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Abstract

We examine the settled particle layers of planet-forming disks in which the streaming instability (SI) is thought to
be either weak or inactive. A suite of low-to-moderate-resolution 3D simulations in a 0.2H-sized box, where H is
the pressure scale height, are performed using PENCIL for two Stokes numbers, St= 0.04 and 0.2, at 1% disk
metallicity. We find that a complex of Ekman-layer jet flows emerge subject to three co-acting linearly growing
processes: (1) the Kelvin–Helmholtz instability (KHI), (2) the planet-forming disk analog of the baroclinic
Symmetric Instability (SymI), and (3) a later-time weakly acting secondary transition process, possibly a
manifestation of the SI, producing a radially propagating pattern state. For St= 0.2 KHI is dominant and manifests
as off-midplane axisymmetric rolls, while for St= 0.04 the axisymmetric SymI mainly drives turbulence. SymI is
analytically developed in a model disk flow, predicting that it becomes strongly active when the Richardson
number (Ri) of the particle–gas midplane layer transitions below 1, exhibiting growth rates - W· 2 Ri 2 ,
where Ω is the local disk rotation rate. For fairly general situations absent external sources of turbulence it is
conjectured that the SI, when and if initiated, emerges out of a turbulent state primarily driven and shaped by at
least SymI and/or KHI. We also find that turbulence produced in 2563 resolution simulations are not statistically
converged and that corresponding 5123 simulations may be converged for St= 0.2. Furthermore, we report that our
numerical simulations significantly dissipate turbulent kinetic energy on scales less than six to eight grid points.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Planetesimals (1259); Protoplanetary
disks (1300); Hydrodynamical simulations (767)

1. Introduction

An understanding of how the basic building blocks of
planets form remains elusive. In the standard picture, the
nascent solar nebula is populated with submicron grains that,
through collisional sticking, grow until they reach millimeter to
centimeter scales; however, various dynamical growth barriers
prevent further incremental growth en route to the eventual
formation of these 50–100 km sized planetesimals (for a deeper
discussion see Estrada et al. 2016; Drazkowska et al. 2022).
Overcoming the so-called centimeter barrier has been the
subject of intense research for up to two decades now. Several
proposed routes that can circumvent this barrier and produce
overdensities that are gravitationally bound have been
considered of late, including (but not limited to) particle
concentration by giant vortices (see recent work by Lyra et al.
2018; Raettig et al. 2021) and particle density enhancements
resulting from turbulent concentration (e.g., Chambers 2010;
Hartlep & Cuzzi 2020). The leading candidate process, having
received the most attention, is the streaming instability (SI;
Youdin & Goodman 2005; Johansen et al. 2007), which can
routinely produce gravitationally bound overdensities (e.g.,
Simon et al. 2017; Abod et al. 2019). The SI—which produces
high-density clumps through a strong resonance between two
counterflowing streams (Squire & Hopkins 2018a)—is

promising for several reasons, including the correspondence
between the observed angular momentum orientation distribu-
tion of cold classical Kuiper Belt objects and that of
gravitationally bound overdensities produced in high-resolution
SI simulations (Nesvorný et al. 2019). On the other hand, if
planetesimal-forming disk regions experience some kind of
hydrodynamic or magnetohydrodynamic turbulence (see, e.g.,
review of Lyra & Umurhan 2019), the efficacy of the SI at
producing gravitationally bound overdensities remains uncer-
tain and subject to ongoing debate (Chen & Lin 2020; Gole
et al. 2020; Schäfer et al. 2020; Umurhan et al. 2020).
For what protoplanetary disk conditions, then, should the SI

be expected to lead to clumps dense enough to trigger
gravitational collapse? Assuming that the disk is not subject
to some sort of external turbulence source and the disk’s
particle size distribution is monodisperse, this question has
been rephrased by asking what combination of disk metallicity
(Z) and particle Stokes number (St) leads to SI activity strong
enough to produce gravitationally bound overdensities (Carrera
et al. 2015; Yang et al. 2017; Li & Youdin 2021)? Based on a
survey of 3D axisymmetric and full 3D particle–gas simula-
tions, these studies have sought to determine a critical St-
number-dependent metallicity, Zc(St), for which values of
Z> Zc are likely to lead to gravitationally bound clumps. Up
until recently, Zc appeared to be parabolic-like in St, with a
minimum value »Z 0.015c,min occurring roughly at around
St≈ 0.04. However, during the preparation stage of this
manuscript the study by Li & Youdin (2021) was released,
suggesting that this minimum Zc value may go well below
Z = 0.01, occurring at St≈ 0.3 instead, and that Zc shows a
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strong upward jump in value for values of St� 0.015. The
reasons for the discrepancies between these various investiga-
tions have yet to be clarified. A further important clue was
identified by Sekiya & Onishi (2018), who, based on an
independent parameter study of the SI, conjecture that the
outcome of particle–gas disk simulations is actually a function
of St and the ratio Z/Π, where Π is the nondimensionalization
of a disk’s local background radial pressure gradient.

In almost all cases considered, midplane-settled particle
layers go through a nominally turbulent pre-clump phase before
strong clumping manifests; this is especially true for input
values of St� 0.1, where this turbulent phase can last up to
several dozens of orbit times. For values of Z< Zc this
turbulent state appears to persist relatively unabated (see, e.g.,
the corresponding simulations of Sekiya & Onishi 2018).

It is generally assumed that the SI simultaneously coexists
and/or emerges out of a shear-driven turbulent state. This shear
state, originally envisioned by Weidenschilling (1980) to be
central to particle–disk scenarios, and leading to the Kelvin–
Helmholtz instability (“KHI” hereafter) and roll-up (“KH roll-
up” hereafter), should also develop Ekman-type flow structure
owing to the presence of strong rotation (Cuzzi et al. 1993;
Dobrovolskis et al. 1999). In the recent study of full 3D
particle–disk simulations by Gerbig et al. (2020) it was shown
that for input parameters Z and St that should not lead to strong
SI activity, the Richardson numbers (Ri) of the turbulent state
seem to routinely exceed the classical limiting value of 1/4
expected for nonrotating stratified flow setups (Howard 1961;
Miles 1961). Indeed, there have been a series of antecedent
studies considering the problem of KH roll-up with strong
rotation either in a restricted nonaxisymmetric 2D geometry
(i.e., dynamics restricted to the azimuthal–vertical plane of the
disk, most notably Gómez & Ostriker 2005; Johansen et al.
2006; Barranco 2009) or considered in full 3D via a facsimile
single-fluid model with an imposed composition gradient
(Barranco 2009; Lee et al. 2010a, 2010b). All of these studies
indicate that activity may persist for values of Ri> 1/4 and
likely less than Ri< 1 and conclude that rotation somehow
pushes the boundary of stability away from the traditional value
of 1/4; exactly how far this boundary extends is not settled
under the relevant conditions.

With these considerations in mind, we set out to better
understand how midplane-settled protoplanetary disk particle
layers behave when the SI is either weak or effectively
extinguished. In this study we are focused on disk models with
no external sources of turbulence. One set of specific aims here
is to characterize the shear flow that manifests within the
streaming layer, to witness its transformation into a nonsteady
(and likely turbulent) state, and to identify the mechanism(s)
that drive this transition. Could the insights gained as a result of
this exercise lead to better understanding of the Ri >1/4
findings of Gerbig et al. (2020)?

The study by Sekiya & Onishi (2018) offers some
preliminary glimpses. These authors conducted a suite of
low-to-moderate-resolution simulations (that include parameter
inputs that do not lead to strong density clumping) in which
they showcase vertically integrated particle density that
manifests azimuthally oriented banded structure. Presumably
the rotationally modified KHI or some other fluid dynamical
process(es), possibly including a very weak operation of the SI,
sculpts these phenomena. In this regard the unpublished study
of Ishitsu et al. (2009) offers further insights wherein they

investigated the purely 3D axisymmetric development of a
settled particle–gas midplane layer, finding relatively pro-
nounced fluid dynamical development in three to five orbit
times for low St (=0.001) with correspondingly weak and/or
dispersed particle clumping (in particular see Figure 3 of
Ishitsu et al. 2009). Understanding the flow structure under-
pinning this effect when particle clumping is weak and St is
low therefore deserves further scrutiny: what about the
underlying flow state thwarts the SI’s emergence?
Another one of our broader aims is to characterize the

turbulent kinetic energy spectra during various stages of the
layer’s development in order to help assess the kind of
turbulence that might be emerging. Beyond very recent
investigations reported in the geophysical fluid dynamics
literature, little is known about the character and nature of
the turbulent kinetic energy spectrum in flows that are
simultaneously subject to strong rotation and stratification
(Alexakis & Biferale 2018). Moreover, beyond brief glimpses
reported in Li et al. (2018), to our knowledge there seem to be
no published insights in the matter for protoplanetary disk
scenarios like those considered here.
We approach these questions by conducting a limited series

of 3D axisymmetric and full 3D particle–gas shearing-box
numerical simulations employing the widely used numerical
platform PENCIL. We follow the approach taken by numerous
previous investigators in our initial setup by adopting a
monodisperse distribution of particles characterized by a single
St and positioned along a Gaussian distribution with respect to
the disk midplane. There are no external sources of turbulence.
The experiment is then monitored as the particles collapse and
drive dynamical activity. Our simulations do not have particle
self-gravity turned on at any stage. We consider two values of
St, 0.04 and 0.2, with a metallicity of Z = 0.01, as parameter
inputs that ought not lead to active SI and/or putatively Roche
density exceeding overdensities—e.g., as based on Figure 8 of
Carrera et al. (2015) and Figure 9 of Yang et al. (2017).7 In this
sense, our parameter inputs might be considered analogous to
the subset of those examined by Sekiya & Onishi (2018) that
lead to weak clump production. We wish to better understand
the emergent flow state under these weakly clumping
conditions in order to extend the insights made by Sekiya &
Onishi (2018) in this regard. As such, we are primarily
concerned with the particle–gas dynamical state right on up to
the point where either the SI emerges, in some possibly weak
incarnation, or the flow exhibits a patterned state.
This study is organized as follows. In Section 2, we present

the numerical model and simulation setup with the publicly
available PENCIL code. The results of these hydrodynamic
simulations with particles and gas, especially the system’s
transition to a turbulent state, are discussed in Section 3. In
Section 4, the turbulence statistics from the simulations are
analyzed, which include a calibration of PENCIL. A selected
set of linear theory analyses for the dynamics of the shear-
driven midplane-settled particle layer is presented in Section 5
using tools independent of PENCIL. We discuss our findings
and their implications in the context of several previous studies
in Section 6. Given the substantial content of this paper, readers
are encouraged first to skip to Section 7, where we, in brief,
summarize the main findings of this work.

7 However, as noted earlier, Li & Youdin (2021) report that the SI ought to be
active for both sets of model parameters we have adopted here. We keep this in
mind throughout this discussion.

2

The Astrophysical Journal, 942:74 (43pp), 2023 January 10 Sengupta & Umurhan



2. Analytical and Numerical Model

The nascent planet-forming environment is a complex
system containing gas with dust as the solid counterpart. Here
we describe the analytical and numerical model we have used
for this investigation. All the relevant parameters and variables,
along with their definition are listed in Table 1. The formal
modeling of such systems is generally formulated with the
Euler’s equation for the gaseous component, along with the
solids treated as a pressureless fluid. The dynamics of the gas
and the dust are coupled via a drag force experienced by the
dust, arising from a headwind due to the pressure-supported gas
that slightly reduces the radial velocity of the solids. The
continuity and momentum conservation equations for the disk
gas, in cylindrical coordinates f( ˆ ˆ ˆ)R z, , with unit vector

ff= + +ˆ ˆ ˆ ˆr R zR z , can respectively be written as

r
r

¶

¶
+  =· ( ) ( )U

t
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g g
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r r
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where Ug and Up are the total gas and particle velocities,
respectively, P is the gas pressure; and W = GM R3 is the

local orbital frequency, with G and Må being the universal
gravitational constant and the stellar mass, respectively. With
this, the local Keplerian velocity can be expressed as Vk= RΩ.
The corresponding equations for the particles treated as a fluid
(hereafter we often refer to it as the particle fluid) read as

r
r

¶

¶
+  =· ( ) ( )U
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The second term on the right-hand side of each of Equations (2)
and (4) represents the drag between the gas and the dust
components, which is proportional to their relative velocities,
normalized by tf, a mechanical relaxation timescale also known
as the friction time. Particles, being a pressureless fluid, move
with the local Keplerian velocity Up,K= RΩ, whereas the gas
feels the radial pressure gradient, the ∇P term in Equation (2),
which makes their motion slightly sub-Keplerian. The reduc-
tion in gas speed is quantified by the parameter η given by

h
r

b= -
¶

¶
= > ( )h

R
h

1
2

ln

ln
1
2

0, 5g2

where h=Hg/R is the disk aspect ratio and

b
r

= -
¶

¶
( )h

R

ln

ln
. 6g

In modeling the system, the parameter β is often a
representation of the global radial pressure gradient in the
system. In systems such as described here, the ratio of the
reduction in local Keplerian speed ηVK and the sound speed cs,
a measure of the dynamical compressibility of the system, is
designated by Π= ηVK/cs. With Equations (5)–(6), Π can be
expressed in terms of β as

bP = - ( )1
2

. 7

In all our simulations, the value of Π is chosen as 0.05.

2.1. Numerical Setup

For numerical solutions of Equations (1)–(4), we use the
PENCIL code,8 which is sixth order in space and third order in
time. The hydrodynamic equations are solved in a shearing-box
setup (Goldreich & Lynden-Bell 1965; Umurhan &
Regev 2004; Latter & Papaloizou 2017), which is a small
box in the Cartesian coordinate system corotating with local Ω,
corresponding to a distance R from the central star. The
shearing-box approximation assumes that the radial (x) and the
azimuthal (y) dimensions of the box (Lx, Ly) are small
compared to R, whereas the vertical dimension (Lz) is not
constrained by the shearing-box approximation. The unper-
turbed azimuthal gas velocity in the corotating frame can be
written as VK=− qΩx, where

= -
W ( )q

d
d R

ln
ln

, 8

which is −3/2 for a Keplerian disk. Here q is the measure of
the linear shear the simulation box is subjected to. We will

Table 1
Variables Used in Theoretical Modeling

Variable Meaning

H, Hg Gas scale height (appearing interchangeably)
Hp Particle scale height
Ω, Ω0 Keplerian frequency (appearing interchangeably)
R Orbital distance from central star
VK Keplerian velocity
Ug Total gas velocity vector
ug Perturbation gas velocity vector
ug, vg, wg Three components of gas velocity
á ñug y, á ñvg y, á ñwg y Azimuthal average of gas velocities
á ñug xy, á ñvg xy, á ñwg xy Radial–azimuthal average of gas velocities
Up Total particle fluid velocity vector
up Perturbation particle fluid velocity vector
up, vp, wp Three components of particle fluid velocity
á ñup y, á ñvp y, á ñwp y Azimuthal average of particle fluid velocities
á ñup xy, á ñvp xy, á ñwp xy Radial–azimuthal average of particle fluid velocities
xi Position vector for particle i
upi Lagrangian velocity vector for particle i
xi, yi, zi Three components of particle i’s position
upi, vpi, wpi Three components of particle i’s Lagrangian velocity
cs Local isothermal sound speed
α Turbulence strength
ρg Gas volume density
ρp Particle volume density
ρm Box-averaged mean solid density
ò Dust-to-gas mass ratio
ρg,0 Azimuthally averaged midplane ρg
rá ñp y,0 Azimuthally averaged midplane ρp

rá ñp xy Radial–azimuthal average of particle fluid field

tf Friction/stopping time
St Stokes number
Rir Richardson number based on radial velocity
Rif Richardson number based on azimuthal velocity
Rif,0 Midplane estimate for Rif
Re Reynolds number

8 http://pencil-code.nordita.org/
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assume q=− 3/2 throughout. With the shearing-box setup, we
solve Equations (1)–(2) in the isothermal approximation with
equation of state r=P cs

2, with cs being the local isothermal
sound speed. We write the total velocity components as a sum
of a perturbation field plus Keplerian flow, i.e., ^= +U y uVg K g

and ^= +U y uVp K p for gas and particles (respectively),
resulting in the form

r
r
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The perturbation gas velocity and its respective Cartesian
components are written with ug≡ (ug, vg, wg), and similarly for
the perturbation particle fluid velocity and its components as
up≡ (up, vp, wp). The third term on the left-hand side of
Equation (10) is the advection of gas due to the shear. The
terms in parentheses on the right-hand side denote the
combined effects of the centrifugal force, Coriolis force, and
stellar gravity. The pressure term of Equation (2) is decom-
posed into two components: a local and a global pressure
gradient, represented by the first and second terms on the right-
hand side of Equation (10). The local particle mass volume
density is ρp. Note that the large-scale pressure gradient present
in a typical protoplanetary disk is modeled as a constant forcing
represented by the term hβΩ and is unresponsive to the
gasdynamics.

In all the simulations, periodic and shear-periodic boundary
conditions have been used in azimuthal and radial directions,
respectively. In the vertical direction a reflective boundary
condition has been used. It is important to remark here that Li
et al. (2018) made a detailed study on the effect of different
choices of vertical boundary conditions and found that the
thickness of the dust layer changes with different choices. In
particular, the thickness of the settled dust layer is smaller when
a periodic boundary condition is used. In this work we have not
explored the effects of the different setup and stick to the
reflective one in all our simulations.

For these simulations we choose values of hβ such that in the
absence of particles ug= wg= 0 and vg=− 0.05cs everywhere,
indicating a weakly pressure-supported Keplerian steady state.
Equations (9)–(10) are solved on an Eulerian grid (xj, yj, zj). In
order to stabilize the code in cases where steep gradients appear
in the solutions, PENCIL uses sixth-order hyperviscosity and
hyperdiffusivity, which are represented by fD in Equation (9)
and fν in Equation (10), respectively. These two terms allow the
fields to dissipate their energy near the smallest scale while
preserving the power spectra at the large scales. For more
details on these schemes, the reader is referred to Appendix D.

The use of hyperdissipation over the normal (second-order)
dissipation scheme greatly improves the bandwidth of the
inertial range obtained from the simulations. In simulations
with ∼2500 grids per Hg, a bandwidth of more than a decade is
obtained using the hyperdissipation scheme (see Figure 16),
which is impossible to obtain with a normal second-order

viscosity prescription. However, even with this scheme, a
considerable part of the simulation domain is lost in
dissipation, with roughly one-third of the Nyquist frequency
(corresponding to π/dx, where dx is grid size, i.e., a 2dx wave)
not giving anything meaningful as far as the gas and particle
dynamics are concerned. This issue is examined in more detail
in Section 4.2.
The equations for the solid component are implemented in

the form of Lagrangian superparticles (Johansen et al. 2007).
The simulation box is seeded with Npar superparticles, each
labeled by i, with position vector xi≡ (xi, yi, zi) randomly
chosen from a Gaussian distribution with scale height Hp,0.
Each particle’s corresponding perturbation velocity vector upi
is similarly chosen to be random such that |upi|< 0.002cs. The
evolution set Equations (3)–(4) for each solid’s position and
velocity are solved in the form

= - W +ˆ ( )x
u

d
dt

q x y 11i
i pi

and

⎛⎝ ⎞⎠= W - W - W -
-

( )

ˆ ˆ ˆ ( )

12

u u ud

dt
v x u y z z

x y z

t
2
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2

, ,
.pi

pi pi i
g i i i pi

f

2

For simulations with monodisperse solids, particles are
chosen as a swarm of identical particles with a single Stokes
number St and a predetermined disk metallicity Z, interacting
with the gas collectively through the drag force. In order to
achieve a smooth solution for the superparticle properties, a
triangular-shaped cloud (TSC) scheme (Hockney &
Eastwood 1981; Youdin & Johansen 2007) is adopted (see
also the PENCIL code manual), which uses a second-order
interpolation and assignment method, by a quadratic spline or
quadratic polynomial. This scheme provides an interpolated
estimate for ug(xi, yi, zi) based on the gas velocity values that
are known on the fixed Eulerian grid set (xj, yj, zj) (indexed by
j) and given xi and upi, constructing an estimate for up on the
Eulerian grid for ultimate use in Equation (10). For more details
of this scheme, the reader is referred to Youdin & Johansen
(2007, their Appendix A).
The properties of superparticles are determined based on the

parameters used for the simulation box. The surface density Σ
of the box, with a midplane gas density ρ0, is pr H2 0 , where
H= cs/Ω is the gas scale height. With this, the mean gas
density in the box becomes ρm=Σ/Lz. The representative
density of each superparticle thus reads as

r
r

=
( )

( )Z

N N N N
, 13m

x y z
par,swarm

par

where Npar is the total number of superparticles introduced in
the box with number of grids Nx, Ny, and Nz in the x-, y-, and z-
directions, respectively. Similarly, the total mass represented
by each is given by

r
= ( )m

Z V

N
, 14m

par,swarm
box

par

where Vbox= LxLyLz is the volume of the simulation box.
For post-analysis purposes, in order to construct an effective

particle fluid velocity field on the gas fluid’s Eulerian
simulation grid, we do the following: (1) for each Eulerian
grid cube with coordinate (xj, yj, zj) and side Δ we find the set
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of all particles {i} that lie within the cube; (2) the total number
of particles in the cube is added, and a value of ρp(xj, yj, zj) is
assigned after multiplication by Equation (13); followed by (3)
taking the average of all upi contained in the same grid box and
assigning its value to the particle fluid’s Eulerian velocity, i.e.,
up(xj, yj, zj). A value of up= 0, ρp= 0 is assigned when there
are no particles in the grid box. As a matter of course, when
there are two or more particles found within the grid box we
calculate a standard deviation and assign it to the vector field
δup.

