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Abstract

The streaming instability (SI) is a leading candidate for planetesimal formation, which can concentrate solids
through two-way aerodynamic interactions with the gas. The resulting concentrations can become sufficiently
dense to collapse under particle self-gravity, forming planetesimals. Previous studies have carried out large
parameter surveys to establish the critical particle to gas surface density ratio (Z), above which SI-induced
concentration triggers planetesimal formation. The threshold Z depends on the dimensionless stopping time (τs, a
proxy for dust size). However, these studies neglected both particle self-gravity and external turbulence. Here, we
perform 3D stratified shearing box simulations with both particle self-gravity and turbulent forcing, which we
characterize via a turbulent diffusion parameter, αD. We find that forced turbulence, at amplitudes plausibly present
in some protoplanetary disks, can increase the threshold Z by up to an order of magnitude. For example, for
τs= 0.01, planetesimal formation occurs when Z 0.06, 0.1, and 0.2 at αD= 10−4, 10−3.5, and 10−3,
respectively. We provide a single fit to the critical Z required for the SI to work as a function of αD and τs (although
limited to the range τs= 0.01–0.1). Our simulations also show that planetesimal formation requires a mid-plane
particle-to-gas density ratio that exceeds unity, with the critical value being largely insensitive to αD. Finally, we
provide an estimation of particle scale height that accounts for both particle feedback and external turbulence.

Unified Astronomy Thesaurus concepts: Planet formation (1241); Protoplanetary disks (1300); Hydrodynamics
(1963); Hydrodynamical simulations (767); Planetesimals (1259)

1. Introduction

Planet formation involves a variety of physical processes
ranging from collisions of tiny dust grains to migration of
massive planets within a circumstellar disk. It must be efficient
and rapid; it requires that growth from micron-sized dust into
fully fledged planets of up to 105 km in scale be completed
within several Myr before gas dissipates, possibly even earlier
as suggested by some observations (e.g., Manara et al. 2018;
Segura-Cox et al. 2020). The intermediate stage of the process,
where millimeter- to centimeter-sized pebbles coalesce into
kilometer-scale planetesimals, entails one of the most
challenging questions to answer: how do the planetesimals
form out of their much smaller pebble constituents (see Simon
et al. 2022 for a recent review)?

The challenge in answering this question lies with the
growth barriers that must be overcome in order to form
planetesimals. First, while the collisional coagulation of dust
grains is effective at producing grains of size ∼millimeter–
centimeter, growth beyond this scale is stalled by fragmentation
and/or bouncing, the latter of which may even prevent growth
to the fragmentation limit (Zsom et al. 2010; see also Dominik

& Dullemond 2024 for more recent work), of these larger
grains in the inner regions (10 au) of protoplanetary disks
(PPDs; e.g., Blum & Wurm 2008; Güttler et al. 2010; Zsom
et al. 2010; Birnstiel et al. 2012). Second, as particles orbit at
the Keplerian speed, they feel a headwind caused by the more
slowly rotating, sub-Keplerian gas; this headwind removes
angular momentum from the particles, causing them to drift
radially inward. Since the drift timescale is short compared to
the disk lifetime, (e.g., ∼300 orbital periods for centimeter-
sized particles at 50 au; Adachi et al. 1976), the rapid radial
drift imposes limits on the growth of particles in the outer disk
(Birnstiel et al. 2012).
These growth barriers can be bypassed by the streaming

instability (SI; Youdin & Goodman 2005), which arises from
the angular momentum exchange between gas and solid
particles via aerodynamic coupling. Linear studies of the SI
(Youdin & Goodman 2005; Youdin & Johansen 2007) have
demonstrated that the coupled gas-solid system in disks is
unstable, with the exponential growth rate depending mainly on
the dimensionless stopping time of particles (τs) and particle-
to-gas density ratio. Beyond the linear regime, numerical
simulations have shown that the nonlinear evolution of the SI
leads to particles concentrating in narrow filaments, and that,
under some circumstances, these filaments can reach
sufficiently high densities that a gravitational collapse ensues,
forming planetesimals (Johansen et al. 2007, 2009b, 2015;
Simon et al. 2016; Schäfer et al. 2017; Abod et al. 2019).
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Several numerical studies have delved into the nature of the
SI clumping by examining the critical ratio of pebble surface
density to gas surface density (Z), beyond which the SI triggers
strong clumping that facilitates planetesimal formation. These
studies have explored large regions in (τs, Z) parameter space
(Carrera et al. 2015; Yang et al. 2017; Li & Youdin 2021,
hereafter LY21), quantifying a boundary (the “clumping
boundary”) that determines which combinations of these two
parameters could result in strong clumping. They have found
the lowest critical Z values occur around τs∼ 0.1–0.3, with the
exact critical Z values depending on the specific numerical
setup (e.g., vertical boundary conditions and domain size; see
LY21, Section 4.1.4). While thresholds for the SI clumping
have been established for much of parameter space, there is still
work to be done to understand this boundary under the
presence of more realistic physics.

First, previous studies quantifying the SI clumping threshold
as a function of τs and Z did not take external turbulence10 into
account. Observations show that, although PPDs are at best
weakly turbulent compared to predictions for fully ionized
accretion disks, there is evidence for a nonzero level of
turbulence in some disks. More specifically, observations of
turbulent line broadening derive an upper limit of turbulent
velocity to sound speed ratio δv/cs∼ 0.01 for HD 163296
(Flaherty et al. 2017; see also Flaherty et al. 2018; and Flaherty
et al. 2020 for other disks), whereas other disks (DM Tau—
Flaherty et al. 2020; and IM Lup—Paneque-Carreño et al.
2024) show δv/cs∼ 0.3 above 1–2H (H being the vertical scale
height of gas) away from the midplane. Observations sensitive
to the vertical settling of dust grains suggest even weaker
turbulence close to midplane in Class II disks (i.e., δv/cs
0.003 in the outer regions of Oph 163131 disk, assuming a
turnover timescale of turbulent eddies similar to the local
orbital timescale; Villenave et al. 2022), or more modest
turbulence in Class I disks (e.g., δv/cs 0.01 in the outer
regions of IRAS04302 disk under the same assumption for the
turnover timescale and assuming τs= 0.01; Villenave et al.
2023). Clearly, the strength of turbulence (at least as inferred
from these observations) varies between disks. It is therefore
crucial that we understand the effect of turbulence on the SI
clumping criterion and planetesimal formation across a range of
turbulence levels.

Second, in previous studies of the clumping boundary,
particle self-gravity has been neglected, with the threshold for
planetesimal formation being instead defined by whether or not
the maximum particle density exceeds the Hill density (a
condition often referred to as “strong clumping”; LY21). This
choice is largely justified since, in the presence of very weak
turbulence (such as that produced by the SI itself), the Hill
criterion is likely a sufficient condition for collapse; a particle
cloud (i.e., local particle overdensity) within a narrow filament
needs to be sufficiently dense for the self-gravity to overpower
the tidal shear. However, if turbulence becomes important, the
gravity has to overcome not only the tidal shear but also the
turbulent motion induced onto the particles by the gas. Thus, as

both turbulent diffusion and tidal shear can counteract self-
gravity, a Toomre-like criterion for gravitational instability
becomes a more appropriate criterion for collapse, with
diffusion playing a similar role to pressure (Gerbig et al.
2020; Klahr & Schreiber 2020; Gerbig & Li 2023).
Despite these open questions, there has been some previous

work addressing the effect of turbulence on the SI. For
example, Chen & Lin (2020) and Umurhan et al. (2020)
analytically show that even moderate level of turbulence (i.e.,
αSS 10−4; where αSS is the standard Shakura–Sunyaev
turbulent viscosity parameter; Shakura & Sunyaev 1973) can
suppress linear growth of the SI. The notion that turbulence
may hinder the SI was numerically confirmed (although in the
nonlinear regime) by SI simulations with externally driven
hydrodynamic turbulence (Gole et al. 2020). Moreover, there
have been a number of studies that investigated the effect of
turbulence driven by (magneto)hydrodynamical instabilities
present in PPDs, such as the magnetorotational instability
(MRI; Johansen et al. 2007; Yang et al. 2018; Xu & Bai 2022a)
or the vertical shear instability (VSI; Nelson et al. 2013; see
Schäfer & Johansen 2022 for the VSI and SI study), on the
particle concentration. The main takeaway from these works is
particle concentration can occur in large-scale features (such as
localized concentrations of gas pressure) that emerge naturally
from the (magneto)hydrodynamic processes at work. We will
return to a discussion of these results later in this manuscript,
but for now, it is worth mentioning that these numerical studies
explored a relatively narrow region in parameter space in terms
of τs and Z. Thus, and reiterating our points, the influence of
turbulence on the clumping criterion has not yet been fully
addressed; exploring the broader parameter space of τs, Z, and
the strength of turbulence (including particle self-gravity) is the
goal of this paper.
This paper is organized as follows. We describe our

numerical approach in Section 2. In Section 3.1, we examine
the effect of turbulence on particle concentration. Section 3.2 is
dedicated to the simulations with the particle self-gravity
included. Thus, it is in this section where we present a new
clumping boundary. We demonstrate the effect of particle
feedback in Section 3.3 and its influence on vertical profiles of
particle density in Section 3.4. Finally, we discuss and
summarize our results in Sections 4 and 5, respectively.

2. Method

2.1. Numerical Method

We use the ATHENA hydrodynamics+particle code (Stone
et al. 2008; Stone & Gardiner 2010; Bai & Stone 2010b) to
perform 3D simulations of the SI. We artificially force
turbulence (see Section 2.3 for details) in a vertically stratified
shearing box, which is a corotating patch of a disk sufficiently
small such that the domain can be treated in Cartesian
coordinates without curvature effects (see, e.g., Hawley et al.
1995). More specifically, we use a local reference frame at a
fiducial radius R0 that rotates at angular frequency Ω. The
equations of gas and particles are written in Cartesian
coordinates ( ˆ ˆ ˆ)x y z, , , where ˆ ˆx y, , and ẑ denote unit vectors
pointing to radial, azimuthal, and vertical directions, respec-
tively, and the local Cartesian frame is related to the cylindrical
coordinate of the disk ( f ¢R z, , ) by x= R− R0, y= R0f,
and = ¢z z .

10 Turbulence is driven within the settled particle layers by the SI (Johansen &
Youdin 2007; Yang & Zhu 2021) and/or other instabilities when the SI is
inactive (Sengupta & Umurhan 2023) even without external drivers. However,
we are particularly interested in “external” turbulence driven by mechanisms
not strictly dependent on dust dynamics, such as the magnetorotational
instability (MRI; Balbus & Hawley 1991), the numerous hydrodynamic
instabilities discovered in recent years (see Lesur et al. 2022 for a recent
review), or artificially forced turbulence (Gole et al. 2020; and this work).
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Solid particles are included and treated as Lagrangian
superparticles, each of which is a statistical representation of
a much larger number of particles with the same physical
properties. The particles are coupled to the gas via aerodynamic
forces. We adopt periodic boundary conditions in the azimuthal
and vertical directions, while shearing–periodic boundary
conditions (Hawley et al. 1995) are used in the radial direction.

To solve the hydrodynamic fluid equations, we use the
unsplit corner transport upwind (CTU) integrator (Colella
1990), third-order spatial reconstruction (Colella & Woodward
1984), and an HLLC Riemann solver (Toro 2006). The
hydrodynamic equations in the shearing box approximation are
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where ρg is the gas mass density, u is the gas velocity, and cs is
the sound speed. In the momentum equation (Equation (2)), I is
the identity matrix, and P is the gas pressure defined in
Equation (3). On the right-hand side of Equation (2), the first
three terms are radial tidal forces (gravity and centrifugal),
vertical gravity, and Coriolis force, respectively. The
penultimate term denotes the back-reaction from the particles
to the gas where ρp, v, and tstop are the particle mass density,
particle velocity, and stopping time of particles, respectively.
The last term fturb is the forcing term for turbulence (see
Section 2.3). Note that we use an orbital advection scheme
(Masset 2000), in which the Keplerian shear ( ) ˆº - Wu yx3 2K

is subtracted, and we only evolve the deviation ¢ º -u u uK

numerically with the separate Keplerian motion of the gas
being integrated analytically. The last of the above equations is
our isothermal equation of state, which we assume here for
simplicity; thus, cs is constant in space and time.

