equation (8) uses X = Y to

obtain (T. Ono et al. 2016)

( ) ( )X = XD x , 10a

( )=
¢
+ +D

B B
C

2 4
. 10b

2

We solve Equation (8) since Ξ is singular at Lindblad
resonances, but D is a useful effective potential.

2.2. The Incompressible Shearing Sheet

For the incompressible shearing sheet (ISS; H. N. Latter &
J. Papaloizou 2017), we take the limit γ→∞, so that
Equations (1a) and (1c) give ∇ · v= 0. We replace
∇P/Σ=∇Π in Equation (1b). The equilibrium is set by the
choice of Π0(x), from which v0(x) and κ2 follow Equations (3)
and (4). The perturbed flow obeys a stream function, ψ,
as y y= - = ¢u ık v,y1 1 .
The vorticity ( ) · ˆz =  ´ v z , with equilibrium ( )z = ¢v x0 0

and perturbation z y y=  - ky1
2 is conserved Dζ/Dt= 0.

Thus,

( )wz z- D = - ¢ı u , 111 0 1

which gives

⎜ ⎟⎛⎝ ⎞⎠ ( ) ( )y
w

y y = +


-
ºk

v
v k

D x , 12y
y

2 0

0
inc

the famous Rayleigh equation for nonrotating incompressible
shear flows. Coriolis forces set v0, but rotation is otherwise
absent (see Y. Lithwick 2007).
There is vast literature on this equation (P. G. Drazin &

W. H. Reid 2004). Relevant results include Rayleigh’s theorem

2
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that a vorticity extrema, ( )z ¢ =x 00 , is required for instability.
Fjørtoft’s theorem further states that this inflection point must
be a maximum in |ζ0(x)|. Since disks have ζ0(x)< 0, instability
requires a (signed) vorticity minimum.

Fjørtoft’s theorem agrees with the interpretation of Dinc as a
potential since for corotation at a vorticity minimum

( )R <D 0inc near corotation for long wavelengths, ky→ 0.
We further see that long wavelengths are the most unstable.
When applied to compressible, barotropic disks, a vortensity
minimum is required for instability.

Compared to the compressible case, we might expect
D→Dinc in an incompressible limit, so we make a technical
clarification that this limiting behavior does not occur. Despite
a shared ky

2 term, we find that the corotation terms differ by a
factor of 4 in a relevant limit. Specifically, we place the
Lindblad resonances far from corotation with the kyW= 1 limit
(for the feature width, W, defined more precisely in
Equations (13) and (14). Then the incompressible limit (with
constant Σ0) has  kµ 1 2 and 2ΩB/Δω→− 4v0″/Δω.
Thus, the compressible corotation term is 4 times larger than
the corresponding term in Dinc. This surprising result is
possible since D has additional relevant terms and is a potential
for a different fluid quantity. Despite this difference, our
compressible results have a well-behaved incompressible limit
(Section 4).

2.3. Disk Features

To understand the universal features of RWI, we consider
various disk structures, including bumps, gaps, and steps. Our
compressible and incompressible models share a common
equilibrium enthalpy Π0(x) and thus v0(x). Our parameteriza-
tion

( ) ( ) ( )P = P + DPx S x W 130 b

has two constants, the reference value Πb (which only affects
compressible models) and amplitude ΔΠ> 0. This work
considers the shapes

⎧
⎨
⎪⎪
⎩⎪⎪

( )

( )
( )

( )

( )

( )=

-
-

+

S X

G X
G X

X

X

bump
1 gap
1 tanh

2
drop

1 tanh
2

jump

14

for ( ) ( )= -G X Xexp 22 . The scaled distance X≡ x/W
depends on the width parameter, W. With this definition, all
S values vary from 0 to 1 over a length scale of order W. Since

( ( ))P = P >xmin 0b 0 , all Π0(x)> 0.
We describe some properties of our shape functions next,

then apply them to compressible models in Section 2.3.2.

2.3.1. Shape Functions

Figure 1 plots (in the top row) our enthalpy features. The
scaled amplitude

( ) ( ) º DP WW 152

measures a feature’s vorticity amplitude.
The middle row of Figure 1 plots κ2. The location of

vorticity (and κ2) minima is xm= 0 for bumps,  W3 for
gaps—which have a pair of vorticity minima—and

( )  W Wln 2 3 2 1.32 , for jumps and drops, respec-
tively. The location of vortensity minima, relevant for
compressible flows, will be slightly shifted.
The inner and outer gap edges are symmetrically equivalent

in the shearing sheet. So are the drop and jump cases.
Henceforth, the “step” case refers to both.
Rayleigh instability occurs for ( )k <min 02 and requires

vertical motions to be absent from our model. The Rayleigh
instability is still highly relevant and occurs for  > k 1.
Specifically, from Equations (4) and (13)

( )
k
W

= +
d S
dX

1 16
2

2

2

2

and ( ) º - =k d S dX1 max 12 2 for bumps, 2.241 for gaps,
and 2.598 for steps. Thus, ( ) ( ) k = - Wkmin 12 2 in the
shearing sheet. For global models, κ2 also depends on W/Rc

(Section 5.2). This dependence vanishes in the shearing-sheet
limit, W/Rc= 1.
The bottom row of Figure 1 plots the incompressible

effective potential as -D kyinc
2 (Equation (12)). The corotation

radius is at a vorticity minimum, xm, with phase speed
cω= ω/ky= v0(xm). This choice removes the corotation
singularity and gives (consistent with Fjørtoft’s theorem) a
negative potential well for trapped modes. The compressible
potential D behaves similarly, but waves also propagate
exterior to Lindblad resonances, where D< 0 (see Figure 2).

2.3.2. Compressible Shearing-sheet Features

The compressible shearing-sheet (CSS) model requires not
just ( )P¢ x0 but also Σ0 and P0. We consider polytropic models
with ( )= S S GP P0 b 0 b , with reference values Σb, Pb. The
structure index Γ could differ from the adiabatic index γ (but
does not here, see below).
The polytropic enthalpy

( )òP =
S

=
G

G - S
dP P

1
170

0

0

0

0

matches Equation (13) for

⎡⎣⎢ ⎤⎦⎥( ) ( )S = S +
DP
P

G-
S x W1 , 180 b

b

1
1

and Πb= ΓPb/[(Γ− 1)Σb].
This compressible polytropic model requires three additional

parameters, besides kyW and  : γ, Γ and H≡ c/Ω with

( ) ( )g gº S = G - P Gc P 1 . 192
b b b

We drop the b subscripts from the reference H and c values for
convenience. We do not need Σb or Pb independently, as
Equation (8) only depends on logarithmic derivatives of Σ0 and
P0.
To reduce parameter space, we fix Γ= γ= 4/3 for an

adiabatic sheet with N2= 1/LS= 0. A diatomic gas with
γ3D= 7/5 corresponds to our height integrated γ=
(3γ3D− 1)/(γ3D+ 1)= 4/3 (P. Goldreich et al. 1986; H. Li
et al. 2000). Thus, H is the only additional free parameter our
compressible models.
The limits Γ→ 1, ∞ describe constant temperature and Σ0

features, respectively (E. Chang et al. 2023). For completeness,
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the Γ→ 1 limit of Equation (18) is

⎡⎣ ⎛⎝ ⎞⎠⎤⎦ ( )g
g

S = = S
DPP

c c
S

x
W

exp , 200
0
2 b 2

with Πb(Γ− 1)→ c2/γ remaining finite.