2.2. Initial Conditions and Simulation Sets

In all our simulations, the gas is assumed to follow the
isothermal equation of state r=P cg s

2, where, in code units, we
assign cs = 1, ρg= 1, along with Ω= 1. This choice of initial
conditions translates to a gas scale height Hg= cs/Ω= 1.9 The
initial metallicity is assumed to be Z = 0.01, which sets the
initial mass of the solids in the box. Given that the main
objective of this work is a thorough investigation of the
turbulence generation mechanism in the settled dust layer, we
choose combinations of St and Z that are not expected to
readily lead to SI in the simulations (see Carrera et al. 2015, for
acceptable parameters leading to SI). For this work, we choose
St= 0.04 and 0.2, values that are thought to lead to weak SI
growth when combined with Z = 0.01, although, as mentioned
earlier, there is uncertainty in this expectation (e.g., Li &
Youdin 2021).

The size of the simulation box is set as (Lx, Ly, Lz)≡ (0.2,
0.2, 0.2)Hg, and the initial positions of the superparticles are
assigned randomly following a Gaussian distribution, con-
strained by a predetermined initial scale height Hp= 0.1Hg. For
the 3D simulations, we choose resolutions of 1283 (low) and
2563 (moderate) for both the St values chosen. Npar is set
accordingly in order to achieve one particle per grid. We also
present a high-resolution simulation with 512 grid points in
each direction for St= 0.2 with a lower number of particles to

save computation time. In Table 2, we present the list of
simulations along with the relevant parameters.
In terms of diagnostics, the evolving scale heights and

velocity fields of the particles are calculated dynamically by the
numerical code. In order to compute the scale height Hp of the
particles representative of the full domain, the simulation box is
divided into Nx slices in the radial direction. Hp is then
calculated first for each individual slice following the rms of
the particle vertical distances from the midplane,

å= - á ñ∣ ∣ ( )H
N

z z
1

, 15p k
k

i,
par,

2

where Hp,k is the scale height for the kth slice, zi denotes the
position of the superparticle i contained in that slice, Npar,k is
the total number of particles, and 〈z〉 is the average vertical
position of all Npar,k particles belonging to the kth slice. The
final scale height Hp is calculated by taking the weighted
average of all Hp,k from Equation (15) over all 2D slices:

å= ( )H
N

H
1

. 16p
x

p k,

3. Transition to Turbulent State

3.1. Stages of Development

Figure 1 summarizes several shared characteristic stages
exhibited by simulations during their development over time.
This sequence of phases is also generally typical of SI
simulations reported in the literature. We describe the stages
as (1) the dust settling phase, in which the settling and drifting
dust generates strong velocity shears in both the gas and dusty
components, particularly in the radial and perturbation
azimuthal component velocity fields; (2) the bounce, out of
which the fluid state is sufficiently dynamically unstable so that
the midplane trajectory of the settling dust particles is reversed
(at some time tb) and the layer starts to thicken some; and (3) a
particle-drift-driven shear-turbulent state in which the shear
turbulence is maintained and a quasi-steady turbulent state
emerges where the particle layer settles onto a corresponding

Table 2
List of Simulations and Relevant Parameters

Simulation Domaina Ngrid

Npar St Z Npar/Grid
Name Lx × Ly × Lz Nx × Ny × Nz

A2D-04H 0.2 × 0.2 × 0.2 512 × 1 × 512 218 0.04 0.01 1
A2D-04M 0.2 × 0.2 × 0.2 1024 × 1 × 1024 220 0.04 0.01 1
A2D-04SH 0.2 × 0.2 × 0.2 2048 × 1 × 2048 222 0.04 0.01 1

A2D-2H 0.2 × 0.2 × 0.2 512 × 1 × 512 218 0.2 0.01 1
A2D-2SH 0.2 × 0.2 × 0.2 2048 × 1 × 2048 222 0.2 0.01 1

B3D-04L 0.2 × 0.2 × 0.2 128 × 128 × 128 221 0.04 0.01 1
B3D-04M 0.2 × 0.2 × 0.2 256 × 256 × 256 224 0.04 0.01 1

B3D-2L 0.2 × 0.2 × 0.2 128 × 128 × 128 221 0.2 0.01 1
B3D-2M 0.2 × 0.2 × 0.2 256 × 256 × 256 224 0.2 0.01 1
B3D-2H 0.2 × 0.2 × 0.2 512 × 512 × 512 224 0.2 0.01 0.125

F3D-512b 2π × 2π × 2π 512 × 512 × 512 L L L L

Notes. Simulation sets presented in this paper. The y-dimension in 3D axisymmetric runs is arbitrarily noted as 0.2.
a All lengths in units of H.
b 5123 forced simulation used to identify useful subdomain.

9 However, despite these simplifications, we explicitly quote all quantities in
terms of their physical units throughout this study.
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steady scale height from which we infer an effective measure of
the turbulent state via a » ( )H HSt p

2 (e.g., a la Cuzzi et al.
1993; Dubrulle et al. 1995). All simulations reported here
further exhibit some type of (4) secondary growth phase,
followed by (5) a drifting pattern state. The last two stages may
or may not be an instance of the SI. We further describe the
details of these stages in what follows.

3.2. Spacetime Plots and Observed Pattern Drift

In Figures 2–3 we show the spacetime plots based on the
low-resolution 1283 simulations (B3D-04L, B3D-2L). As a
function of radius x and time t, each figure displays (i)
midplane azimuthal gas velocity, á ñvg y,0 averaged over y-
direction; (ii) the midplane gas pressure perturbation per unit
gas density, P¢( )x t, ; (iii) the ratio of the azimuthally averaged
midplane particle density, i.e., rá ñp y,0, to the midplane gas
density, i.e., rá ñg y,0, where, in other words,


r

r
º

á ñ

á ñ
( )

( )
( )

( )x t
x t

x t
,

,

,
; 17p y

g y
0

,0

,0

and (iv) the azimuthally averaged metallicity, ¯ ( )Z x t, . Because
the particle layers are close to the midplane, and given that the
box sizes considered here are small, the gas densities
throughout the domain are nearly constant. This allows us to
replace rá ñg y,0 instead with the global average ρg,0. The
exception is when we analyze a perturbation pressure quantity
defined by

r rP¢ º á ñ -( ( ) ) ( )c x tln , ln . 18s g y g
2

,0 ,0

Inspection of Figures 2–3 readily shows that the density/
pressure fluctuations are indeed weak, effectively rendering
these dynamics nearly incompressible. The radial metallicity is
defined as

ò r p rº á ñ
-¥

¥¯ ( ) ( ) ( )Z x t x z t dz H, , , 2 , 19p y g,0

where rá ñp y is the azimuthally averaged particle density.
Figure 2 shows the development for St = 0.04. The settling

and bounce phase, which occurs within tΩ= 12, is clearly
evident in the ò0 quantity (third panel). This initial stage is

followed by a relatively long period of time (tΩ∼ 250) in
which the fluid appears to be in a turbulent state. By tΩ= 300
the flow transitions into a symmetry-breaking patterned state, in
which all quantities exhibit an outwardly propagating traveling
wave with approximate wave speed ≈7× 10−3cs (solid black
lines in Figure 2). The patterned state appears to fill 2.5
wavelengths on the simulation’s radial domain. á ñvg y,0 also
exhibits an inwardly propagating secondary pattern with a
longer approximated pattern speed ≈4× 10−4cs (hatched black
line in left panel of Figure 2). This same inwardly propagating
pattern is also weakly visibly in the P¢¯ field, for which we also
note its extremely low amplitudes, < -( )c10 s

4 2 , which is
consistent with the dynamics here being largely
incompressible.
During the midplane shear turbulence phase, á ñvg y,0 shows

weak fluctuations about a mean perturbation velocity
≈−0.037cs (i.e., sub-Keplerian). After transition into the
secondary nonlinear state, á ñvg y,0 increases its oscillation
amplitude, exhibiting relatively steady fluctuations above this
mean value, indicated by the red contours in the first panel of
Figure 2, together with more pulsed fluctuations below this
mean value, shown by the blue contours of the same. The
weaker left-propagating pattern is only weakly visible in the
midplane particle density and metallicity plot (right two panels
of Figure 2). A close inspection of these two quantities at about
tΩ= 570 shows that there is an abrupt downshifting of the
outwardly propagating pattern speed to ≈4× 10−3cs, slightly
more than 40% of what it was earlier (hatched magenta lines in
the right panels of Figure 2). While the midplane particle
densities hover between 1.1ρg,0 and 1.2ρg,0, after the transition
into the patterned state rá ñp y,0 falls well below ρg,0, as the ratio
ò0 generally drops down into the 0.5< ò0< 0.8 range. There
are only narrow spatial extents where ò0 only slightly exceeds
1. We also observe that the metallicity lies in the range
0.006< Z< 0.014.
Figure 3 shows the analogous evolution for St = 0.2. The

development sequence is similar to the St = 0.04 case, with a
settling/bounce phase (tΩ< 10), followed by a turbulent state
up to about tΩ≈ 40, finally leading into a secondary nonlinear
patterned state exhibiting about two wavelengths in the radial
domain. However, here the pattern propagation in the
secondary state is opposite to what it is in the St = 0.04 case:
á ñvg y,0 and P¢¯ show inwardly propagating pattern speeds
≈1.7× 10−3cs (solid magenta lines in the left two panels of
Figure 3), while correspondingly less discernible in the particle
fields ò0 and Z̄ (hatched lines in the right two panels of
Figure 3). During the bounce phase, á ñvg y,0 shows a strong burst
(also examined further in the next section), followed by a slow
growth of a period 2 nonpropagating pattern during the
midplane turbulent phase (i.e., 10� tΩ� 40). The transition
into the patterned state becomes manifest (tΩ≈ 70) with an
amplitude variation in á ñvg y,0 about a nominal equilibrium value
of around ≈−0.04cs, with extremes between ±0.01cs, painting
the picture of an emergent jet flow.
Interestingly, Z̄ appears to show a fast-moving radial streak

pattern (solid black line in the far right panel of Figure 3) with a
pattern speed ≈9× 10−3cs. ò0 shows a deep spike at the
extreme bounce phase (with ò0≈ 2.7) followed by settling into
a quasi-steady turbulent value with ò0≈ 1.5 before transition-
ing into the patterned state with a typical value of ò0≈ 0.8.
Aside from the possibly weak expression of the fast inward

Figure 1. Time series of particle scale height for 3D simulation B3D-2L with
Z = 0.01 and St = 0.2. The various stages of development are labeled.
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drifting pattern, the metallicity shows no particular organiza-
tion, with its values remaining well in the range of 0.0075–1.2.

3.3. 3D Simulations

We now present several views of the simulation results and
describe their notable characteristics. We focus our discussion
on the early bounce phase and the shear-turbulent states of
development.

3.3.1. St = 0.2

Figure 4 shows azimuthal and azimuthal–vertical averages of
the three gas velocity components, á ñ á ñ á ñu v w, ,g y g y g y and
á ñ á ñ á ñu v w, ,g xy g xy g xy, respectively. The plot shows three time
snapshots nominally representing the three stages of develop-
ment shown in Figure 1. Each x-z slice shows with black
dashed lines the corresponding averaged particle densities as a
function of disk height, denoted by rá ñp y. The bounce phase is
deepest at tΩ= 5–6, where the emergence of a pair of
counterflowing radial jets in ug can be seen contained in two
midplane symmetrically placed layers 0.005< |z/Hg|< 0.02.
The positions of these jets are also highlighted in Figure 14 (the
shaded region in the bottom left panel) in the context of a
discussion on the Richardson’s number of the system (see
Section 3.5). Most importantly, the particle layer with
Hp= 0.003Hg is localized well away from the off-midplane
jet layers. Moreover, the jet layers show signs of developing
cat’s eyes in ug, indicating the ongoing emergence of a
dominantly axisymmetric dynamic, which can also be seen in
the azimuthally averaged wg field. The quantity 〈vg〉y exhibits a
strong azimuthally directed jet mostly coinciding with the
extent of the particle layer. vg asymptotes to the predicted
particle-free pressure-balanced limiting value (→− 0.05cs) far
from the particle layer.

Figures 5(a)–(b) display slices through the flow field at
tΩ= 6. The first of these displays the gas quantities as a

function of radius at a nominal azimuthal position (here
y=−0.05Hg). The vertical extent of the particle layer is well
within 0.005H of the midplane (we note that for this snapshot
Hp≈ 0.003Hg). The particle field is diffusely filamentary
exhibiting outward-directed chevron patterning, which is also
weakly apparent in the radial velocity ug field in the same
region. ρp typically falls in the values of 1ρg–3ρg, with extreme
events as high as 5ρg. Away from the midplane ug exhibits the
strong counterflowing structure, together with the aforemen-
tioned signs of roll-up. The azimuthal velocity has an imprint
of the activity seen in ug in the counterflowing layers above the
midplane. There is clear evidence of dynamical activity in the
midplane layer as well, but its severity is muted in comparison
to what manifests in the counterflowing layers.
Figure 5(b) shows an azimuthal slice at the radial position

x= 0. The particle density field similarly displays filamentary
chevron patterning directed toward the increasing azimuthal
direction, conforming with the mean vertical structure of vg,
which is greater near the midplane than farther away. Figure 6
displays the azimuthal vorticity defined as

w º
¶á ñ

¶
-

¶á ñ

¶
( )u

z

w

x
. 20y g

g y g y
,

Overlaid are contours of constant azimuthally averaged particle
density, once again depicting that those regions remain far
away from the active layers above and below the midplane. The
figure shows a radial–azimuthal planar plot of vg vertically
averaged across a layer containing the positive ωy,g vorticity
anomaly above the midplane, i.e., for 0.0055Hg� z�
0.0095Hg. The imprint of the strong developing axisymmetric
dynamic is evident with the emergence of zonal-flow-like
structure with radial periodicity of∼ 0.02H. For the same layer
the figure also shows an average of the particle velocity field
exhibiting fluctuations with the same pattern. Similarly, the
layer-restricted vertical average of wg is shown with contours of

Figure 2. Composite figure showing spacetime diagrams for several quantities with St = 0.04 (simulation B3D-04L).
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the vertical layer average of ρp, showing a strong correlation
between positive vertical velocity and positive density
anomaly, indicating that the emergent roll-up dynamics
vertically advects the settled particle layer below.

In the shear-turbulent phase all quantities show the signs of
turbulent motions, but with some retention of basic counter-
flowing jet flow that led to instability. As the second column of
Figure 4 shows (tΩ= 25), the jet layer structure in á ñug y has
fragmented while still retaining some discernible axisymmetric
structure. Structure in á ñug y shows vertical spread (up to
±0.05Hg). A similar vertical spread is also seen in rá ñp xy (with
Hp≈ 0.05Hg). Midplane asymmetry has developed in á ñug xy,
but á ñvg y remains largely intact, with clear evidence of the
emergence of some organized axisymmetric structure near the
midplane. The averaged vertical velocity field á ñwg y has
fragmented into small-scale structures that extend as far as
those structures observed for á ñug y.

However, the radial and azimuthal slices at this shear-
turbulent stage, shown in Figures 5(c)–(d), tell a story that is
lost if one focuses purely on the azimuthal averages.
Figure 5(c) displays a large-scale radial sinusoidal pattern
appearing in vg, with wavelength about half of the box size.
Imprinted on that pattern are small-scale unsteady turbulent
motions. á ñug y also shows a pattern of strong positive value
following the sinusoidal structure observed in vg, with the
regions in between interspersed with regions of negative
velocity. Moreover, the spatial distribution of the particles
appears restricted to± 0.01H but now shows more dramatic
filamentary structure with densities in places as large as 10ρg.
The filaments appear comparably oriented with the midplane as
with the vertical. Figure 5(d), which depicts an azimuthal slice
at the middle of the box x= 0, shows similar disordered
turbulent quality imprinted on broad segregated zones of
positive or negative mean values of ug and vg. Similarly, the
azimuthal slice of ρp shows filamentary structure like that seen

in the radial slice, with the only difference possibly being that
the filaments are more aligned parallel with the midplane than
with the vertical.
Figure 7 shows how ωy,g is developing strong coherence

conforming to the period 2 radial wave structure mentioned
above. The particle layer, while still mainly contained around
the midplane, also expresses the period 2 wave structure.
Moreover, vertical averages of ρp and vg across the same off-
midplane layer discussed in Figure 6 show that the azimuthally
aligned structures start to fragment with a tilt ≈45° from the
upper left toward the lower right. In this orientation ρp shows
wispy high-density structure that is reminiscent of filamentary
density structures characteristic of simulations in which the SI
is known to be operative (see, e.g., Figure 1 of Simon et al.
2017, and several others). The layer average of vg exhibits a
period 2 axisymmetrically banded zonal flow structure with
similarly finely layered 45° oriented wisps seen in ρp.
However, there does not appear to be any correlation between
high-density filaments and the relative departures of vg with
respect to its layer mean: high-density filaments appear together
with both high and low amplitude values of vg; only the relative
gross orientation of the finer-scale structures seems to correlate.
A similar correlated pattern is seen between ρp and the layer
average of wg. Aside from streak orientation, there is even less
correlation between high values of ρp and the corresponding
layer average of ωz,g, where the gas vertical vorticity is defined
as

w º
¶

¶
-

¶

¶
( )v

x

u

y
. 21z g

g g
,

Finally, in the secondary pattern state, the layer expresses a
strong period 2 sinusoidal disturbance in all quantities. This
midplane layer undulation phenomenon has been observed in
several simulations in which the SI is the primary dynamical
driver (e.g., Yang et al. 2017; Li et al. 2018; Yang et al. 2018;
Gerbig et al. 2020, and others). The final column of Figure 4

Figure 3. Same as Figure 2, except with St = 0.2 (simulation B3D-2L).
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most unambiguously illustrates this state of affairs. The
interlaced but steadily disintegrating off-midplane configura-
tion of á ñug y found during the shear turbulence phase has
transitioned into a coherent midplane-crossing zigzagging
oscillatory pattern. Interestingly, while á ñvg y shows similar
period 2 oscillatory character but where the near-midplane
azimuthal jet profile now appears crenellated, far from the
midplane the azimuthal gas velocity field shows an alternating
vertically oriented radial pattern where the far field value of
á ñvg y now oscillates around its particle-free limiting value.
Likewise, á ñwg y shows radial oscillation, indicating that the
particle layer is similarly sinusoidally undulating. This is borne
out in the top panel of Figure 8, where the particle layer has
entered into an organized sinusoidal configuration. A detailed
examination of the nature of this stage is reserved for a future
publication.

3.3.2. St = 0.04

Analogous to Figure 4, Figure 9 depicts azimuthally
averaged flow fields during the three stages of development.
During the early developing bounce phase (see the figure’s first

column), á ñug y develops a jet-like structure above and below
the midplane just like for the St= 0.2 case, but its amplitude is
weaker by a factor of 10 as á ñug xy clearly illustrates. There is no
obvious development of Kelvin’s cat’s eyes unlike the St= 0.2
case. There is no discernible structure in á ñvg y aside from weak
perturbations atop the dominant midplane jet structure.
Similarly, á ñvg y shows perturbations that are of very small
scale and amplitude and confined to within the layer containing
the bulk of the particles, whose scale height is around
Hp∼ 0.01Hg.
Once again, the radial/azimuthal slice images (Figures 10(a)

–(b)) demonstrate that in fact the layer is strongly active during
the bounce phase. The radial slice of vg shows that this layer is
undergoing significant dynamical activity with the appearance
of plumes up through to where the particle layer effectively
terminates (∼ 2.5Hp). The plumes’ length scales are between
0.005Hg and 0.01Hg. The ug field shows activity restricted to
within the dust layer, in contrast to the St= 0.2 case, where
dynamics in ug extends far beyond the dust layer. ug also shows
structure on the scale of the plumes, but whose horizontal
scales are anywhere from 2 to 3 times the vertical scales.
Structure in ug also appears to be larger in size up past one to

Figure 4. Flow structure development for the azimuthally averaged gas velocities by component: ug (top row; á ñug y), vg (middle row; á ñvg y) and wg (bottom row;
á ñwg y). The figure shows the results for simulation B3D-2L with St = 0.2 at tΩ = 5 (bounce state; left column), 25 (shear-driven turbulence state; middle column), and
150 (mature state; right column). Each figure has two components: the subpanels on the left show the combined azimuthally and radially averaged vertical profiles of
the corresponding flow velocity components (á ñug xy, á ñvg xy, á ñwg xy). The color plot in each case shows the azimuthally averaged velocity components in the simulation
domain. The line plot, superimposed on the 2D color plot, with the axis on the top, shows the corresponding vertical profile of the solid density ( rá ñp y) averaged over x
and y.