The equation of motion for particle i (out of Npar total
particles) is written as

( )h

W= W - W + ´ -
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- W +

v
x z v

v u
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d
dt t
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3 2

2 4

i
i i i

i

g

2 2
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K ,^

and solved with a semiimplicit integrator (Bai & Stone 2010b).
The orbital advection scheme described above is also
implemented for the particles. In Equation (4), the first, the
second, and the third terms on the right-hand side are radial
tidal forces (again, gravity and centrifugal), the vertical gravity,
and the Coriolis force, respectively. The fourth term is the drag
force on individual particles. The second-to-last term represents
a constant inward acceleration of particles that causes them to
drift radially inward (which results from a negative radial gas
pressure gradient; see Bai & Stone 2010b). In our treatment, the
parameter η is the fraction of the Keplerian velocity by which
the orbital velocity of particles is effectively increased (i.e.,
made super-Keplerian), while the gas stays at Keplerian
velocities; the frame is effectively boosted by an amount

ηuK. As discussed in Bai & Stone (2010b), this approach does
not change the relevant physics. The last term is the particle
self-gravity, which is calculated by solving the following
Poisson equation:

( )p r F = G4 , 5p
2

where G is the gravitational constant. We use the fast Fourier
transform to solve the Poisson equation for the gravitational
potential (see Simon et al. 2016 for more details on the
implementation of the Poisson solver) from which we then
calculate the self-gravitational acceleration (ag=−∇Φ). Gas
self-gravity is ignored in our simulations.
We use the triangular-shaped cloud (TSC) method outlined

in Bai & Stone (2010b) to interpolate the gas velocity at the
grid cell centers to the particle locations for the calculation of
the gas drag term in Equation (4). The same interpolation
scheme is used to map momenta from the particle locations to
the grid cell centers to calculate the back-reaction term on the
gas in Equation (2). The TSC method is also used to calculate
ag; the mass density of particles is mapped to grid cell centers
to solve Equation (5) and calculate ag, which is then
interpolated back to the location of the particles (see Simon
et al. 2016).

2.2. Initial Conditions and Parameters

Due to the typical length scales of the SI being much smaller
than the vertical gas scale height (H= cs/Ω), our domain size is
necessarily smaller than shearing box simulations of other
processes, such as magnetically driven turbulence (see, e.g.,
Hawley et al. 1995). More specifically, our domain size is (Lx,
Ly, Lz)= (0.4, 0.2, 0.8)H, where Lx, Ly, and Lz are radial
(length), azimuthal (width), and vertical (height) sizes of the
boxes, respectively. For the runs with smaller τs and/or
stronger forced turbulence, we increase Lz to reduce the number
of particles crossing the vertical boundaries (see Table 1). The
number of grid cells in each direction is (Nx, Ny, Nz)= (256,
128, 512), equating to 640 grid cells per H in each direction,
respectively. We adjust the vertical resolution for the taller
boxes so as to maintain an equivalent resolution to 640 cells
per H.
The dynamics of gas and particles in our simulations are

determined by five dimensionless parameters. We focus on the
four parameters relevant to the particles here and describe the
other one characterizing the forced turbulence in the next
subsection.
First, the aerodynamic coupling of the particles to the gas is

controlled by the dimensionless stopping time

( )t º Wt , 6s stop

which also represents particle size (tstop is proportional to the
grain size; see, e.g., Equation (1.48a) in Youdin & Kenyon
2013 for the formula of tstop used in this work). In each
simulation, all particles are the same size, but we vary τs in
different simulations, exploring values of τs ranging from 0.01
to 0.1. For reference, these τs values correspond to particle
sizes of millimeters to centimeters at 50 au in a PPD with
reasonable choices for disk mass, disk size, etc. (e.g., Carrera
et al. 2021), although there is some variation in these numbers
depending on the disk model employed.
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Table 1
List of Simulations and Time-averaged Quantities

Run τs Z αD Lx × Ly × Lz Nx × Ny × Nz Npar tsg Collapse? σp,z ρp(z = 0) rp,max [ts, te]
H3 Ω−1 H ρg0 ρg0 Ω−1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

T1Z4A4 0.01 0.04 10−4 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 N 0.047 1.480 3.066 [200, 400]
T1Z6.5A4 0.01 0.065 10−4 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 Y 0.037 4.958 50.642 [200, 328]
T1Z8A4 0.01 0.08 10−4 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 Y L L L L
T1Z10A4 0.01 0.1 10−4 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 Y L L L L
T1Z10A3.5 0.01 0.1 10−3.5 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 300 N 0.059 3.493 12.050 [220, 300]
T1Z10A3 0.01 0.1 10−3 0.4 × 0.2 × 2.0 256 × 128 × 1280 ≈4.19 × 107 L Na 0.147 0.739 2.180 [150, 356]
T1Z12.5A3.5 0.01 0.125 10−3.5 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 Y 0.052 7.673 47.378 [200, 400]
T1Z15A3.5 0.01 0.15 10−3.5 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 Y L L L L
T1Z20A3.5 0.01 0.2 10−3.5 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 Y L L L L
T1Z20A3 0.01 0.2 10−3 0.4 × 0.2 × 2.0 256 × 128 × 1280 ≈4.19 × 107 250 N 0.106 2.577 5.725 [100, 250]
T1Z25A3 0.01 0.25 10−3 0.4 × 0.2 × 2.0 256 × 128 × 1280 ≈4.19 × 107 200 Y 0.094 4.483 10.443 [100, 200]
T1Z30A3 0.01 0.3 10−3 0.4 × 0.2 × 2.0 256 × 128 × 1280 ≈4.19 × 107 400 Y L L L L
T1Z40A3 0.01 0.4 10−3 0.4 × 0.2 × 2.0 256 × 128 × 1280 ≈4.19 × 107 400 Y L L L L

T1.3Z8A4 0.013 0.08 10−4 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 Y L L L L

T2Z4A4 0.02 0.04 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 400 N 0.029 2.473 9.870 [100, 400]
T2Z5A4 0.02 0.05 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 400 N 0.025 4.073 39.036 [100, 370]
T2Z8A4 0.02 0.08 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 400 Y L L L L

T3Z2A4 0.03 0.02 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 L Na 0.028 0.803 2.376 [250, 600]
T3Z3A4 0.03 0.03 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 300 N 0.024 1.737 7.639 [100, 300]
T3Z4A4 0.03 0.04 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 300 Y 0.021 3.076 25.405 [100, 300]
T3Z45A3.5 0.03 0.045 10−3.5 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 400 N 0.041 1.447 7.942 [100, 400]
T3Z5A4 0.03 0.05 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 400 Y L L L L
T3Z5A3.5 0.03 0.05 10−3.5 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 500 Y 0.038 1.848 8.412 [100, 500]
T3Z6A3.5 0.03 0.06 10−3.5 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 500 Y 0.035 2.929 29.342 [100, 292]
T3Z7A3 0.03 0.07 10−3 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 N 0.077 1.018 5.818 [50, 400]
T3Z8A3 0.03 0.08 10−3 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 N 0.072 1.279 6.508 [50, 400]
T3Z9A3 0.03 0.09 10−3 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 400 N 0.070 1.518 7.164 [50, 400]
T3Z10A3 0.03 0.1 10−3 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 300 Y 0.066 1.881 8.216 [50, 300]
T3Z20A3 0.03 0.2 10−3 0.4 × 0.2 × 1.2 256 × 128 × 768 ≈2.52 × 107 300 Y L L L L

T10Z1.5A4 0.1 0.015 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 N 0.015 0.994 8.726 [50, 350]
T10Z2 0.1 0.02 No forcing 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 Y 0.008 2.752 41.362 [50, 350]
T10Z2A4 0.1 0.02 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 Y 0.013 1.654 36.424 [100, 211]
T10Z2A4-np

b 0.1 0.02 10−4 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈4.61 × 106 L L 0.013 1.763 69.740 [100, 211]
T10Z2A3.5 0.1 0.02 10−3.5 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 N 0.024 0.884 10.116 [50, 350]
T10Z2A3 0.1 0.02 10−3 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 L Na 0.050 0.425 8.631 [50, 600]
T10Z2.4A3.5 0.1 0.024 10−3.5 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 Y 0.022 1.244 19.944 [50, 350]
T10Z3.2A3.5 0.1 0.032 10−3.5 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 Y L L L L
T10Z4A3 0.1 0.04 10−3 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 N 0.041 1.106 17.976 [50, 350]
T10Z4.5A3 0.1 0.045 10−3 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 500 Y 0.040 1.308 20.246 [50, 500]
T10Z5.4A3 0.1 0.054 10−3 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 350 Y L L L L

T30Z2A3.5 0.3 0.02 10−3.5 0.4 × 0.2 × 0.8 256 × 128 × 512 ≈1.68 × 107 300 Y L L L L

Notes. Columns: (1) run name (the numbers after T and Z are in units of one hundredth, while those after A are the absolute values of power indices); (2) dimensionless stopping time of particles (see Equation (6)); (3)
initial surface density ratio of particle to gas (see Equation (7)); (4) dimensionless diffusion parameter of turbulence (see Equation (13)); (5) dimensions of the simulation domain in unit of gas scale height; (6) the number
of grid cells in each direction; (7) number of particles; (8) when particle self-gravity is switched on; (9) whether or not gravitational collapse of particles occurs (Y for yes and N for no); (10) time-averaged standard
deviation of particles’ vertical positions (see Equation (20)); (11) time-averaged particle density at the disk midplane; (12) time-averaged maximum particle density; (13) time interval over which quantities in columns

(10)–(12) are averaged. We do not report the quantities for runs that have relatively short preclumping phases. All runs have the global radial pressure gradient of Π = 0.05 and the self-gravity parameter of =
~
G 0.05.

a We decided not to turn on particle self-gravity in these runs. Nevertheless, we conclude that they are not capable of forming planetesimals even if the gravity is turned on because a run with one step higher Z value but
identical τs and αD (e.g., T1Z10A3 versus T1Z20A3) does not lead to planetesimal formation with the self-gravity on.
b Since this run is to study the effect of the number of particles on the particle concentration (see Section 4.3), we do not include particle self-gravity here.
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Second, the abundance of the particles relative to the gas is
characterized by the ratio of initial surface density of particles
(Σp0) to that of gas ( prS º H2g g0 0 ):

( )º
S

S
Z , 7p

g

0

0

where ρg0 is the initial gas density in the midplane. The surface
density ratio sets the strength of particle feedback on the gas as
well (Equation (2)). We consider multiple Z values spanning
from 0.015 to 0.4. This particular range of values is motivated
by the Z values needed to produce planetesimals for a given
degree of turbulence; see below.

Third, a global radial pressure gradient is parameterized by

( )h
P º

u
c

, 8
s

K

which measures the strength of the headwind and drives radial
drift for solids. In our current work, we fix Π= 0.05 based on
previous work (see, e.g., Bai & Stone 2010a; Carrera et al.
2015; Sekiya & Onishi 2018 for more information) and to
maintain an economical number of simulations.

