
Evaluating Tuning Opportunities of the
LLVM/OpenMP Runtime

Smeet Chheda∗, Gaurav Verma∗, Shilei Tian∗, Barbara Chapman∗, Johannes Doerfert†
∗Stony Brook University, USA, schheda@cs.stonybrook.edu, {gaurav.verma, shilei.tian, barbara.chapman}@stonybrook.edu

†Lawrence Livermore National Laboratory, USA, doerfert1@llnl.gov

Abstract—Tuning parallel applications on multi-core architec-
tures is an arduous task. Several studies have utilized auto-
tuning for OpenMP applications via standardized user-facing
features, namely number of threads, thread placement, binding
and scheduling policy. However, they fall short on utilizing the
additional parameters provided by an OpenMP implementation.

In this paper, we analyze OpenMP application runtime
through an exhaustive exploration of all relevant configuration
options of the LLVM/OpenMP runtime.

Our findings allow to identify trends in tuning potential,
architecture-aware tuning suggestions, and good default configu-
rations per architecture. We will open-source the 240,000 unique
samples collected during experiments for use by the community.
These runs have been conducted on three different CPU archi-
tectures vital in the HPC and datacenter community. Choice of
applications includes popular benchmark suites and microbench-
marks namely, NAS Parallel Benchmarks, Barcelona OpenMP
Task Suite, XSBench, RSBench, SU3Bench and LULESH.

We employ the Linear Models class of Machine Learning
algorithms to perform analysis, explain, and form qualitative
relations between features comprising of the underlying architec-
ture, application, input size, number of threads, and considered
environment variables. This is further used to recommend
different configurations given an application type/architecture.

Index Terms—HPC, parallel programming, tuning, machine
learning

I. INTRODUCTION

The OpenMP API has evolved from supporting simple fork-

join shared-memory parallelization to additional forms of par-

allelism not strictly limited to shared memory. This evolution

has occurred over nearly three decades encompassing exten-

sions and additions to the specification. OpenMP now includes

support for not only software-defined parallelism types such as

structured (loop-based) and unstructured (asynchronous task-

based parallelism), but also hardware-implemented parallelism

such as SIMD (single instruction multiple data) and accel-

erators [1]. These extensions are available to an application

developer by a rich set of directives in the C, C++, and Fortran

base languages. Due to its ease of use, program and per-

formance portability across heterogeneous architectures, most

compilers (open source and proprietary) provide support for

OpenMP. While the standardized API exposes various tuning

opportunities to users, the actual implementations are often

even more configurable. In this paper, we look at the entire set

of environment variables controlling the LLVM/OpenMP CPU

runtime that influence the execution of parallel applications.

OpenMP applications can be configured via pragmas, library

routines, and environment variables. For standardized features,

these methods influence the value of Internal Control Variables

(ICVs) which control different aspects of the OpenMP run-

time. For non-standardized, implementation-defined features,

runtimes generally use environment variables as a control

mechanism. We, therefore, focus on environment variables to

influence the LLVM/OpenMP runtime behavior.

The problem our study addresses is the identification of

important environment variables and the selection of their

values to improve performance of parallel applications. In

the LLVM/OpenMP runtime various aspects can be influ-

enced, including ICV values, like the maximal number of

threads operating in parallel, thread placement, binding, and

scheduling policy, but also the alignment of internal data

structures and the reduction algorithm. It is easy to set an

environment variable during execution but deciding the value

for all possible variables is not trivial. Running applications for

all combinations is often prohibitively expensive. This means

tuning for real-world applications needs to be guided to avoid

the full search space exploration which grows combinatorially

in the number of choices. Further, as we will show, the various

configuration options are not equally important and time is

best spent trying only selected values for a subset of the

environment variables.

To guide users we studied the effect of performance-critical

environment variables that influence the LLVM/OpenMP run-

time by collecting over 240,000 unique samples on three

CPU architectures. We then analyze the results statistically

to identify trends and determine the most important features

to drastically reduce the search space while preserving the

optimization potential. Finally, we provide recommendations

based on application type/architecture that have the potential

of outperforming the default configuration.

Prior studies have primarily looked at tuning the number

of threads, thread placement, binding, or scheduling policies.