9

The Astrophysical Journal, 942:74 (43pp), 2023 January 10 Sengupta & Umurhan



two particle scale heights and, moreover, shows no obvious
organization like that seen during the bounce phase of St= 0.2
(see Figure 5(a)). The radial slice of ρp shows that the filaments
are far more diffuse and seem to follow the textures seen in vg;
overall the ρp field is far more nondescript compared to the
St = 0.2 case. The azimuthal slices shown in Figure 10(b)
follow the general tenor of the qualities exhibited in the radial
slice case, with perhaps the only real difference being that the
vg and ug fields are slightly more azimuthally elongated,
especially at heights about 1Hp–2Hp from the midplane.

For St = 0.04 the turbulence phase takes root by tΩ= 40.
The second column of Figure 9 shows that the weak jet
structure that emerged during the bounce phase has fragmented
somewhat and that its overall structure has significant
asymmetries. The vertical extent of the particle layer has
expanded some, and á ñvg y is now showing signs of dynamical
unsteadiness. The á ñwg y also shows that there is a qualitative
transition with structures growing in size and extending
vertically across the domain, with the appearance of some
amount of diffuse vertical alignment in the field.

Remarkably, the radial/azimuthal slices (Figures 10(c)–(d))
during this turbulent phase seem to show that the overall
qualitative nature of the unsteady motions emerging during the

bounce phase characterizes the turbulent flow as well. Aside
from stretching its vertical extent a bit, the characters of vg and
ug, in both of their azimuthal and radial slices, look very much
like what they look like during the bounce phase: unsteady
motions with plumes in vg at 1Hp–2Hp distance from the
midplane, with small-scale structures in ug on similar scales.
Perhaps the only significant difference is that filaments in ρp are
somewhat finer, where higher values of ρp are achieved
compared to the early development. Nonetheless, ρp is
generally diffuse, especially when compared to the situation
encountered in the corresponding St = 0.2 case (see the ρp
fields of Figures 5(c)–(d)).
As the final column of Figure 9 shows, when the flow has

fully transitioned into its secondary state (tΩ� 300), the flow
fields have transformed as well. A period 3 midplane
symmetric pattern emerges in á ñvg y up to the vertical extent
of the particle layer whose Hp∼ 0.015Hg. á ñug y develops into a
vertical domain filled with organized structure of zigzagging
contours that extends far away from where the particles are
mostly concentrated: á ñug y exhibits an outward-pointing
chevron pattern within the particle layer but then switches its
orientation when moving away about 2Hp–3Hp from the
midplane. It is also remarkable that the vertical gas velocity

Figure 5. Four sets of flow visualizations as slices for St = 0.2 at two different times representing the early turbulence development (bounce) phase and the nominally
shear-turbulent phase. Each set consists of three rows depicting ug, ug, and ρp, respectively: (a) radial slice at y = −0.05H and tΩ = 6, (b) an azimuthal slice at x = 0
and tΩ = 6, (c) radial slice at y = −0.05H and tΩ = 28, and (d) azimuthal slice at x = 0 and tΩ = 28. These depict the B3D-2M simulation set.
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á ñwg y field is nearly zero within the particle layer but then takes
on a period 3 nearly vertically oriented alternating band
structure away from the particle layer, as similarly observed by
Li et al. (2018). The reasons for this curious feature are not
clear. The bottom panel of Figure 8 shows ωy,g overlaid with
rá ñp y contours demonstrating the emergence of a period 3
structure here as well. Finally, Figure 11 shows radial slices
during the beginning of the late stage, and it is notable that the
general turbulent character seen in the earlier stage, especially
in the vg, persists as the sinusoidal structure begins to set in.

3.4. A Comparison of 3D Axisymmetric Dynamics with Those
Uncovered in Full 3D Flows

We consider a limited set of 3D axisymmetric simulations in
an effort to gain some insight about the emergent turbulent
dynamics reported in the previous subsection. We run these
simulations specifically to examine how the transition from the
bounce phase into the turbulent state takes shape. We are wary
of running these axisymmetric simulations much farther than
these early phases simply because secondary and tertiary
transitions involving nonaxisymmetric mechanisms likely
characterize the true descent into turbulence in the 3D
simulations discussed so far. Thus, any of the interesting
features that manifest in the axisymmetric case likely get
washed away under the more realistic scenario. Despite this,
some useful insights can be inferred. To be concrete with
terminology, 3D axisymmetric means to refer to runs in which
all three components of position and velocity are present but
are only dependent on the radial and vertical coordinates. In

contrast to this, hereafter we sometimes refer to the full 3D
calculations as “unrestricted 3D.”
Figure 12 shows the axisymmetric development of ρp, vg, ug

for St = 0.04 in straight analogy with Figures 10(a) and (c) and
11. Remarkably, we find that the instability development
bounce phase velocity fields vg and ug (i.e., tΩ= 6; top three
panels of Figure 12, simulation A2D-04H) look qualitatively
identical to the radial flow slices of vg and ug at every stage of
the corresponding full 3D simulation (simulation B3D-04M).
Even during the emergent phase of the secondary state (see,
e.g., top panel of Figure 11), while the layer exhibits a period
2–3 radial sinusoidal variation, the small-scale clearly turbulent
dynamics exhibited by vg are essentially the same as in the
axisymmetric case. These trends suggest that the dynamics of
the unrestricted 3D case are not primarily driven by KH roll-up
in the azimuthal direction, as is commonly assumed to be the
case; that instability in the St = 0.04 case is primarily an
axisymmetric phenomenon. Moreover, the full 3D simulations
also seem to evolve in a way that the flow fields look more like
what they look like during its early turbulent phase, perhaps
suggesting some type of self-regulation mechanism at work, in
which the system is always sufficiently above—but not too far
from—an instability threshold. Indeed, by comparison with the
later time stamp illustration of the axisymmetric simulation
(tΩ= 16; bottom three panels of Figure 11), the dynamical
zone has puffed out to higher levels in z with attendant
appearances of wispy structures and ever-finer-scale vortex
structure.
This direct comparison also shows that the particle densities

tend to be higher in the axisymmetric simulations despite the

Figure 6. More flow visualization for St = 0.2 utilizing B3D-2M simulations at tΩ = 6 (bounce phase). Top left: the azimuthal gas vorticity (ωy,g) formed from the
azimuthally averaged gas velocities (see text). The off-midplane counterflowing jet layers (0.005 < |z/Hg| < 0.015) show the beginnings of dipolar vortex pair
formation, with approximately 14–16 cat’s eye pairs in evidence each above and below the midplane. Overlaid in black contours are corresponding isolevels of the
azimuthally averaged ρp/ρg. As a function of radial and azimuthal coordinate, the top right panel shows the vertical average of vg across a narrow layer in the range of
0.0055 � z/Hg � 0.0095, corresponding to five grid points and nominally centered on the positive ωg,y vorticity anomaly above the midplane (the red layer) of the top
left panel. Bottom row: vertical averages across the same narrow layer for ρp/ρg (left), the vertical gas vorticity (ωz,g; middle), and the vertical gas velocity (right).
Across the positive ωg,y vorticity anomaly layer the average of ρp/ρg is ≈0.22. The last two panels show ρp/ρg in dark contour lines for values (0.22, 0.25, 0.4, 0.5), all
denoting lines of density enhancement compared to the layer’s mean. Positive wg appears correlated with ρp/ρg > 0.22.
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fact that the flow field dynamics are similar to one another. The
filaments developing in ρp are of finer scale and far more
spindly compared to the filaments observed in the corresp-
onding radial slices of ρp in Figures 10(a) and (c). Values of
ρp/ρg within particle filaments can get as high as 8–10 in the
axisymmetric case, while they rarely exceed values of 3–4 in
corresponding full 3D simulations. In addition, filament
sharpening and attendant void space growth in the axisym-
metric case appear to intensify as the simulation evolves.
Overall, this may be a consequence of a downscale forward
enstrophy cascade occurring in the axisymmetric case, which
should induce sharpening of filamentary structures. On the
other hand, nonaxisymmetric motions will readily disrupt such
coherent filament development. However, at this stage this
remains a conjecture that should be investigated further.
Nonetheless, these trends behoove exercising caution before
interpreting the results of axisymmetric simulations as being
applicable to full 3D scenarios.

Figure 13 shows the analogous axisymmetric development
of St = 0.2 that ought to be compared against the results of the
corresponding unrestricted 3D flow fields shown in
Figures 5(a) and (c). During the early instability development

phase (tΩ= 6; top set of three panels of Figure 5, simulation
A2D-2H), vg shows the emergence of dramatic plumes directed
away from the midplane and originating near where the particle
layer ends. Signs of this can be seen in vg for the full 3D
simulation at about the same time (Figure 5(a)), although the
plumes there appear to be somewhat muted in comparison,
appearing more wispy. Unlike the unrestricted 3D case, ug does
not exhibit the same clear signs of emergent cat’s eye structure
within the off-midplane counterflowing jet layer for
0.005Hg� |z|� 0.015Hg, although there are clear signs there
of large-amplitude sinusoidal variation in ug contours. Never-
theless, the midplane layers containing particles exhibit
complex textural structure that is qualitatively similar to the
emergent unstable dynamics seen in the St = 0.04 case, but to a
far more muted extent.
In addition, similar to our concerns above, ρp is focused into

filaments of stronger relief in the axisymmetric case than
compared to what emerges in the full 3D simulations. The
typical density count in the filaments emerging from the
axisymmetric simulation is also nearly a factor of two larger
than that in the corresponding full 3D simulation.

Figure 7. Similar to Figure 6, but at tΩ = 28 (shear-turbulent phase). Top row: azimuthal average of ωy,g (left) and vertical average of vg (right) of the same off-
midplane layer of Figure 6. Middle row: similar off-midplane layer averages of ρp/ρg (left), ωz,g (middle), and wg (right). The overlaid contours, ρp/ρg (0.81, 1, 1.25,
1.5, 2, 3), all represent enhancements in ρp/ρg over and above the layer average of 0.81. Note the appearance of broadly zonal flow in vg exhibiting finer-scale wispy
substructure that is found in other quantities. Bottom row: analogous midplane-centered averages (|z/Hg| � 0.004, ↔ 9 grid points), ρp/ρg (left), vg (middle), and wg

(right). Density contours are shown for ρp/ρg = 1 and 1.54 only, where the latter corresponds to the layer’s mean.
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We observe that by the time the axisymmetric simulation is
sufficiently past the bounce phase, the flow field structure that
develops in both ug and vg (tΩ= 12, Figure 13) diverges in
quality from what normally develops in the full 3D case at
similar times. In particular, several plume-like phenomena in vg
extend significantly away from the midplane with no
accompanying particle filaments. For example, at tΩ= 12
there is a pronounced plume−filament structure in vg lying
between x=−0.05Hg and 0, and above the midplane between
z= 0.02Hg and z= 0.04Hg. Cross-referencing this structure
against the map of ρp shows that there are no particles there.
There are several other instances of this feature throughout the
simulations studied. Conversely, there are also features in vg
that do correlate with enhanced particle locations as in the case
of the dramatic, near-midplane, symmetrically oriented particle
filament found in 0� |z/Hg|� 0.02 and 0< x/Hg< 0.02,
which corresponds to a similarly shaped texture in vg at the
same location.

The situation becomes even more muddled when one
attempts to find connections between particles and gas flow
fields in the full 3D calculations, as no clear correspondences
lend themselves to easy visual detection. This observation
raises the question, how exactly do the particles influence the
turbulent dynamics once the turbulence sets in?

3.5. Richardson Numbers

The Richardson number (in general denoted as “Ri”) is the
nondimensional quantity measuring the destabilizing role of
shear against the stabilizing influence of buoyancy oscillations.
In the protoplanetary disk settings considered here, it is
assessed on the basis of a radially and azimuthally uniform but
vertically varying mean velocity profile generically denoted

here by ( )z . While a formal effective Ri characterizing
nonsteady particle-laden flows in accretion disks is not
currently formulated, we adopt the following effective defini-
tion:

⎛⎝⎜ ⎞⎠⎟ ⎛⎝ ⎞⎠r

r r r
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, 22p
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2 2

as promoted by Sekiya (1998) and Chiang (2008). Implicit in
this definition is the assumption that the particle layer is thin
enough that the background gas density is unvarying over the
vertical scales of interest, which is certainly the case here.
The Miles–Howard theorem states that a sufficient condition

for the stability of a parallel stratified flow against infinitesimal
perturbations is if Ri> 1/4 everywhere within (Howard 1961;
Miles 1961). If, on the other hand, there are locations/regions
where Ri< 1/4, then the flow is a candidate for classic
stratified shear flow instability (e.g., Chandrasekhar 1961;
Drazin & Reid 2004), which we generically refer to as the
leading KH roll-up. We note that we consider here the classical
criterion for KH roll-up and discuss further in Section 6.7 the
effect strong rotation has on this criterion, especially in light of
other previous studies (e.g., Gómez & Ostriker 2005;
Barranco 2009).
There are several possible choices for  to use in the

definition found in Equation (22) using the radial–azimuthal
mean quantities introduced in Section 3.3. However, given
recent single-fluid descriptions of particle-coupled disk gasdy-
namics (e.g., Lin & Youdin 2017), we also think it justified to
consider calculating Ri in terms of center-of-mass velocities
defined (respectively) for the radial and azimuthal component.
As such, we motivate
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in which á ñup xy and á ñvp xy are the radial–azimuthal averages of
the particle fluid velocity fields based on their reconstruction
described at the end of Section 2.1. Note also that in the above
we use a constant value ρg,0 instead of an analogously defined
radial–azimuthal gas mean rá ñg y simply because the vertical
box and particle extents are so close to the midplane that there
is hardly vertical variation of the gas density, i.e., it can be
easily shown that r rá ñ »g y g,0. We consider three instances of
Ri, all evaluated based on the above center-of-mass velocities.
For the first, denoted by Rif, we follow the traditional approach
in considering only the vertical variation of the azimuthal
velocity component Vcm, i.e.,⎛⎝⎜ ⎞⎠⎟ ⎛⎝ ⎞⎠r
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In the same vein, we consider an Ri defined on the vertical
variation of the radial velocity component Ucm,⎛⎝⎜ ⎞⎠⎟ ⎛⎝ ⎞⎠r
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Figure 8. Radial slice depictions of ωy,g and rá ñp y during late-stage
development after secondary transition. Top: St = 0.2 at tΩ = 120 with
contours on rá ñp y ranging from 0 to 0.8ρg,0 (simulation B3D-2M). Bottom:
St = 0.04 at tΩ = 220 with rá ñp y contours ranging from 0 to 1.2ρg,0 (simulation
B3D-04M).
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For the final version, we adopt Rieff as given in Equation (22),
but with  replaced according to

  + ( )U V , 262
cm
2

cm
2

together with r r á ñp p xy and ρg→ ρg,0.
Rif, with Ucm instead replaced by Ug, is the same definition

used recently by Gerbig et al. (2020), as well as in several
previous disk studies (Johansen et al. 2006; Barranco 2009;
Lee et al. 2010a, 2010b; Hasegawa & Tsuribe 2014, to name a
few). In this formulation Rif has been used by previous studies
to diagnose whether or not a vertically varying azimuthal
profile is stable against nonaxisymmetric KH roll-up. Adopting
Rir is analogously appropriate for axisymmetric KH roll-up
scenarios like those considered in Ishitsu et al. (2009) and Lin
(2021) and is appropriate for the solutions discussed here.
Finally, the generalized form Rieff is useful in assessing the
shear stability of Ekman flows (e.g., Mkhinini et al. 2013).

In the spirit of Johansen et al. (2006), Figure 14 shows Ri
plotted as a function of disk height at various turbulent
development epochs for both the full 3D and axisymmetric
simulations conducted here. As a reference we overlay the
Ri = 0.25 line in all the figures, keeping in mind that the actual
critical Ri value for a disk setting that includes rotation may be

different from the classical criterion (Gómez & Ostriker 2005;
Barranco 2009). The top two rows of Figure 14 show the
results for St = 0.04. The axisymmetric runs are shown up to
the main bounce phase, and two main things are evident: first,
the radial velocity fields do not satisfy the condition for KH
roll-up, as Rir never gets near the critical value 0.25; and
second, Rif appears to hover about 0.25 and rise to nearly 1 at
distances from the midplane both containing the particle layer
and exhibiting turbulent dynamics (i.e., for
0< |z/Hg|< 0.025). By the time the axisymmetric simulation
reaches its strongest turbulent transition point (tΩ≈ 6) Rir
remains mostly greater than 0.25—despite its large-amplitude
fluctuations—over the bulk of the vertical extent except for a
few grid points in the midplane region, while Rif have smaller-
amplitude fluctuations dropping occasionally below 0.25 across
significant vertical stretches of domain. In any event, the
axisymmetric simulations demonstrate that something other
than KHI is operative here.
The situation is more stark in the full 3D case. In the lead-up

to turbulent transition, and continuing well beyond it, Rir
remains far above 0.25. Similarly, except for a very localized
excursion below 0.25, Rif essentially remains greater than the
condition for radial KHI across the vertical extent of interest.
Moreover, not only is Rif> 0.25, but its value is also closer to

Figure 9. Representation of the development of velocity profiles, similar to Figure 4, for St = 0.04 (simulation B3D-04L): snapshots at tΩ = 6 (bounce phase; left
column), tΩ = 80 (shear-driven turbulence phase; middle column), and tΩ = 500 (mature state; right column). Note the period 3 banded structure in all three fields in
the mature state.
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0.32 at transition over the vertical extent, only dropping close
to 0.25 in specific locations of narrow vertical extent—e.g.,
near z/Hg ≈ ±0.02 for tΩ= 6, and a bit higher up for tΩ= 52.
When the simulation is well within its turbulent phase, Rif near
the midplane gets even larger, increasing beyond 0.4 over the
bulk of the layer. This includes the midplane, although, once
again, Rif hovers near but always above 0.25 even with the
most extreme cases (e.g., near |z|∼ 0.25Hg at tΩ= 52). Once
the simulation has transitioned into its secondary pattern state,
Rif is everywhere far removed from 0.25 but lies primarily
under 1 for the bulk of the turbulent layer with the exception of
regions near the midplane (|z/Hg|< 0.005 at tΩ= 500), where
Rif> 1 in fact. These features strongly indicate that the
classical nonrotating KHI—as either radial or azimuthal roll-up
—does not play the primary role in the development or
maintenance of turbulent motions in these simulations where

St = 0.04. It his possible, however, that a rotationally modified
form of KHI is operating based on a previous linear study
(Barranco 2009; see also discussion in Section 6.7).
The bottom two rows of Figure 14 show Ri for St= 0.2. In

both full 3D and axisymmetric cases we see that by the time the
simulations reach their deep bounce phase (tΩ= 6) Rif dips
below 0.25 across the full vertical extent containing particles.
At this time marker Hp≈ 0.003Hg, so that the particle layer is
mostly confined to |z/Hg|< 0.01 (see, e.g., top left panel of
Figure 6). By reference we see that the value of Rif lurks
around 0.034 up to z≈±0.01H, beyond which it precipitously
drops in magnitude. Except for short-ranged dips below 0.25
(e.g., near z≈± 0.06Hg), Rir mainly remains above 0.25 up to
about z≈± 0.01Hg before similarly dropping precipitously in
magnitude like Rif. The dynamically developing off-midplane
jet flow layers, with their incipient cat’s eye formations,

Figure 10. Flow visualizations analogous to Figure 5 except for St = 0.04: (a) radial slice at y = −0.0H and tΩ = 10, (b) an azimuthal slice at x = 0 and tΩ = 10, (c)
radial slice at y = −0.05H and tΩ = 80, and (d) azimuthal slice at x = 0 and tΩ = 80. These depict the B3D-04M simulation results.
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coincide to where both Ri numbers drop in magnitude for
|z/Hg|> 0.01. We therefore conclude that these layers really
are undergoing KH roll-up dynamics. However, within the
particle-containing midplane layer the situation is different, as
the Rir values there remain significantly above the criterion for
radial KHI. On the other hand, Rif does remain below 0.25,
suggesting that this part of the layer is susceptible to
azimuthally directed KH roll-up—although evidence for such
formation is hard to discern from the snapshots shown for this
case (see, e.g., Figure 5(c)). However, we also cannot rule out
the possibility that this part of the midplane is not also subject
to the same non-KHI unstable dynamics characterizing the
turbulent dynamics in the St = 0.04 case discussed above.

By the time the system has moved well into the midplane
turbulent phase, the situation for Ri has changed. We focus
here only on the full 3D calculation by referring to the bottom
middle panel of Figure 14, corresponding to the time stamp
tΩ= 28. It is evident that Rir> 1/4 across that part of the
midplane containing most of the particles, and only when
|z/Hg|> 0.02 does Rir cross below 1/4, indicating that the
layer gets even more stable against radial KH roll-up as the
system evolves. Rif also remains above 1/4 and largely below
1 across the particle-containing part of the midplane, but it
drops well below 1/4 once |z/Hg| exceeds 0.0125, suggesting
that these upper layers may themselves be undergoing
azimuthal KH roll-up. By the time the system has transitioned
into its secondary pattern state (see, e.g., bottom right panel of
Figure 14, for tΩ= 160), except possibly for a narrow range
near the midplane, the simulation appears stable against both
radial and azimuthal KH roll-up across fully half of its vertical
domain. Of course, this situation corresponds to the emergence
of the heretofore-discussed radial sinusoidal period 2 feature in
all fields.