2.4. Boundary Conditions and Solution Methods

Solving our second-order ODEs requires a pair of boundary
conditions, applied at large distances |x|?W, 1/ky, and (for
the compressible case) |x|?H.

For the incompressible case (Equation (12)), D kyinc
2 at

large |x|. Physical solutions decay exponentially, with bound-
ary conditions,

( )y y¢ = k , 21y

at large m|x|.
For the compressible case, boundary conditions exterior to the

Lindblad resonances should match outgoing density waves. We
seek WKB solutions of the form ( ) ( ( ) )ò c cY ~ A x ı k dexp

x
x .

Compared to previous works (H. Li et al. 2000; T. Ono et al.
2016; E. Chang et al. 2023) that used just kx, we find A(x) to
lowest order, which improves some numerical results.

First, we confirm that outgoing waves have kx(x)> 0. The
large |x|, Keplerian limit gives wD  W S k x3 2,y 0

w-W D2 2, B→−3Ωky/Δω→−2/x, and ( ) w - DC D c0
2

[ ( )] k x H3 2y 0
2. To the lowest WKB order, Equation (8) gives

=  -k Cx , i.e., ( )wD = k cx
2

0
2. The group velocity

( )w w
w

¶
¶

=
¶D
¶

»
D

»
k k

k c k H
k x

c
2
3

22
x x

x x

y

2
0

confirms that kx> 0 for outgoing waves (as ky> 0 by
convention).
For more accuracy, we adopt the physical optics solution to

Equation (10a) as

( )( ) ( )ò c cX ~ Xc

k
ı k dexp , 23

x D

x

x D
,

,

with = -k Dx D, (the desired positive root) and cΞ an
arbitrary (complex) constant.
Taking the derivative gives the boundary condition

⎛⎝ ⎞⎠ ( )X¢ = - - Xı D
D

dD
dx

1
4

. 24

The desired boundary condition for Y = X follows as

⎛⎝ ⎞⎠ ( )Y¢ = - - - Yı D
B

D
dD
dx2

1
4

. 25

At large |x|, ( ) ( )d D dx xln 4 1 2 , so that |Ξ|∝ 1/|x|1/2

and |Ψ|∝ |x|1/2, in agreement with our numerical solutions.
Our numerical solutions use the shooting method. At the

inner boundary, xi, we pick an arbitrary ψ(xi) or Ψ(xi) and set
the derivative with the boundary condition, Equation (21) or
Equation (25). We integrate with the Dormand–Prince method
(“DOP853”) implemented in scipy.integrate.sol-
ve_ivp. The integrated solution deviates from the outer
boundary condition. Using Muller’s method, we minimize the
residual error and find the complex eigenvalue ω≡ ωr+ ıs. The
shooting method requires good initial guesses. We use known
solutions to gradually explore parameter space.

Figure 1. Radial profiles of shearing-sheet equilibria for (from left to right) bumps, gaps, drops, and jumps of width W and amplitude ( ) = DP W =W 0.5, 1, 22

(blue, orange, and green curves). Top row: enthalpy. Middle row: epicyclic frequency squared, κ2. Minima (dots) and maxima (pluses) of vorticity (and equivalently
κ2) are marked in all rows. Bottom row: the effective potential Dinc for marginally stable RWI (offset by ky

2, see the text).
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For global models, we apply the same method but solve
Equation (15) in H. Li et al. (2000) instead of Equation (8).

We have validated our numerical result in several ways,
including adjusting the outer boundary positions, finding the
incompressible limit of compressible results, and using different
methods for the RWI stability boundary (below). Similar to H. Li
et al. (2000), we derive an energy equation from Equation (5a),
which after azimuthal averaging (denoted by brackets) is

⎜ ⎟⎡⎣⎢ ⎛⎝ ⎞⎠⎤⎦⎥∣ ∣

( )

¶
¶

S
á ñ +

áY ñ

= - S á ñ - á ñ

v
t c

dv
dx

u v
d
dx

P u

2

. 26

0
1

2
2

2

0
0 1 1 1 1

We verified that growth rates and eigenfunctions found by our
numerical method satisfy this relation, over a range of
parameters,  W H, , and kyH.

2.4.1. Locating the Stability Boundary

We find marginally stable modes using a simplified method
(T. Ono et al. 2016). With s= 0, we fix the corotation radius,

xc, to vorticity (or vortensity) minima for incompressible (or
compressible) models, which sets ω= kyv0(xc). With this
choice, the ODE has real coefficients, and no corotation
singularity, as shown in Figure 1 for the incompressible case.
One physical parameter, usually kyW or W/H, varies as the

shooting parameter (and eigenvalue). With other parameters
held fixed, this method finds marginally stable solutions. For
the incompressible model, this method uses ψ(x) purely real.
For the compressible models, Ψ(x) has a complex boundary
condition (Equations (24), (25)). Thus, the eigenvalue (W/H)
can acquire an imaginary part, which is unphysical. Usually,
this imaginary part is negligibly small (10−3 of the real part),
which validates the method. Figure 2 shows examples of
solutions obtained with this method. Growth rates away from
the stability boundary are also mapped using the usual method.
For more extreme parameters—near Rayleigh instability and

for kyW; 1 (placing Lindblad resonances in the Rossby zone)
—this method can fail, as it does (for different reasons) in
baroclinic disks (E. Chang et al. 2023). In these cases, we
simply measure where s drops to small values.
It is numerically difficult to find growth rates with

s/Ω 10−3. Since both methods agree on the stability

Figure 2. Top left: along the RWI boundary for kyH= 0.1 in a CSS bump, numbers ①–③ mark the modes investigated. Other panels: the effective potential D (orange
curves, with negative regions shaded) and pressure perturbation Ψ (blue curves for magnitude [thick], real and imaginary parts [thin solid and dashed]) of the
numbered modes, with the bump width (green dotted lines) and nominal (Keplerian) location of Lindblad resonances (gray dotted lines) marked. ①: distant Lindblad
resonances, with a trapped mode in the Rossby zone. ②: the trapped Rossby mode couples to density waves exterior to nearby Lindblad resonances. ③: no Lindblad
resonances since κ2 < 0, and a “leaky” potential (negative everywhere). This Rayleigh unstable region is not our focus.