These are important factors to consider for improving

performance, as evident by their standardized ICVs. However,

we take a step further by including all implementation defined

environment variables that may affect the performance of

an application. While implementation-specific environment

variables are not generally portable, the popularity of

LLVM/OpenMP library and adoption by other compilers

makes this study useful for almost all HPC systems.

919979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00131

Authorized licensed use limited to: XILINX. Downloaded on July 31,2025 at 17:00:56 UTC from IEEE Xplore. Restrictions apply.

Dutta et al. [10] have leveraged representation capabilities of

graph neural networks to autotune OpenMP loops. Bolet, G,

et. al, [11] have explored global optimization strategies for

tuning whole OpenMP programs with comparative analysis

of Bayesian Optimization, Particle Swarm Optimization and

Covariance Matrix Adaptive Evolution Strategy. Parasyris et.

al, [12] develop a record and replay technique in LLVM

for OpenMP target offloaded programs. They further show

how this can be utilized for per-kernel tuning of performance

related parameters pertaining to GPUs such as, number of

threads, grid size, launch bounds, etc.

Few works have also looked at optimizing thread-level

parallelism from a reduced power usage or energy efficiency

perspective. Bolet et. al [11] tune a small set of OpenMP

applications on a single CPU architecture. Nornir [13] is

a runtime system that monitors the application execution

and adjusts the resource configurations (DVFS, number of

threads, and thread placement) to satisfy either performance

or power consumption requirements. Schwarzrock et. al, [14]

and Luan et. al, [15] have both developed their own online

approach to thread throttling and CPU frequency tuning with

the goal of optimizing energy usage in the form of Energy

Delay Product (EDP). Their approaches are useful in cases

when one must change the thread count during program

execution. OpenMPE [16] is designed for energy management

and enables programmers to insert new directives in regions

where energy savings can be potentially achieved. This work

requires a particular compiler and runtime system. Curtis-

Murray, M, et. al, [17] present a user-level library for on-

line adaptation of multithreaded code for power-aware high-

performance execution. Further, researchers have employed

graph neural networks [18] for power-constrained autotuning

of OpenMP loops, demonstrating the potential of advanced

machine learning techniques in optimizing parallel computing

tasks.

However, most works targeting CPUs focus on the same

limited set of control mechanisms, namely standardized ICVs,

X86 architectures, and their applications are overwhelmingly

using structured parallelism, i.a., parallel loops. What sets our

study apart is the scale and breath. We use a diverse set of

configuration options, which include implementation-defined

environment variables, a large selection of applications with

parallel loops as well as task-parallelism, and evaluate the

vast configuration space on three HPC-relevant architectures.

Due to the size of the explored space, we limit ourselves

to per-application configurations. This is not a conceptual

requirement but matches practical real-world tuning practices.

III. OPENMP ENVIRONMENT VARIABLES

We focus on exploring the parameter space with more

variables than those considered in the literature. These include

standard-defined and implementation-defined variables.

Hereon, variables can be considered as features. We

consider and describe the following variables: OMP_PLACES,

OMP_PROC_BIND, OMP_SCHEDULE, KMP_LIBRARY,

KMP_BLOCKTIME, KMP_FORCE_REDUCTION and

KMP_ALIGN_ALLOC. It is worth noting that the behavior of

OMP_WAIT_POLICY is derived from KMP_BLOCKTIME and

KMP_LIBRARY. We therefore exclude OMP_WAIT_POLICY

in favor of the two KMP_* variables in our experiments.

Information pertaining to default values and potential values

has not been well articulated by other studies. Further, the

default values of certain variables in the LLVM/OpenMP are

dependent on other settings. In the following we explain the

meaning and potential values for each variable and how the

default is computed.

1) OMP_PLACES: This variable defines how threads

are distributed among places. The possible values

include threads, cores, ll_caches, sockets,

numa_domains, and “unset”. If a place was chosen,

the OS will allocate threads to that place, while the

default, unset, allows threads to be moved. The place

numa_domains requires the hwloc library to be available

to the LLVM/OpenMP runtime. This has been omitted in our

current experiments and left for future work. Since we did

not evaluate “hyper-threading” CPUs, we also ignored the

threads value.