Fourth, we control the strength of the particle self-gravity by
using the dimensionless parameter

˜ ( )
p r

p
º

W
=G

G

Q

4 8 1
. 9g0

2

Here, Q is the Toomre parameter (Toomre 1964) for the gas
disk. We fix =

~
G 0.05 (Q; 32), which allows us to compare

our results to previous numerical studies of the SI. The
assumed Q value gives the Hill density11

( )r r r= p Q9 180 . 10H g g0 8 0

We set the number of particles as follows:

( )
( )= » ´

´ ´
N n N

L L L

H
1.68 10

0.4 0.2 0.8
, 11p

x y z
par cell

7
3

where Ncell is the total number of cells. The prefactor on the
right-hand side results from setting np= 1 as the number of
particles per cell. Bai & Stone (2010b) show that setting np to 1
is necessary to accurately capture density distributions of
particles in unstratified SI simulations. However, as LY21
pointed out, the effective particle resolution will be >1 for
vertically stratified simulations since particle settling leads to a
particle layer thickness Hp< Lz. Since our simulations include
forced turbulence, the effective particle resolution is not known
in advance. Nonetheless, we expect that the effective resolution
is higher than 1 for all of our simulations since Hp< Lz is
always satisfied in our simulations. Furthermore, we test how
the effective particle resolution impacts our results in
Section 4.3.2.

The gas is initialized as a Gaussian density profile with
vertical thickness H in hydrostatic balance. The particles are

initially distributed with a Gaussian profile about the midplane
in the vertical direction; the scale height of this Gaussian is
0.02H. In the horizontal directions, initial positions of particles
are randomly chosen from a uniform distribution. The initial
velocities of the gas are zero (with Keplerian shear subtracted),
whereas the particles have an initial azimuthal velocity of
ηuK= 0.05cs. Importantly, the particles are not initially in an
equilibrium state. This is because particles have an initial
azimuthal velocity causing them to drift radially inward (and
we do not assume the Nakagawa–Sekiya–Hayashi equilibrium
condition; Nakagawa et al. 1986). Moreover, forced turbulence
already exists from the initialization of particles (next section),
and the turbulent diffusion will not immediately counterbalance
the vertical gravity from a host star. All of our simulations are
shown (with associated relevant parameters) in Table 1.

2.3. Turbulence Forcing

As mentioned earlier, we inject turbulence into our
simulation domain. Unlike Gole et al. (2020) in which
turbulence is driven in Fourier space and added to real space
via an inverse Fourier transform, we drive the turbulence in real
space with a cadence of tdrive= 0.001Ω−1. We compared one of
our runs to that in Gole et al. (2020), both of which have the
same τs, Z and comparable kinetic energy of gas (Run
T30Z2A3.5), and found no significant differences. We use a
vector potential method to force turbulence, which guarantees
that the velocity perturbations introduced into the domain are
incompressible (i.e., divergence-free):

( ) ( )= L  ´f A , 12turb

where A is the vector potential, and Λ is a forcing amplitude
that determines the velocity magnitude of the forced
turbulence. The amplitude does not change with time; thus, a
constant amount of energy is injected at every tdrive. The
velocity perturbations are obtained by taking a curl of A
numerically in a way that guarantees that fturb is a cell-centered
quantity. A and thus fturb are sinusoidal with a phase that varies
randomly every time the forcing is done. We elaborate on the
equations for A and the way we handle the shearing–periodic
boundary conditions in Appendix. We stress that, while our
perturbations are initially incompressible, there is no guarantee
that the injected turbulence maintains a divergenceless (i.e.,
incompressible) velocity field. However, we have verified that,
in the absence of particles, the divergenceless component of the
velocity field accounts for ∼99% of the total velocity field (see
Appendix for details).
We use a parameter αD to quantify the level of the forced

turbulence throughout this paper. The αD is by definition a
spatial diffusion of turbulent gas in a dimensionless form as
follows:

⎜ ⎟⎛⎝ ⎞⎠ ( )a
d

tº
¢D

c H
u
c

, 13g

s s
D

2

eddy

where ( ) d ¢D u tg
2

eddy is a dimensional version of αD

representing gaseous diffusion due to velocity fluctuations
(Fromang & Papaloizou 2006; Youdin & Lithwick 2007),
d ¢ º á ¢ ñ - á ñ¢u u ui i i

2 2 is the velocity fluctuation of the ith
component (〈L〉 means spatial average), the total velocity
perturbation is ( ) ( ) ( )d d d d¢ º ¢ + ¢ + ¢u u u ux y z

2 2 2 , and

11 We acknowledge that Equation (10), which we refer to as “Hill density,” is
also termed “Roche density” (e.g., Yang et al. 2017; LY21). However, we opt
to use “Hill density” throughout this paper since the Hill criterion is more
suitable for the stability analysis of a particle cloud that is in orbital motion than
Roche criterion, which assumes neither rotation nor orbital motion. We refer
the reader to Appendix B of Klahr & Schreiber (2020) for details on the two
criteria.
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τeddy≡ teddyΩ is the dimensionless eddy turnover time of
turbulence. We adjust Λ to obtain our target values of αD,
which are 10−4, 10−3.5, and 10−3. In the following, we explain
how we obtain the forcing amplitude (Λ) for the three αD

values.
First of all, we assume that, in the limit ρp= ρg, the particle

scale height Hp can be determined by the balance between the
particle settling and vertical diffusion by turbulence (Youdin &
Lithwick 2007):

⎡⎣⎢ ⎤⎦⎥( )
( )

( )a t=
-

H H

H H1
, 14z s

p

p
D,

2

2

where αD,z corresponds to the αD for vertical diffusion only.
Second, to obtain Hp/H and the resulting αD,z, we perform four
simulations, each of which has a different Λ value, although
keeping fixed the dimension of (Lx, Ly, Lz)= (0.4, 0.2, 0.8)H
and the resolution of (Nx, Ny, Nz)= (256, 128, 512). We set
τs= 0.1 and Z= 10−5 in these simulations; the very small Z
guarantees ρp= ρg and that the Equation (14) holds true (self-
gravity of particles is deactivated). Once each simulation
reaches a saturated state, we average Hp/H over time for
250Ω−1 and obtain αD,z. Third, since αD,z accounts for the
diffusion in the vertical direction only, we relate αD,z to αD by

( ) ( ) ( )

( ) ( )

( ) ( )

a
d d d

t

d
t

a

=
¢ + ¢ + ¢

=
¢

+ +

= + +

u u u

c

u

c
l m

l m

1 ,

1 , 15

x y z

s

z

s

z

D

2 2 2

2 eddy

2

2 eddy
2 2

D,
2 2

where d dº ¢ ¢l u ux z f, and d dº ¢ ¢m u uy z . In other words,
l2+m2+ 1= 3 means isotropic turbulence.12 We time-average
l and m within the same time interval that we use for time-
averaging Hp/H. The eddy turnover time (τeddy) is assumed to
be isotropic so that τeddy= τeddy,i; i= x, y, z. In this manner, we
can calculate αD in each of the four simulations without
needing to know τeddy so that we establish the relation between
Λ and αD. Using the relation, we perform linear interpolation
between the data points (i.e., αD at each Λ) to find the
appropriate Λ that is expected to produce the desired αD values.

We perform three additional simulations, each of which has
Λ obtained from the interpolation. Then, we measure αD via the
same procedure we describe above to confirm whether the
interpolated Λ results in the desired values of αD. Figure 1
shows the resulting αD for each interpolated Λ value, which is
summarized in Table 2. The error bar shows±1 standard
deviation due to the temporal fluctuation of Hp and gas
velocities. Clearly, we achieve our desired αD values, denoted
by red horizontal lines, with very high accuracy. These
interpolated Λ values are adopted as the initial condition for
the forcing amplitude and kept as constant in our SI
simulations. However, instead of Λ, we use αD to denote the
level of the forced turbulence to make contact with the standard

disk dynamics notation. Hence, each of our SI simulations has
an unique combination of (τs, Z, αD) as listed in Table 1; “No
forcing” run refers to a simulation where fturb= 0.
We clarify that the αD (αD,z) measures the bulk (vertical)

diffusion in the gas set by (vertical) velocity fluctuations and
the eddy turnover time of the forced turbulence. As noted by
previous studies (e.g., Youdin & Lithwick 2007; Yang et al.
2018), one should not interpret the parameter as αSS, which is
responsible for the angular momentum transport due to
turbulent shear stress in a disk.
Before initializing particles in the SI simulations, we force

turbulence with the interpolated Λ values up to tpar = 300Ω−1

in order to let turbulence fully develop without being affected
by particles and also to reach a statistically steady state. At
t= tpar, we initialize particles as described in Section 2.2.
Before the initialization of particles, we verified that the Fourier
spectrum of the gas velocity field (see Appendix) is reasonable
with power across a range of scales, and with the most power at
the driving scale (∼0.1H). In the no-forcing run, particles are
initialized at the beginning. We use the notation of t− tpar (in
units of Ω−1) for our temporal dimension; the particle
initialization is done at t− tpar= 0.

Figure 1. Relationship between Λ and αD in simulations with τs = 0.1,
Z = 10−5. The former is an initial condition for a forcing amplitude
(Equation (12)), while the latter is the parameter (Equation (13)) we use to
denote the level of turbulence in our SI simulations. The Λ values shown in this
plot are obtained by a linear interpolation (see the text for details). Each red
horizontal line indicates each αD we choose: 10−4, 10−3.5, and 10−3. The error
bar shows ±1 standard deviation. We confirm that the interpolated Λ values
result in the desired αD values with high accuracy.

Table 2
Summary of Our Forcing Parameter and Relevant Quantities from τs = 0.1,

Z = 10−5 Simulations

L cs
2 αD αD,z ( )d ¢u cs

2 2

1.3 × 10−4 10−4 4.0 × 10−5 0.016
2.5 × 10−4 10−3.5 1.3 × 10−4 0.026
6.7 × 10−4 10−3 3.6 × 10−4 0.051

Note. We report time-averaged αD, αD,z, and d ¢u values that result from
turbulence forced with the interpolated Λ (Figure 1). For the SI simulations
listed in Table 1, we use these Λ values as the initial condition for the forcing
amplitude for corresponding αD.

12 We note that the forced turbulence is not perfectly isotropic. The anisotropy
is mainly caused by d ¢uy, which is systematically lower than the other two
components. We believe this is because eddies with large τeddy are more easily
destroyed by orbital shear that acts along y-direction. If this is true, d ¢uy can be
lower than the other two components since larger eddies contribute to the
kinetic energy of turbulence more according to Kolmogorov turbulence theory.
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3. Results

We present a summary of statistics for our simulations in
Table 1. We report temporal averages of particle scale height,
maximum particle density, and midplane particle-to-gas density
ratio. We adopt a measurement strategy similar to that of LY21
to facilitate comparison with their results: quantities are
averaged after the particles have settled from their initial
positions and are in a statistical equilibrium (vertically) against
turbulent diffusion. The time-average is done either before the
maximum density first exceeds (2/3)ρH (termed as preclump-
ing phase, LY21) or before the particle self-gravity is turned on
(hereafter, tsg), whichever occurs first. Table 1 presents tsg of
simulations in which the self-gravity is included. We opt not to
include the self-gravity in three of our runs as they seem
incapable of forming planetesimals. This choice is made when
a run with one step higher Z value, but identical τs and αD, does
not result in planetesimal formation. Since the maximum
density of these three runs never reaches (2/3)ρH, the time-
averaging is done all the way to the end of the simulations. We
exclude from our reported statistics any simulation where
strong particle concentrations happen too rapidly. More
specifically, we exclude simulations where a quasisteady state
only lasts for a few tens of Ω−1 or is never achieved before the
maximum density reaches the threshold.

3.1. Effect of Turbulence on the Particle Concentration

We show the effect of the turbulence on particle dynamics
without particle self-gravity before presenting more detailed
analysis of our results. Figure 2 shows the results of
simulations with τs= 0.1, Z= 0.02 for different αD values.
From top to bottom, gas rms velocity (black) and maximum
density of particles (orange) as a function of time, azimuthally
averaged particle density, and vertically integrated particles
density (Σp= ∫ρpdz) are shown. The horizontal lines in the top
panels denote the Hill density, ρH; 180ρg0.