In all panels of Figure 14 we plot an estimated “effective”
midplane value for Rif, denoted hereafter by Rif,0. The aim
here is to develop a relatively smooth estimate derived from the

simulation output in the region primarily containing the bulk of
the particles. Toward this end we assume a Gaussian-like
model for rá ñp xy,

⎛⎝⎜ ⎞⎠⎟r r drá ñ » º - ( )z
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and determine the values of the parameters δρp,0 and Hp using
standard error minimization techniques (e.g., Nimmo et al.
2017). We note that the values determined for Hp via this
approach basically agree with the values calculated for Hp

according to the prescription described by Equations (15)–(16)
found at the end of Section 2.2.
We similarly adopt a Gaussian-like form for Vcm, in which
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where vcm,∞=− 0.05cs is the expected asymptotic value far
away from the particle layer. The fit parameters δv00 and Hs are
also determined via error minimization over a vertical domain

Figure 11. Radial flow slices for St = 0.04, tΩ = 220. These depict the B3D-
04M simulation results.

Figure 12. Flow slices like in Figure 10, except for 3D axisymmetric
simulations with St = 0.04 (simulation A2D-04H). Top set of three
panels: tΩ = 6; bottom set of three panels: tΩ = 15.
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of up to 2.5Hp, the aim being to best represent the vertical
variation of Vcm over the bulk of the particle layer. Figure 15
shows an example of this approximate fitted form for
simulation B3D-04M during its early bounce phase. We find
that this approximate form is satisfactory for our purposes
hereafter.

With these parameters determined, we insert the model
forms Equations (28)–(27) into the definition of Rif found in
Equation (24), followed by evaluating the resulting expression
at z= 0, i.e.,


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In Table 3 we summarize the determined fit parameters,
together with the estimated value of Rif,0 for each of the

simulations and their time stamps shown in Figure 14. Rif,0 is
shown in each plot as well.
We note two features. First, we find that the Hs is generally

always larger than Hp by up to a factor of 2 or more, which is
an unexpected trend. Second, the value of Rif,0 appears to well
characterize the behavior of Rif in the St = 0.04 simulations
through the bounce and early turbulent phases. This approx-
imation to Rif fails to capture its character for full 3D
simulations that are in the secondary transition phase. Similar
performance is seen in the St = 0.2 simulations, although it
captures the essence of an averaged value across the particle
layer in the primary turbulent phase (e.g., for the tΩ= 28 time
stamp shown). This leads us to conclude that during these late
stages the simulations for St = 0.2 have undergone a significant
transition in character. Despite its limitation, this type of model
representation should prove useful in ascertaining the transition
to turbulence, especially for cases where St = 0.04, as
elucidated further in Section 5.2.

4. Turbulence and Statistics

4.1. Energy Formulation

It is informative to consider energy balances within the
simulated dynamics. Since the gas component dynamics are
largely incompressible, we adopt Equation (10) together with
the incompressibility statement

¶ = ( )u 0, 30i gi

in place of mass continuity, Equation (9). We designate ugi to
be the components of the gas velocity and upi to be the same for
the particle velocities.10 This means that the pressure term in
the gas momentum equation is replaced with a diagnostic field
P; thus, the equation, with the assumption of Einstein’s
summation convention, can be rewritten as

r r r
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in which δij is the Kronecker delta symbol, Di(ugi) is a viscous
dissipation function, and Pr is the mean radial pressure gradient.
We are reminded that in these simulations ugi and upi are
deviations atop the base Keplerian flow VK. In this vein, we
identify the total velocities in each fluid component with
Ugi= ugi+ δi2VK and Upi= upi+ δi2VK, respectively, for the
gas and particle components.
With respect to the energy measures considered in this

section, we use the shorthand 〈•〉↔ ∫V[•] dV to denote volume
integrals. In our domain the volume V will be over the
computational domain Lx, Ly, Lz. We define the volume-
integrated perturbation gas kinetic energy by

e rº ( )u u
1
2

, 32g g gi gi

Figure 13. Flow slices like in Figure 5, except for 3D axisymmetric
simulations with St = 0.2 (simulation A2D-2H). Top set of three
panels: tΩ = 6; bottom set of three panels: tΩ = 12. Note the emergence of
strong dipolar vorticity plumes in vg for tΩ = 6.

10 In this section we adopt Einstein notation with the usual convention of
summing over repeated dummy indices i, j, where i, j = 1, 2, 3 reference the x,
y, z components, respectively. Thus, i, j here ought not be confused with
particle label i or grid label j used in Section 2.1.
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and similarly, the volume-integrated perturbation particle
kinetic energy

e rº ( )u u
1
2

, 33p p pi pi

4.2. Energy Spectra

The energy integral formulation is oftentimes rewritten in
Fourier space. With k being the 3D wavenumber and k≡ |k| its
absolute magnitude, it is customary to define a kinetic energy
density per unit wavenumber as εk,g, which here is taken to be
the total perturbation kinetic energy contained in all wavevec-
tors k whose (absolute) wavenumbers lie in between k and
k+ dk. Defining ũgi to be the Fourier transform of ugi, this sum

is formally expressed as
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where the star superscript denotes complex conjugation. The
expression is divided by δk to preserve the defined units. The
sum of all of these contributions must equal the total volume-
integrated energy of the domain, thus the discrete infinite sum
(i.e., ∀k, where k= 0, δk, 2δk, L )
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as defined in Equation (32). Based on this, we motivate a
similar parsing of the total perturbation kinetic energy
contained in the particle fluid. Unlike the gas component,

Figure 14. Richardson number plots. See text for details. The shaded region in the bottom left panel coincides with the location of the jets that appeared in Figure 4
for tΩ = 5.
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whose density is treated as constant, the particle component has
strongly fluctuating densities, and to properly account for its
partial energies in Fourier space, we define a new quantity
m rº ui p gi, which is amenable to sensible interpretation and
analysis (see Appendix A). Similarly denoting m̃i to be the
Fourier transform of μi, we define
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whose infinite discrete sum over k yields εp, i.e.,
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An overarching long-term programmatic goal into the future
is to assess the dependencies of εk,g and εk,p on |k| and to gain
some understanding of how energy flows between scales (i.e.,
in what direction does it move, are there multiple cascades
involved, etc.) and what mechanisms are mainly responsible for
this transfer. While the latter set of aims is outside the scope of
this study, in this preliminary examination we empirically show
what the spectrum may possibly look like based on our highest-
resolution simulations and what various trends occur as
simulation parameters change. Under simplifying assumptions
(isotropy, single fluid, etc.) the Kolmogorov dependence
εk,g∼ k−5/3 falls out of the above equation on the assumption
that there exists a range in wavenumbers (the inertial range) in
which the rate of energy transfer across the sphere of radius k,
i.e., εk,g, is steady in time. Typically once a simulation has
reached a statistically steady state, in which the energy injected

is compensated by losses (see above), an energy spectrum is
assessed. In the simulations we have conducted, any mismatch
in this results in a momentary change in the total energy of the
system, which averages out over long stretches of time. It is for
this reason that spectra produced from simulations are made
from composite averages at several time steps.

4.2.1. Calibration Spectra

As we alluded to in Section 2, the numerical diffusion in the
simulations (namely, hyperdiffusion) restricts the usable
domain in k-space to examine turbulent dynamics and, as
such, sets a length scale below which the validity of results—
vis-à-vis turbulent dynamics and associated structures—ought
to be viewed with great caution. Hence, to identify the reliable
simulation subdomain and identify the location of the
dissipation scale set by the numerical methods, we conducted
a gas-only 5123 simulation (F3D-512) in a (2π)3 periodic
domain where turbulence is forced at some larger length scale
by a simple forcing function.
In order to obtain a calibration spectra, we have used the

forcing module already existing in the PENCIL code without
any modifications. The temporally random forcing function
 = ( )f x t, can be written as (Brandenburg 2001)

 fº +( ) { [ ( ) · ( )]} ( )( )f x f k xt i t i t, Re exp . 38k t

Here k(t) and f(t) respectively denote the time-dependent
wavevector and random phase with f p<∣ ( )∣t .  is the
normalization factor, which varies as δt−1/2, with δt being the
time step. We choose to force the system at k= 2, in which
case at each step a randomly chosen possible wavenumber with
1.5< |k|< 2.5 is forced. The forcing is executed with the
eigenfunctions of the curl operator
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Here ê is the arbitrary unit vector used to generate k× e, which
is perpendicular to k. σ denotes the helicity factor, which is set
to zero in order to make the forcing purely nonhelical. Note that
this forcing is essentially divergenceless. However, as the fluid
equations solved by the code are not strictly incompressible,
which is perhaps more applicable for astrophysical systems, a
small nonzero divergence is introduced over the course of the
simulation. Nonetheless, the spatiotemporal dynamics of all of
our simulations are effectively incompressible, where density
variations are extremely weak (see, e.g., the quantity P¢¯ in
Figures 2–3).
The power spectra obtained from the simulation F3D-512

using the method outlined in Section 4.2 and Equation (34) are
shown in Figure 16. It is evident from the figure that in the
simulation the turbulence is resolved and a cascade of energy
toward smaller length scales (higher k) is taking place with an
inertial range spanning more than a decade. The energy density
behaves like a power law, i.e., εk∼ k− n, with n= 1.65± 0.03
best fitting the inertial range, confirming that to within
reasonable error this solution is consistent with Kolmogorov’s
spectra (with an n= 5/3) expected for homogeneous isotropic
turbulence. However, it is important to note that the actual
dissipation scale set by the simulation is placed somewhere
around kN,D≈ kN/4, where kN is the Nyquist wavenumber
corresponding to a wave spanning two grid points (2Δx). This

Figure 15. An azimuthally radially averaged plot of the center-of-mass
azimuthal velocity Vcm for simulation B3D-04M taken at tΩ = 4. The
corresponding Gaussian fit and its parabolic approximation are shown. The
fit parameters are found in Table 3.
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trend in kinetic energy power is ubiquitous across all of our
science simulations listed in Table 2 (see below for more
details).

It is also important to mention that the use of hyperviscosity
can lead to a bottleneck effect where energy gets piled up at the
smaller scale (e.g., Haugen & Brandenburg 2004). This
happens particularly when the hyperviscosity is not strong
enough to dissipate the energy at those small scales (high
wavenumber). This effect is particularly problematic, as the
accumulated energy tends to scatter back to the larger scale
seeking an equipartition among all wavenumbers, ultimately
altering the power spectrum and the overall gasdynamics. Note
that this numerical effect is not the same as inverse cascade,
where an upscale enstrophy cascade takes place.

During the early stages of this investigation, we found that
choosing the hyperviscosity parameter to too low a value led to
the bottleneck effect, which resulted in code blow-up
characterized by widespread generation of 2Δx waves.
Following selection guidelines documented in Haugen &
Brandenburg (2004), as well as in the PENCIL manual, we
have carefully chosen the values of hyperviscosity for all our
simulations to ensure that the bottleneck effect does not kick in
and the gas energy does not show any upward trend in the
dissipation range, a feature characteristic of the bottleneck
effect.

4.2.2. Energy Spectra from Particle–Gas Simulations: St= 0.2

With the calibration established in the previous section, we
now move on to the science simulations and discuss the energy
spectrum produced by them, along with any possible
interpretations that may follow. In Figure 17 we show the
energy spectrum for St= 0.2 for both full 3D (Figures 17(a)–
(b)) and 3D axisymmetric (Figures 17(c)–(d)) simulations for
both gas and solid components.
Figure 17(a) shows energy spectra for both the gas and

particle fluids for the B3D-2M simulation during its midplane
shear-turbulent phase. It is the average of the time steps
tΩ= 28, 35, and 55. We note several features: starting from
» -k H220 g

1 and going up to about = » -k k H4 1000N D N g,
1,

the energy density of the gas component exhibits power-law
behavior, i.e., e ~ -kk g

n
, g with ng= 1.15± 0.06. For this set we

established the inferred power-law fit using a least-squares
procedure utilizing energy data starting from » -k H350 g

1 up to
k= kN/4.5, just shy of the expected cutoff kN,D. As expected
based on our calibration spectra, εk,g steeply plummets beyond
kN,D. Up to the beginning of the observed power-law behavior
εk,g carries power that largely lies above the power that might
have been predicted had the power law been extended to larger
scales: that is to say, larger-scale modes in the gas component
all lie above the blue line. Similarly, the particle component
also exhibits power-law behavior in the same k range as the gas

Table 3
Derived Parameters for Plots Shown in Figure 14

Simulation ID tΩ Phase Hp
a Hs

a δv00
b ò0 Rif,0 Roc

A2D-04H 0.5 bounce 0.0098 0.0136 0.025 1.02 0.279 0.919
1.5 bounce 0.0094 0.0137 0.025 1.06 0.315 0.912
3.0 bounce 0.0089 0.0126 0.027 1.13 0.238 1.071
6.0 bounce 0.0084 0.0129 0.030 1.19 0.244 1.163
15.0 shear 0.0117 0.0129 0.028 0.94 0.150 1.085

B3D-04L 4.0 bounce 0.0092 0.0141 0.0257 1.08 0.361 0.911
6.0 bounce 0.0089 0.0138 0.0265 1.12 0.350 0.960
52.0 shear 0.0096 0.0153 0.0257 1.011 0.455 0.840
500.0 pattern 0.0134 0.0218 0.0225 0.745 1.062 0.516

A2D-2H 3.0 bounce 0.0056 0.0091 0.0335 1.790 0.125 1.841
6.0 bounce 0.0037 0.0059 0.0419 2.521 0.038 3.551
12.0 shear 0.0073 0.0165 0.0350 1.509 0.670 1.061

B3D-2M 6 bounce 0.0031 0.0056 0.0445 3.211 0.039 3.973
28.0 shear 0.0058 0.0101 0.0289 1.730 0.237 1.431
160.0 pattern 0.0170 0.0162 0.0223 0.543 0.168 1.377

Notes.
a In units of Hg.
b In in units of cs.
c Rossby number defined in Equation (62).

Figure 16. Kinetic energy spectra εk vs. k produced from the 5123-element
forcing run F3D-512. Simulation of cube with side L = 2π and forcing
wavenumbers 2.5 < kinL < 3.5. A fit to the simulation output reveals an inertial
range Kolmogorov dependence εk ∼ k−5/3 in the range kin < k � kN/4, where
LkN = 256 is the Nyquist scale (2dx).
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component, but its power-law index is flatter, i.e., e ~ -kk p
n

, p

with np= 0.375± 0.04. Just like in the gas component, for
scales larger than » -k H220 g

1, the particle field also contains
power larger than that predicted by extending the observed
power-law behavior into that regime. With some caution, we
therefore nominally identify = -k H220 gintegral

1 as the start of an
inertial range for both fluids. While we observe that the energy
contained in the particle component is generally dominated by
the gas component up to the beginning of the numerical
dissipation scale » -k H1000N D g,

1, the two values appear to be
equal to one another at » -k H1300 g

1, which lies at slightly

shorter scale. Nonetheless, this equality is confirmed at higher
resolution.
Figure 17(b) shows the corresponding energy spectra for the

B3D-2H simulation. It is constructed as the average spectra of
only two time stamps, tΩ= 35 and 55. We immediately note
that energy in the gas and particles is indeed equal at the length
scale » -k H1300 g

1, which is noteworthy. As expected, this
higher-resolution simulation shows power-law behavior for a
full decade in scales ranging from k≈ kintegral up to

» -k H2000N D g,
1, extending the resolvable turbulent range by

a factor of two in scale. However, we find that the power-law

Figure 17. The kinetic energy spectrum from the science simulations with St = 0.2 at the shear phase. The top row shows the spectrum from the 3D simulations with
(a) moderate (B3D-2M) and (b) high (B3D-2H) resolution. The purple and green diamonds respectively show the power for gas and solids. The bottom row shows the
spectrum for the 3D axisymmetric simulations with (c) low (A2D-2H) and (d) high (A2D-2SH) resolution. The pink and green diamonds represent the spectral energy
density for gas and solids. The vertical dashed lines correspond to the wavenumber kN/4, the dissipative end of the nominal inertial range. In all four cases, the blue
and red solid lines represent power-law fits to the nominal inertial range of each spectrum (between kHg ≈ 350 and kN/4) of the gas and dust, respectively. The power-
law index fits to the inertial range of the 3D spectra significantly steepen upon increasing resolution from 2563 to 5123. However, no such difference is observed in the
axisymmetric simulations when going from 5122 to 20482 resolution, suggesting that these are effectively converged for 5122 resolution. (See text for more
discussion.)
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index in this higher-resolution run has steepened in both
quantities where ng≈ 1.37± 0.03 and np≈ 0.64± 0.04. Based
on this, we are led to the tentative conclusion that the
2563-element simulation is not statistically converged. Whether
or not the higher-resolution 5123-element solution is converged
cannot be judged at this juncture, requiring a future even
higher-resolution simulation for confirmation. However, from
our findings for the 3D axisymmetric runs discussed further
below, we conjecture that this 5123 simulation may have this
medium-scale inertial range converged.

This lack of convergence does not appear to be an issue for the
3D axisymmetric simulations we investigated, where we have
conducted two runs, one being “high” resolution with 5122

elements (simulation A2D-2H) up to “superhigh” resolution with
20482 elements (simulation A2D-2SH). In Figures 17(c) and (d),
the energy spectra for the axisymmetric simulations for both the
gas (εk,g; purple diamond) and the solids (εk,p; green diamonds)
are shown. The spectrum for the gas from the high-resolution run
(5122) follows a power law e ~ -kk p

n
, g in the inertial range,

where ng= 2.11± 0.1. The same for the super-high-resolution
simulation (20482) comes out as ng≈ 2.07± 0.05, lying in the
same range of its 5122 counterpart within reasonable errors,
indicating a convergence in the simulations. The beginning of the
inertial range in both the cases starts at » -k H200 gintegral

1,
extending all the way to kN,D≈ kN/4 in the respective cases,
producing an inertial range slightly less than a couple of decades
in the super-high-resolution run.

When compared to the full 3D simulations, the 3D
axisymmetric cases produce a much steeper slope for εk,g,
which falls well within our expectation. Throughout this
discussion we keep in mind that the energetics and transport
characteristics in 2D isotropic turbulence (no rotation, no
stratification) are inherently different from those of its 3D
isotropic counterpart, with the former exhibiting prominent
enstrophy cascade toward smaller scales. Questions such as
what might the transport characteristics be for flows like these
representing a section of disk, where rotation and stratification
are dynamically important, and is there a dual cascade of
energy and enstrophy in the axisymmetric case currently
remain open. With this in mind, we note that the gas energy εk,g
at the wavenumber kN,D≈ kN/4 is approximately the same
around ´ W- H3 10 g

9 3
0
2, whereas the energy at the integral scale

( » -k H200 gintegral
1) is approximately an order of magnitude

more in the 3D axisymmetric run (A2D-2H) compared to the
full 3D one (B3D-2H). Whether this extra energy in the
axisymmetric simulation is a result of a more efficient
extraction of free energy from the background shear at
kintegral or an outcome of some upscale and—as yet—
unquantified energy cascade mechanism is not known,
requiring further investigation.

The energy spectra in the particles εk,g in the two
simulations, though, show a little difference in the power-law
behavior. For simulation A2D-2H with 5122 resolution, the
inertial range follows a power law -k np where np≈ 0.923± 0.1.
For simulation A2D-2SH, however, np≈ 1.13± 0.05. The
power-law behavior of the two-particle spectrum with a
shallower slope extends beyond the wavenumber kN/4, with
significantly more energy compared to the gas fields at the
small scales, a feature that is still unclear to us.

In Figure 18, a collapsed gas energy spectrum for the 3D
simulation B3D-2H is presented based on the azimuthally
averaged velocity fields (ky = 0; purple circles). The power-law

index in εk,g for the inertial range here comes out as
ng≈ 2.6± 0.11, which is significantly steeper than the
corresponding 3D axisymmetric run A2D-2H. From this result
we infer that there are additional modes of energy transfer into
and out of axisymmetric structures that are otherwise
suppressed in the 3D axisymmetric simulations. We also show
the gas energy spectrum for the vertically averaged velocity
fields (kz = 0; orange circles), which exhibit power-law
behavior with an index ng= 2.16± 0.09. How these may or
may not relate to overall composite spectrum remain to be
elucidated. We note that the power-law behavior in both cases
here extends somewhat beyond the cutoff wavenumber kN/4;
however, we caution against inferring anything about the
meaning of this until further analysis is done.