2) OMP_PROC_BIND: The OpenMP standard defines the

following five binding/affinity strategies when a parallel re-

gion is encountered – master (deprecated, now primary),

close, spread, true, false, and “unset”. This value is

unset by default which corresponds to false, however, if

OMP_PLACES is set, then the default value is spread. If

the affinity policy is set to false, then the threads are free

to move from one place to another. The LLVM/OpenMP also

respects the KMP_AFFINITY variable which has an additional

set of values, however, we do not consider those.

3) OMP_SCHEDULE: This variable controls the schedule

kind and chunk size of worksharing-loop directives. A a chunk

size is determined by the runtime if not provided or implied.

We consider all choices – static, dynamic, guided, and

auto, but no chunk sizes. The default value is static.

4) KMP_LIBRARY: This variable selects the

LLVM/OpenMP runtime library execution mode. Possible

values are serial, throughput, and turnaround. The

default value is throughput. We do not consider serial

since it forces parallel applications to run in a serial manner.

5) KMP_BLOCKTIME: This variable specifies the duration,

in milliseconds (ms), that a thread may wait after completing

a parallel region before entering a sleep state. Setting it to

infinite prevents the thread from sleeping, whereas 0

forces the thread to sleep immediately. A user may select any

whole number from [0, INT32_MAX] for this variable. The

default value is 200. However, we only consider the following

values for experiments – 0, 200, and infinite.

6) KMP_FORCE_REDUCTION: This variable, which is

currently undocumented, determines how a cross-thread reduc-

tion is performed. We consider all possible explicitly options –

tree, critical, and atomic. The default value is “unset”

and a heuristic will determine the method at runtime. If the

number of threads is one, no synchronization is needed and a

special code path is used. If the number of threads is between

921

Authorized licensed use limited to: XILINX. Downloaded on July 31,2025 at 17:00:56 UTC from IEEE Xplore. Restrictions apply.

CPU Architecture #Cores #Sockets #NUMA Nodes Clock Frequency Memory Type Memory Capacity

Fujitsu A64FX 48 - 4 1.8 GHz HBM 32

Intel Xeon Gold 6148 (Skylake) 40 2 2 2.4 GHz1 DDR4 188

AMD EPYC 7643 (Milan) 96 2 8 2.3 GHz1 DDR4 251

TABLE I: Hardware configuration used in this work.

two and four, the critical method is used. Larger thread

counts utilize the tree method.

7) KMP_ALIGN_ALLOC: This variable, which is also un-

documented, is used to define the memory alignment of inter-

nal data structures allocated by the LLVM/OpenMP runtime

using the __kmp_allocate routine. The default value is

the cache line size of the architecture. The A64FX processor

has a cache line size of 256 bytes whereas the X86 processors

considered here have a cache line size of 64 bytes. Therefore,

for the A64FX processor we consider 256 and 512, with 256

as the default, and for the X86 processors, we consider 64,

128, 256 and 512, with 64 as the default.

IV. METHODOLOGY

Our study is devoted to finding the parameters that work

best for the whole application while minimizing the intrusion

during development and deployment. Consequently, configu-

rations are not chosen on a “per-kernel”, i.a., parallel region,

basis but for the entire run. This does not only reduce the

search space considerably, but also reflects the fact that users

cannot practically tune and modify each kernel in isolation

when an application is set up on a system.

Another key aspect of this study is a ground up approach to

analyzing the results i.e., we apply visualization tools and sta-

tistical techniques to understand and explain relations among

different variables, applications, and architectures. We utilize

linear and logistic regression models and discuss their benefits

and shortcomings. This analysis, described in Section IV-D, re-

veals underlying relationships which allows us to characterize

the influence environment variables per architecture.

We use and evaluate the performance of LLVM/OpenMP

over multiple benchmarks in this study. All applications are

compiled with LLVM/Clang 15.0.32 compilers. This version

is fixed across the aarch64 and x86 machines. For our

evaluations, we use three different CPU micro-architectures

spanning two instruction sets, commonly deployed in HPC

systems. Key facts about the CPUs are presented in Table I.