As can be seen from the top panel, the gas rms velocity for
αD= 10−4, 10−3.5, and 10−3 levels off at ∼0.01cs, ∼0.03cs,
and ∼0.05cs, respectively, while that of the no-forcing run
stays only at ∼0.006cs. These values were calculated via time-
averaging between ts and te, where this time-averaging interval
is determined based on the criterion outlined above (also see
Table 1). This directly affects the evolution of maximum
density of particles; the peak density is very close to or exceeds
the Hill density in the no-forcing and αD= 10−4 runs, while it
saturates at only ∼10ρg0 in the other two runs due to the
stronger turbulence. Interestingly, weak turbulence (i.e.,
αD= 10−4) seems to enhance the particle concentration more
than the no-forcing run does. However, given the stochastic
nature of clumping, it is hard to draw any firm conclusions
about whether αD= 10−4 actually produces stronger clumping
than the same system without forced turbulence.
The middle and the bottom panels in Figure 2 present

snapshots for each run at t− tpar= 350Ω−1 that reveal the
degrees of particle concentration. First, the side view of the
particle layer (i.e., middle panels) clearly shows that the
turbulence vertically stirs particles and thus thickens the
particle layer. The particle scale heights at t− tpar= 350Ω−1

are ∼0.008H, ∼0.01H, ∼0.02H, and ∼0.05H for the no-
forcing, αD= 10−4, 10−3.5, and 10−3 runs, respectively.
Second, as can be seen from the bottom panels, the no-forcing
and αD= 10−4 runs have azimuthally elongated particle
filaments, which implies that the SI is active. Even though
the filaments form in both runs, the run with (weak) external
turbulence has fewer filaments than the run with no external
turbulence (which is consistent with Yang et al. 2018). The
αD= 10−3.5 run shows marginal filament formation, and the
αD= 10−3 run shows no evidence for filament formation,
instead showing a very diffused particle medium.
The 2D distributions of particle density in Figure 2 suggest

that turbulence can weaken or even completely suppress the SI.
When turbulence is weak or moderate (i.e., αD= 10−4 and
10−3.5), the SI forms elongated filaments. However, the

Figure 2. Top: time evolution of gas rms velocity (black) and maximum density of particles (orange) in simulations with τs = 0.1, Z = 0.02. Middle: azimuthally
averaged particle density (side view) zoomed in to the region z/H ä [ −0.1, 0.1]. Bottom: vertically integrated particle mass density (i.e., surface density of particles;
Σp; top view). The snapshots are taken at t − tpar = 350Ω−1. Note that the middle and the bottom panels have different colorbar scales. From left to right, no-forcing,
αD = 10−4, 10−3.5, 10−3 runs are shown. The horizontal line in each panel on the top marks Hill density (see Equation (10)). Particle self-gravity is disabled in the
runs presented here. As turbulence becomes stronger from left to right, the particle layer become thicker, and the filaments become more diffused and less well defined.
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resulting filaments are fewer and less dense than the no-forcing
case. Conversely, the αD= 10−3 case shows no filamentary
structures at all (see the bottom right panel). This can be
attributed to very strong vertical stirring that prevents particle
settling. However, the SI can be active, but with filament
formation overpowered by destructive diffusion; we see
evidence for this in Runs T1Z10A3.5 and T2Z4A4. In
particular, in T2Z4A4, ρp ρg at the midplane, but extremely
weak (i.e., low-density) filaments form, suggesting that
turbulent diffusion prevents the SI from forming sufficiently
dense filaments for planetesimal formation to proceed.

3.2. Planetesimal Formation

In this section, we present results from the simulations that
incorporate both forced turbulence and particle self-gravity.
However, before discussing the results, we describe how we
differentiate between “Collapse” and “No collapse” runs. The
left panel of Figure 3 (which corresponds to the run with
τs= 0.1, αD= 10−3.5) shows the maximum particle density as
a function of time for Z= 0.02 (green) and Z= 0.032 (blue)
runs, the former being “No collapse,” and the latter being
“Collapse.” The horizontal line corresponds to the Hill density,
and the vertical line indicates tsg in both simulations. The
“Collapse” run shows the maximum density sharply increasing
by more than a factor of 10 right after tsg, which is evidence for
the gravitational collapse of particles. On the other hand, the
“No collapse” run shows the steady evolution of the maximum
density even though the density slightly increases upon turning
on the self-gravity. Furthermore, we investigate the spatial
distribution of the particle density as well. The middle and the
right panels of the figure show the final snapshots of the surface
density of the “No collapse” and “Collapse” runs, respectively.
The right panel reveals gravitationally bound objects, which we
call planetesimals,13 while the middle panel has no such objects
but shows weak filaments have formed. In summary, we
consider both the temporal evolution and the spatial
distribution of particle density to categorize runs into
“Collapse” and “No collapse.”

3.2.1. Threshold for Planetesimal Formation: Particle Density at
Midplane

In unstratified SI, the midplane density ratio of particle and
gas, ò≡ ρp/ρg(z= 0), is a crucial parameter. More specifically,
when τs= 1, the linear growth rate of the SI increases with ò,
with a sharp increase as ò approaches and surpasses unity
(Youdin & Goodman 2005). Therefore, ò 1 is often assumed
as a condition for the SI to produce dense clumps of particles.
While this could be true in the linear regime of unstratified SI,
this is not necessarily true in the fully nonlinear stratified SI, as
pointed out by Yang et al. (2018). Numerical simulations have
shown that critical ò values can deviate from unity depending
on τs and other factors. More specifically, LY21 reported a
critical ò (for strong clumping to occur) from ≈0.3 to ≈3
depending on the value of τs. This is consistent with previous
work by Gole et al. (2020) in which the critical ò (for
planetesimal formation to occur) is ≈0.5 in the presence of
external turbulence. Here, we follow up on this work and
further examine the critical ò for planetesimal formation to
occur (since we include particle self-gravity) but for a wider
range of parameters than those in Gole et al. (2020).
Figure 4 shows temporally and horizontally averaged values

of ò from the simulations for which we could take sufficiently
long time-averages during the preclumping phase (i.e., not
every simulation in Table 1 is shown). We calculate ò by taking
particle and gas densities at±1 one grid cell above and below
the midplane. “Collapse” and “No collapse” runs are denoted
by circles and triangles, respectively. Red, green, and blue
colors denote αD= 10−4, 10−3.5, and 10−3, respectively; we
did not color-code Z values (Z values range from 0.015 to 0.4).
The black curve is the best fit by least squares (see below) to
the data marking the approximate location of the critical ò
value, above which collapse occurs. In choosing this fit, we
assume a quadratic function in log–log space as in LY21 but
with different coefficients. More precisely, we find a critical ò
of

( ) ( ) t t+ +A B Clog log log , 16s scrit
2

where A= 0.42, B= 0.72, C= 0.37 for all αD values. We also
include a fit to the critical ò in LY21 shown as the sky blue
curve (òcrit,LY21).
We calculate this least squares fit as follows. We first

calculate an estimate for the critical ò at each αD and τs by

Figure 3. Proof of concept for categorizing runs as “Collapse” or “No Collapse.” Left: time evolution of maximum particle density for T10Z2A35 (green) and
T10Z3.2A35 (blue) runs. The horizontal and vertical lines indicate Hill density and tsg, respectively. Middle: final snapshot of Σp divided by its spatial average for
T10Z2A3.5 run. Right: same as the middle panel but for T10Z3.2A3.5 run. We define a run as “Collapse” if the maximum density drastically increases as shown by
the blue curve in the left panel and if the 2D snapshot shows bound objects (i.e., strong overdensities on very small scales as shown in the right panel).

13 As is standard in these types of simulations (e.g., Simon et al. 2016), our
gravity solver prevents collapse of these bound objects below the grid scale.
Thus, it would be more accurate to refer to these objects as diffuse pebble
clouds (since we do not have sink particles). However, for simplicity and to
make contact with the literature, we use the term planetesimals.
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taking a middle value between the adjacent no-collapse data
point (triangle) and the collapse data point (circle) that have the
same color (i.e., same αD) at a given τs; we refer to this first
estimate for the critical ò as òmid. We found that òmid was
comparable for all values of αD at a given τs. For example, at
τs= 0.01, òmid∼ 2.70, 5.20, 3.40 for αD= 10−4, 10−3.5, and
10−3, respectively. For other τs values, the variation in òmid is
even less. Thus, in calculating the final critical ò (referred to as
òcrit), we assume that, at a given τs, òcrit falls halfway between
the adjacent no-collapse and collapse data points at each τs
regardless of their colors (or, αD). Moreover, we take the range
between the adjacent no-collapse and collapse points as the
95% confidence interval for the location of òcrit. Therefore, we
have òcrit and its associated error at each τs. These are then
input into a weighted least squares algorithm that accounts for
the varying error sizes (heteroscedastic errors). The thin, gray
curves in Figure 4 are 10 random sample fits, each of whose
coefficients are drawn from a multivariate normal distribution
of (A, B, C). The width of the distribution in each “dimension”
(i.e., variable) is taken from the covariance matrix from the fit.
Those random samples thus provide a sense of the uncertainty
in the best-fit curve.

Figure 4 has several implications. First, as αD changes, every
collapse run remains above every no-collapse run. Thus, the
òcrit curve precisely cuts between the no-collapse and collapse
points regardless of αD values. This lends credence to the
assumption of òcrit being independent of αD; that is, we can
treat òcrit as varying with τs but not with αD. The weak
dependence of òcrit, mid on αD (and thus the validity of our
assumption) could potentially be attributed to the use of higher
Z values for larger αD at a given τs. For instance, at τs= 0.1,
the Z values of the runs just above the curve are 0.02, 0.024,
and 0.045 for αD= 10−4, 10−3.5, and 10−3, respectively. In
other words, although larger αD makes a particle layer thicker,

using higher Z adds more mass to the particles within the layer,
resulting in similar particle densities around the midplane (i.e.,
similar ò) for the three αD cases. However, we again emphasize
that the accuracy of our fit is limited due to the sparsity of data
points across the τs range considered in this study.
Consequently, the fit could potentially exhibit variation with
αD if additional numerical simulations were to be conducted to
further populate the parameter space.
Second, based on Equation (16), the values of òcrit

approximate to 3.98, 1.75, and 1.18 for τs= 0.01, 0.03,
and 0.1, respectively (since we have only one simulation
at τs= 0.3, òcrit at this τs value remains unknown in our work).
These values are several times larger than those from
òcrit,LY21.

14 Moreover, the majority of the data points,
regardless of whether or not a corresponding run shows
planetesimal formation, are well above òcrit,LY21. A potential
explanation for this is that, even when particles are able to
settle to the midplane and form a layer to have ò 1, further
concentration may be required for them to withstand the
turbulence that disperses particles (through aerodynamic
coupling with the gas) in all directions. That is, the SI is
competing with turbulence to concentrate particles, and as a
result, a higher ò is required.
Lastly, since òcrit we report in this paper is the critical value

for gravitational collapse of particle clumps rather than just for
the SI-induced concentration, the condition that ò simply be
greater than unity does not necessarily guarantee gravitational
collapse (see Gerbig et al. 2020; Klahr & Schreiber 2020, 2021;

Figure 4. Temporally and horizontally averaged ratio of particle density to gas density at the midplane as a function of τs in our simulations. We do not include
simulations where the preclumping phase is too short to take time-averages. Runs where the collapse occurs are shown as circles, whereas those where the collapse
does not occur are shown as triangles. Red, green, and blue represent αD = 10−4, 10−3.5, and 10−3, respectively, while we did not denote Z values; Z spans from 0.015
to 0.4. The black curve denotes the least squares best fit to the critical value of ò as described in Equation (16). The thin gray curves are random fits drawn from a
multivariate normal distribution of A, B, C (Equation (16)) that show uncertainties in the best-fit curves (see the text for details of how we obtain the best-fit curve). We
also include the critical curve from LY21, depicted as a sky blue curve (òcrit,LY21). Our òcrit values are consistently larger than those in LY21.