4.2.3. Energy Spectra from Particle–Gas Simulations: St= 0.04

Figure 19 shows the energy spectra εk,g and εk,p for gas and
particle fields, respectively, for St= 0.04. Panel (a) is derived
from the 2563 3D simulation B3D-04M. Panels (b) and (c) are
from the axisymmetric simulations A2D-04H and A2D-04SH,
respectively, with the averages taken with the snapshots at
tΩ= 80, 120, and 220.
The energy spectrum εk,g for the gas field from the 3D run

shows an unexpected nearly flat behavior: e ~ -kk g
n

, g with
ng≈ 0.0972± 0.02. The flat region of the spectra starts at

» -k H300 gintegral
1 and extends up to » » -k k H4 1000N D N g,

1.
The lower resolution of the simulation constrains the
bandwidth of the inertial range well short of a decade. Beyond
kN,D, the energy in the gas field drops by nearly a couple of
orders of magnitude, and no bottleneck effect is observed
either. An unusual pattern is also observed in εk,p, where the
inertial range follows a power law with a positive index:
e ~ -kk p

n
, p with np≈− 0.218± 0.06. Similar to the simula-

tions with St= 0.2, an increase in the particle energy is also
evident here beyond kN,D. We are yet to identify the exact

Figure 18. Energy spectrum εk,g for the gas field from simulation B3D-2H
collapsed in the azimuthal (ky = 0) and vertical (kz = 0) direction. An inertial
range in the azimuthally collapsed spectra is steeper than the 3D axisymmetric
simulation A2D-2H (see Figure 17(c)) with the same resolution, implying the
existence of additional energy modes in the axisymmetric direction.
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reason for the observed behavior in the gas and particle field
energy at these small scales. However, it is important to remark
that a proper understanding of such systems in the fluid
turbulence literature is still in its infancy, and a community-
wide effort to better understand the particle–gas interplay in a
protoplanetary disk setup is warranted. In terms of the
convergence of the 3D simulation, it is still too early to assert
anything without a high-resolution simulation with St= 0.04
similar to B3D-02H. Unfortunately, we do not have that at this
point owing to limited available computational resources.

In case of the 3D axisymmetric simulations (Figures 19(b)
and (c)), we see that e ~ -kk g

n
, g where ng≈ 2.18± 0.05 for

A2D-04H with 2560 grids per Hg and 2.14± 0.06 for A2D-
04SH with 10,240 grids/Hg. In both cases, the inertial range
starts at » -k H500 gintegral

1 and extends through kN,D∼ kN/4.
However, as is expected from the low-resolution run, the
bandwidth of the inertial range is significantly shorter
compared to its high-resolution counterpart. It can be safely
asserted that the 3D axisymmetric simulations with St= 0.04
are converged with the same power-law indices of the inertial
range within acceptable uncertainties. When studied in parallel
to the ones with St= 0.2, it only looks more certain that 5122

resolution (2560 grids/Hg) is probably where a statistical
convergence is attained.

The energy spectrum for the particles εk,p also behaves in a
similar fashion for the 3D axisymmetric simulations where
e ~ -kk p

n
, p with np∼ 0.0416± 0.1 for A2D-04H and

0.424± 0.05 for A2D-04SH. Interestingly, εk,p in both cases
do not fall off beyond kN,D, but follow the inertial range trend
extending through the smallest scales. As we mentioned before,
more attention to this matter is needed in order to understand
the particle–gas interplay in the smallest scales, where the
majority of the interesting physics take place in the context of
planetesimal formation.

5. Selected Linear Analyses

5.1. Ekman Spirals, Off-midplane Kelvin–Helmholtz Roll-up,
and Ri of Settling Dust

Most of our simulations begin from a laminar state in which
dust particles are distributed symmetrically about the midplane

using a Gaussian profile with some initial particle scale height
Hp0. It is of interest—in particular, with respect to turbulent
development—to understand how the horizontal velocity
components develop as the particles begin their settling toward
the midplane. We expect that the system will respond by setting
up a velocity field reminiscent of an Ekman layer, as predicted
for particle–gas layers in disks (Dobrovolskis et al. 1999), but
modified by epicyclic motions. We therefore consider the
horizontally uniform spatiotemporal evolution of the gas and
particle velocities as an initial value problem of particles
released from rest initially distributed as just described.
In Appendix B we detail the methods we use to derive the

solutions discussed here, which have similarities to the
solutions developed in Lin (2021). We condense here the
basic assumptions of our problem:

1. We assume horizontally uniform solutions.
2. Since the particles are distributed over a layer that is

significantly smaller than Hg, together with the earlier
observation that the evolution of the gaseous component
is essentially incompressible in our main simulations, we
assume the gas density to be constant and denote it as r̄g .

3. In steady state the gas has no appreciable vertical motion.
4. The particles are treated as a second fluid with a steady

vertical velocity that varies linearly, i.e., Wp=−Ω0βz,
where β= β−(St) is a constant found in Equation (B8) in
Appendix B (see also Lin 2021).

5. The particle density exhibits homologous evolution
preserving its Gaussian form defined on the time-
dependent particle scale height Hp(t):
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6. And since the total dust mass is vertically conserved, in
which it follows e = · ( )Z H Hg p00 0 , solutions are defined
by an input value of St, Hp0, and local metallicity Z.

The numerical method employed to solve this problem is
different from what is used in PENCIL. Since our aim is to

Figure 19. Kinetic energy spectrum from simulations with St = 0.04 at the shear phase for both 3D and 3D axisymmetric runs. Panel (a) shows the spectrum for
simulation B3D-04M, with the purple and green diamonds representing the gas and particle energy, respectively. Panels (b) and (c) show the energy spectrum from the
axisymmetric runs A2D-04H and A2D-04SH, respectively. Similar to Figure 17, the blue and red solid lines are the power-law fit to the gas and particle spectral
energy densities, respectively. The vertical black dashed lines denote the positions for kN/4. For both axisymmetric runs, the inertial ranges for the gas and solids
follow a similar power-law index. The monotonic decrease of the gas energy beyond the inertial range ensures that the bottleneck effect is not at play.
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follow the emergence of horizontal jets as the layer continues
its inexorable collapse toward the midplane, it is necessary to
resolve the ever-finer developing scales on which particle–gas
momentum exchange occurs—something that cannot be
reliably done in simulations with a static vertical grid,
especially when the particle scale height approaches the grid
scales itself. The method described therefore follows the
evolution of the particle–gas layer in a vertically comoving
coordinate frame formulated on a Gaussian grid characterized
by the time-dependent particle scale height Hp(t) found in
Equation (40). For further details of the method see
Appendix B.

We discuss the broad properties of the settling solutions by
showcasing results for the two values of St we consider in our
large production runs, i.e., St= 0.04 and 0.2, together with
Z = 0.01. Our main focus here will be on the latter St value,
displaying the former in Appendix B. Of the several features
we find for St = 0.2, perhaps the main one is the emergence of
anywhere from three to seven counterflowing radial jets in both
the particle and gas fluids. There is always one main midplane
jet whose tip lies at z= 0, and this is further sandwiched by jet
pairs at symmetric locations away from the midplane. In the
simulations involving St= 0.2 particles, two symmetric jet
pairs form by the time the midplane layer achieves ε= 1. With

increasing distance from the midplane the jets are counter-
flowing with respect to one another: the locations of the tips of
these counterflowing jets for St= 0.2 are generally found at 2.5
and 5 particle scale heights away from the midplane (see, e.g.,
black arrows in top row of Figure 20), while for St= 0.04 the
jets tips are found at 2Hp and 3.5Hp away from the midplane.
We note also that the amplitude of the jet flow—especially the
midplane jet—varies epicyclically, exhibiting periods of flow
reversal (see further below).
The perturbation azimuthal velocity fields (i.e., ¢vg p, ) also

display multiple jet flow characteristics like u, but by contrast
the profile is dominated by the prominent midplane jet. Only by
later times (see, e.g., top rows of Figures 20 and B1, second
and third panels) do weaker counterflowing jets also appear
above and below the midplane.
As the particles continue to settle, the radial and azimuthal

vorticity components of the jet vorticity—ωx=−∂zv, ωy= ∂zu
(respectively for each fluid)—steadily increase since Hp
continuously shrinks. When the particles sufficiently settle so
that e = ( )10 , the components of vorticity in each fluid are
similarly  W( )0 .
We find that the particle and gas velocity fields generally

follow one another especially at regions well above one particle
scale height. We have defined center-of-mass velocity

Figure 20. Settling solutions for St = 0.2, Z = 0.01, and initial particle scale height Hp0 = 0.05Hg, at three selected times. Top row: the radial velocities of the gas
(blue), particles (red), and center of mass (gray); middle row: corresponding perturbation azimuthal velocities; bottom row: associated azimuthal (solid lines) and
radial vorticities (hatched lines). Panel insets also indicate midplane values of ε0 and Hp.
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and similarly derive corresponding vorticities, ωx,cm=−∂zvcm
and ωy,cm= ∂zucm. These are shown throughout all plots in
Figures 20–B1. In the same spirit, we define an effective
averaged density fluctuation around a mean state in each fluid
denoted by subscript “0” as the following sum:
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The buoyancy, b, is defined as the vertical gravity multiplying
the density fluctuation. Since for all practical concerns here the
gas is effectively incompressible (r¢ » 0g ), the buoyancy
simplifies to
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which follows on the physically motivated form introduced by
Chiang (2008).

One immediately notes how Ekman-layer structure develops
with increasing severity as the particles continue their collapse.
Figure 21 predicts intensifying Ekman spirals based on the 1D
solutions. This Ekman flow—which exhibits varying horizontal
velocities as a function of height away from the midplane—is
shown for both St values at different times, corresponding to
values of ε0 around 1. The emergence of such behavior is not a
surprise and is expected to be a generic feature of midplane-
settled protoplanetary disk dust layers (Cuzzi et al. 1993;
Dobrovolskis et al. 1999). The plots, indicating the center-of-
mass horizontal velocities, also have several values of z/Hp
labeled. Interestingly, the spiral structure is more pronounced
for St = 0.2, as the velocity fields exhibit more than one
complete loop. We note that the z/Hp→∞ limit corresponds

to zero radial speeds and an azimuthal velocity corresponding
to− 0.05cs, which is the expected limiting form under a
uniform pressure gradient in a region absent of particles
according to Equation (B20) with δ= 0.05 (see also Lin 2021).
For comparison, Figure 22 shows the Ekman flow structure as
appearing in the simulations at various time steps. The basic
qualitative agreement between the restricted 1D calculation and
the simulations is evident during the early settling and bounce
phases of the simulations. A further detailed comparison to
assess how far along in time the 1D solutions predict the
observed mean horizontal flow structure should be done in a
future follow-up study.
The radial jet profiles have several inflection points, i.e.,

locations zi where ¶ ==∣u 0z z z
2

i , indicating that the flows
violate the Rayleigh criterion for stability against shear roll-up
(see, e.g., red arrows in the top row of Figure 20). Additionally,
we also observe the Fjørtoft criterion, which states that unstable
linear perturbations of shear flows must have locations z= zf in
which  <( )z 0f , where

 º - ¶( ) ( ( ) ( )) · ∣ ( )z u z u z u . 44i z z
2

The black arrows in the top row of Figure 20 both designate the
level of each jet tip and indicate that these locations clearly
satisfy the Fjørtoft criterion. We see that the jets and the
locations where these varied stability criteria are met are
significantly removed from the particle layer itself. In other
words, if these jets go unstable, they do so free from the direct
influence of the particles themselves. Of course, these jets are a
direct result of the passage of particles through that level during
settling.
To this end, we calculate Ri = Rieff at every vertical level as

a function of time in the 1D simulations; these are shown in
Figure 23. However, instead of plotting the predicted Ri on the
horizontal axis in terms of time, we opt for showing them in
terms of the midplane value of ε0—as defined in Equation (40)
—which is a more useful proxy for the particle layer’s ever-
shrinking scale height. We highlight the contour lines where

Figure 21. Ekman spirals, constructed on the center-of-mass horizontal velocities, based on the 1D settling solutions at selected times: St = 0.2 (left) and St = 0.04
(right). Several fixed values of z/Hp(t) are labeled.

25

The Astrophysical Journal, 942:74 (43pp), 2023 January 10 Sengupta & Umurhan



both Rieff= 1/4 and Rieff= 1 based on our discussion above.
In all cases considered, Rieff becomes less than 1/4—especially
for regions containing the dust-rich layers—once the midplane
value of ò0 begins surpassing 1. This is especially evident in the
simulation St= 0.2 (Figure 23, left panel), where Rieff< 0.25
over the entire vertical extent of the settling layer. For St= 0.04
(Figure 23, right panel) the criterion begins to be violated at
ε0≈ 1 and gradually expands toward larger values of z/Hp as
the midplane gets more dense. In fact, a layer in which
Rieff> 0.25 appears sandwiched above and below, with
vertical extent generally diminishing as the midplane density
increases. We note the appearance of oscillatory structure in the
contour lines, which is likely due to the well-known and clearly
observed epicyclic motions of the jet layer (e.g., Li et al. 2018;
Li & Youdin 2021).

It might seem that a similar line of reasoning would lead to
the prediction of KH roll-up by nonaxisymmetric perturbations
to v owing to its strong midplane jet quality. However, it is
likely that such nonaxisymmetrically driven dynamics get
washed out by rapid differential azimuthal stretching experi-
enced by all flow lines owing to the strong radial Keplerian

shear (as suggested in Ishitsu et al. 2009). However, this
remains a conjecture at this point.
Gerbig et al. (2020) have suggested that Ri = 1 constitutes a

meaningful transition condition for these settled layers, a
possibility we further consider in the next subsection. In
anticipation, therefore, we also label in Figure 23 those places
corresponding to Ri = 1. We observe that this generally
corresponds to values of ε0= 0.5.

5.2. Disk Analog of Symmetric Instability

There are recent suggestions that the condition for stability
of particle–gas shear flows in strongly rotating protoplanetary
disk models, like the ones of concern here, does not need the
usual Miles–Howard criterion, Ri> 1/4, to be satisfied
(Gómez & Ostriker 2005; Johansen et al. 2006; Barranco 2009;
Gerbig et al. 2020)—a possibility supported by some
theoretical considerations of the nonlinear stability of stratified
flows (e.g., Abarbanel et al. 1984; Miles 1986), and certainly
by our numerical simulations reported here. Model atmospheric
flows that support nonbarotropic motions can be unstable for

Figure 22. In comparison to Figure 21, we show the emergent Ekman spirals from the simulations of the previous section at several time stamps. Here we show
radially azimuthally averaged gas (á ñug xy and á ñvg xy) and center-of-mass velocities—as defined in Equation (23) with several layer heights labeled for reference.
Simulations shown: B3D-2M for St = 0.2 (left three panels) and B3D-04M for St = 0.04 (right three panels). Note that the Ekman flow structure is strongest for
St = 0.2 and that it persists well into the turbulent state.

Figure 23. Effective values of Ri ↔ Rieff as a function of z/Hp(t) and time, which is proximately represented by the ever-increasing values of ε0(t) according to
Equation (40). The left panel shows St = 0.2, while the right panel displays St = 0.04. Various values of Ri are labeled. The special values of Ri = 0.25 and 1 are
shown with blue contours. The dark arc bounding the upper left corner of each panel represents the fixed vertical physical scale of our PENCIL-code-derived
solutions, i.e., zb/Hp(t).
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Ri> 1/4. One example of this is the so-called symmetric
instability (SymI hereafter), in which axisymmetric azimuthal
mean flows whose flow isolines are misaligned with respect to
density/entropy isolines are strongly unstable to axisymmetric
perturbations for values of Ri up to 1 (e.g., Stone 1966;
Vanneste 1993; Stamper & Taylor 2017). The total azimuthal
flow profiles considered here, which are the sum of the
Keplerian flow (−3Ω0x/2) and vcm(z, t), certainly exhibit
isolines that are misaligned with respect to the particle density
isolines that vary only with height. This is suggestive that
axisymmetric disturbances of the flow profiles during particle
settling may indeed go unstable by the same type of mechanism
that drives the SymI of atmospheric and oceanic flows.

We note that it has recently been argued that the vertical
shear instability (VSI; Nelson et al. 2013) is the disk analog of
the SymI (sometimes referred to as “sloping convection” in the
geophysical fluid dynamics literature; Yellin-Bergovoy et al.
2021). Indeed, a latitudinal temperature gradient gives rise to a
radial variation in planetary zonal flow, while a similar vertical
variation of Keplerian flow emerges from a radial temperature
gradient that leads to the VSI. The conditions leading to the
VSI resemble those giving rise to sloping convection when
thermodynamic cooling is instantaneous (zero cooling time-
scale) within the disk. In both scenarios, therefore, there is a
misalignment between the density and azimuthal/zonal flow
isolines. For further exposition see Yellin-Bergovoy et al.
(2021).

In the models shown in the figures presented at the end of the
previous section we find that the condition Ri = 1 is met over
significant volumes of the disk’s vertical extent once the
midplane ò begins exceeding 0.5. At this stage we conclude that
under these conditions the particle layer is quite possibly prone
to a disk analog version of the SymI.

5.2.1. Motivation

The turbulent transition in the St= 0.2 experiments
unambiguously shows the primary role that the KHI plays in
churning up the particle layer. This shear roll-up is associated
with the jet pairs located at least 2–3 particle scale heights away
from the midplane. However, close inspection also reveals that
non-Kelvin–Helmholtz-unstable dynamics are also present in
the particle layer itself, where the Fjørtoft and Rayleigh criteria
for shear instability are not clearly met. This feature is even
more prominent in the St= 0.04 simulation, where KH roll-up
in the layers away from the particle layer is far weaker, and the
evidence for dynamic activity in the particle layer (within
1Hp–2Hp of the midplane) falls into even further relief. In the
observed dynamics we have also found that the primary roll-up
occurs in exactly axisymmetric or nearly axisymmetric
perturbations.

We argue by analogy to submesoscale atmospheric and
oceanic dynamics that dynamical activity in these settled
particle layers is driven by the twin action of the SymI and KH
roll-up. We suspect that the significance of the SymI in
characterizing the VSI (Yellin-Bergovoy et al. 2021) and the
vertical shearing streaming instability (VSSI; Lin 2021) also
applies to the turbulent development of the midplane dynamics
we report here—especially for simulations showing sustained
turbulent activity in which the SI emerges either weakly or not
at all.

Indeed, analysis of the St= 0.04 simulation after it achieves
a quasi-steady shear-driven turbulent state shows that the

effective Richardson numbers are near or larger than 1/4, an
important feature also observed in the simulations reported in
Gerbig et al. (2020). While it remains to be a circumstantial
claim without a more comprehensive analysis, having
Rieff> 0.25 maintained in this turbulent state inspires us to
consider that the dynamics are not only driven by KH roll-up
(while keeping in mind that a rotationally modified KH roll-up
dynamic may also be operating, as suggested originally by
Gómez & Ostriker 2005). Most importantly, it is our
hypothesis that the KH roll-up is associated primarily with
the vertical gradient in the radial flow velocities (whether they
be expressed as that of the gas or as those of the center of
mass), while SymI action is driven mainly by the vertical
gradient of the radial–azimuthal mean of v, i.e., the azimuthal
velocity departures from Keplerian flow. As elucidated in
submesoscale atmospheric dynamical studies and translated to
our disk gas particle framework, the main ingredients for the
SymI are that the total mean flow (azimuthal) velocities have
isolines that are misaligned with respect to isodensity lines
(e.g., Vanneste 1993).

5.2.2. Model Formulation

We therefore present here a motivated single-fluid model
(see details in Appendix C) providing an analytically tractable
demonstration of the SymI for midplane disk layers. The
simplified model can be thought of as the isothermal (i.e.,
γ→ 1) and perfectly coupled terminal velocity limiting form of
the single-fluid model for dusty-gas mixtures (e.g., Laibe &
Price 2014; Lin & Youdin 2017). This limiting form is the
extreme limit of the recast two-fluid equation framework
developed in Laibe & Price (2014), where the equations of
motion are written without approximation instead in terms of
center-of-mass velocities and relative velocities of the two-fluid
species. This “single-fluid” limiting form emerges from this
recast set of equations after both assuming the terminal velocity
approximation and taking the asymptotic limit of nearly zero
particle stopping times.
To isolate the SymI effect from KH roll-up, we assume that

there is only a purely azimuthal mean flow state, which is the
sum of the Keplerian profile plus a departure ṽ0 with a
parabolic vertical variation given by

⎜ ⎟⎛⎝ ⎞⎠d= -˜ ( )v v
z

H
1

1
2

, 45
s

0 00

2

2

where δv00 characterizes the mean azimuthal velocity drop
across 2–3 particle scale heights. We adopt this as a reasonable
facsimile of the center-of-mass azimuthal flow of the simula-
tions, especially during the bounce and shear-turbulent phase of
the runs; see also Figure 15 for more details. We justify
neglecting the vertical variation of the radial flow based on its
relatively small amplitude in comparison to the azimuthal flow
—e.g., based on how Rir? Rif for all of the shear phase
St = 0.04 simulations depicted in Figure 14.
The parabolic form for v adopted in Equation (45) is a good

fit for the mean profiles that emerge in 3D simulations at
various early to intermediate stages of turbulent shear phase
development (discussed at the end of Section 3.5) and
embodied in the assumed approximate Gaussian form
expressed in Equation (28). We assume a mean density ρ0
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whose vertical variation is given by

r¶ = - ( )z

H
ln , 46z

p
0 2

and, following both Chiang (2008) and Gerbig et al. (2020),
subject to a reduced gravity term acting toward the midplane,
and given in magnitude by
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where ε0 is a constant (unlike its interpretation and usage in the
previous section), nominally representing the dust-to-gas ratio
of the midplane, in the same sense as used in Section 5.1. In
this framework given Equations (45)–(46) together with no
radial velocity, we find according to Equation (24)ʼs definition
of the azimuthal Richardson number that
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We note that henceforth we consider only values of Ri> 0, i.e.,
stably stratified flows. In order to connect to results discussed
in Section 3.5, Rif should be considered as being parallel to
and in the same spirit of the definition for Rif,0 expressed in
Equation (29).