A. Benchmark Applications

The considered benchmarking suites and applications are

briefly described here. For all the benchmarks, we use the

host OpenMP implementation for our experiments.

1Clock frequencies of Intel and AMD processors mentioned here reflect
their base frequency. Their true clock frequency is variable and is determined
by the CPU frequency governor which is set to performance mode.

2We utilized this version at the start of our data collection process. Given
the stability of the LLVM/OpenMP host runtime across recent versions, our
analysis remains valid and applicable to the latest LLVM release.

1) NAS Parallel Benchmarks: The NAS Parallel Bench-

marks (NPB) [19] are a small set of programs designed to

help evaluate the performance of parallel supercomputers. The

benchmark suite has been extended to include new benchmarks

for unstructured adaptive meshes, parallel I/O, multi-zone

applications, and computational grids. Problem sizes in NPB

are predefined and indicated as different classes. We use the

following benchmarks written in C and OpenMP: BT, CG, EP,

FT, LU, MG.

2) BSC OpenMP Tasking Suite: The objective of the suite

is to provide a collection of applications that allow to test

OpenMP tasking implementations [2]. We consider the follow-

ing applications: Alignment, Health, NQueens, Sort, Strassen.

3) RSBench: RSBench [20] is a mini-app representing a

key computational kernel of the Monte Carlo neutron trans-

port algorithm. Specifically, RSBench represents the multipole

method of performing continuous energy macroscopic neutron

cross section lookups.

4) XSBench: XSBench [21] is a mini-app representing a

key computational kernel of the Monte Carlo neutron transport

algorithm. Specifically, XSBench represents the continuous

energy macroscopic neutron cross section lookup kernel.

5) SU3Bench: The kernel is based on the mult_su3_nn

SU(3) matrix-matrix multiply routine in the MILC Lattice

Quantum Chromodynamics (LQCD) code. Matrix-matrix (and

matrix-vector) SU(3) operations are a fundamental building

block of LQCD applications.

6) LULESH: LULESH [22] approximates hydrodynamics

equations discretely by partitioning the spatial problem do-

main into a collection of volumetric elements defined by an

unstructured hex mesh.

B. Data Collection, Cleansing and Pre-Processing

All applications were compiled with the same version

of LLVM/Clang built for respective architectures with -O3

-march=native -fopenmp compilation flags and there-

fore, improvements in runtime, if any, are reported over the

optimized binaries. For Fujitsu A64FX, -march is replaced

with -mcpu to instruct the compiler to generate SVE instruc-

tions where possible.

The benchmarks were executed multiple times in a cluster

environment. Execution was batched in a way that all config-

urations were explored for a setting iteratively. This decision

was made to preserve the relative performance of parameter-

ized environment variables for that setting if multiple such runs

were not possible. We decided to vary the number of threads

and input sizes for applications, but not simultaneously due

to the large search space. The performance data distribution

generated in each setting is useful for observing how the

922

Authorized licensed use limited to: XILINX. Downloaded on July 31,2025 at 17:00:56 UTC from IEEE Xplore. Restrictions apply.

trends emerge and change when these variations in number

of threads or input sizes are applied. For instance, the NAS

Parallel Benchmarks and BSC OpenMP Task Suite are both

configured for varied input size, while keeping thread count

constant and remaining proxy applications are configured for

varied thread counts with default input size.

The raw data is stored and tabular datasets for each setting

are created after extracting and processing. Both, the raw

output and processed datasets will be open sourced for use by

the community. Afterwards, the datasets are further enriched

with the runtime of the default settings discussed in Section III.

Speedup is then calculated from the observed runtime of

an experiment compared to the default configuration. These

data files collectively include over 240,000 unique samples,

processed from the raw output of application execution and

converted into tabular data files. The distribution of samples

is shown in Section IV-B.

Architecture Applications #Samples

Fujitsu A64FX 15 53822
AMD Milan 13 99707
Intel Skylake 12 90230

TABLE II: Dataset description.

C. Statistical Significance Of The Collected Data

We conduct a Wilcoxon signed-rank test [23] to evaluate the

significance of runtime differences of the same configuration

when run multiple times i.e., we want to see the variation

in observed results per configuration. The test is conducted

in pairs of observations for each configuration. These pairs

are referred to as R0, R1 and R2. And we showcase the

consistency in performance for all pairs of a configuration.