14 LY21 found similar òcrit with Gole et al. (2020) at τs = 0.3, whereas our
results are inconsistent with LY21. While this may imply that the two different
forcing methods produce inconsistent results, we note that Gole et al. (2020)
used ( ) ( )t a» » ~Z H H Z 0.5p scrit crit

1 2 with αcrit = 10−3.25. This
calculation for òcrit assumes ρp = ρg, which is not always the case in our
simulations, especially close to the midplane where ò  1; see Figure 4.
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Gerbig & Li 2023 for details of the collapse criterion). This is
because conditions for gravitational collapse of a particle cloud
should be dependent on an internal (to the pebble cloud)
turbulent diffusion of particles within the cloud as well as its
density.

3.2.2. Threshold for Planetesimal Formation: Critical Z

Our main results are shown in Figure 5. It demonstrates for
which parameters (τs, Z, αD) planetesimals form. In the figure,
filled and open circles correspond to “Collapse” and “No
collapse” runs, respectively. All simulations in the figure
maintain a constant Π and

~
G , both of which are 0.05. We do

not show Run T10Z2 in the figure, which includes self-gravity
but not forced turbulence (see Table 1 for the details of this
simulation).

The figure demonstrates that planetesimal formation via the
SI may be very difficult in the presence of external turbulence.
Taking the τs= 0.01 cases for example, the critical Z values are
0.06, 0.1, and 0.2 for αD= 10−4, 10−3.5, and 10−3,
respectively. On the other hand, Z∼ 0.02 is enough for the SI
to produce dense clumps in the absence of external turbulence
for this value of τs (Carrera et al. 2015; Yang et al. 2017;
LY21), which would lead to planetesimal formation if the self-
gravity of particles was activated (none of these studies
included particle self-gravity).

We also plot (in sky blue) the critical Z curve assuming a
Gaussian scale height for the particles (Z Hcrit,Gaussian p, LY21)
and using òcrit as fit by Equation (16). The curve is given by

( ) ( ) tZ
H

H

_
, 17H s

p
crit,Gaussian crit

,SI Turb
p 

where

( )º + aH H H_ , 18p p p,SI Turb ,SI
2

,
2

where Hp,SI= hηηr, and ( )a a t= +aH Hp z z s, D, D, . The
former represents the contribution of the SI-driven turbulence

to the particle scale height, whereas the latter represents that of
an externally driven turbulence. We adopt the same value for hη
as in LY21, which is ;0.2. This value is an approximation for
the particle scale height within the range of τs (and in units of
ηr) as measured from their SI simulations. As a result, Hp,SI/
H;Π/5. To obtain Hp,α for each αD, we use αD,z in Table 2.
As can be seen from Figure 5, the critical curve (sky blue,

Equation (17)) and the data are not consistent at all; we find
systematically lower critical Z values than those calculated
from Equation (17), implying that Equation (18) does not
accurately predict the actual scale height of particles in
simulations. The explanation for the inconsistency is given in
Sections 3.3 and 3.4, where we focus on the indirect impact of
particle feedback on the particle scale height and the vertical
profiles of particle density.
Since Equation (17) does not match our simulation results,

we attempt to provide a new fit to critical Z values. Assuming
Zlog crit is a polynomial function of both tlog s and alog D,

( ) ( )
( )

t a a t a
t a

= ¢ + ¢
+ ¢ + ¢

Z A B
C D

log , log log log
log log , 19

s s

s

crit D D
2

D

D

with conditions of

a t t= -  10 and 0.01 0.1,s sD,min
3

The best-fit values for the coefficients are ¢ =A 0.15,
¢ = -B 0.24, ¢ = -C 1.48, and ¢ =D 1.18. To find these

coefficients, we performed a multivariate least squares fit,
assuming (as we did for the òcrit) that, at a given τs and αD, the
critical Z lies in the middle between adjacent empty (no
collapse) and filled (collapse) circles. The resulting fits are
shown as red curves in each panel of Figure 5. The gray curves
in each panel are sample fits whose coefficients are randomly
drawn from a multivariate normal distribution of
( )¢ ¢ ¢ ¢A B C D, , , . As we did for òcrit, we used a covariance
matrix of ( )¢ ¢ ¢ ¢A B C D, , , to produce the normal distribution.

Figure 5. Overview of gravitational collapse in the SI simulations listed in Table 1 except Run T10Z2 in which no forcing is applied. Runs where the collapse occurs
are shown as filled circles, whereas those where the collapse does not occur are shown as open circles. From left to right, αD = 10−4, 10−3.5, and 10−3, respectively. In
each panel, we plot two different Zcrit, sky blue being Equation (17) and red being Equation (19). Both of the curves are fits to the critical Z values but by using
different approaches; the red curve is the best fit by multivariate least squares (Equation (19) shows the formula), whereas the sky blue one uses the òcrit from
Equation (16) to calculate the critical Z assuming that the vertical profile for particle density is Gaussian. The thin gray curves in each panel are random fits drawn from
a multivariate normal distribution of ¢ ¢ ¢ ¢A B C D, , , (Equation (19)) values based on their uncertainties (see main text); thus, these curves represent an uncertainty on
the Zcrit curves. Every run shown here has Π = 0.05 and =

~
G 0.05 (or Q ∼ 32). We emphasize that Zcrit(τs, αD) must be used in the range of τs and αD that is given

below Equation (19). Given that the critical Z value for τs = 0.01 is ∼0.02 without external turbulence (e.g., LY21), this turbulence significantly increases the critical
value; Zcrit(τs = 0.01, αD) ∼ 0.06, ∼0.1, ∼0.2 for αD = 10−4, 10−3.5, and 10−3, respectively. A 3D, interactive version of Zcrit(τs, αD) with the detailed analysis (i.e.,
similar visualization to Figure 2) of each run is available at https://turb-si-interactive-zcrit-plot-vykz33h7mq-uc.a.run.app/.
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We emphasize that Equation (19) is valid only in the range of
τs and αD provided above and should not be extrapolated
beyond the range. This is because the particle size (i.e., τs)
significantly affects particle dynamics; the simple form of Zcrit
would not be able to encompass a wider range of τs than that of
which we explore. In addition, we found that, when
a aD D,min at a given τs, Equation (19) has a turning point
and ends up showing Zcrit increasing with decreasing αD, which
is unlikely.

It is also worth pointing out that we do not include Π in
Equation (19). This is because, while Sekiya & Onishi (2018)
demonstrate that Z/Π is the fundamental parameter combina-
tion (instead of Π and Z separately) for stratified SI, the role of
Z/Π in SI clumping when an external turbulence is included
has not yet been explored.

One of the interesting findings of LY21 is a sharp transition
in the critical Z value around τs∼ 0.015. Although our
parameter space data are too sparsely populated to examine
this feature, the αD= 10−4 result implies that the sharp
transition may disappear. As seen from the left panel of
Figure 5, Zcrit lies between 0.04 and 0.065 for τs= 0.01 and
between 0.04 and 0.05 for τs= 0.02. This is a much shallower
transition than was seen in LY21 in which the critical Z is
∼0.016 and ∼0.007 for τs= 0.01 and 0.02, respectively. To
investigate this more, we plot the particle density that is
integrated in z and averaged in y, versus x and time (i.e.,
spacetime plots) in Figure 6. The three panels correspond to
different τs values, which are 0.01, 0.02, and 0.03, for Z= 0.04
and αD= 10−4. We did not turn on particle self-gravity during
the time span considered in the figure.

Figure 6 reveals a stochastic evolution of the filaments; weak
filaments are disrupted in all three cases, and only a few strong
filaments survive in τs= 0.02 and 0.03 cases. This may be due
to the external turbulence, which can contribute to unevenly
distributed filaments by providing additional diffusion. In
contrast, LY21 found that, for τs= 0.01 and Z= 0.0133,
filaments are so evenly spaced that they do not interact with
each other, while those for τs= 0.02 and Z= 0.01 are less
uniform, with the filaments merging with each other to form a
few dense ones. Since we have only looked at the the jump in
Zcrit for αD= 10−4, and even here, our data points around
τs= 0.01 are very sparse, further studies are needed to delve
into this issue more. However, our results do imply that
turbulence may disrupt the evenly spaced filaments that were
seen in LY21, ultimately leading to a smoother transition in
Zcrit between τs= 0.01 and τs= 0.02. It is also possible that the
3D nature of the problem allows for this behavior, as the
corresponding simulations in LY21 were all 2D.

3.3. Particle Feedback and the Particle Scale Height

Massless particles settle toward the midplane while
competing with turbulent stirring. This competition establishes
a Gaussian distribution (Dubrulle et al. 1995) of the particle
density with a scale height Hp that is related to the strength of
turbulent stirring (i.e., αD) and τs as in Equation (14). However,
for particles with mass, their mass (i.e., Z) can affect the vertical
stirring as well by imposing mass-loading on the gas, reducing
Hp; the magnitude of this effect naturally depends on Z (Yang
et al. 2017, 2018; LY21; Xu & Bai 2022a). Moreover, the
particle feedback can alter the vertical profile of the particle
density in other ways. For example, Xu & Bai (2022a) carried

out MHD simulations of the MRI in the low ionization limit
and found that the particle feedback enhances the vertical
settling by reducing the eddy correlation time and not by
changing the vertical velocity of the gas. Furthermore, they
found a non-Gaussian vertical particle density profile with a
cusp around the midplane.
In order to examine the effect of the particle feedback on the

particle scale height (Hp), we calculate the standard deviation
of the vertical particle position (which for a Gaussian profile
would equal Hp):

( )
( ) ( )ås =

-
- á ñ

=N
z z

1
1

, 20p z
i

N

i i,
par 1

2
par

where zi is the vertical position of the ith particle, and 〈zi〉 is
the mean vertical position. Figure 7 shows time-averaged σp,z
values from all runs in Figure 4 as a function of τs and at
each αD. The color scale denotes Z values. The circle and
triangle markers show whether or not a run results in
planetesimal formation via gravitational collapse (see
Section 3.2 for details). The dashed line in each panel denotes
the prediction for the Gaussian particle scale height when an
external turbulence is considered (Hp,SI_Turb; Equation (18)).
The time-averaging is done during the preclumping phase to
prevent the scale height from being skewed to the high-
density regions.
It is evident from Figure 7 that the measured σp,z is always

smaller than Hp,SI_Turb. Furthermore, at a given τs and αD,
larger Z corresponds to smaller σp,z, indicating the particle
feedback effect on the particle layer thickness.
In order to understand this result in greater detail, we

consider the effective scale height of a dust–gas mixture (Yang
& Zhu 2020)

( )=
W

=
+

~~
H

c H

1
, 21s



in which

( )=
+

~c
c

1
, 22s

s



is the effective sound speed of the mixture (Shi & Chiang 2013;
Laibe & Price 2014; Lin & Youdin 2017; Chen & Lin 2018);
although the cited papers used ρp/ρg to characterize the particle
density in Equation (22), we decide to use ò, which is the
density ratio at the midplane given that our simulations are
vertically stratified. As evident from the two equations above,
increasing ò decreases the effective sound speed ( )~cs and the
effective scale height (~H ). This can be interpreted as the effect
of the mass-loading of particles on the gas, which increases the
mixture's inertia but does not contribute to thermal pressure of
the gas. With this in mind, we write the particle scale height in
the presence of both external turbulence and the particle
feedback as =

~
H H H H_p p,SI Turb instead of Hp=Hp,SI_Turb.

This results in

⎛⎝ ⎞⎠ ( )a
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=
+
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In other words, the particle scale height is reduced by a factor
of +1  from Hp,SI_Turb in the presence of particle
feedback. To compare this expected particle scale height with
our results, we compute time-averages of s =

~
Hp z,

s + H1p z,  in the runs shown in Figure 7, which should
be close or equal to Hp,SI_Turb/H (dashed lines in Figure 7) if
Equation (23) accurately predicts σp,z. Figure 8 shows the
comparison between s ~

Hp z, and Hp,SI_Turb/H. The figure
clearly shows that most of the data points are on the dashed
line (i.e., Hp,SI_Turb/H), which demonstrates that Equation (23)
has a much higher accuracy in predicting the scale height of
particles from our simulations than Equation (18). This
implies that the effect of the mass-loading is likely the reason
why σp,z decreases with increasing Z at a given τs and αD as
found in Figure 7. However, runs with τs= 0.01 and high Z
values are still above the dashed lines, deviating from the
prediction. We delve into these discrepancies in the next
section.