5

The Astrophysical Journal, 976:100 (15pp), 2024 November 20 Chang & Youdin



boundary location (when this simplified method works), the
stability boundary is relatively sharp.

3. Incompressible Results

Figure 3 maps RWI growth rates for various shapes in the
ISS. For a given shape, the incompressible RWI is completely
described by the parameters for amplitude, ( ) = DP WW 2,
and width (scaled to wavenumber), kyW. We describe the
incompressible stability boundary, growth rates, and eigen-
functions below.

3.1. Incompressible Stability Boundary

The dotted yellow curves in Figure 3 show the stability
boundary, found as described in Section 2.4.1. RWI occurs for
larger  or smaller kyW than this boundary. No modes (stable,
unstable, or damped) exist on the other side.

The stability boundary is best understood as smoothly
connected   1 and J? 1 limits. For   1, the stability
boundary follows   f k WyMS , or

( )DP = Wf k W , 27yMS
2 3

with fMS; 1.20, 2.39, 2.65 for the bumps, gaps, and steps,
respectively.

For  1, the stability boundary is simply kyW= gMS, with
=g 2 , 1.05, 2.0MS for the bump, gap, and step cases,

respectively. While large  values are Rayleigh unstable, this
limiting behavior explains why the stability curve steepens
for  1.

These limiting behaviors can be understood in several ways,
as described below.

3.1.1. Intuitive Explanations

The   1 instability condition, kyW< gMS, follows the
idea that counterpropagating Rossby waves (CRWs) drive
shear instability (E. Heifetz et al. 1999). For simplicity, we
consider bumps and examine the approximate condition for
CRWs at x;±W to maintain a stationary phase, with phase
speed cω= ω/ky= 0, as illustrated in Section 3.3.

With a ( ) ( )y µx ık xexp x WKB approximation,
Equation (12) gives ( )= +  +wc v v k kx y0 0

2 2 . At x=±W,
( ) ( )W ~ +v W 10 roughly accounts for Keplerian and

non-Keplerian flows, and  ~  Wv W0 . Taking kxW; 1
matches the local wave packet to feature size, giving

( )
( ) ( )

+
~ 

+
W

v

k k k W
W

1
. 28

x y y

0
2 2 2

Thus, cω= 0 requires ( )( ( ) ) ~ + + k W1 1 y
2 .

For   1, this rough analysis requires ( )~ + k W1 1 y
2 or

kyW 1 for phase matching and instability, as desired. For
  1, this analysis fails.

Instead, for the   1 boundary, another WKB analysis
applies. Since kyW= 1, waves have a shallow decay at large
|x|/W, as ( ∣ ∣)y µ -k xexp y . To match this decay, the slope
across the Rossby zone must change sign, but only change
magnitude by a small amount, ∣y yDF º ¢ ~ --W k WW

W
y .

Across corotation, the slope change from WKB oscillations,
( )y µ -ı D xexp inc , is

( )ò y yDF =  ~ ~ -
-

W dx D W , 29
W

W

inc
2

where the depth of the potential near corotation is
 -D Winc

2 (Figure 1). A trapped mode thus requires
 ~ k Wy , in agreement with the stability boundary. The small
change in wave phase,  - ~D W 1inc , explains the
failure of standard WKB theory for   1, as noted above.
For a more physical explanation of the   1 stability

boundary, we briefly summarize the analysis of shearing waves
by Y. Lithwick (2007). Shearing waves interact with axisym-
metric disk features of width W and vorticity amplitude
Δζ0;ΔΠ/(ΩW2).
A leading wave with initial radial wavenumber

kx(t= 0);−1/W and fixed ky> 0 swings through a radial
orientation, kx(tsw)= 0, in time tsw= (2kx(0)/(3Ωky)
;1/(ΩkyW) since for   1 the flow is nearly Keplerian
(P. Goldreich & D. Lynden-Bell 1965). While swinging, the
wave couples to the disk feature and spawns a new leading

Figure 3. Incompressible RWI growth rate s for (left to right) bump, gap, and step features against scaled enthalpy amplitude ( ) º DP WW 2 2 and the ratio of
feature width to azimuthal wavelength, kyW. The RWI boundary (dotted yellow),  = k Wy reference line (dashed yellow), and Rayleigh unstable regions (gray
shaded) are shown.
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wave. The amplitude of successive waves increases if
Δζ0tsw 1 or ΔΠΩ2kyW

3, reproducing the   1 instabil-
ity criterion.

3.1.2. More Quantitative Explanations

The above arguments can be made more rigorous. For
  1, Y. Lithwick (2007) couples the physical argument
(Δζtsw 1) to a stability boundary given by the integral

( )ò
z

W =
--¥

¥
k

d dx

x x
dx

1
3

, 30y
0

c

with the vorticity minimum at xc. This result reproduces
Equation (27), and for our shapes, precisely gives fMS= 6/IMS,
with

( ) ( )ò=
¢¢¢
--¥

¥
I

S X
X X

dX, 31MS
c

where Xc= xc/W. Integrating IMS reproduces our numerical
results. For bumps, p=f 3 2MS , and gaps, p=f 6 2MS .
The numerically integrated IMS for steps is also consistent.

For   1, the stability boundary =k W 2y for the bump
case can be derived exactly. The   ¥ limit gives a
parabolic potential well ( ) ( ) + -D W k W x W3yinc

2 2 2.
This potential has quantized bound states of “energy”

( )= - = +E k W n3 2 1y
2 for n= 0, 1, ... (e.g.,

M. O. Manasreh 2012, Appendix E). For ( ) >k W 0y
2 , only

the n= 0 bound state exists, which demonstrates the lack of
RWI modes with higher radial order. This bound state has

=k W 2y , as claimed.
For all shapes, a necessary condition for RWI follows from

the requirement that Dinc< 0. This necessary condition is only
close to the stability boundary for  1. For   1, this
necessary condition is <k W 3y for gaps and bumps and
kyW< 2 for steps. These simple necessary conditions are close
to, but less strict than, the sufficient conditions for instability.