This test is applied because the distribution of runtime data is

not normally distributed as we can see in Fig. 1.

As an example, we perform this test for the Alignment

benchmark on all three processors. The results are shown in

Table III. Results are generated as a statistic and corresponding

p-value. A high p-value indicates there is no statistically

significant difference in the results observed between those

pairs. Thus, the runtime measurements across multiple runs are

consistent on that architecture. Low p-values, as seen for both

X86 processors, indicate that there is a statistically significant

difference in the runtime measurements. This implies that there

are inconsistencies (aka. noise) in the runtime measurements

of the benchmarks on these processors.

Table IV shows that the mean and standard deviation

calculated for each execution of the Alignment benchmark

on an architecture are similar. The means for runtime mea-

surements on A64FX are the same, with minor differences

in the std. deviation. For the Milan and Skylake, the means

and standard deviation calculated for all measurements are

similar for the respective architecture. This was observed

across all benchmarks on the X86 architectures. To mitigate

variations in runtime of configurations, we average all runtime

measurements per configuration.

Architecture-Benchmark Pair Test Stat p-value

a64fx-alignment-small
R0, R1 1157254.5 0.73
R1, R2 1161973.0 0.86
R2, R3 1155559.5 0.72

milan-alignment-small
R0, R1 4095517.0 3.23e-12
R1, R2 1529843.0 0.0
R2, R3 1564503.5 0.0

skylake-alignment-small
R0, R1 4555474.0 0.19
R1, R2 2497324.0 4.19e-154
R2, R3 2598135.0 1.77e-140

TABLE III: Wilcoxon test results for runtime comparisons

across architectures.

Architecture-Application Runtime Idx Mean (sec) Std Dev (sec)

a64fx-alignment-small
Runtime 0 0.131 0.310
Runtime 1 0.131 0.310
Runtime 2 0.131 0.311

milan-alignment-small
Runtime 0 0.135 0.308
Runtime 1 0.109 0.265
Runtime 2 0.111 0.274

skylake-alignment-small
Runtime 0 0.061 0.140
Runtime 1 0.062 0.142
Runtime 2 0.062 0.139

TABLE IV: Runtime statistics for different architectures.

D. Analysis Methodology

The combination of environment variables, application

parameters, and underlying architecture create a high-

dimensional search space. To extract meaningful insights from

such high-dimensional data, we need to reduce the number

of dimensions. We have considered linear techniques, namely

linear and logistic regression to model the data. Linear tech-

niques offer the benefit of providing a certain level of inter-

pretability in the machine learning models and their results.

However, they have limitations that make them less effective

for accurately modeling high-dimensional data. In such cases,

non-linear techniques are more appropriate.

The distribution of points in Fig. 1 indicates that our data

does not satisfy the requirements for fitting a linear regression

model. This is experimentally observed with low confidence

scores associated with poor model fitting. To address this

challenge, we reformulate the problem as a classification task.

We further annotate our processed data by labeling each

sample and apply a classifier to find a separation boundary in

high-dimensional space. The samples are labelled as “optimal”

if speedup > 1.01, “sub-optimal” otherwise (corresponding to

at least 1% improvement in application performance).

To analyze samples across applications or architectures, we

encode applications and architectures as “features” in the data.

This encoding is a naive numeric scheme. These features

act as placeholders for the underlying characteristics they

represent. More robust and sophisticated encoding schemes

can be applied to more accurately represent architecture details

and application embeddings. However, for the purpose of

our experiments, this naive encoding scheme works well as

indicated by high model prediction scores.

All analysis scripts are written in Python 3 and we use

Pandas and Scikit-Learn to clean, aggregate, and normalize

923

Authorized licensed use limited to: XILINX. Downloaded on July 31,2025 at 17:00:56 UTC from IEEE Xplore. Restrictions apply.

data where necessary. Default features in all cases include

the input size, number of threads, and environment variables

under consideration. Additional features are added based on

the grouping style explained here:

1) Per Architecture-Application – here data includes samples

from an application when run on a specific processor.