We assume that the dynamics are incompressible, which
means that the radial and vertical velocity perturbations may be
written in terms of a single stream function ψ. However,
vertical density variations are advected by the perturbation flow
and give rise to buoyancy effects in the dynamics. Except for
being set in a shearing-box framework, there is no other
physics including drag exchange and fluid viscosity, have been
modeled.

All perturbations are axisymmetric, and we assume normal
mode solutions that have the functional form for the stream
function y¢, i.e., y w= - + +ˆ ( ) ( )z i t ikxexp c.c.0 , where ω0 is
the normal mode frequency, k is the horizontal wavelength of
the disturbance, and ŷ is the vertical eigenmode structure
function.

In Appendix C we analyze normal mode solutions of the
above-described idealized model, which are expressed in terms
of parabolic cylinder functions  b( ˜ )zm (Abramowitz &
Stegun 1972). Here b̃ is the length scale whose real part
quantifies the Gaussian decay length scale characterizing
 b( ˜ )zm —see Equation (C16). The general solution for the
frequency ω0 is given in Equation (C22), which is a function of
three parameters: Ri as defined in Equation (48), the
nonnegative integers m signifying the number of vertical nodes
in the disturbances, and finally μ, in which

m
e
e

º
+

+
( ) · ( )m

k H

2 1
2 1

, 49
p

2

2 2
0

0

which characterizes a single-parameter family of solutions
containing k and ε0. The general solution for the normal mode
response is found in Equation (C22) reproduced here in slightly
rewritten form:
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where we have introduced ν≡ 2m+ 1 for notational conve-
nience. Further analysis found in Appendix C proves that
normal modes come in growing/decaying pairs for all finite
values of Ri≠ Ric(m), in which

n
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m m
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1 4 1
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. 51c 2 2

Normal modes are marginal for the countably infinite set of
Ri= Ric(m) values. Inspection of Figure 24 indeed shows that
the growth rates become dramatically large once Ri passes
below Ric. Given Ricʼs dependence on m, nominally speaking
we expect strong instability when Ri passes under 1, with
instability appearing first as m→∞.
It is instructive to showcase certain limiting cases for the

above solutions, which we do in the following subsections.

5.2.3. μ? 1 Limiting Form, an Ri< 1 Criterion

We first start by considering the fate of modes in the limit
where μ? 1, which corresponds to large values of m and/or
small values of kHp. According to Equation (C27), we find

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠w
n m mW
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which means that up to m w( )/1 , 0 is

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠w
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2
2
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1
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There is a dramatic change in the character of the modes when
Ri− Ric crosses zero. When Ri>Ric, the oscillating dis-
turbances, while being unstable, have a growth rate that is weak
and proportional to m1 . However, once Ri< Ric, then the
modes show order 1 growth. This says that the character of the
disturbances undergoes a stark transition at Ri≈ Ric. We also
observe that the modes with the highest values of m are the
most unstable when Ri<Ric. For a layer undergoing collapse,
where the value of Ri is steadily going down, the modes with
the highest values of m begin to go unstable once Ri< 1 since
Ric(m→∞ )= 1. Outside of m= 0, for which the theory
predicts stability for all Ri, the critical values for the first few
vertical nodes are Ric(m= 1, 2, 3, 4, 5, L )= 8/9, 24/25, 48/
49, 80/81, 120/121, and so on. Therefore, for all practical
reasons we view SymI to be relevant once the particle layer
satisfies Ri< 1 throughout most of its bulk. For the collapsing
layer solutions considered in the previous subsection, this
would appear to start taking root once the midplane particle
layer achieves values of ε0≈ 0.5 (see, e.g., both panels of
Figure 23).

5.2.4. 0< μ= 1 Limiting form

We consider values of μ that are small, which for all
practical purposes corresponds to very large values of kHp and/
or small values of ε0; however, we consider the former case to
be of practical use. From Equation (C26) we find to leading
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order that
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The critical value Ri = Ric is easily recovered by equating to
zero the expression found within the brackets. The growth
rates, while nonzero all throughout Ri≠ Ric, are fairly muted
for Ri>Ric but shoot up with a dramatic change in character
once Ri<Ric. The oscillation frequency also shows a strong
shift around Ri= Ric.

5.2.5. m? 1 and = ( )kH mp : A Maximum Growth Rate

One can consider the asymptotic limiting form of
Equation (50) in the limit where m? 1 together with
maintaining = ( )kH mp . This tandem limit keeps μ an ( )1
quantity according to its definition in Equation (49). Thus, to
leading order it follows that
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An elementary analysis shows that Im(ω0) achieves a
maximum value when the expression underneath the square
root operator equals zero. Therefore, we define a maximally
growing value of μ to be

⎛⎝ ⎞⎠m = - ( )2
1
Ri

1 , 56max

whereupon it follows that—provided, of course, Ri< 1—the
fastest-growing mode has a growth rate, s ºmax Im(ω0),
approximately given by
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We show overlaid on Figure 24 the approximate relationship
m ( )Rimax . Finally, restoring the relationship between kHp and μ,
we find a corresponding fastest-growing horizontal mode, kmax,

to be
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Inspection of Figures 24–25 indicates that Equation (58) does a
fairly good job at predicting the fastest-growing mode even for
( )1 values of m. The asymptotic growth rate expression from
Equation (57) works well as an upper bound. Nevertheless, its
utility is self-evident, as it overpredicts the low-order m growth
rates by about 25%, at most.

5.3. Transition to Secondary State via SI?

It is worthwhile to ask for the two St numbers simulated, if
the transition from the shear-driven turbulence phase into the
nonlinear pattern state is consistent with the SI. We consider
this by estimating the growth rate of the particle scale height
during this transition phase by approximating the domain-
averaged time-dependent scale height ¯ ( )H tp as

⎜ ⎟⎛⎝ ⎞⎠d= +a¯ ( ) ( )H t H h
t
t

exp . 59p p
g

,

¯ ( )H tp can also be interpreted as the sum of a mean turbulently
set particle scale height, Hp,α, that also corresponds to an
estimated value of a » a( )H HSt p,

2 (Dubrulle et al. 1995) and
an exponentially growing perturbation piece characterized by
an amplitude δh and a growth timescale tg. The aim here is to
compare the simulation-derived values of tg with the prediction
made in the theory of turbulent SI developed in Chen & Lin
(2020) and Umurhan et al. (2020).
The left and middle panels of Figure 26 shows a log-linear

plot of the time series for H̄p for four simulations. Various
dashed lines show our estimated fitted values for Hp,α and
corresponding estimated slopes (dotted lines) drawn over the
secondary growth phase where the approximate values of

»¯ ( ) ˜ ( )H t H tp p may be read off of these lines for any input time
ti falling nominally in the growth rate time range. Based on this

Figure 24. Growth rates of the disk analog of the symmetric instability: m = 4 (ν ≡ 2m + 1). The general character of these growth rates is the same for all values of
m, where the critical value of Ri asymptotically approaches 1. Overplotted is the approximate value m m= max corresponding to the fastest-growing mode for Ri < 1.
Note that this corresponds to a distinct value k Hpmax that is implicitly a function of vertical node number m and other properties of the settled particle layer like ε0 and
Ri; see Equation (58).
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understanding of ˜ ( )H tp , it follows that
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which, after selecting two times from the fitted lines, allows
one to estimate tg, i.e., ⎡⎣⎢ ⎤⎦⎥» -
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Taken from the theory developed in Umurhan et al. (2020), the
right panel of Figure 26 shows the predicted growth timescales
of the SI for Z = 0.01 and β= 0.05 as a function of α and St as
maximized over wavenumber. Note that the growth timescales
in that study are quoted in units of local orbit times, i.e.,
Porb= 2πΩ−1. Thus, we read off the quoted values from that
graph and multiply it by 2π, and we call the result tg,th in order
to compare the predicted growth rates against the values of tg
derived from the simulations presented here, the latter of which
are in units of Ω−1. The results of this exercise are summarized
in Table 4.

Examining the right panel of Figure 26, depicting the results
of the low-to-moderate-resolution runs with St = 0.2, we find
that the level set during the onset of the shear-turbulent phase
has a lower value of Hp,α (by about 15%) for the higher
resolution of the two, a trend observed in other simulations of
the SI (e.g., Yang et al. 2017; Li et al. 2018). The lower-
resolution run therefore operates at a higher effective α.
Theoretically it would imply a longer growth rate for the lower-
resolution run, and this trend is borne out by the prediction for
turbulent SI. However, a comparison of tg,th against the
measured tg values found in Table 4 shows that the theory
appears to systematically underpredict growth rates.

The middle panel of Figure 26 shows the corresponding runs
for St = 0.04. The same trends, i.e., vis-à-vis shear-turbulent
phase, are manifest here as well: the lower-resolution run
corresponds to higher turbulence levels compared to the higher-
resolution run, with concomitant faster growth rates of the latter
compared to the former. However, the growth rates are vastly
shorter than those predicted for the turbulent SI according to
Umurhan et al. (2020).

At this stage it is difficult to conclude as to what may be
driving this secondary growth, and we can at best only
speculate. It might be possible for these runs that the classical
SI is acting in conjunction with a secondary effect that derives
from the turbulent vertical shear profile (e.g., the VSSI,
Lin 2021), but that the effect of the classical SI is stronger than
this secondary effect in the St = 0.2 case—resulting in a better
match based on just the SI growth rates alone—while the
secondary effect is stronger than the SI in the St = 0.04 case, in
which the actual observed growth timescales are much shorter
than those predicted from the turbulent SI prediction. We think
that the VSSI is the leading candidate mechanism to explain
this effect; however, an investigation of this hypothesis is
outside the scope of this paper but should be considered in
follow-up work.

6. Discussion

6.1. On Turbulence in Particle-laden Sheared Midplane Layers

The simulations conducted here appear to indicate that
midplane-settled particle layers that are not strongly susceptible
to the SI instead erupt via other stratified axisymmetric fluid
instabilities involving the vertical shear of both the radial and
azimuthal velocities. These instabilities appear to lead to an
early turbulent phase from which some secondary processes
take root, possibly involving the SI, which leads to a sinusoidal
pattern state of varying degrees of coherence and characterized
by some amount of radial drift.
The instability mechanisms leading to the early turbulent

phase involve the particle component as a collective agent, and
mainly in a stabilizing role. The flow analysis conducted
indicates that the primary mechanism driving instability
depends on the St number of the particle component, and
although we have examined only two values of St, we can
confidently say that there are at least two types of destabilizing
processes: Based on the St = 0.04 suite of simulations, it
appears that these settled layers primarily experience the
protoplanetary disk analog of the SymI, whose dynamic relies
on the vertical shear of the azimuthal velocity profile and
requiring Ri< 1. Based on the St = 0.2 suite of numerical
experiments, the settled layers experience radial KH roll-up
within layers located about 1–2 particle scale heights away
from the midplane. Further, the assessed Ri values within the
settled particle layers for St = 0.2 should support, in principle
at least, azimuthal KH roll-up as well, but visualization of the
flow fields does not present clear evidence for it either.
During the review phase of this manuscript one of the

reviewers commented on the possibility that the nonturbulent
SI could explain the early bounce phase turbulent development.
We have examined this possibility by doing a spot-check on the
predicted growth rates for the St = 0.04 case using the laminar
SI theory of YG2005. For the apparent length scales
(λ∼ 0.01H) emerging during the early bounce phase (see,
e.g., the wg field in Figure 6 at tΩ= 6), the predicted SI growth
rate in the zero turbulent limit falls in the range 0.05Ω0–0.1Ω0,
which is at least a factor of 5 weaker than the corresponding
growth rate of the SymI under those similar conditions. A
detailed examination of this matter, to better illustrate this case,
deserves to be done in the future.
In either case, however, the midplane layers exhibit unsteady

motions—apparently turbulent—which eventually leads into a
secondary transition resulting in a pattern-forming state. We

Figure 25. Following Equation (50), this figure depicts predicted growth rates
of the SymI shown as a function of radial wavenumber for several vertical
parameters m for a given set of values Ri, ε0, and Hp. Following the analysis of
Section 5.2.4, the asymptotic growth rate s  ¥( )mmax is also shown.
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have examined whether the drifting patterned state is an
instance of the SI, and the predictions also appear mixed: for
the St = 0.2 case the measured growth rates between the initial
putative turbulent phase and the final pattern state appear to be
consistent with SI under turbulent conditions if, however,
systematically somewhat faster acting than predicted (e.g.,
following the theory of Chen & Lin 2020; Umurhan et al.
2020). On the other hand, in the St = 0.04 case, the
corresponding measured transition phase growth rates are far
more rapid than those predicted by one to two orders of
magnitude (see Table 4). What is responsible for this growth,
and what is the cause for the dynamical differences between
these two St values, remains uncertain. Is it the SI working in
tandem with a secondary process, which senses the underlying
turbulent state in the mean? Might the secondary transition be
an instance of the proposed VSSI, a process recently examined
in a theoretical model by Lin (2021)? Furthermore, is it
possible that this emergent drifting pattern state is a numerical
artifact that goes away if the radial and/or azimuthal box scales
are made larger? These are all questions that need immediate
resolution in future studies. In Section 6.7 we further reflect on
the possible action of KH roll-up for Ri> 1/4.

Often rooted in simulations of relatively large St simulations
(e.g., St> 0.2), it is a commonly held assumption that settled
particle layers subject to the SI are likely also susceptible to
azimuthal KH roll-up (e.g., Barranco 2009; Lee et al.
2010a, 2010b). Our findings suggest that there is, in fact, a
diversity of processes at play, and which actor dominates
depends on the layer’s St and local metallicity Z. Indeed, the
St = 0.04, Z = 0.01 simulations examined here appear to be
driven entirely by the axisymmetric SymI effect. Increasing St
to 0.2 while keeping Z fixed appears to lead to both the SymI
and radial KH roll-up being the primary dynamical
mechanisms.

6.2. On the Relationship to the Findings of Ishitsu et al. (2009)

In their unpublished study Ishitsu et al. (2009) examined the
fate of particle–gas setups like those considered here, in which
an imposed radial pressure gradient induces a relative
streaming between gas and particles. Their simulations were
3D axisymmetric and considered two sets of St = 0.001 and
1.0. The early development of the layer in the St = 0.001 case
is highly reminiscent of the transition observed in our St suite
of runs. In particular, the top right panel of Figure 6 of Ishitsu
et al. (2009) shows off-midplane filament development where
the particle layer’s vertical gradient is greatest. This character is
very similar to the dynamical structure observed throughout the
early development of both our 3D axisymmetric and full 3D
simulations. For the St= 1.0 simulation shown, their simula-
tion erupts into the kind of pattern characteristic of KH roll-up
as reported in Barranco (2009; see, e.g., Figure 7 of that work).
No such KH roll-up pattern is discernible in the St = 0.001 run
reported in Ishitsu et al. (2009).
In this sense we think these authors are justified in writing

“However, the instability of two-fluid shown in this work has
the axis-symmetric unstable mode. As a result, the stabilization
caused by the increase of the azimuthal wavenumber due to the
radial shear is not effective. We expect that the instability
occurs in the radial direction, and then the perturbation with
small azimuthal wavenumber grows” (Ishitsu et al. 2009,
pg. 14).
Not only do our 3D axisymmetric simulations confirm this

notion, but our full 3D investigations suggest that nonaxisym-
metric dynamics—like azimuthal KH roll-up—are not the
primary instability mechanism driving turbulence in low St
midplane-settled particle layers, i.e., our findings implicate
axisymmetric modes as the primary driver of turbulence in full
3D scenarios.

6.3. This Study in Relation to Lin (2021)

Lin (2021) undertake a two-fluid stability analysis of a
model similar in setup to what has been considered here. In that
study the author considers the stability of an already-settled
particle layer whose particle equilibrium is established within
the framework of a local α-disk shearing-box model often used
to capture the essence of particle profiles within gas-driven
turbulence (e.g., Dubrulle et al. 1995; Youdin & Lithwick 2007;
Laibe et al. 2020) and as recently used in the analysis of the SI
by Chen & Lin (2020) and Umurhan et al. (2020). For input

Figure 26. Particle scale height vs. time for several 3D simulations and a semilog plot, together with approximate baselines (dashed lines) for Hp,α and approximate
growth lines (dotted lines) described further in the text: low-to-moderate-resolution runs for St = 0.2 (left), and low-to-moderate-resolution runs for St = 0.04
(middle). Right panel: predicted growth rates for the SI maximized over wavenumber (Umurhan et al. 2020) as a function of St and α, where the four simulations
shown in the left two panels are represented with symbols. Note that all simulations appear on the relatively active side of the SI.

Table 4
Simulations and Predicted SI Growth Rates Maximized over Wavenumber

Simulations Identifier St
aH

H
p,

α × 106 tgΩ tg,thΩ

B3D-04L 0.04 0.0095 3.57 2306 15,800
B3D-04M 0.04 0.0088 3.10 59.7 2513
B3D-2L 0.2 0.00625 7.83 10.5 16.5
B3D-2M 0.2 0.0056 6.30 9.11 11.2

Note. Based on theoretical predictions of Umurhan et al. (2020).
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values of Z, St, and α the particle–gas equilibrium in the radial–
azimuthal mean admits solutions with nontrivial vertical
variations in all quantities on which a numerical stability
analysis is done. For conditions examined most similar to ours
(see case C with the St = 0.04 runs treated here) Lin (2021)
reports that the fastest-growing mode has a horizontal
wavenumber kHg≈ 1100 with growth rate∼ 0.6Ω and, most
importantly, with a mode amplitude becoming greatest at about
1–2 scale particle scale heights. Perhaps most importantly, Lin
(2021) shows that the vertical shearing instability revealed in
the two-fluid setup is recovered within a single-fluid framework
as well.

While our findings agree in spirit with those reported in Lin
(2021), there are notable differences likely attributed to our
differing steady states, since ours are drawn directly from those
exhibited by actively collapsing solutions as opposed to those
equilibria resulting from their adopted putative turbulence
model. Since our analysis includes neither particle diffusion nor
a model for turbulent viscosity, we predict that instability
persists as m→∞, with corresponding fastest-growing radial
wavenumber similarly diverging, and this is similar in quality
for the VSSI in the inviscid limit as reported in Lin (2021).
However, a notable difference in predictions of the inviscid
limit is that we predict growth rates that asymptote to ( )1
values of Ω while the VSSI seems to grow without bound as
kH→∞ (see, e.g., Figure 15 of Lin 2021). Of course, viscosity
due to any developing turbulence should temper growth rates at
short wavelengths, at least in reality.

However, the simple setup that went into motivating the
SymI analysis developed in Section 5.2 captures the essence of
what occurs during the settling and transition phase of the
numerical experiments conducted here, especially the St = 0.04
simulations. Both studies demonstrate that an effectively
single-fluid process can lead to strong instability and quite
likely explains the dynamical source of turbulence in these
midplane-settled layers. Moreover, by being an effectively
single-fluid model, it shows that the process does not need a
relative stream between the two fluids in order to become active
as required for the SI (in this regard see recent conceptual
advances of Squire & Hopkins 2018a, 2018b). Despite this
broad conceptual agreement, further work is needed to
reconcile these two theoretical approaches. However, it would
seem that the VSSI framework might be best applied in
analyzing how an already-turbulent sublayer further develops,
as it already has built into it a model of turbulence. Perhaps it
might be used in explaining the secondary transition into the
drifting pattern state we have reported on here. This is grounds
for further investigation.

6.4. The Current Work in the Context of Garaud & Lin (2004)

Garaud & Lin (2004) conducted similar studies in order to
investigate the evolution of the settled dust layer in a two-fluid
approximation. Their work used a monodisperse population of
small dust grains along with a gas disk that is strictly laminar in
the absence of solids. However, in their working perturbation
equations (their Equations (15)–(19)) the term containing the
Coriolis force, and hence the effect of rotation in the problem,
is absent. This is a major and the most important difference
between their work and the current one. The emergence of
SymI in the work presented here is axisymmetric in nature and
emerges solely from the vertical variations of the azimuthal
flow velocity that has its root in the cross-velocity components

in the Coriolis term, whereas Garaud & Lin (2004) put their
emphasis on the growth of nonaxisymmetric perturbations
absent Coriolis influences. Hence, the evolution of the shear
layer reported in their study belongs to a general class of KH
instability without any possibilities of SymI. Apart from this
point, Garaud & Lin (2004) put significant effort on the effect
of cooling time of the stability of the shear layer, whereas we
adhere to a strictly isothermal condition for our entire analysis.
It is noteworthy that they observe the boundary of instability to
extend beyond the classical limit of Ri = 1/4 when cooling
effects are included in simplified analytical modeling. Whether
these effects play a role in realistic disks remains to be
explored.