3.2. Incompressible Growth Rates

Figure 3 shows that RWI growth rates increase with  and
with kyW, except near marginal stability. While it is easier to
trigger RWI for long wavelengths (small kyW), growth rates
well into the unstable region are faster for smaller wavelengths
(large kyW). The smooth variations in growth rates, especially
away from the stability boundary, suggest an analytic scaling.
Figure 4 plots growth rates scaled by the characteristic rate

( ) ( )º W DPs k . 32yinc
2 1 3

This approximation is reasonably good, aside from the rapid
decay near the stability boundary.
In the kyW= 1 limit, Y. Lithwick (2007) derives the growth

rate s/Ω= (3/2)αkyW, where α follows from the complex
integral constraint on α and β:

( )
( ) ( )ò

z
b a

b aW =
- +

- +
-¥

¥
k

W

d dX

X
X ı dX

1
3

. 33y
0

2 2

This result reduces to Equation (30) for marginal stability,
where β→ Xc. The analysis is simplest for bumps, where
symmetry about the vorticity minimum gives β= 0, and the
imaginary part of the integral vanishes.
Our parameterization, with SB for the bump shape, gives

( )
( ) ( )

 òa a
= º

¢¢¢
+-¥

¥k W

f
XS X
X

dX
1 1

6
. 34y

US

B
2 2

The function fUS(α) for unstable modes, gives fUS(0)= fMS at
marginal stability. Equation (34) only gives simple expressions
in limiting cases.
For α= 1, pa  -f k W2 1 yMS gives the rise in

growth rates near the stability boundary as

⎜ ⎟⎛⎝ ⎞⎠ ( )
pW

» -
s

k W
f

k W3 1
. 35y

y

MS

Figure 4. Same as Figure 3, except incompressible growth rates are scaled by a characteristic rate ( )W DPky
2 1 3. Away from the stability boundary, these scaled rates

vary only moderately.
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The α→∞ limit gives a pf 2US
4 and

⎛⎝⎜ ⎞⎠⎟( ) ( )p
W


DP

W
s k W3

2
2 . 36y1 8

3

2

1 4

Unfortunately this limit does not directly apply. We are mainly
interested in k W 0.01y , corresponding to α 3.4, i.e., at
most order unity.

Our approximate Equation (32) corresponds to fUS∼ α3, a
good approximation for order unity α.

3.3. Incompressible Eigenfunctions

To visualize RWI modes, Figure 5 maps perturbed vorticity
ζ1 and velocity vectors v1 for various growth rates and feature
types. These incompressible eigenfunctions are similar to the
standard global, compressible RWI (T. Ono et al. 2016).
Corotation is near the vorticity minima marked with the
dotted line.

The RWI mechanism is clearest for larger growth rates
(bottom row). The pair of CRWs across corotation (analyzed in
Section 3.1.1) is evident. This wave pair is shifted in the
azimuthal phase, but radially symmetric for the bumps, and
asymmetric for gaps and steps, consistent with their asym-
metric potentials (Figure 1). The azimuthal phase shift causes
flow through the vorticity minima to primarily enter regions of
negative perturbed vorticity. This explanation of the growth
mechanism is well known for general shear flows (E. Heifetz
et al. 1999) and the RWI (T. Ono et al. 2016).

At lower growth rates (middle row), the phase shift
decreases. The feeding of negative vorticity from the back-
ground into perturbations is less direct, entering narrow fingers
near corotation. Even closer to marginal stability (top rows),
the phase shift is nearly gone, and feeding via narrow glitches
near corotation is harder to see.

For marginal stability, ζ1 is nonzero and smooth through
corotation. However, all growing modes have ζ1= 0 at
vorticity extrema (as shown by Equation (11)). This fact
explains the necessity of small glitches near marginal stability
and the width of prominent CRWs, which fit between a
vorticity maximum and minimum (see Figure 1).

4. Compressible Results in the Shearing Sheet

We now analyze the CSS model of Sections 2.1 and 2.3.2.
Compressible effects are captured by the value of kyH (see
below). Our incompressible results roughly correspond to the
kyH→∞ limit.

For an effective Mach number, we use the Keplerian shear
across a length scale of 1/ky to define

( ) º
W

=
k

c k H
1

. 37y

y
eff

RWI modes with  1eff behave incompressibly, which is
expected of subsonic flows. In global protoplanetary disks, the
RWI is moderately compressible for m= 1 modes, and more
incompressible for higher m (Section 6, point 3).

4.1. Compressible Stability Boundary

Figure 6 shows the effect of compressibility, measured by
kyH, on the RWI boundary. The bump feature is chosen and is
representative, with quantitative shape effects noted below.

For kyH= 1, the stability boundary overlaps the incompres-
sible limit (kyH→∞). As kyH decreases, compressibility
effects increase.
For sufficiently small kyH 0.01, the stability boundary

breaks into three distinct regions, approximately as

⎧
⎨⎪⎩⎪

⎛⎝ ⎞⎠ ( )


 


DP
W

»

+

¥

-W

f W k
H

W H

j H W k

k W g

1
4

if

0.4 if

if .

38
y

y

y

2 2

MS

MS
1

MS

The shape-dependent factors fMS, gMS (Section 3.1) and jMS

(below) are order unity. For incompressible parameters,
kyH 0.3, this stability boundary reverts to the incompressible
case, with no intermediate width region. For marginal
compressibility, kyH; 0.1, these regions are not as distinct,
with overlapping transitions.
For small widths,W<H, the compressible (kyH= 1) stability

boundary follows ΔΠ≈ fMSΩ
2W3/(4H), independent of ky.

Compared to the incompressible kyW= 1 boundary, ΔΠ∝W3

is identical, but compressible enthalpy features must be
;1/(4kyH) larger for instability. This stabilizing effect generally
arises from the fact that some of the energy is used to compress
the flow (W. Blumen 1970).
Wide features and/or short wavelength modes,

kyW gMS∼ 1, are RWI stable, like the incompressible case.
However, compressible modes are more unstable between
0.3 kyW gMS (see Figure 6). This effect arises because
Lindblad resonances, absent from the incompressible limit,
approach the Rossby zone, as described below. Ultimately, the
widest features require a global treatment (Section 5).
For intermediate widths, with WH but  -W ky

1,
the stability boundary is approximately given by  =

( )DP W =W j0.42 2
MS, with jMS; 1, 2.8, 3.0 for bumps, gaps,

and steps, respectively. The value of ( )   k = - kmin 12

0.6, 0.51, 0.54 for bumps, gaps, and steps, respectively, is
more similar, emphasizing that κ2 and being halfway to
Rayleigh is more fundamental.
Figure 7 plots ( )k Wmin 2 2 for marginal stability, moderate

compressibility, kyH=0.03, and different shapes. (The global
models in this figure are discussed in Section 5.3.3.) For
W/H 2, the stability boundary is halfway to Rayleigh with

( ) k - Wmin 0.5 0.62 2. For stronger stronger compressibility
(smaller kyH), ( )kmin 2 values would be more strictly constant
(Figure 6).
In Figure 7, the kyW∼ 1 stability boundary is off-scale at

W/H∼ 30. For W/H 1, the stability boundary approaches
( ) ( )( )k W = - kf W Hmin 1 42 2

MS , following Equation
(38).
While shape effects are minor in the shearing sheet, bumps

most readily trigger RWI, at larger ( )kmin 2 values (Figure 7)
and smaller enthalpy amplitudes (smaller fMS and jMS values,
see Figure 3).
We next examine the origin of the three limits in

Equation (38).