3.4. Vertical Distribution of Particle Density

As we just showed, there are a few outliers at τs= 0.01 that
deviate from Equation (23), namely, Runs T10Z6.5A4,
T1Z12.5A3.5, and T1Z25A3 all with Z  Zcrit. In what
follows, we examine vertical profiles of the particle density
in these simulations to explain the discrepancy with the
prediction. The profiles are calculated with particle self-gravity
turned off.
In Figure 9, we show the spacetime plots of the horizontally

averaged particle density versus z and time (left) and the time-
averaged vertical profiles (right) for the three simulations. In all
panels, we zoom in to z=± 0.4H from the midplane. In the
right panels, we present the Gaussian (dashed) and Voigt
(dotted) fits to the simulation data (solid).
First, it is evident from the left panels that the particles build

up a very thin layer close to the midplane, with an additional
extended distribution vertically away from this layer. The
vertical extent of both the thin layer and the extended
distribution increases with increasing αD. This is not surprising

Figure 6. Spacetime plots of the particle density that is integrated over z (Σp) and averaged in y (〈Σp〉y). We plot the quantity vs. x and time. From top to bottom,
τs = 0.01, 0.02, and 0.03, respectively. The runs have the same Z and αD, which are 0.04 and 10

−4, respectively. Particle self-gravity is turned off during the time span
considered here. The filaments are frequently disrupted unless they are sufficiently dense, resulting in stochastic evolution for all three τs values.
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as we know that stronger vertical diffusion leads to a thicker
layer.

Second, the plots on the right clearly reveal non-Gaussian
particle density profiles. The profiles have a cusp near the
midplane and extended wings on the outskirts of the cusp
(see also Xu & Bai 2022a as they see a similar shape to the
density distribution). The Gaussian fit (dashed) in each panel
matches the data (solid) only very close to the midplane,
whereas the Voigt fit (dotted) very approximately traces the
data up to a larger height (i.e., ∼± 0.1H to ∼± 0.2H). The
cusp develops due to the particle-loading on the gas that
increases the inertia of the particle–gas fluid; this leads to
the reduction of the vertical velocities of the gas at the
midplane, with particles being more easily settled to form thin
layers. Indeed, we found that á ¢ ñu cz s

2 at the midplane is
only ∼30% of the same quantity averaged over the entire
volume in the three simulations. On the other hand, some
particles are still diffused away from the midplane and
produce the extended region described above. We find that a
Voigt profile, which has a Gaussian shape near the midplane
and Lorentzian wings above and below the midplane, fits
the simulation data much better than a Gaussian. Nonetheless,

the data do deviate from the Voigt profile at sufficiently
large |z|.
The discrepancy between σp,z and Equation (23) in the

simulations with very large Z is thus the result of the density
profile deviating significantly from a Gaussian. Since
Equations (18) and (23) are based on a Gaussian profile,
neither equation is appropriate for the scale height of particles
that cause such strong feedback onto the gas.
We caution that a Voigt profile may not be an actual solution

for the particle density distribution, and there is no physical
motivation behind the fitting. Furthermore, Lyra & Kuchner
(2013) analytically derived a Gaussian particle density in the
presence of particle feedback, which seems to contradict the
non-Gaussian profiles in Figure 9. This disagreement may stem
from the fact that they assumed a constant diffusion coefficient.
This is likely not true in our simulations since we find that
vertical velocity of gas is reduced around the midplane (Xu &
Bai 2022b also found that the gas velocity is reduced by
particle mass-loading). Future analytical and numerical studies
are needed to examine the vertical profile of particle density in
more depth.
In an attempt to quantify the characteristic width of the thin

layer, we calculate the full width at half-maximum (FWHM) of

Figure 7. Similar to Figure 4 but for the time-averaged standard deviation of particles’ vertical positions (Equation (20)) in units of the gas scale height. The dashed
black line in each panel denotes the prediction for the particle scale height described in Equation (18). As in Figure 4, we only present the simulations where we can do
the time-average within a sufficiently long preclumping phase. The standard deviation measured in the simulations is always lower than the prediction.

Figure 8. Similar to Figure 7 but for the time-averaged ratio of σp,z to
~
H (Equation (21)). We do not report results from simulations with a preclumping phase that is

too short (as in Figure 7). The figure shows that, except for a few runs at τs = 0.01, this ratio is in excellent agreement with the dashed line (Equation (18)) for all τs at
a given αD.
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the Voigt profile for each run presented in Figure 9. The
FWHM ( fV) is given by

( )= + +f
f f

f
2 4

, 24V
L L

G

2
2

where fL and fG are FWHMs of Lorentzian and Gaussian
profiles, respectively. The values of the fV for the three runs
from top to bottom are ∼0.019H, ∼0.032H, and ∼0.097H,
respectively. We mark the FWHMs in the left panels as two
horizontal dashed lines for each run; the FWHMs constrain the
thickness of the thin particle layers very well.15

To demonstrate how the profiles change with larger τs
values, we present plots similar to those in Figure 9, but for
τs= 0.1, Z= 0.02 in Figure 10. Here, we zoom in further and
present the distributions within z=±0.2H, unlike those in
Figure 9.
These runs show a negligible discrepancy between σp,z and

Equation (23) in Figure 8. Furthermore, as expected, the
profiles are significantly changed compared to the τs= 0.01
profiles. First, the vertical extent of the distributions is much
narrower as a result of stronger settling of the τs= 0.1
particles compared with the τs= 0.01 particles. Second, thin
particle layers that are separated from a more extended
particle region do not form, and the time-averaged vertical
profiles (right panels) do not show cusps at the midplane.
This results from the Z values being too small for particles
to add considerable mass-loading on the gas. Third, as a
result of this lack of the significant mass-loading, the density

Figure 9. The spacetime plots of particle density averaged in x and y (〈ρp〉xy) vs. z and time (left) and time-averaged vertical profiles of the particle density (right) for
three runs at τs = 0.01 that show σp,z deviating from Equation (23). Particle self-gravity is off during the time span considered here. From top to bottom, αD = 10−4,
10−3.5, and 10−3. In the left panels, the horizontal dashed lines show the FWHM of the Voigt profiles shown in the right panels. The solid, dashed, and dotted lines in
the right panels denote simulation data, Gaussian fit, and Voigt fit to the data, respectively. The title of each panel on the right shows the time interval over which each
profile is averaged. Note that we only show the distributions between z = ±0.4H, while the vertical extents of the actual computational boxes are beyond this region.
Particles form a thin, dense layer around the midplane and have a vertical density profile that deviates significantly from Gaussian.

15 We note that the FWHMs of the Gaussian and Voigt fits are similar.
However, as we discussed, the Voigt fit significantly outperforms the Gaussian
fit in representing the data.
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profiles are well approximated by a Gaussian but with reduced
width according to Equation (23). Overall, because of the
absence of a cusp and Gaussian-like density profiles, σp,z is
well matched by Equation (23) unlike the simulations shown
in Figure 9.

In summary, the results in this subsection indicate
two related considerations. First, due to mass-loading on the
gas, the vertical particle density profile may still be
Gaussian, but with a reduced width compared to the massless
particle case. In this case, the criterion (Equation (17))
overestimates critical Z values. However, for even higher Z
values, the mass-loading becomes so significant that the
vertical particle density profile significantly deviates from
Gaussian. This deviation is particularly noticeable in
simulations with τs= 0.01, where Z reaches such high levels
that particles form a thin, dense layer at the midplane. Since
an analytical expression for such a profile does not yet exist,
we argue that caution is warranted when characterizing
the width of particle layers under the influence of turbulence
at large Z. However, for more moderate Z values,
Equation (23) can be used to estimate the particle scale
height in the presence of both external turbulence and particle
feedback.

4. Discussion

This section is dedicated to providing a better understanding
of the robustness and impact of our results. In Section 4.1, we
consider the influence of turbulence on planetesimal formation,
drawing comparisons with previous studies. We then discuss
the potential implications of our findings on observations of
PPDs in Section 4.2. Finally, we highlight potential limitations
and uncertainties in our work in Section 4.3.

4.1. Does Turbulence Hinder or Help Planetesimal
Formation?

While our results suggest that turbulence acts as a hindrance
to planetesimal formation, there are a number of other possible
routes to forming planetesimals in turbulent disks. In this
subsection, we discuss these other routes and the connection
with this work.

4.1.1. Self-consistently Driven Turbulence

The results we present here stand in contrast to other work in
which turbulence is included self-consistently (as opposed to
forcing isotropic, incompressible turbulence as we do here) and
gives rise to structures and behaviors that can concentrate

Figure 10. Similar to Figure 9 but for τs = 0.1, Z = 0.02. Note that we show the distributions between z = ±0.2H and do not show Voigt fits in the right panels.
Particle self-gravity is off during the time span presented here. Unlike τs = 0.01 cases, a thin, dense layer does not form, and the vertical profiles are closer to
Gaussian.
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particles. For example, the MRI is known to produce localized
reductions in the radial pressure gradient (generally referred to
as “zonal flows”; Johansen et al. 2009a; Simon & Armitage
2014), and these zonal flows are found to exist for a range of
magnetic field and ambipolar diffusion strengths in both local
(Riols & Lesur 2018) and global (Cui & Bai 2021) simulations.
As the radial drift slows in these regions (and can become
trapped if the local pressure profile has a maximum), these
zonal flows serve as natural sites for particle concentration and
thus planetesimal formation as shown in, e.g., Johansen et al.
(2007) and Xu & Bai (2022a). Similarly, Schäfer & Johansen
(2022) demonstrate that the VSI can also produce localized
changes to the pressure gradient that then triggers the SI.

While being an important effect, the numerical robustness of
these zonal flows is still a subject of active research. The
amplitudes and widths of zonal flows in local boxes are known
to be affected by box size and vertical boundary conditions, both
for the MRI and the SI (Johansen et al. 2009a; Li et al. 2018).
Many global simulations, such as the VSI study in Schäfer &
Johansen (2022), are 2D axisymmetric, which can yield different
turbulent dynamics than 3D (e.g., Alexakis & Biferale 2018; and
Sengupta & Umurhan 2023 in the context of the SI). Our
idealized forcing sidesteps these issues. Since there are no
significant pressure variations to trap particles, particle
concentration by the SI is not aided by zonal flows in this work.

Nevertheless, at first glance, simulations with zonal flows do
suggest that turbulence can act to help planetesimal formation.
More concretely, in the work by Xu & Bai (2022a), the maximum
density of particles surpassed ρH for τs= 0.1, Z= 0.02, even with
αD 10−3. For comparison, our Run T10Z2A3 (τs= 0.1,
Z= 0.02, αD= 10−3) shows no indication of significant particle
clumping at all (see the rightmost column of Figure 2).

However, the potential discrepancy with our work can be
elucidated by a more in-depth examination of Z. In Xu & Bai
(2022a), the quoted Z= 0.02 value is a “global” value (i.e., it
was the average over the entire domain), and toward the
pressure maximum (i.e., where Π= 0), Z is enhanced. While
we cannot quantify the precise value of Z at this location
without more data, these considerations are in qualitative
agreement with our results: the local value of Z at the pressure
maxima is (very possibly significantly) higher than the
background value of Z= 0.02.

Such a direct comparison with Xu & Bai (2022a) should be
treated with caution, however, as the particle concentrations in
their work occur at the pressure maxima (i.e., where Π= 0); the
SI does not operate in such regions. In fact, that they did not see
particle concentration in regions outside of the pressure bump,
where Z is locally smaller and where Π≠ 0, aligns with our
findings that planetesimal formation is hindered when τs= 0.1,
αD= 10−3, and Z 0.04.