6.5. A Note on Dust Settling Instability

Settling dust grains can also give rise to the dust settling
instability (DSI), a by-product mechanism of the general class
of resonant drag instabilities (RDIs; Squire & Hopkins 2018a;
Krapp et al. 2020). As noted in Squire & Hopkins (2018a), the
settling instability has two regimes: (i) for modes in which
kxwsx≠− kzwsz, where w is the streaming velocity, the growth
rates are generally�Ω, but (ii) as kxwsx→− kzwsz, growth
rates show divergence with increasing absolute wavenumber k.
In the latter case, and so long as wsz≠ 0, Squire & Hopkins
(2018a) predict that a rapid eruption of activity will appear at
the smallest length scales, with growth rates∼ k1/3 (for ò= 1).
Krapp et al. (2020) observe the development of fine-scale
structure in their highly resolved simulations centered on disk
sections centered at heights z∼Hg with box sizes∼ 0.1Hg.
Most of the activity of the DSI is expected to happen far from
the midplane, nominally at locations where the product
combination of settling velocities and local mean dust densities
is maximized. Moreover, the unrestricted growth rates for
increasing wavenumber suggest that capturing the effects of
DSI may need more resolution than what we have in our
simulations. In our simulation results we conjecture that the
DSI may be operating, especially far from the midplane,
although we have not noticed any obvious signature in our
simulation domain spanning only 0.2Hg. However, in our
analytical model, the primary equations do not have any
vertical velocity under equilibrium (see Equations (C2)–(C5))
that can give rise to DSI. This lack of signs of the DSI in the
simulations reported here may be because the simulations take
place close to the midplane, where the settling velocities are
expected to be small since wsz∼ΩHpSt (see, e.g.,
Equation (B6)). However, with sufficiently high numerical
resolution the fastest-growing mode ought to appear as very
short vertical wavenumber midplane parallel banded structures,
which, given our current resolution capabilities, are not
resolvable. Additionally, there is as yet no Richardson number
analysis for the DSI based on which a more quantitative
distinction between the two processes might be made. Lastly,
while the DSI can lead to disorder in the flow as the flow
settles, whether or not it can drive sustained midplane
turbulence once the main settling phase has receded is not
expected.

6.6. On Spectra and Simulation Convergence

The St = 0.2 kinetic energy power spectrum from Figure 17
makes it evident that for the 3D simulations the power-law
index of the inertial range changes when we increase the
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resolution. The root cause of this effect, not being properly
pinpointed in this work, could be multifaceted. It is possible
that the 3D simulations are not yet resolved at 5123 resolution
(2560 grids/Hg) and that higher resolution is required. Another
possibility could be due to the number of particles used in the
simulations with moderate and high resolutions: in order to
minimize the computation expense, the number of particles
used per grid point in the high-resolution run (B3D-02H) is
only 0.125 (i.e., one particle per eight grids), compared to 1.0
in the moderate-resolution run (see Table 2). The gas and the
particle fields in the system communicate with each other
through a drag term with a finite relaxation time
(Equations (2)–(4)), where the momentum exchange through
the density fluctuations is nonlinear, implying scale-to-scale
energy transfer. Hence, the implementation of a comparatively
low number of superparticles may influence the gasdynamics.
We disfavor this explanation because when settling is present
particles cluster toward the disk midplane, effectively reaching
more than one particle per grid. We also do not see any
bottleneck effect in the gas kinetic energy beyond the
dissipation scale, so the possibility of back-scattering of energy
can be ruled out.

It is also interesting to note that for 3D axisymmetric
simulations the energy spectra for both high- and super-high-
resolution simulations are converged with similar power-law
index for the inertial range. For both St= 0.2 and 0.04, the
power-law index hovers between 2.1 and 2.2. The small
difference here for the two different St values is consistent with
the trend reported by Pandey et al. (2019), where the authors
found a dependence of the energy spectrum on the overall
mass-loading effect, especially at the higher wavenumbers.
Note that the highest 3D axisymmetric simulations have 10,240
grids/Hg, so it is possible that, for the full 3D simulations,
going beyond 5123 may show convergence in the energy
spectrum. Given the relatively minor change in power-law
slope in the 3D axisymmetric suite of runs going from high
resolution (5122) to superhigh resolution (20482), we cau-
tiously conjecture that the 5123 resolution full 3D simulation
might be close to convergence for the dynamically resolved
scales. Unfortunately, we were limited by available computa-
tional resources to carry out simulations with resolution higher
than 5123 and are unable to verify this conjecture at this time or
characterize the turbulent behavior at high resolution for
St = 0.04.

It is also important to note that the character of the 3D
axisymmetric simulations in the inertial range is fundamentally
different from that of the full 3D ones, in terms of both the
slope of the power spectrum and the location of the integral
(kintegral) scale. Classic 2D turbulence is characterized by
simultaneous downscale enstrophy cascade and upscale energy
cascade, together with an Ek∼ k−3 behavior in the inertial
range (Kraichnan & Montgomery 1980), while in full 3D
isotropic turbulence energy cascades toward smaller scales with
Ek∼ k−5/3. 3D axisymmetric scenarios in a disk might exhibit
cascade properties similar to purely 2D flows, but this is not
quite certain as yet. The statistical behavior under conditions
where rotation and stratification are on equal footing is
complicated by wave dynamics, which present alternate
pathways for scale-to-scale energy exchange beyond just
nonlinear velocity advection (i.e., inertial effects). Little is
known about how this unfolds under this dual influence in both
atmospheric/geophysical flows (see, e.g., discussion of this for

atmospheric flows in Section 4.5 of Alexakis & Biferale 2018),
and much less in dust-laden protoplanetary disk models. It is
known that strongly stratified flows, or dimensionally con-
strained settings, can exhibit mixed/split and anisotropic
energy cascades while strong rotation can support some
amount of inverse cascade behavior under suitable forcing
and/or vertical scales. In these cases new exchange pathways
emerge owing to wave dynamics and produce inertial range
spectral slopes that deviate from that expected from pure 2D
turbulence (k−3) or from full 3D Kolmogorov (∼k−5/3). For
example, under relatively strong stratification and moderate
wavenumbers in atmospheric models there exists the so-called
Bolgiano−Obukhov scaling, where the kinetic energy behaves
like Ek∼ k−11/5 before it eventually turns down to Ek∼ k−5/3

at sufficiently high wavenumbers. In this scenario energy
exchange carries kinetic energy into potential energy through
wave transfer via gravity waves upon which nonlinear potential
energy advection forward-spreads energy toward smaller
scales. In our particle-laden sheared setting there are nonlinea-
rities in the gas−dust drag exchange terms. Exactly how this
dynamical pathway mitigates and/or directs the cascade of
energy—and how it ultimately shapes the resulting energy
spectra—is yet to be systematically examined in 3D axisym-
metric and/or full 3D settings.
In short, the energy content in these flows depends on

whether the equations are being treated as full 3D or not, as
well as the fact that the spatial energy distribution may not be
Kolmogorov, especially at intermediate scales bridging energy
injection and the very short scales that should exhibit k−5/3

Kolmogorov character. Therefore, looking back on our results,
while large-scale structures look qualitatively similar in both
axisymmetric and full 3D, a one-to-one correspondence
between the two may not be an accurate representation on
the small scales were particles are expected to cluster. As a
result, we are cautioned to infer very much about what happens
on the small scales based on the results of currently available
high-resolution axisymmetric simulations. We expect better
light will be shed on this upon the advent of high-resolution 3D
experiments or new simulation tools with wider dynamical
scale resolution.

6.7. On Turbulent Activity Where Ri> 1/4

The persistence of activity in disks where the Richardson
number exceeds the classical critical value of 1/4 remains
enigmatic. Here, we briefly review what is known about this
feature of protoplanetary disk models and place our findings
with regard to the SymI in that context.
Gerbig et al. (2020) unequivocally demonstrated the

emergence of sustained (and probably turbulent) 3D activity
in midplane-settled dust layers exhibiting Ri> 1/4. The
antecedents to this can be found in the three studies of Gómez
& Ostriker (2005), Johansen et al. (2006), and Barranco (2009),
where, in order to isolate and better understand operative
physical effects, the stability and nonlinear response of a
midplane-settled particle–disk setting were examined within a
restricted 2D, azimuthal−vertical slice. Initiated with vertical
shears in the azimuthal velocity field, over time it can be seen
that the particle layer develops sinusoidal undulations that
eventually grow in amplitude and finally erupt to generate
strong vertical mixing (see esp. Barranco 2009). Johansen et al.
(2006), who examined this dynamic for the two-fluid model,
calculate the effective Richardson number as a function of disk
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height for simulations after reaching their putative equilibrated
statistical state, for which they find that Ri≈ 1 within the
confines of the disk containing most of the dust. Barranco
(2009) similarly reports effective minimum Ri values that
significantly exceed 1/4 for simulations in their well-developed
stage.

Gómez & Ostriker (2005) perform a corresponding stability
analysis in a tractable one-fluid physical model and find that
values of Ri as high as 5 could be linearly unstable. Similarly,
Barranco (2009) reports the possibility of linear instability for
values of Ri as high as 1.25. For the nonlinear models
presented in these three studies, the period of time from
initiation of a model run until the manifestation of full-fledged
nonlinear layer development ranges from 5 to 10 orbit times,
or, in our units, after tΩ= 30–60. Similar roll-up times are
reported for KH roll-up in Johansen et al. (2006).

Gómez & Ostriker (2005) and Barranco (2009) attribute to
Coriolis effects the tendency for such layers to be unstable even
when Ri> 1/4. Indeed, the classic KH roll-up analysis
involves the analysis of a 2D vertically sheared stratified fluid.
The Ri = 1/4 criterion is technically only appropriate for that
simple setup sans rotation. The corresponding incompressible
linear stability problem, in the guise of the Taylor−Goldstein
equation (e.g., Garaud & Lin 2004), is technically second order
in time. Introduction of Coriolis effects—i.e., in the way they
appear in the disk problem considered here and in the
aforementioned studies—raises the problem’s temporal order
by one, which certainly enriches the range of normal mode
behavior. As we have seen, the added complexity introduced
by rotation is also reflected in the dynamics responsible for the
SymI. Indeed, the structures of the perturbation equations for
the SymI—i.e., Equations (C2)–(C5)—are similar to the
corresponding ones for KH roll-up considered in the single-
fluid setup of Barranco (2009).

In light of these reflections, one may define a characteristic
Rossby number in terms of the amplitude and scale of the
azimuthal velocity shear via

d= W ( )v HRo 2 , 62s00

e.g., like those based on averaged fits to á ñvg xy or Vcm discussed
in Section 3.5 and Equation (28) in particular. Indeed, activity
persists for Ri> 1/4 for Ro� 1—especially throughout all
phases of development in the St = 0.04 suite of simulations
(see last column of Table 3). This should be considered in
comparison to the Rossby number of Keplerian flow,
RoK= 3/4. Thus, it seems that for problems of this sort the
critical Richardson number should in general be a function of
the Rossby number, i.e., Ric= Ric(Ro), in which the classical
stratified limit is recovered when rotation goes away,

 ¥ =( ) ( )Ri Ro 1 4. 63c

We think that this is a worthwhile program—one that was
instigated in Barranco (2009)—for future clarification in the
context of midplane-settled protoplanetary disk modeling.

Nevertheless, we think that the SymI dynamics unfolding in
the St = 0.04 simulation dominate the rotationally modified
KH roll-up likely simultaneously present. While we have not
done a detailed KH roll-up analysis to complement that done in
Barranco (2009), we can see from that study that the predicted
growth rates for a configuration that most resembles our
St = 0.04 simulations, with Hp≈ 0.01Hg, predicts growth
rates∼ 0.1Ω (see third column, third row of Figure 5 in

Barranco 2009), which is a factor of 5 times slower than what is
seen in our simulations.
We think that the SymI is a part of the explanation for why

such settled particle layers go turbulent in the simulations
conducted both here and in Gerbig et al. (2020). All of our
simulations manifest clear layer transition by 1 orbital period
and fully developed nonlinear activity by 2–2.5 orbital periods
(i.e., tΩ= 12–15), which is far shorter than the time it takes
nonaxisymmetric KH roll-up to develop according to the
abovementioned studies. Therefore, we conjecture that 3D
axisymmetric dynamics like the SymI and radial KH roll-up are
the main drivers of activity, at least for the range of St numbers
considered here. A comprehensive study in this respect should
start with a theoretical single-fluid model that parses the
relative importance of KH roll-up and the SymI in 3D
axisymmetry. This, then, should be followed with under-
standing how these dynamics play out in the presence of two-
stream dynamics including the SI. In principle, the results of
the single-fluid theory ought to be contained in the generalized
VSSI framework, particularly within its single-fluid limit
(Lin 2021).

7. A Hard-boiled Summary with Some Final Remarks

We provide summary bullet points of the major findings and
conclusions of this paper concerning small midplane sections
of protoplanetary disks not subject to an external source of
turbulence:

1. Midplane-settled particle layers impart both upon itself
(as a second fluid) and upon the gas fluid a complex
Ekman pattern of radial and azimuthal jets in the
azimuthal−radial mean. The emergent epicyclically
oscillating jet profiles are a result of the momentum
exchange between the gas and particles and come about
while the particles are settling toward the midplane.

2. The jet flows are subject to classic KH roll-up, as well as
being unstable to the so-called SymI. The SymI relies on
a mismatch in density and azimuthal velocity isolines in a
rotating atmosphere and is well known to be relevant to
mixing-layer dynamics in the ocean and frontogenesis in
the atmosphere, among other geophysical phenomena
(e.g., Hoskins 1974; Bennetts & Hoskins 1979; Thomas
et al. 2013; Stamper & Taylor 2017; Zeitlin 2018; Zhou
et al. 2022).

3. In the St = 0.2 simulations radial KH roll-up appears to
act in distinct layers that are at least 2Hp–3Hp away from
the midplane and with relatively short growth rates∼Ω.
This axisymmetric dynamic appears to be present in the
previously unpublished study of Ishitsu et al. (2009),
which has recently been examined in a new theoretical
framework in Lin (2021). These KH roll-up dynamics
play a primary role in driving instability of the midplane
region for St = 0.2, but it appears to operate together with
SymI. Nonetheless, we note its significance in that this
classical shear instability acts on layers substantially
removed from where the particles reside, contrary to
previously held assumptions or expectations.

4. The axisymmetric SymI acts primarily within 1Hp–2Hp
of the midplane. Its growth rate is relatively short at
≈1Ω–2Ω, it appears to be the other main driver of
midplane turbulence in the St = 0.2 simulations, and it
might be the primary—if not sole—driver of instability in
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the St = 0.04 runs, as the Ri numbers are near 1 in the
latter case. In the St= 0.04 case, we find that the SymI
erupts into unsteady dynamics by tΩ= 6, which is
comparable to the KH roll-up timescale in the St = 0.2
simulation, suggesting that both processes are active and
act on similar timescales. Thus, for the numerical
experiments conducted here we posit that while the
shapes of the mean flows that develop in settling layers
are St dependent, the following unstable dynamics taking
root in them are that of a single perfectly coupled fluid
responding to an St-dependent flow profile.

5. We note that the SymI is distinct from the SI, as the latter
emerges as a result of momentum exchange between
components drifting through one another, while the
former only requires strong vertical gradients in both
the perturbation azimuthal gas velocity (vg) and mean
density, together with isoline misalignment between
particle density and total azimuthal gas velocity
(VK+ vg). In essence, the SymI is effectively a single-
fluid baroclinic dynamic.

6. Furthermore, we have reason to suspect that the SymI we
observe in these layers is of the fundamentally same kind
of mechanical process that drives the VSI based on the
connection of the latter with the “sloping convection”
effect well known in geophysical fluid flows (Yellin-
Bergovoy et al. 2021).

7. The analytical theory we developed indicates that a layer
will experience strong widespread instability in the
particle layer due to the SymI once Ri< 1. The fastest-
growing mode’s growth rate is well approximated by
Equation (57), - W2 Ri 2 , where Ri is based on the
azimuthal velocity’s vertical shear. The fastest-growing
wavelength depends on integer vertical mode number
m> 0 and is given in Equation (58).

8. We believe that this finding goes toward explaining the
results reported in Gerbig et al. (2020), where they find
that settled turbulent particle layers have effective values
of Ri to be well above 1/4 but less than 1, especially for
simulations where Z> 0.01 (see, e.g., Figure 6 of Gerbig
et al. 2020). We therefore suspect that the SymI plays a
role—and a prominent one depending on St—in driving
midplane turbulence in all numerical computational
studies of the SI in otherwise laminar disk models.

9. Given the above findings, we therefore conclude that
these particle-settled midplane layers are subject to three
simultaneously acting instabilities: the abovementioned
two, and the SI. Based on the simulations with the
specific input parameters we have conducted here, we
conjecture that the SI is the weakest of the three, with the
slowest growth rates (Chen & Lin 2020; Umurhan et al.
2020). We conjecture that whenever the parameters for St
and Z (or Z/Π as proposed in Sekiya & Onishi 2018)
permit the SI with relatively fast growth rates, it does so
out of a turbulent state driven by the other two shear
instabilities.

10. We have produced spacetime diagrams of the azimuthally
averaged particle surface density field and have examined
the azimuthally averaged particle surface densities at late
times. As has been done before, in those simulations that
admit the SI and allow for its nonlinear development and
saturation (i.e., the Z= 0.01, St= 0.2 simulation), its
signature is clearly visible by the emergence and

maintenance of radially drifting coherent particle over-
densities. In the high-resolution simulation of Z= 0.01,
St= 0.04, the spacetime diagram indicates intermittent
manifestation of overdensities—that appear to form and
drift, and later dissipating only to reform and repeat this
dynamic once again. At this stage it is unclear whether
this observed intermittency is a result of the SI struggling
to emerge or it is some other collective turbulent effect
that momentarily drives particle overdensities, only to be
later destroyed (e.g., Yang et al. 2018). This requires
further analysis.

11. We have calibrated the PENCIL code used here by
simulating 3D Kolmogorov turbulence in a nonrotating
frame free of particles by forcing the simulation at
approximately 1/3 the box size. We recover the expected
ng= 5/3 inertial range power-law behavior (i.e.,
e ~ -kk g

n
, g) down to a wavenumber kN,D= kN/4, where

kN is the simulation’s Nyquist wavenumber. At length
scales smaller than 2π/kN,D the gas kinetic energy
plummets superexponentially. This therefore means that
downscale-propagating turbulent kinetic energy does not
appreciably reach scales less than 6–8 grid points in these
simulations. All subsequent analyses, including statistical
measures of underlying turbulence, are therefore here
restricted to scales larger than 2π/kN,D.

12. For the particle–gas simulations done here with box sizes
= 0.2H we conjecture that all medium-sized 2563

simulations are not statistically converged. We have
confirmed this to be the case for the St = 0.2 simulation,
as the nominal inertial range power-law slopes for both
the particle and gas kinetic energies (e ~ -kk p

n
, p and

e ~ -kk g
n

, g, respectively) steepen for the corresponding
high-resolution 5123 run. Unfortunately, due to limita-
tions of available resources, we were not able to confirm
this trend for a concomitant high-resolution run in the
St = 0.04 case.

13. We have run a corresponding series of high-resolution
(5122-element) and super-high-resolution (20482-element)
3D axisymmetric simulations for which we find that the
power-law slope of the gas kinetic energy appears to be
converged at 5122: for St = 0.2 we find ng≈
2.1± 0.05, while for St = 0.04, ng≈ 2.15± 0.05. The
inertial range particle kinetic energies appear converged
for the St= 0.04 case with np≈ 0.42± 0.05. However, the
corresponding inertial range power-law slope shows
steepening for St = 0.2 with np= 0.92± 0.1 for high
resolution and np= 1.1± 0.05 at superhigh resolution.

14. Based on this 3D axisymmetric finding, we cautiously
conjecture that the inertial range power slope reported for
the St = 0.2 high-resolution full 3D simulation might be
converged or close to convergence with ng= 1.37± 0.03
and np= 0.64± 0.04. In that case the inertial range
appears to emerge at » -k H200 g

1, corresponding to
about 1/6 the box size, which is roughly 3 particle scale
heights viewed symmetrically from the midplane. What
these inertial range behaviors say about the nature of
turbulent kinetic energy cascade remains to be
understood.