4.1.1. Small Width Compressible Boundary

In Section 3.1.1, incompressible instability for kyW= 1 is given
as the Y. Lithwick (2007) wave shearing time criteria Δζ0tsh 1.
The correspondingW=H compressible instability criterion is that
the sound crossing time tsc≡W/(ΩH)Δζ0/Ω

2. Rotation
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appears explicitly in the compressible (but not the incompressible)
instability condition, consistent with the discussion after
Equation (12).

We can also adapt the WKB derivation of the  k W, 1y
incompressible stability boundary in Section 3.1.1 to the
compressible kyH= 1,WH case. The main difference in this

case is that, from Equation (9b), the decay outside the Rossby
zone follows ( ∣ ∣ )Y µ - x Hexp . Thus, the slope change across
corotation (now for Ψ) becomes ΔΦ∼−W/H. In this limit, the
potential depths are similar (to order unity), so the induced

DF ~ - . Matching these two gives  ~ W H , the desired
compressible boundary.

Figure 5. A map of perturbed vorticity, ζ1, for the RWI in the ISS, vs. x, y position, with arrows for the perturbed velocity v1. Rows from top to bottom have growth
rates s/Ω ≈ 10−3, 10−2, and 10−1, respectively. Columns from left to right consider enthalpy bumps, gaps, and steps, respectively. Solid vertical lines mark the feature
width, x = ±W. Dotted vertical lines locate the minima of the equilibrium vorticity, ζ0. The enthalpy amplitude  was chosen to produce the desired growth, with
wavenumber ky = 0.1/W in all cases.
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4.1.2. Intermediate-width Stability Boundary

The halfway-to-Rayleigh instability criterion is given above
as the scaled enthalpy condition,  ~j0.4 1MS . In absolute
terms, relative to Πb∼ c2, this condition becomes
ΔΠ/c2 (W/H)2. Thus, widths larger than H require increas-
ingly strong enthalpy features, a relevant point for the
astrophysical origin of these features.

To explain this stability boundary, a negative potential at
corotation D(xc)< 0 gives a useful, necessary condition for
instability (similar to Section 3.1.2). While simple to state,
there are many terms in D to evaluate. These terms are
stabilizing (or destabilizing) if they make a positive (or
negative) contribution to D(xc).
We focus on the bump case with xc= 0 for simplicity and

take the kyW= 1 and ΔΠ? c2 (equivalent to W?H as noted
above) limits. These limits avoid the transitions to neighboring
stability regimes.
The main stabilizing term is ( )S H0 0

2 , the usual source of
the corotation barrier in disks. With  kS µ0

2 this term is
reduced near Rayleigh instability, and also, via H0, by disk
heating. In our limits,

⎛⎝ ⎞⎠ ( )
 
S

 -
=H W

3 1
1 . 39

x

0

0
2

0
2

The main destabilizing term is the corotation term
Ccor= 2ΩkyB/Δω, though ¢B 2 also contributes. At corotation

( )µB d q dxln 0 diverges approaching Rayleigh instability.
Thus, a simple explanation of the halfway-to-Rayleigh result

is that the stabilizing corotation barrier vanishes, and the
destabilizing corotation resonance diverges for κ2→ 0. Thus,
instability occurs somewhat before this point.
Our limits give

⎜ ⎟⎛⎝ ⎞⎠( ) ( )
( )

( )
 

+
¢

 -
-

+
+

C
B

W
0

0
2

3 3
2 1

1
3

, 40cor 2

with the advertised   1 divergence.
Combining Equations (39) and (40), the necessary criterion

D(0)< 0 becomes  > 0.29. This condition is close to, but
naturally below, the sufficient condition for bumps,  > 0.4.
One insight from this analysis is that the equation of state

effects should have a modest effect on this stability boundary,
via H0 and S¢0. However, κ

2 is the dominant effect. We defer a
more detailed study of thermodynamic, including baroclinic,
effects.

4.1.3. Large-width Stability Boundary

The kyW 1 condition for stability matches the incompres-
sible case, which was physically justified in Section 3.1.1. We
do generalize that argument to include compressibility, for
reasons explored below.
The enhanced instability of compressible models for

0.3 kyW 1 is due to the proximity of Lindblad resonances,
as noted above. While limited to a small region of parameter
space, this result does go against the usual trend of
compressibility hindering instability.
We expect nearby Lindblad resonances to enhance RWI

because the outer wave propagation zones approach the
corotation amplifier (R. Narayan et al. 1987; D. Tsang &
D. Lai 2008). A similar effect is the reduction of the forbidden
zone width, i.e., Toomre Q barriers, in self-gravitating disks
(J. W. K. Mark 1976; P. Goldreich & S. Tremaine 1978).
We defer a detailed study of this effect, but note the basic

properties of Lindblad resonances in our models. Their
location, where Δω2= κ2, is at |x|=±2/(3ky) in the limit of
pure Keplerian flow in the shearing sheet (for corotation at
x= 0). This location clearly approaches |x|W for kyW 1.
Non-Keplerian flow affects the exact location of Lindblad
resonances in the Rossby zone.

Figure 6. Marginal stability curves for the RWI of bumps in the CSS for
different values of kyH. The incompressible, kyH→ ∞, limit (dotted yellow
curve) and ( )k =min 0.62 references (pink line with x’s) are shown. Axes and
Rayleigh unstable region are as in Figure 3.

Figure 7. For marginal RWI, the minimum value of κ2/Ω2 caused by bumps,
gaps, and steps (blue, orange, and green curves, respectively) vs. feature width.
Solid curves show CSS models for kyH = 0.03. Global models of bumps, outer
gap edges and jumps (dashed curves) and of inner gap edges and drops
(dotted–dashed curves) have m = 1, h = 0.03 (matching mh = kyH). Global
models break the symmetry between inner and outer gap edges and between
jumps and drops.
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To understand why Lindblad resonances only affect
compressible modes, note that density waves only propagate
where D< 0. For Keplerian flow, this propagation region
follows from the first two terms in Equation (9b) as
∣ ∣ ( )> +x k H2 3 1 y

2 2 , i.e., always with |x|> 2H/3
(P. Artymowicz 1993). This effective Lindblad resonance
location is far from the Rossby zone for incompressible modes
with kyH 1.

The simplified analyses offered in other regimes are
complicated by the presence of Lindblad singularities (where
  ¥) in the Rossby zone (see Figure 2). Lindblad
singularities can be removed from the ODE (P. Goldreich
et al. 1986). However, they are replaced by “sonic”
singularities at |x|; 2H/3, which also lie in the Rossby region
in this W>H regime. We thus defer further analytic
exploration of this regime.

4.2. Compressible Growth Rates

Figure 8 plots the growth rates for three different levels of
compressibility, kyH= 0.03, 0.1, 0.3, from stronger to weaker,
which also corresponds to a range of wavelengths from long to
short. The bump case is shown, but other shapes are similar.
The width is plotted asW/H, compared to kyW in Figure 6 for a
different perspective. The characteristic value of kyW= 0.3
(where compressible effects transition from stabilizing to
destabilizing, as described above) lies at W/H= 10, 3, 1,
respectively, in these plots.