The key point here is that it is not the turbulence itself that is
aiding in planetesimal formation (though, see arguments about
the turbulent concentration, hereafter TC, mechanism below) but
rather localized increases in Z due to enhancements in the gas
pressure. While this argument may appear to be one of
semantics, it is important to distinguish between long-lived
coherent structures, such as zonal flows, and random turbulent
fluctuations, such as eddies, that are very short-lived by com-
parison. Thus, while these pressure bumps are a side effect of the
turbulence, they are arguably distinct from the turbulence itself.
Our simulations provide a way to interpret these simulations by

means of using Z as a control parameter rather than one that
changes with location based on the dynamics at work.
That all being said, Yang et al. (2018) demonstrate that

particle concentration in a (at least somewhat) turbulent disk
environment is possible even in the absence of such pressure
bumps. In particular, they find a modest to strong particle
concentration in an ohmic dead zone (see, e.g., Gammie 1996
for a description of the dead zone model) that results from an
anisotropy in turbulent diffusion. That is, there was no pressure
bump to trigger the SI but rather anisotropic turbulence. A
direct comparison with these results is difficult since our
turbulence is forced isotropically, and thus, we leave a study of
the effect of anisotropic turbulence to future work.
Overall, our simulations should be treated as more controlled

experiments; i.e., Z is an input parameter and not something
that arises from the simulation as a result of particle
concentration. Furthermore, with the exception of Schäfer &
Johansen (2022), all of the works involving turbulence driven
by (magneto)hydrodynamical instabilities in PPDs use τs= 0.1,
whereas our higher resolution simulations (i.e., more grid zones
per H) allow us to resolve the SI for τs= 0.01.16 Thus, our
work serves as an important counterpart to the numerous papers
that include turbulence driven self-consistently and that (in
most cases) are limited to larger τs by resolution requirements.

4.1.2. Turbulent Concentration

Beyond the processes we just described, planetesimal
formation may be aided by turbulence through the TC
mechanism (Cuzzi et al. 2001, 2008; Hartlep et al. 2017;
Hartlep & Cuzzi 2020). Specifically, particles with certain τs
are preferentially concentrated by eddies whose eddy turnover
time is comparable to τs. In other words, there is an optimal τs
value that makes the turbulent Stokes number at scale ℓ

Stℓ≡ τs/τeddy,ℓ∼ 1, where τeddy,ℓ is the dimensionless eddy
turnover time at scale ℓτeddy,ℓ≡ teddy,ℓΩ, and teddy,ℓ is the
dimensional turnover time. While we did not address the TC in
this study, we now investigate whether TC might be present in
our simulations by doing a simple scaling calculation.
Assuming the forced turbulence follows the Kolmogorov

relations, uℓ∝ ℓ
1/3 and ~ µℓ u t tℓ ℓ ℓeddy, eddy,

3 2 , where uℓ and
teddy,ℓ are a characteristic velocity and a turnover time of an
eddy at scale ℓ, respectively. Next, the forcing is done between
∼0.1H and ∼0.2H (see Appendix for details), and we set 0.2H
as the outer scale () of the forced turbulence. The eddy
turnover time for the outer scale is obtained from

( )t a d~ ¢u cseddy, D
2

 (Equation (13)), which is ∼0.51,
∼0.44, and ∼0.37 for αD= 10−4, 10−3.5, and 10−3,
respectively; ( )d ¢u cs

2 is computed without particles (see
Table 2). For the purposes of this analysis, we set
t = 0.44eddy, . We thus obtain ℓ at which Stℓ∼ 1.0 (i.e.,
τs= τeddy,ℓ) where TC becomes efficient:

⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ( )t
t

t
= ~ ´ -ℓ H

St
7 10

0.01
. 25s

ℓ

s

eddy,

3 2
4

3 2




Particles with τs= 0.01 would be concentrated by eddies at
scale ℓ∼ 7× 10−4H, which is well below the width of a grid
cell Δ=H/640∼ 0.0016H. The τs= 0.03 and τs= 0.1
particles on the other hand would be concentrated at

16 We use the results of Yang et al. (2017) as a guide. They saw filaments for
τs = 0.01 at a resolution equivalent to ours.
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ℓ∼ 0.004H (equating to ℓ/Δ∼ 2) and ℓ∼ 0.02H (ℓ/Δ∼ 14),
respectively. These scales are above the grid scale (although in
the case of τs= 0.03, this is only marginally true). However, a
very approximate estimate for the dissipation scale (inferred
from kinetic energy power spectra; see Appendix) in our
simulations is 0.01H. The τs= 0.03 particles would be
concentrated on a scale less than this, whereas the τs= 0.1
particles would be concentrated on a scale only twice that of
the dissipation scale.

It is worth noting that while the most recent results suggest
that Stℓ≈ 0.3 is the most optimal value (Hartlep et al. 2017;
Hartlep & Cuzzi 2020), making it easier to resolve TC, there
remains enough uncertainty in both this value and our
approximate analysis that the absence of the TC should not
be weighed too heavily. A much deeper dive into the TC as a
possible mechanism for planetesimal formation is certainly
required, but is beyond the scope of this paper.

In any case, our work clearly demonstrates that, over a large
parameter space of τs, Z, and αD values, turbulence can
significantly weaken the SI and prevent planetesimals from
forming. This happens through turbulent diffusion counter-
acting vertical settling and/or the radial concentration of
filaments within the disk plane.

4.2. Implication for Observations

Several recent observations have quantified the scale height
of millimeter-emitting dust in Class II disks, such as those
surrounding HL Tau (Pinte et al. 2016) or Oph 163131
(Villenave et al. 2022). The findings from these studies
generally suggest that the dust particles are well settled in the
outer regions of the disks, with their scale heights being less
than 1 au at a radial distance of 100 au. This behavior could
imply the presence of very weak turbulence in the outer regions
as indicated by the models used in the cited observations.
However, those models neglected particle feedback. Thus, it is
valuable to examine the potential implications for these
observations when considering particle feedback and the
damping of turbulence.

Villenave et al. (2022) use a radiative transfer model to
estimate the scale height of dust that radiates 1.3 mm
continuum emission in the disk around Oph 163131. The
resulting scale height is ∼0.5 au at 100 au, while the scale
height of the gas is estimated to be 9.7± 3.5 au from scattered-
light data (Wolff et al. 2021). If we use the mean value for the
gas scale height, this equates to Hp/H∼ 0.05. Assuming that
the millimeter-emitting dust in their observation has τs= 0.01

at 100 au and ρp= ρg, αD,z∼ 2.5× 10−5 (Equation (14)). This
αD,z value is roughly consistent with the upper limit of ∼ 10−5

calculated in Villenave et al. (2022) by adopting the dust
settling model of Fromang & Nelson (2009).
However, as we discussed in Sections 3.3 and 3.4, the

particle mass can increase the inertia of the dust–gas mixture,
resulting in a very thin particle layer even in the presence of
stronger turbulence. For example, the dust thickness in our
simulations, σp,z/H, spans from ∼0.04 to ∼0.1 for τs= 0.01
depending on the values of αD,z and Z (see Figure 7). The
observed dust scale height in Oph 163131 equates to Hp/H
ranging from ∼0.04 to ∼0.08 if we account for the uncertainty
in the gas scale estimation (i.e., H= 9.7± 3.5 au), which is
consistent with our results but only for αD,z? 10−5.
To summarize, well-settled dust disks (i.e., small Hp) do not

necessarily have very weak turbulence, especially if the dust-
to-gas ratio is ?1. Thus, the level of turbulence inferred by
ignoring feedback should be regarded as a lower limit.

4.3. Caveats

4.3.1. Strength of Particle Self-gravity

Throughout this paper, we fix
~
G (Equation (9)) to 0.05 for all

simulations we perform in order to compare our results to
previous studies that assume (LY21) or use the same value
(Gole et al. 2020). Moreover, our choice of the

~
G value should

be viewed as a conservative way to establish the collapse
threshold since planetesimal formation could be triggered in
even weaker concentrations when a higher G̃ (or equivalently, a
lower Q) is used (see Equation (10) or Gerbig et al. 2020). In
other words, critical Z values will be lower in young massive
disks or the outer regions of a Class II disk (e.g., G̃ ∼0.2 at
r= 45 au based on the disk model in Carrera et al. 2021).
Therefore, our Zcrit in Section 3.2 is subject to change when
different values of

~
G are used.

4.3.2. Number of Particles

Every simulation considered in this work has the same
number of particles per grid cell on average (i.e., np= 1).
However, due to particle settling, the effective particle
resolution, which is the number of particles per 2σp,z (i.e.,
np,eff= np[Lz/2σp,z]), varies with αD and the other parameters.
For example, Run T10Z2A4 has σp,z∼ 0.013 and np,eff∼ 30,
whereas Run T10Z2A3 has σp,z∼ 0.05 and np,eff∼ 8. In order
to test how changing the effective particle resolution changes

Figure 11. Comparison of two simulations with all parameters the same apart from the effective particle resolution (np,eff). The left panel shows the time evolution of
the maximum particle density, where the black and the gray curves are for the fiducial run (Run T10Z2A4, np,eff ∼ 30) and the run with the effective resolution of Run
T10Z2A3 (Run T10Z2A4-np, np,eff ∼ 8), respectively. The orange horizontal line is the Hill density (ρH). The middle and the right panels present the spacetime plots
of particle density averaged in y and integrated over z, vs. x and time for the two runs. Particle self-gravity is disabled here. Despite slight differences in the maximum
density and the radial concentration, the two runs with different np,eff are very similar.
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our results, we run Run T10Z2A4 again but with the same
effective particle resolution of Run T10Z2A3, named
T10Z2A4-np. The Run T10Z2A4-np has Npar∼ 4.61× 106,
which is approximately a factor of 4 smaller than that of Run
T10Z2A4.

We compare the two models in Figure 11, which presents the
maximum density of particles as a function of time in the left
panel and the radial concentration over time in the middle and
the right panels. In the left panel, Runs T10Z2A4 and
T10Z2A4-np are denoted as black and gray, respectively, and
the Hill density at ˜ =G 0.05 is shown as the orange horizontal
line. The particle self-gravity is turned off in the data shown
here. From the maximum density plots, the two runs exhibit
almost identical evolution until t− tpar∼ 200Ω−1 after which
they diverge. The time-averaged maximum densities from
t− tpar= 200Ω−1 to 500Ω−1 are ∼138ρg0 and ∼160ρg0 for
Runs T10Z2A4 and T10Z2A4-np, respectively. Given that the
maximum density is inherently stochastic, the discrepancy does
not seem to be significant. The radial concentration of particles
of the two runs (middle and right panels) looks very similar as
well. Although Run T10Z2A4-np has one more filament at the
end of the simulation, we do not believe this is a significant
difference because the interaction between filaments is highly
nonlinear, with the final number of dominant filaments and the
maximum density values being uncertain to some degree.
Overall, we conclude that the effective particle resolutions we
employ are not likely to significantly affect our results.