This includes additional features of variation from input

sizes/thread counts.

2) Per Application – here data includes samples from an ap-

plication across all architectures, input sizes/thread counts.

3) Per Architecture – here data includes samples from all

applications run on a specific processor. Additional features

include applications, varied input sizes/thread counts.

To gather insights from the machine learning model, we

use the coefficients of the learned logistic regression model.

These absolute values of the magnitude of coefficients act

as hyperparameters that control the separation (classification)

boundary. Once we get these magnitudes, we weight normalize

them and analyze the result. These are described in the

following section.

V. RESULTS

We share the insights gathered from our outlined analysis in

the form of research questions, heat maps and tables for the

benefit of the reader. Darker shades imply larger influence.

We note that these analyses are solely data driven, and do not

include profiling and any other performance analysis software.

1) What is the upshot potential for applications and does

this translate to other architectures?

The observed improvement in runtime expressed as speedup

varies from 1.0x to 4.85x across all data collected in this study.

A64FX shows this wide range in highest observed speedup

from 1.0x to 4.85x with a median improvement of 1.02x. On

the Milan architecture, the observed highest speedup ranges

from 1.011x to 2.6x with a median improvement of 1.15x.

Range of highest speedup on Skylake is from 1.0x to 3.47x

with a median of 1.065x.
The same application running on different architectures can

have different upshot potential. For instance, in Table V, we

show the range of maximum speedup for the Alignment and

XSBench benchmarks. The latter only improves minimally

on A64FX and Skylake platforms, whereas on Milan more

than 2.6x can be achieved. The Alignment benchmark shows

consistent potential across architectures.

Application Architecture Speedup Range (x)

Alignment
A64FX 1.032 - 1.101
Milan 1.022 - 1.186

Skylake 1.065 - 1.111

XSBench
A64FX 1.004 - 1.015
Milan 1.016 - 2.602

Skylake 1.001 - 1.002

TABLE V: Speedup range for different applications on differ-

ent architectures.

The range of speedup observed per application across archi-

tectures can be found in Table VI. Here, the range represents

the highest upshot potential observed over the default for each

architecture.

Application Speedup Range (x)

Alignment 1.022 - 1.186
BT 1.027 - 1.185
CG 1.000 - 1.857
EP 1.000 - 1.090
FT 1.010 - 1.545
Health 1.282 - 2.218
LU 1.020 - 1.121
LULESH 1.004 - 1.062
MG 1.011 - 2.167
Nqueens 2.342 - 4.851
RSBench 1.004 - 1.213
Sort 1.174 - 1.180
Strassen 1.023 - 1.025
SU3Bench 1.002 - 2.279
XSBench 1.001 - 2.602

TABLE VI: Speedup range for different applications.

2) Does the same set of environment variables define this

upshot across architectures for an application?

In our experiments we find that the same set of environment

variables may result in speedups across architectures. The

performance of an application program can be characterized by

the underlying architecture, program representation, input size

and number of threads along with the environment variables

chosen for this study. The results in Fig. 2, summarize our

findings. Columns names “Architecture” and “Input Size” are

added to reflect varying architectures and inputs corresponding

to the data used for grouping in this analysis.

The deeper colours imply that those features are responsible

for explaining the runtime performance more than the others.

The architecture column includes the fraction of influence

accounted for that application (row). We observe that many

applications exhibit some degree of reliance on the architec-

ture, indicating that the same environment variable-value pairs

were not consistently beneficial for a given application across

all architectures in our study. We also note that the applications

from BSC OMP Task Suite show very low reliance on the

architecture suggesting that tuning the environment variables

once is sufficient to obtain good performance on all architec-

tures.

Note that Sort and Strassen benchmarks show no reliance

because they were not executed on the Skylake and Milan

processors due to higher traffic on the cluster.

3) Are there any specific variables that work best for an

architecture?

Fig. 3 highlights the variables that are generally influential

in determining the sway in performance on an architecture. In

decreasing order, OMP_NUM_THREADS, OMP_PROC_BIND

and OMP_PLACES influence runtime across all considered

architectures for the applications we have chosen. This result

validates other studies which have primarily focused on tuning

these variables or corresponding ICVs.