For fixed values of W/H 1, the stability boundary is
similar for the longer wavelength (more compressible) cases
kyH= 0.03, 0.1 but higher for kyH= 0.3 (pushed by the
incompressible limit). However, in the unstable region, larger
kyH modes grow faster.

For larger fixed values of W/H 1 models with smaller kyH
have an extended region of instability, out to W/H∼ 1/(kyH),
but only have faster growth (than larger kyH modes) close to
the stability boundary.

More quantitatively, we showed that incompressible growth
rates are approximately ( )~ W DPs kyinc

2 1 3. For kyH 0.1, the
compressible growth rates in Figure 8 are better characterized

by a reduced rate:

( ) ( )~ W DPs k H 41ycomp
3 1 3

for regions not too close to the stability boundary. As with the
incompressible case, the growth rate has a weak dependence on
feature width, W, and increases with ky in the unstable region.
For quick estimates of RWI growth, Equation (38) can be

used to determine if parameters are unstable, while the growth
rate can be estimated as (s smin ,inc comp) for parameters a factor
2 from the stability boundary.

5. Comparison to Global Models

To understand the validity and limitations of our shearing-
sheet models, we compare them to global, cylindrical disk
models. We demonstrate that shearing box models are valid for
narrow features with sufficiently small W/Rc, and investigate
the role of global disk parameters m= kyRc and h=H/Rc.
We describe our global enthalpy features and compare them to

other parameterizations in Section 5.1. We analyze the Rayleigh
stability boundary in global models in Section 5.2. We compare
the RWI in the shearing-sheet and global models in Section 5.3,
and finally address RWI in dust traps in Section 5.4.

5.1. Global Disk Models

To best compare to our shearing-sheet models, our global
models use an enthalpy feature of

⎜ ⎟⎛⎝ ⎞⎠( ) [ ( )] ( )P = P + DP DR
R
R

S R W , 42
q

0
c

b

with ΔR= R− Rc, power law q, and using the same shape
functions S as Equation (13).
For the same polytropes, µ SGP0 0 , Equation (18) generalizes

to

⎜ ⎟⎛⎝ ⎞⎠ ⎡⎣⎢ ⎤⎦⎥( ) ( ) ( )S = S +
DP
P

D
G-

R
R
R

S R W1 , 43
n

0 b
c b

1
1

with n= q/(Γ− 1). We again set Γ= γ= 4/3 and set
n= q= 0 for simplicity in this work.

Figure 8. RWI growth rate, s, for bumps in the CSS, mapped vs. scaled bump amplitude, ΔΠ, and bump width relative to disk scale height, W/H. Different values of
kyH are shown from left to right. Compressible (dashed orange) and incompressible (yellow dotted) marginal stability curves are compared.
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Works not using our enthalpy formulation can still be
compared to our results. Surface density features (T. Ono et al.
2016; E. Chang et al. 2023),

⎜ ⎟⎛⎝ ⎞⎠ ⎡⎣⎢ ⎤⎦⎥( ) ( ) ( )S = S +
DS
S

DS SR
R
R

S R W1 , . 44
n

0, b
c b

are equivalent to our enthalpy formulation, with Σ0;Σ0,Σ, for

⎜ ⎟

⎧
⎨⎪⎩⎪⎛⎝ ⎞⎠

( )





DS
S

G -
DP
P

DP
P

DP
P

DP
P

S
G-

S

S

S

1
1

if 1,

if 1.

45
b

b b

b b

1
1

For small amplitudes the shapes are the same and the
amplitudes are similar. Even the isothermal Γ= 1 case follows
from (Γ− 1)Πb→ c2/γ (Equation (19)). For larger amplitudes,
neither amplitudes nor shapes are the same, so comparisons
require more care.

Instead of the above analytic comparison, for general disk
features, the corresponding enthalpy profile Π0(R) can be
computed, and the amplitude and width measured. For
barotropic models, the profile is simply Π0= ∫dP0/Σ0. For
nonbarotropic disks,

( ) ( ) ( )òP = P +
¢

S
¢R R

dP dR
dR , 46

R

R

0 0 r
0

0r

for arbitrary values of the reference disk location, Rr, and
Π0(Rr). The reference enthalpy is irrelevant, as a reference
sound speed c (which is not arbitrary) can be used instead.
Thus, with some effort, the enthalpy properties of any disk
feature can be measured and applied to the results of this work.

5.2. Rayleigh Instability in Global Models

The results for our global models are shown in Figure 9 for
bumps and Figure 10 for other shapes. In global models, the
shearing-sheet symmetry of inner versus outer gap edges and
jumps versus drops is broken. We show these additional cases.

We first discuss the location of the Rayleigh stability
boundary. In shearing-sheet models, the Rayleigh stability
boundary is at fixed (Equation (16), Figures 3, 6, and 8). For
global models, the critical  value changes for larger widths,
W/Rc.

We describe Rayleigh instability as being “enhanced” (or
“reduced”) when the critical  value drops (or increases) for
wider features. Of the shapes considered, most show enhanced
Rayleigh instability to quite different degrees. Only the inner
gap edge shows obviously reduced Rayleigh instability. The
difference with the outer gap edge (which has the strongest
enhancement) is striking. Curiously, the drop shape differs
from the inner gap edge, which also can be considered a drop.

We wish to understand these effects since the Rayleigh
stability boundary is crucial for our RWI analysis. We start
with the orbital frequency

( ) ( ) ( )W = W +
P

R R
R

d
dR

1
, 470

2
K
2 0

where the Keplerian W = W R RK Kc c
3 2 3 2. Using Equation (42)

with q= 0 and ( )k = W-R d R dR2 3
0
2 4 gives

⎛⎝ ⎞⎠ ⎡⎣ ⎤⎦( ) ( ) ( )
k
W

= +  + ¢
R
R

S X
W
R

S X
3

48
2

Kc
2

c
3

for X=ΔR/W, which reduces to the local limit, Equation (16),
for W, ΔR= Rc.
There are two main global effects in equation (48). The first

“Keplerian” effect is the ( )R Rc
3 term, which enhances

Rayleigh instability if R> Rc at ( )kmin 2 . For example, the
outer edge of gaps and jumps have vorticity (and κ2) minima at
R> Rc. Conversely, this effect reduces the Rayleigh stability
for inner gap edges and drops.
The second “non-Keplerian” effect is given by the term

( ) ( )¢W R S X3 . Sub-Keplerian speeds ( ( )¢ <S X 0) contribute to
lower vorticity and enhanced Rayleigh stability. This term is
positive (negative) for jumps (drops) and outer (inner) gap
edges. Thus, this second effect counteracts the first for these
shapes (but not bumps, as discussed last).
Which effect dominates depends on shape details, especially

how far the vorticity (and κ2) minimum is from Rc. For a
quantitative criterion, we Taylor expand Equation (48) about
W= 0, and evaluate at R= Rm= Rc+ Xm, the location of the
local κ2 minimum. This expansion shows that ( )kmin 2 is
lower, and Rayleigh instability is enhanced if

( ) ( )
( )

( )º - ¢ = +
¢


>f X S X X
S X
S X

0. 49W m m m
m

m

The final expression uses ( ) = = - k S X1 m , the small W
Rayleigh stability boundary. Since fW> 0 for outer gap edges
(the Keplerian effect dominates) and for drops (the non-
Keplerian effect dominates), the enhanced Rayleigh instability
of these shapes is explained.