4.3.3. Grid Resolution

Other than
~
G and np, we also fix the grid resolution to 640/H

in all simulations. However, it is possible that increasing this
resolution would affect the òcrit and Zcrit curves. First
considering 2D simulations, Yang et al. (2017) found that, at
τs= 0.01, the critical Z above which the SI produces filaments
lies between 0.02 and 0.04 at 640/H resolution, whereas it lies
below 0.02 at 1280/H resolution; these results suggest that
an increased resolution lowers the critical value. On the other
hand, LY21 found that the critical Z value above which strong
clumping occurs (again, their definition of strong clumping
requires the maximum particle density to exceed the Hill
density) was 0.0133 (at τs= 0.01) for all resolutions up to
5120/H (although smaller boxes were used for higher
resolution simulations). In their 3D simulations, Yang et al.
(2017) found that, for τs= 10−3 and Z= 0.04 at 160/H
resolution, there was no sign of significant particle concentra-
tion or filament formation and r r< 10p g,max 0 (i.e., a critical
Z> 0.04). However, at 320/H and 640/H resolutions, they
observed a significant increase in concentration (r r~ 30p g,max 0
and ∼200ρg0 in the lower and the higher resolutions,
respectively) and the formation of dense, persistent filaments
(i.e., a critical Z less than or equal to 0.04). The differences in
whether a resolution dependence for the critical Z was observed
may be a result of the different codes used (including other
factors, such as boundary conditions). However, taken together,
these results suggest that, while the resolution may affect the
critical Z values, these values will likely only be changed by a
factor of an order unity. Therefore, while more investigation is
certainly needed to demonstrate if increasing grid resolution
indeed affects òcrit and Zcrit, we expect that it would produce at
most a modest change in these critical values.

In addition to SI concentration, whether a gravitational
collapse of particles occurs depends on the numerical

resolution. More specifically, numerical simulations should
resolve the critical length rcrit derived in Klahr & Schreiber
(2020) at which a gravitational contraction balances an internal
(to a collapsing cloud of pebbles) turbulent diffusion to
accurately capture the collapse and planetesimal formation.

( )d
t

=r H
1
3

. 26
s

crit

Here, δ is a dimensionless parameter for internal diffusion
within a particle cloud. Particle clouds whose sizes are greater
than rcrit are too massive to be held up by diffusion, and thus,
they gravitationally collapse. Here, we examine whether or not
the scale defined by rcrit is resolved in our simulations. Previous
works measure the radial diffusion of particles, assuming they
undergo a random walk in the radial direction, to quantify δ
(see, e.g., Baehr et al. 2022; Gerbig & Li 2023). Instead of
directly measuring the radial diffusion in our simulations, we
let δ be a free parameter ranging from 10−6 to 4× 10−4 to
cover δ values that likely result from the turbulence in our
simulations. The lower limit is to account for the fact that
denser regions are less diffusive (Gerbig & Li 2023), and the
upper limit corresponds to αD,z for αD= 10−3.
Figure 12 shows rcrit as a function of δ for three selected τs

values, which are 0.01 (blue), 0.03 (green), and 0.1 (red). The
first (left) and the second (right) vertical axes show rcrit in the
unit of the size of a grid cell (Δ) and in the unit of H,
respectively. We denote Δ as the black horizontal line. As can
be seen, rcrit is generally larger than the grid cell size, meaning
that our simulations should largely resolve a gravitational
collapse if a local particle clump is gravitationally unstable. For
τs= 0.1 (red) and very small δ, the critical length becomes
smaller than the cell size. Thus, it is possible that Runs
T10Z1.5A4 and/or T10Z2A3.5 would produce collapsed
regions if the numerical resolution was higher. However, it is
less likely that an increased resolution would change the results
of the higher αD runs in this work because the radial diffusion
in these runs is much larger than 10−6.

Figure 12. The critical radius of a particle cloud above which collapse occurs
(rcrit; Equation (26)) as a function of δ for τs = 0.01 (blue), 0.03 (green), and
0.1 (red). The y-axes on the left and on the right show rcrit/Δ and rcrit/H,
respectively, where Δ is the width of a grid cell. We assume that δ ≈ αD,z,
which ranges from 10−6 to ∼4 × 10−4. The larger number in this range
corresponds to the value for αD = 10−3, while the smaller number is an
assumed value based on the fact that particles become less diffusive around
dense clumps. The black horizontal line denotes Δ. Except for the case where δ
is very low, the critical radius is larger than the cell size.
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Overall, the òcrit and Zcrit we report should be viewed as
upper limits since both SI concentration and gravitational
collapse typically benefit from higher resolutions. Although our
findings may be adjusted based on the caveats highlighted in
this subsection, it is crucial to note that our simulations are 3D
and incorporate essential physics, such as self-gravity of
particles and external turbulence. Thus, our simulations
represent a significant advancement in our quantification of
the critical planetesimal formation curves.

5. Summary

In this paper, we have presented results from stratified
shearing box simulations in which gas and particles are
aerodynamically coupled to each other. In order to study the
effect of turbulence on the SI and the formation of
planetesimals, we include both the self-gravity of particles
and externally driven incompressible turbulence. Our simula-
tions explore a relatively broad range of parameter space,
namely, different dimensionless stopping times τs, particle-to-
gas surface density ratios Z, and forcing amplitudes αD. We
summarize our main results as follows:

1. Incompressible turbulence can impede SI-driven con-
centration of particles via turbulent diffusion in two
possible ways. First, this diffusion can prevent particles
from settling, thereby preventing the midplane dust-to-
gas density ratio ò from exceeding the critical value for
filament formation. Second, even if the particles do settle
and form a layer around midplane, the formation of
filaments can be counterbalanced by turbulent diffusion
acting in the plane of the disk (in addition to vertically).

2. The critical ò, at or above which planetesimal formation
occurs, is ò 1. This is a factor of a few larger than the
corresponding values in the absence of externally driven
turbulence, but is still of an order unity (see Figure 4).

3. To balance the stronger diffusion associated with larger
αD, more total mass in the particles (i.e., through the Z
parameter) is needed. As such, the critical Z values (Zcrit)
at or above which planetesimal formation occurs are
much higher than those obtained without an external
turbulence. Quantitatively, when τs= 0.01, Zcrit ∼0.06
and ∼0.2 for αD= 10−4 and 10−3, respectively, whereas
Z∼ 0.02 is sufficient for planetesimal formation in the
absence of turbulence (e.g., LY21).

4. Due to particle feedback, the characteristic particle height
in our simulations (σp,z) is always lower than the particle
scale height with negligible feedback. This behavior is
the direct result of enhanced particle mass-loading on
the gas.

5. As a result of the strong influence of particle feedback on
the dust scale height, observational measurements of the
turbulent velocity should be regarded as a lower limit. It
is possible to have stronger turbulence and a small dust
scale height if the dust-to-gas ratio is sufficiently large.

6. For sufficiently large Z, the vertical particle density
profiles can be significantly modified from a Gaussian.
For τs= 0.01 and Z� Zcrit, our simulations exhibit a cusp
near the midplane resulting in a thin, dense layer of
particles, and extended wings outside the layer,
resembling a Voigt profile out to |z| 0.2H.

In closing, while there remain a number of uncertainties to be
addressed in future work, our results demonstrate the crucial

role that gas turbulence plays in limiting where in the disk and
under what conditions planetesimals can form.
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Appendix
Turbulence Forcing with Vector Potential

In this appendix, we describe the vector potential driving
used to force turbulence in the computational domain. In
particular, we present the equations for the vector potential A
and the method for handling the shearing–periodic boundary
conditions in the radial direction.
The vector potential is sinusoidal with phases that change

over time; each component of the vector potential is defined as
follows:

[ ( ) ( )] [ ( )]
[ ( ) ( )] [ ( )]
[ ( ) ( )] [ ( )] ( )

f f
f f

f f

= + + +
= + + +

= + + +

A k t x k y t k z t

A k t x k y t k z t

A k t x k y t k z t

cos cos ,
cos cos ,

cos cos . A1

x x y x z x

y x y y z y

z x y z z z

1 2

1 2

1 2

Here, ky= kz= 2π/Ly= 2π/0.2H are the wavenumbers for the
y-direction and z-direction, neither of which change with time.
The radial (or, x) wavenumber changes with time and has a
different form in order to make A and the resulting velocity
perturbations consistent with background shear flow (Hawley
et al. 1995):

( ) ( ) ( )p= + WLk t n t q k t2 , A2x x x y

where º - Wq d d Rln ln ; q= 3/2 for a Keplerian disk. We
employ a random number generator to change the phases (e.g.,
fx1(t)) to guarantee that the vector potential is not correlated in
time. The forcing occurs at intervals of 10−3Ω−1, and with each
instance, the phase is assigned a new value.
In shearing box simulations, a computational domain is

bordered radially by identical boxes, which shift azimuthally
over time due to the shear flow; they are perfectly aligned at
t= 0. In this regard, by using kx(t) given above in our
sinusoidal functions, we guarantee that A is in a comoving
frame with the shear flow. This construction guarantees that
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every component of the resulting velocity perturbations is
continuous across the radial boundaries. In this setup, however,
the second term on the right-hand side of Equation (A2) (and
thus of course kx(t)) increases over time without a bound.
Therefore, we repeatedly decrease nx(t) such that, once kx(t)
exceeds 2π/0.1H, it lowers back to its initial value, so that
kx(t)= 2π/0.2H. The initial value and the upper bound of kx(t)
are our choices, but are associated with long-wavelength modes
(i.e., our turbulence is driven at large scales).

We numerically take the curl of A to generate each
component of the velocity perturbations in real space, each of
which is then multiplied by the gas density and added to the
corresponding component of gas momentum (Equation (3))
with the desired amplitude of forcing (i.e., αD). Since the
perturbations should be located at grid cell centers to be
consistent with how quantities are defined on the mesh, we shift
x, y, and z by the half-width of a grid cell. More specifically, for
a given Ai (i= x, y, or z),

( )

 - D =
 - D =
 - D =

x x i y z
y y i x z
z z i x y

0.5 if or ,
0.5 if or ,
0.5 if or , A3

where Δ=H/640 is the width of a grid cell. Finally, the
velocity field injected via this method is incompressible (or,
divergence-free) as taking the curl of the vector potential
guarantees. To check the degree to which this incompressibility
is maintained during the nonlinear evolution of the system, we
extract velocity components parallel to the wavevector in
Fourier space and carry out an inverse Fourier transform to
produce them in real space; this gives us the curl-free velocity
components. Then, we subtract them from the total velocity
field to obtain the divergence-free components. In this way, we
measure to what extent each component contributes to the total
velocity field. We find that the divergence-free components
account for ∼99% of the total field, meaning that the forced
turbulence is almost entirely incompressible.

Figure A1 presents the time-averaged power spectra of the
squared turbulent velocity (averaged over spherical shells of
constant k in Fourier space; see, e.g., Simon et al. 2012) for
simulations with three different αD and Lx= 0.4H, Ly= 0.2H,
Lz= 0.8H and without particles. This is to demonstrate the
proper implementation of forcing in our simulations. The color-
coding denotes αD values. Additionally, the black dashed line
shows a negative five-third power-law relation, which is a
characteristic of Kolmogorov turbulence. The spectra are
truncated at kH/(2π)= 320, which corresponds to the Nyquist
scale (2Δ). We summarize key observations from the figure as
follows:

1. Simulations with larger αD consistently show larger
power across all considered scales.

2. The power spectra exhibit common features of turbulence
in numerical simulations. That is to say, they peak at kH/
(2π)∼ 10, which is a scale of ∼0.1H. At k larger than
where the peak occurs, there is an indication of a (small)
inertial range where a cascade of energy is likely taking
place. At even larger wavenumbers (or, smaller scales),
the slope becomes steeper due to numerical dissipation
being dominant over the inertia of the turbulence.

3. Finally, the shape of the power spectra’s (small) inertial
range is in rough agreement with a negative five-third
power law, which suggests a Kolmogorov type behavior.
However, we emphasize that our simulations, which are
both rotating and stratified, will not strictly follow
Kolmogorov phenomenology, and thus, we cannot firmly
conclude that the turbulence in our simulations is
behaving as in the classical Kolmogorov picture.
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Figure A1. Time-averaged power spectra of turbulent velocity squared before initializing particles in simulations with (Lx, Ly, Lz) = (0.4, 0.2, 0.8)H. Three αD values
are denoted by different colors as shown in the legend. The black dashed line represents Kolmogorov dependence (∝k−5/3). The power spectra have a peak at kH/
(2π) ∼ 10 followed by a power law toward larger wavenumbers, which may be an indication of energy cascade. Finally, at even larger k, the spectra become steeper
due to numerical dissipation.
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