There is some impact of KMP_LIBRARY and

KMP_BLOCKTIME on performance on all architectures.

924

Authorized licensed use limited to: XILINX. Downloaded on July 31,2025 at 17:00:56 UTC from IEEE Xplore. Restrictions apply.

whereas we see a different set of variables and associated

values affecting the performance of the CG application on

different architectures. Therefore, we direct the reader to the

heat maps to understand the impact of the additional factors

to performance such as architecture, input sizes and thread

counts before selecting parameters and respective values.

VI. CONCLUSION AND FUTURE WORK

We have performed large scale parameter space exploration

of a wide variety of applications on three different CPU

architectures. This effort has led to the collection of over

240,000 data samples that have been cleaned and transformed

into tabular data files. The distribution of performance data is

visualized using violin plots. Initial observations reveal a wide

range of performance variations and a non-normal distribution

of the data. Additional violin plots displaying the distribution

of performance data have been included in the appendix for

the reader’s reference.

Linear modeling techniques have been specifically cho-

sen for their interpretability aspect. To circumvent inherent

restrictions within linear models, we show how data anal-

ysis was performed with a surrogate task of classification.

This “simplest-first” approach to modeling data is useful in

understanding when different variables influence application

performance. Fig. 2 and 3 share the features found to be

most impactful for both architecture and application grouping

strategies respectively.

The results from qualitatively defining the impact of vari-

ables can serve as a search space pruning technique. As we

have seen, not all environment variables contribute equally to

application performance. Therefore, tuning a subset of envi-

ronment variables can help achieve near optimal performance.

The impact of an environment variable is further subject to

the application and underlying CPU architecture. Therefore,

tuning a subset of variables for that architecture or application

can be less expensive to the user.

The outcome of the performed analysis above can also be

used in other autotuning studies that aim to find near-optimal

configurations by applying discrete search space traversal

algorithms. For example, hill climbing algorithms vary the

parameter value of one variable at a time while keeping others

fixed till all have been parsed. While randomizing the order

of variable settings reduces the likelihood of encountering

local minima, having information on the impact of variables

can further decrease this probability, especially when the

dependency relationships between parameters are unclear.

We acknowledge the limitation of this study. All of these

analyses were made possible due to the large scale exploration.

Given the length of this effort in terms of time, this approach

is not scalable from a user’s perspective. Another limitation

includes the reduced exploration of thread counts for the

applications and architectures in consideration. We will add

more thread counts and latest CPU chips in the data collection

strategy. Given the importance of thread counts, we direct the

user to other studies that can recommend thread counts given

an application and architecture.

These results can be adopted by users if their OpenMP

applications have similar computation patterns to the bench-

mark applications here. However, this isn’t always the case.

By viewing the heat maps in Fig. 2 and 3, we see that there is

no clear winner for an application or an architecture. There-

fore, there is no guarantee this knowledge can be transferred

to new unseen applications or architectures. However, our

methodology can guide future studies and help gain insights

in different kinds of applications. The development of non-

linear approaches to model such data and devising methods

to fine-tune these models with limited data of prior unseen

applications is a suitable path forward.

ACKNOWLEDGMENT

The authors thank Jonathan L. Peyton at Intel for shar-

ing useful insights related to the default behaviour of the

LLVM/OpenMP Runtime. This material is based upon work

by the National Science Foundation under grant no. CCF-

2113996. The authors would like to thank Stony Brook Re-

search Computing and Cyberinfrastructure, and the Institute

for Advanced Computational Science at Stony Brook Uni-

versity for access to the SeaWulf computing system, which

was made possible by a $1.4M National Science Foundation

grant (#1531492). The authors would like to thank Stony

Brook Research Computing and Cyberinfrastructure, and the

Institute for Advanced Computational Science at Stony Brook

University for access to the innovative high-performance

Ookami computing system, which was made possible by a

$5M National Science Foundation grant (#1927880).

REFERENCES

[1] B. R. de Supinski, T. R. W. Scogland, A. Duran, M. Klemm, S. M.
Bellido, S. L. Olivier, C. Terboven, and T. G. Mattson, “The ongoing
evolution of openmp,” Proceedings of the IEEE, vol. 106, no. 11, pp.
2004–2019, 2018.