Figure 9. RWI marginal stability curves for bumps in an h = 0.1 global disk
with azimuthal mode number m = 1, 2, 3 (solid blue, orange, and green curves,
respectively). Dashed curves show shearing-sheet results for comparison. The
grayed-out region is Rayleigh unstable. The dotted yellow curve gives the
minimum amplitude of dust-trapping bumps.
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Shapes with fW< 0 (inner gap edges and jumps) are expected
to show reduced Rayleigh instability. This expectation holds
for inner gap edges, but jumps are more complicated. Rayleigh

stability is indeed reduced as W→ 0, but this small effect is not
visible in Figure 10. At larger W/Rc, the first-order Taylor
expansion is insufficient for jumps. As Xm increases for larger
W/Rc, the Keplerian effect dominates, explaining the enhanced
Rayleigh instability seen for jumps. The stronger competition
between the two effects explains why the jump case shows a
weaker enhancement, starting at larger W, compared to other
shapes.
The bump case is special with fW= 0, which is marginal by

our simple criterion. However, since bumps have ( )¢ <S X 0 for
X> 0, both global effects combine constructively for the bump
case, unlike the other cases. Thus, bumps have enhanced
Rayleigh stability at larger W, with ( )kmin 2 shifting to X> 0.
From this analysis, we come to a better understanding of the

Rayleigh stability boundary for wide disk features.
For even more extreme parameters than Rayleigh instability,

outward pressure gradients can exceed stellar gravity, giving
W < 00

2 (Equation (47)). The ( )W =min 00
2 boundary appears

in Figures 9 and 10. This boundary is shown to emphasize how
extreme this region of parameter space is.

5.3. Global RWI versus Shearing Sheet

We now compare the results of our shearing-sheet models to
the equivalent compressible global models described in
Section 5.1. Global models introduce the length scale,
Rc, and thus one additional dimensionless parameter. In
our shearing-sheet parameters  k W, y , and kyH, we add the
mode number, m= kyRc. Removing the local wavenumber ky,
an equivalent set— m h W R, , , c—uses the aspect ratio
h=H/Rc.

5.3.1. Effect of Mode Number m

Figure 9 plots the marginal stability curves for m= 1, 2, and
3 RWI modes in a h= 0.1 disk versus W/Rc for a bump shape
(other shapes are addressed next). The equivalent CSS models
have kyH=mh= 0.1, 0.2, 0.3, and their stability curves are
shown for comparison.
The shearing-sheet and global results agree very well for

W/Rc 0.1, as expected. This agreement is excellent even for
the most global m= 1 modes. For W/Rc 0.1, global and
shearing-sheet results differ, more so for lower m. At larger
widths, global bumps are more susceptible to the RWI than
shearing-sheet bumps.
In Figure 9, the Rayleigh stability boundary deviates from

constant  , as described in Section 5.2. The m= 1 mode
curves to avoid the Rayleigh stability boundary, for
W/Rc 0.1, another manifestation of the halfway-to-Rayleigh
result.
The m= 2,3 modes do not share this behavior, crossing the

Rayleigh boundary. Since these modes are only weakly
compressible, with mh= kyH= 0.2, 0.3, the halfway-to-
Rayleigh behavior is not expected, and is also not seen in the
comparison shearing-sheet models.
The shearing-sheet stability boundary at kyW; 0.7 is at

W/Rc; 0.7/m; 0.7, 0.35, and 0.23 for the modes in Figure 9.
The global models are more unstable, i.e., to larger widths than
this boundary. This destabilizing effect diminishes for smaller
W/Rc boundaries, as expected.

Figure 10. RWI growth rates of m = 1 modes in our h = 0.1 global disk for
different shapes. Curves for marginal stability (solid), CSS marginal stability
(dashed), Rayleigh marginal stability (black dotted–dashed), and marginal dust
traps (dotted yellow) are shown.
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5.3.2. Effect of Feature Shape

Figure 10 plots marginal stability curves and growth rates for
m= 1, h= 0.1 RWI modes for a range of shapes (but not
bumps, shown in Figure 9). Global marginal stability is
compared to shearing-sheet results for kyH=mh= 0.1. The
agreement is again good for W/Rc 0.1, i.e., W/H 1 on
this plot.

The inner and outer gap edges show the largest differences
between global and shearing-sheet models, starting for
W/H 0.5. The large distance between the gap center and
vorticity minima (;1.7W, see Figure 1) is a natural
explanation.

For most shapes, global models are more susceptible to the
RWI than shearing-sheet models of equivalent parameters.
Inner gap edges are the only exception (of the shapes
considered). Inner gap edges are also the only shape to show
reduced Rayleigh instability at larger widths (Section 5.2). The
halfway-to-Rayleigh behavior of the RWI boundary thus also
applies to global models as they deviate from the shearing-
sheet approximation.

For narrow widths, W/H 1, the growth rates in Figure 10
are consistent with the shearing sheet (see Figure 8 for
kyH= 0.1), similar for all shapes, and given approximately by
Equation (41). For wider features, we do not offer a global
correction to this analytic approximation, as the effects seem
shape dependent. The basic behavior is that growth rates
steadily increase away from the RWI boundary.

5.3.3. Halfway to Rayleigh, Globally

We refer back to Figure 7 for the minimum value of k W2
0
2

along the RWI boundary for global models with m= 1,
h= 0.03 (a slightly thinner disk than above). The results are
generally consistent with the equivalent kyH=mh= 0.03
shearing-sheet models. Note that global models compare to
the orbital frequency Ω0(R), not the fixed Ω of the shearing
sheet.

For W 2H, all models have the RWI boundary occurring
halfway to Rayleigh with ( )k W ~ -min 0.5 0.62

0
2 . The inner

and outer gap edges again show the largest global corrections at
larger widths. Inner gap edges are again the most special case
and the most resistant to RWI, especially for wide gaps. Inner
gap edges require the lowest values of ( )k Wmin 2

0
2 and the

largest enthalpy amplitudes (Figure 10) to trigger RWI.
For thinner disks, h 0.01, global corrections are less

significant (for fixed W/H) and ( )k Wmin 2
0
2 more constant

along the RWI boundary. This effect is due to stronger
compressibility, with mh= kyH< 0.01 (Figure 6). Disks with
moderate thickness, 0.03 h 0.3, are more realistic but more
complicated, due to intermediate compressibility and stronger
global curvature effects.

While more study is needed, we expect the halfway-to-
Rayleigh criterion to hold in cases more complex than our 2D,
barotropic models. As noted in the introduction, E. Chang et al.
(2023) were the first to identify the halfway to Rayleigh in
several baroclinic models, which spanned the isothermal and
constant surface density limits.

The precise location of the RWI stability boundary in 3D is
not well studied. However, M.-K. Lin (2012) analyzed unstable
RWI modes in 3D. A W= 0.05Rc= 0.7H surface density
feature in a locally isothermal disk has ( )k W =min 0.592

K
2

and growth rates up to s; 0.06Ω0 (for m= 3).

A W= 0.05Rc= 0.36H feature in a γ= 5/3 disk has
( )k W =min 0.472

K
2 and growth rates up to s; 0.12Ω0 (for

m= 4). M.-K. Lin (2012) finds that these 3D growth rates are
very similar to 2D rates, and these 3D results are also roughly
consistent with our findings, despite model differences. In
particular, the fact that these modes show significant growth is
consistent with our Figure 7, which shows that W<H modes
are more strongly unstable at halfway-to-Rayleigh conditions.

5.4. RWI in Dust Traps

E. Chang et al. (2023) examined which dust-trapping rings
became unstable to—and would thus be modified by—the
RWI. The condition for dust trapping is a maximum in the
midplane pressure,

( )
g

= W =
W

SP
P
c

P , 50mid K
0

0

K
0 0

assuming a vertically isothermal structure.
Figures 9 and 10 show the minimum amplitude needed for

dust trapping. Note that no dust traps exist for inner gap edges
or drops since they reinforce dPmid/dR< 0 instead of reversing
it. Dust traps that are stable to RWI lie in the parameter space
above the yellow dotted dust-trapping curves and below the
solid RWI boundaries.
As in E. Chang et al. (2023), who only considered bumps,

stable (to RWI) dust traps exist above a minimum width and for
a range of intermediate amplitudes. This parameter space is
larger for outer gap edges and jumps versus bumps for reasons
that can be explained by an analysis of Pmid similar to that of κ2

in Section 5.2.
We defer a more detailed study of dust trap stability that

further extends the work of E. Chang et al. (2023). We mainly
note that such an analysis is facilitated by the insights into the
RWI boundary established in this work.

6. Conclusions

We examine the linear RWI with a suite of simplified models
to gain a basic understanding of the conditions for instability
and unstable growth rates. The disk features that trigger the
RWI are best characterized by their enthalpy amplitude, ΔΠ,
and width W. When different combinations of temperature and
density produce the same enthalpy profile, the equilibrium
velocity and vorticity profiles are the same (Equations (3), (4)).
We apply enthalpy features with various shapes (Section 2.3) to
a suite of models in the ISS (Section 3), the CSS (Section 4),
and global models (Section 5). Our main insights, explored in
detail in the text, follow.

1. The RWI in the ISS is simply characterized by two
dimensionless parameters: the scaled enthalpy amplitude

( ) = DP WW 2 and kyW (wavenumber times width).
The ISS RWI can be understood analytically, including
the stability boundary (Equations (27), (30)) and growth
rate (Equations (32), (34)). The ISS RWI has a similar
mechanism and eigenfunctions to the full disk RWI and
to generic shear instabilities (Figure 5).

2. The RWI in the CSS requires the additional parameter,
kyH (wavenumber times scale height), an inverse Mach
number. Modes with kyH> 1 behave incompressibly.
Smaller kyH values show stronger compressibility effects
(Figure 6).
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3. The RWI is moderately compressible in typical proto-
planetary disks with aspect ratios of 0.03 h 0.3
(E. Chiang & A. N. Youdin 2010). Specifically, m= 1
azimuthal modes have kyH=mh→ h, and are compres-
sible, while m 1/h modes are incompressible.

4. The RWI is usually most readily triggered by the longest
wavelength, m= 1 modes (T. Ono et al. 2016; E. Chang
et al. 2023; Section 5.3.1). However, in very thin disks,
modes with different m but mh= kyH 0.01 will have
nearly the same RWI boundary, due to strong compres-
sibility (Equation (38)).

5. Only disk features with widths W 1/ky can trigger the
RWI (Figures 3, 6). In global models with a feature at
radius Rc, this limit,W/Rc 1/m, is relevant (i.e., smaller
than the disk) for m> 1 (Figure 9 and Section 5.3.1). This
limit is roughly derived in Section 3.1.1.

6. The RWI boundary often lies “halfway-to-Rayleigh
instability” in that ( )kmin 2 drops to ∼0.5–0.6Ω2.
This behavior occurs for widths HW 1/ky= Rc/m
(Figure 7), a range that expands for thinner disks.
This boundary is roughly derived in Section 4.1.2. While
approximate, this condition is significantly closer to the
actual stability boundary than the necessary Lovelace
criterion (T. Ono et al. 2016; E. Chang et al. 2023).

7. For narrow features, with WH the RWI boundary
follows ΔΠ∝W3 (Equation (38)). This scaling agrees
with the low amplitude behavior in T. Ono et al. (2016),
see Equation (45). We explain the relevant factors that
turn this previously known proportionality into an
equality.

8. The stability boundary for the RWI of the localized disk
feature (with W 0.2Rc) can be approximated by
Equation (38). The enthalpy amplitude and width must
be calculated (see Section 5.1). For wider disk features,
the halfway-to-Rayleigh criterion is a good approx-
imation for m= 1 modes (Figures 9, 10).

9. Shape effects are generally minor when comparing the
same enthalpy amplitude and width. However, bumps are
the most susceptible to RWI. Wide gaps show the largest
global corrections compared to shearing-sheet models.
The inner edges of wide gaps are the least susceptible to
RWI (Figures 7, 10).

This final point implies that wide, symmetric planetary gaps
on the outer gap edge should generally support more vigorous
RWI and vortex formation. Vortices at the outer edges of gaps
could be more prominent in simulations and observations for
other reasons as well, including larger area, longer orbital, and
viscous timescales, numerical resolution, and more dust trapping
(W. Fu et al. 2014; A. Lobo Gomes et al. 2015; M. Hammer
et al. 2017; Z. Regály et al. 2017). Alternately, our results imply
that over longer times, the RWI should make wide planetary
gaps more asymmetric, with closer and steeper inner edges. The
radial power law of the background disk also affects gap
asymmetries (N. P. Cimerman & R. R. Rafikov 2023).

Our simplified models neglect many physical effects,
notably baroclinicity, cooling, 3D motions, and self-gravity.
Previous works have studied the RWI with these effects and
shown their importance (Section 1). More studies that carefully
map the stability boundary and growth rates with additional
physics would be useful.
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