[2] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation
of task parallelism in openmp,” in 2009 International Conference on

Parallel Processing, 2009, pp. 124–131.
[3] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,

“Mlgo: a machine learning guided compiler optimizations framework,”
arXiv preprint arXiv:2101.04808, 2021.

[4] C. Cummins, B. Wasti, J. Guo, B. Cui, J. Ansel, S. Gomez, S. Jain,
J. Liu, O. Teytaud, B. Steiner, Y. Tian, and H. Leather, “Compilergym:
Robust, performant compiler optimization environments for ai research,”
in 2022 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), 2022, pp. 92–105.
[5] S. VenkataKeerthy, R. Aggarwal, S. Jain, M. S. Desarkar, R. Upadrasta,

and Y. N. Srikant, “Ir2vec: Llvm ir based scalable program
embeddings,” ACM Trans. Archit. Code Optim., vol. 17, no. 4, dec
2020. [Online]. Available: https://doi.org/10.1145/3418463

[6] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven
threading: power-efficient and high-performance execution of multi-
threaded workloads on cmps,” in Proceedings of the 13th International

Conference on Architectural Support for Programming Languages

and Operating Systems, ser. ASPLOS XIII. New York, NY, USA:
Association for Computing Machinery, 2008, p. 277–286. [Online].
Available: https://doi.org/10.1145/1346281.1346317

[7] G. Chadha, S. Mahlke, and S. Narayanasamy, “When less is more
(limo):controlled parallelism forimproved efficiency,” in Proceedings

of the 2012 International Conference on Compilers, Architectures

and Synthesis for Embedded Systems, ser. CASES ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 141–150.
[Online]. Available: https://doi.org/10.1145/2380403.2380431

926

Authorized licensed use limited to: XILINX. Downloaded on July 31,2025 at 17:00:56 UTC from IEEE Xplore. Restrictions apply.

Nikolopoulos, “Application-level energy awareness for openmp,” in
OpenMP: Heterogenous Execution and Data Movements, C. Terboven,
B. R. de Supinski, P. Reble, B. M. Chapman, and M. S. Müller, Eds.
Cham: Springer International Publishing, 2015, pp. 219–232.

[17] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos, “Online power-performance adaptation of multithreaded
programs using hardware event-based prediction,” in Proceedings of the

20th Annual International Conference on Supercomputing, ser. ICS ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
157–166. [Online]. Available: https://doi.org/10.1145/1183401.1183426

[18] A. Dutta, J. Choi, and A. Jannesari, “Power constrained autotuning
using graph neural networks,” in 2023 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, may 2023, pp. 535–545. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPS54959.2023.00060

[19] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga, “The nas parallel benchmarks—summary and preliminary
results,” in Proceedings of the 1991 ACM/IEEE Conference on

Supercomputing, ser. Supercomputing ’91. New York, NY, USA:
Association for Computing Machinery, 1991, p. 158–165. [Online].
Available: https://doi.org/10.1145/125826.125925

[20] J. R. Tramm, A. R. Siegel, B. Forget, and C. Josey, “Performance
analysis of a reduced data movement algorithm for neutron cross section
data in monte carlo simulations,” in Solving Software Challenges for

Exascale, S. Markidis and E. Laure, Eds. Cham: Springer International
Publishing, 2015, pp. 39–56.

[21] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - the
development and verification of a performance abstraction for Monte
Carlo reactor analysis,” in PHYSOR 2014 - The Role of Reactor

Physics toward a Sustainable Future, Kyoto, 2014. [Online]. Available:
https://www.mcs.anl.gov/papers/P5064-0114.pdf

[22] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Laboratory, Tech. Rep. LLNL-TR-
641973, August 2013.

[23] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bulletin, vol. 1, no. 6, pp. 80–83, 1945. [Online]. Available:
http://www.jstor.org/stable/3001968

APPENDIX

We share more violin plots of the performance data distribution

for the reader’s benefit in Fig. 5 to 7.

928

Authorized licensed use limited to: XILINX. Downloaded on July 31,2025 at 17:00:56 UTC from IEEE Xplore. Restrictions apply.