Much of the findings reported in this study owe their
illumination to the earlier axisymmetric study of Ishitsu et al.
(2009). It therefore strongly suggests that axisymmetric
instabilities primarily operate in midplane-settled particle layers
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in gaseous protoplanetary disks not subject to external sources
of turbulence and where the SI is at best only weakly operative.
The recent results of Gerbig et al. (2020) appear to confirm that
such layers are sufficiently active even though the SI is weakly
operating. If such weakly turbulent disk conditions are
realizable in realistic protoplanetary disk models, then it
remains a challenge to understand how low St number
conditions can lead to planetesimal formation. Indeed, global
evolution modeling of particle growth in turbulent disks shows
that disks maintain low St particles for weak to moderate levels
of external turbulence during the first million years after disk
formation (e.g., Estrada et al. 2016; Sengupta et al. 2019). If
such externally driven turbulence scenarios shut off for some
reason, then such low St number particles would settle to the
midplane, then to be subjected to the particle-shear-driven
turbulent state (discussed thus far), which could conceivably
further act to thwart planetesimal accumulation. We are
therefore swayed by the concerns stated in the conclusions of
Ishitsu et al. (2009), where they write, “Thus, even though the
global turbulence is weak in the dead zone, the turbulence due
to the instability described in this paper may play the role of
avoiding planetesimal formation and floating dust in the disk.”
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Appendix A
Reformulating Particle Fluid Evolution Equations in Terms

of μ

Our aim is to rewrite the particle fluid evolution
Equations (3)–(4) in terms of the variable m rºˆ Ui p pi, i.e.,
in terms of the full velocity field including the background
Keplerian flow. We note that within this appendix we use the
usual Einstein index convention and, as such, the dummy
indices i and j used here are not to be confused with the particle
labeling indices i or with the grid labeling indices j used
extensively in Section. 2.1. Leaving the right-hand side of
Equation (4) in terms of a forcing function Fi, we input this
definition into the total momentum conservation and manip-
ulate the result accordingly. The purpose of this procedure is to
have the equations appear in terms of conjugate symmetric
variables in Fourier space that make assessing the energy
contained in the particle component straightforward. We will
take the result we develop in terms of r Up pi and then restore
the definition Upi= VKδi2+ upi to recover the form we seek in
terms of the perturbation velocities and m rº ui p pi, starting

with

r r r¶ + ¶ + W = ( )U U U U F2 , A1t p pi j p pj pi ijm p j pm pi

in which Ωi= δi3Ω0 and where òijk is the Levi–Civita symbol.
We have after rewriting the above in terms of m̂i that

r m r m r m m r m= ¶ + ¶ + ¶ + W-ˆ ˆ ˆ ˆ ˆ
( )
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1
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We similarly reexpress the dust continuity equation as

r m r r m¶ + ¶ + ¶ =ˆ ˆ ( )0. A3t p j j p p j j
1 2 1 2

Replacing the time derivative of ρp in Equation (A2) by the
above expression, followed by factoring out rp

1 2, reveals
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We may rewrite the third term on the right-hand side of the
above equation through a number of derivative-by-parts
maneuvers to find
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while
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1 2

Putting these all together yields a reworked momentum
evolution equation

m m m m r¶ + ¶ + ¶ + W =ˆ ˆ ˆ ˆ ( )/U U F
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Finally, making the replacements m m d r +ˆ Vi i i p2 K and
Upi→ upj+ δi2VK, we have
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t i pj j i y i i j j

t p p j pj px x p i

ijm j m p i i p

K

K K K 2

0 K 1

which, after making use of Equation (A3), becomes finally

m m m m m

r r r d

r d r

¶ + ¶ + ¶ + ¶ + W

+ ¶ - ¶ - ¶

- W =

( )
( )

u V u

u V V u V

V F

1
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2

2 . A8
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px x p pj j p y p i

p i i p

K

K K K
2

2
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Energy statistics on the particle fluid may be constructed based
on either of the two formulations found in Equation (A7) or
Equation (A8) depending on the context of interest, whether it
be the total energies (the former) or the perturbation energies
(the latter). In particular, these expressions will be Fourier
transformed (e.g., the transform of μi(x) = m̃ ( )kk i, ), and partial
energies and their scale-to-scale transfer can be assessed within
the usual prescribed narrow wavenumber bins.

Appendix B
Time-dependent Settling Solutions

We consider solutions to the horizontally uniform steady
settling solutions of the system. We assume that the gas density
is constant and write it here as rg, and we assume that the gas
field has no vertical velocity component. We use capital letters
to designate these solutions, e.g., for the horizontal gas velocity
we have ug=Ug(z, t), and so forth for the other variables. Since
by assumption Wg = 0, the evolution equations for the gas are

e
¶ + W = -P -

W
-( ) ( )U V U U2

St
, B1t g g r g p0

0

e
¶ - W = -

W
-( ) ( )V U V V

1
2 St

, B2t g g g p0
0

where the particle-to-gas ratio, written here as e r r= ( )z t,p g ,
differs from its general definition in the text (i.e., ò), since ρg is
also a variable. In this way ε is a proxy for the particle density
ρp. For the particle component, the particle density continuity
equation for the particle density is

e e¶ + ¶ =( ) ( )W 0, B3t z p

while for the particle momentum equations we have

¶ + ¶ + W = -P -
W

-( ) ( )U W U V U U2
St

, B4t p p z p p r p g0
0

¶ + ¶ - W = -
W

-( ) ( )V W V U V V
1
2 St

, B5t p p z p p p g0
0

¶ + ¶ = -
W

- W ( )W W W W z
St

. B6t p p z p p
0

0
2

We begin by analyzing Equation (B6) by noting that
Wp=−βΩ0z is a solution in which β is the solution of the
time evolution equation,

⎛⎝ ⎞⎠b b
b

¶ = W - + ( )
St

1 . B7t 0
2

Solutions to this equation depend on whether or not St� 1/2
(Lin 2021). We define

b
d

d=


º - ( )1
2St

; 1 4St . B82

When St� 1/2, the time-asymptotic stable settling solution
is given by β= β− (Lin 2021).11 When St> 1/2, the solution
is given by

⎡⎣⎢ ⎛⎝ ⎞⎠⎤⎦⎥b d
d d p

= +
W W∣ ∣ ∣ ∣ ∣ ∣ ( )t t1

2St
1 tan

2St
,

2St 2
, B90 0

while noting here that we will not consider these solutions any
further in this study. With the purely linear dependence on z for
Wp, the solution to Equation (B3) has a Gaussian form

⎛⎝⎜ ⎞⎠⎟e e= -( ) ( )t
z

H
exp

2
, B10

p
0

2

2

in which

e
b= - = ( )d

dt

d H

dt
ln ln

. B11p0

The proof of this solution follows by inserting the solution
from Equation (B10) together with Wp=− βΩ0z into
Equation (B3), collecting the resulting expression into like
powers of z followed by setting their coefficients to zero, which
produces the time dependencies on ε0 and Hp found in
Equation (B11). We note that the total vertically integrated
mass is conserved, as the product ò r pr e=

-¥

¥ ( ) ·z t dz H, 2d g p0

is always time-independent constant for ρg constant. Because
we will restrict our attention to problems with St< 1/2, in all
of our subsequent analyses we will assume that β achieves its
time-asymptotic value β−, in which case

e e= =b bW - W ( )e H H e, . B12t
p p

t
0 00 00 0

The constant coefficients ε00 and Hp0 relate to one another on
the assumption that the vertically integrated particle density

pe rS = ( )H2 0p p g00 0 is constant, in which case

⎜ ⎟⎛⎝ ⎞⎠e = º
S

S
( )Z

H

H
Z, , B13g

p

p

g
00

0

where Z is the local model disk metallicity (see text). Thus,
solutions to the remaining equation set are defined by the
parameters Z, Hp0, and St.
The solutions for the remaining flow variables, Ug, Up, Vg,

Vp, may be determined from solving Equations (B1)–(B2) and
(B4)–(B5) after inserting for ò the solution for ε found in
Equation (B10), as well as replacing Wp with− βΩz, where
β= β−, (Equation (B8)). Since the problem involves the
solution of a settling layer, it proves beneficial to go into a
spatial coordinate frame that follows this descent as the particle
scale height Hp(t) shrinks over time. For example,

⎛⎝⎜ ⎞⎠⎟j j = -( ) ( ) ( )U z t U t
z

H
, , ; exp

2
, B14g g

p

2

2

and similarly for Up, Vg, Vp. j is now an independent variable
that varies between 0 and 1. In these new coordinates, partial
derivatives are replaced according to their coordinate trans-
formed forms

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
j

j j

j
bj j

¶
¶
¶

¶ = - ¶

¶ ¶ +
¶
¶

¶ = ¶ - ¶

j j

j j

⟶

⟶ ( ) ( )

z z
z

t

2 ln ,

2 ln . B15

z

t t t
11 For St � 1/2 the solution β = β+ corresponds to exponentially growing
perturbations.
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In these new coordinates Equations (B1)–(B2) and (B4)–(B5)
are now reexpressed as

e j¶ - ¶ - W = -P -
W

-j j ( )
( )

U W U V U U2
St

,

B16

t g g g r g p0
0

0

e
j¶ - ¶ + W =

W
-j j ( ) ( ) ( )V W V U V V1 2

St
, B17t g g g g p0

0 0

¶ - W =
W

-( ) ( )U V U U2
St

, B18t p p p g0
0

¶ + W =
W

-( ) ( ) ( )V U V V1 2
St

, B19t p p p g0
0

where the speed bj jº -jW 2 ln is always greater than zero.
Note how in this transformed coordinate system the vertical
advection by Wp of the horizontal particle velocities Up, Vp is
now transformed into an effective upward advection of the
horizontal gas velocities, with no more vertical advection in the
particle component. This makes sense because we have moved
into a reference frame that follows the evolving particle scale
height. The solutions to the above set of equations are sought
subject to the condition that ∂zUg|z=0= ∂zVg|z=0= 0. In all
cases we have determined, these gas velocity conditions
automatically impose the same conditions at the midplane for
Up, Vp (i.e., at j= 1). We use the convention described in
Umurhan et al. (2020) and write Πr=− 2δcsΩ0, where δ is the
local disk opening angle. In the limit as z→∞we make sure
that the solution behaves according to the Nakagawa solutions
in the limit ò→ 0 (Nakagawa et al. 1986; Youdin &
Goodman 2005; Umurhan et al. 2020; Lin 2021), i.e.,

j j d

j j

 =  = -

 =-  = -d d
+ +

( ) ( )
( ) ( ) ( )

U V c

V U

0 0, 0 ,

0 , 0 . B20

g g s

p
c

p
c

1 St
2St

1 St
s s

2 2

Evidently, all velocity variables are scaled by δcs. Henceforth
we assume δ= 0.05, noting that this choice has little influence
on the qualitative solutions we demonstrate forthwith.

We note that a quick eigenvalue analysis of
Equations (B18)–(B19) by setting the forcing terms Ug,
Vp→ 0 shows that the eigenvalues, σ, are decaying epicyclic
oscillations: σ=± iΩ0−Ω/St. Thus, drag forcing by the gas
induces temporally decaying epicyclic motions in the particle
fluid. The memory of the forcing decays away on a timescale
St/Ω0. A cursory inspection of Equations (B16)–(B17)
indicates that a qualitatively similar response occurs in the
gas fluid owing to the drag forcing by the particles, except that
the decay timescales depend on the local value of ε, which is a
function of height.

Numerical Method. We use a third-order-correct upwind
differencing scheme to stably calculate the advection terms in
Equations (B16)–(B17). Given the sign of the derivative terms,
this amounts to a forward differencing scheme on a grid
0� ji� 1. To better capture the decaying behavior of the
solutions as j→ 0, we further move into a stretched coordinate
system in which

⎜ ⎟⎛⎝ ⎞⎠j
z

= - ( )exp 1
1

, B21i
i

where ζi are points on a uniform grid between 0 and 1,
endpoints included. We also note that

⎜ ⎟⎛⎝ ⎞⎠z
j j j

¶
¶

=
-

( )1 1
1 log

, B22
2

which is used in the actual differencing scheme described
further below.
We discretize in time with time step Δt, where the time at

the nth time step is given by tn= nΔt. All dependent variables
at time step n are denoted with superscripts “n.” Spatial values
of the dependent variables are designated by the subscript “i,”
where i runs from 1 to N, the total number of grid points in the
domain. We implement an exponential time integrator common
in varied applied mathematical studies (Cox &Matthews 2002),
including some astrophysical applications (e.g., Umurhan &
Regev 2004; Umurhan et al. 2007). Thus, for the particle
component the evolution follows

⎛⎝ ⎞⎠
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The evolution of gas velocity quantities follows
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The derivative stencil is given by a third-order forward
differencing scheme in j. Because we go into the stretched
coordinates defined in Equations (B21)–(B22), this derivative
operation is written out as

⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠
z
j

¶
¶

- +

- +

j +

+ +

( ) ⟶

( )

D U U U

U U

11
6

3

3
2

1
3

, B29

g
n

i
i

g i
n

g i
n

g i
n

g i
n

, , 1

, 2 , 3

and similarly for j( )D Vg
n

i. All numerical solutions for Ug, Vg,
Up, Vp are initiated with the spatially uniform solutions found
in Equation (B20). In addition, all solutions displayed in the
text were derived on a uniform grid 0� ζi� 1 with either
N= 512 or N= 1024 points (the latter usually to check for
convergence), and all time steps were in the range of
0.01St<Δt< 0.025St. And finally, e e b=( ) ( )t texpn n0 00 .

Figures B1 and 20 display a sample set of generated
solutions of the horizontal velocities and associated vorticities.
A detailed discussion of these solutions may be found in the
main body of the text. Note that, by Howard’s semicircle
theorem, the magnitude of the azimuthal vorticity denotes
upper bounds of the growth rates of shear-induced instabilities
when, of course, the Richardson criterion is met.

Appendix C
A Motivated Single-fluid Model Problem for the Disk

Analog of the Symmetric Instability

We consider the linear normal mode response of a simplified
single-fluid “toy” problem that exemplifies the essential
processes we believe to be responsible for the layer overturn
during the bounce phase of the simulations. As observed in the
simulations, settling dust imparts momentum on the gas with a
vertical dependence. The resulting collective motion of the gas
and dust shows a net vertical variation in the azimuthal flow in
the center-of-mass frame, as depicted in Figure 22 and shown
in Figures 20 and B1. In the terminal velocity and zero
stopping time limit of the recast two-fluid equations, the
momentum exchange forcing will manifest as an effective
nonzero vertically varying external force acting in both the
radial and azimuthal directions. In the following examination
we consider only the radial component of this force, fr(z), at
present, and we say that it is not dynamically active. This
immediately leads to a new effective steady-state azimuthal
velocity ṽ0 that adjusts to the force, i.e.,

- W =( ) ( ) ( )v z f z2 ; C1r0 0

the analysis considered henceforth assumes single-fluid
perturbations atop this basic state.

Figure B1. Like Figure 20; settling solutions for St = 0.04, Z = 0.01, and initial particle scale height Hp0 = 0.05Hg, at three selected times.

39

The Astrophysical Journal, 942:74 (43pp), 2023 January 10 Sengupta & Umurhan



We view the instability as being primarily axisymmetric,
driven by the shear in that part of the mean azimuthal flow that
departs from the basic Keplerian (=− (3/2)Ω0x), which is
driven by the background pressure gradient and the particle
stream, defined in the text as ˜ ( )v z0 . We treat buoyancy effects
driven by the particle layer in the Boussinesq approximation,
namely, that density fluctuations—whether they are driven by
advective motions or are a result of weak compressibility
dependencies on temperature—are dynamically significant
only when coupled to the external gravitational field (Spiegel
& Veronis 1960). The background density field of the model
single fluid is represented by ρ0(z). It is also assumed that the
gas fluid is incompressible. Thus, the simple model for the
perturbation quantities ¢ ¢ ¢ D¢u v w, , , is

r¶ ¢ - W ¢ = - ¶ ¢( ) ( )u v p2 1 , C2t x0 00

¶ ¢ + W ¢ + ¢¶ =( ) ˜ ( )v u w v1 2 0, C3t z0 0

r¶ ¢ = - ¶ ¢ - D¢( ) ( ) ( )w p g z1 , C4t z00

r r¶ D¢ + ¢ ¶ =- ( )w 0. C5t z0
1

0

where ρ00 is taken as a reference constant scale measure of the
density. These equations are supplemented with the statement
of incompressiblity,

¶ ¢ + ¶ ¢ = ( )u w 0. C6x z

The definition found in Equation (C6) motivates the definition
of a stream function (ψ) and vorticity (w¢) where

y y

w y

¢ = ¶ ¢ ¢ = -¶ ¢

¢ º ¶ ¢ - ¶ ¢ = ¶ + ¶ ¢( ) ( )
u w

u w

, ,

. C7
z x

z x x z
2 2

The vertical component of gravity is taken to be
e
e

= -
+

W( ) ( )g z z
1

, C80

0
0
2

where we have included the factor ε0/(1+ ε0), where ε0 is the
midplane value of ò, to represent an effective reduced gravity in
a single-fluid formulation of the gas−particle fluid (e.g.,
Chiang 2008). We note that, per our observations in the
simulations, the mean gas density varies little and its dynamics
are largely incompressible, especially on the scales on which
the particles cluster about the midplane. We therefore represent
the mean density layer profile and its gradient via

r r r¶ = ¶ = -- ( )z

H
ln . C9z z

p
0

1
0 0 2

The set of Equations (C2)–(C9) may be viewed as the
linearized perturbations of the dual terminal velocity (i.e.,
“strong-drag/small-grain”) and isothermal limit of the one-
fluid equivalent representation of a two-fluid system, as
motivated by both Laibe & Price (2014) and Lin & Youdin
(2017). We note that this limit contains no two-stream effects.

We rewrite all perturbation quantities as normal modes, e.g.,
y y w¢  -( ) [ ]z ikx i texpk 0 , and similarly for all the other
quantities. We derive an equation for the perturbation vorticity
by operating on Equation (C2) by ∂z and subtracting from it the
result of operating on Equation (C4) by−∂x. After inserting
the assumed normal mode form into the result, as well as into
Equations (C3) and (C5), we find the following three equations:

w y- ¶ - - W ¶ = D( ) ( ) ( )i k v ikg z2 , C10z k z k k0
2 2

0

w y y- - ¶ + W ¶ =˜ ( ) ( )i v ik v 2 0, C11k k z z k0 0 0

w y r- D - ¶ =· ( )i ik ln 0. C12k k z0 0

The above three equations may be further combined into a
single equation for ψk:

y w y y

w y y r

= W - ¶ + W ¶ ¶

+ + ¶ =

( ) ( ˜ )
( ) ( )

ik v

k k g

2

ln 0. C13
k z k z k z

k k z

0
2

0
2 2

0 0

0
2 2 2

0

Our aim is to assess the growth rate, Im(ω0), and frequency
response, Re(ω0), to perturbations to Equation (C13) subject to
the condition that all perturbation quantities (i.e., ψk, ∂zψk)
decay as z→±∞ . To facilitate analytical treatment, we
consider a model for the background functions that permit us to
seek solutions of Equation (C13) in terms of parabolic cylinder
functions  z( )m . We therefore adopt the following:

⎜ ⎟⎛⎝ ⎞⎠
r

e
e

d
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2
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2

2 0 cm,

00

2

2

where vcm,∞ is the asymptotic constant value far from the
particle layer and Hs is the scale factor associated with the
vertical variation of the azimuthal perturbation flow field as
uncovered and discussed in the text. Typically it is slightly
larger than the particle scale height Hp, but for our purposes
here it is immaterial to the final outcome below. It is important
that the variation in v be parabolic for what follows. Thus,
Equation (C13) may be rewritten in terms of a standard
parabolic cylinder equation form if we introduce

y
d
w

= Y = -
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- W
-

( )
( )e a
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;

2
, C15k
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4 00 0
2
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2

and the vertically stretched coordinate bz= ˜z , where the scale
b̃ , satisfies
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We note that b̃ may be complex and that we have reexpressed
constants in terms of the azimuthal form of the Richardson
number, Rif defined in Equation (24), i.e.,
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Equation (C13) now simplifies into the canonical form in terms
of the nondimensional independent variable ζ,⎡⎣⎢ ⎤⎦⎥w g

w
b z¶ Y +

- W
W -

- Y =z
˜ ( )k i 1

4
0. C18k k

2 0
2 2

0

0
2

0
2

2 2

The solutions to the above are the standard parabolic cylinder
functions  b( ˜ )zm (Abramowitz & Stegun 1972), provided
certain conditions ensuring that either ψk rapidly decays as
z→±∞ or the quantization condition is satisfied: (i) first, the
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quantization condition is

w g
w

b
- W

W -
= +˜ ( )k i

m
1
2

, C190
2 2

0

0
2

0
2

2

which must be satisfied for nonnegative integer values of m; (ii)
the asymptotic behavior of ψk for |z| large is given by
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which means that we require that
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The quantization condition Equation (C19), together with
Equation (C16), straightforwardly leads to solutions for w0

2

given by
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We have deliberately rewritten the above in order to express all
vertical velocity gradient information in terms of Ri.

The above form for w0
2 satisfies the condition that solutions

exhibit Gaussian decay as |z|→∞. (The algebraic procedure
also admits solutions for w0

2 where the sign of the first (square
root) term on the right-hand side of Equation (C22) is negative.
However, we find that these solutions violate the large |z|
asymptotic decay criterion in both the Ri→∞ and Ri→ 0
limits. There still remains the possibility that a second branch
of solutions associated with this possible root might be viable
in some intermediate Ri limit, but this is not yet determined at
this stage.) The solutions are characterized by three parameters:
the vertical node m (through ν); the parameter μ, which
contains information about the stratification and the horizontal
wavenumber; and Ri, containing the relative measure of shear
to stratification.

We note several features. Most importantly, we see that
ω0= 0 solutions exist for specific values of Ri. Setting ω0 to
zero in both Equations (C16) and (C19) reveals that this is
possible if both of the following relationships are simulta-
neously satisfied:

b g b g
n

- = = -˜ ( ) ˜ ( )iRi 1
1
4

,
2

. C244 2 2

Eliminating b̃ in both expressions shows that this is possible
only when Ri=Ric, where

n
º - ( )Ri 1

1
. C25c 2

This condition signifies a strong change in the character of
these solutions. Furthermore, a series expansion of

Equation (C22) for 0< μ= 1 shows

⎡⎣ ⎤⎦w m
n

m
W

» - - + ( ) ( )i
2
Ri

1
1 Ri , C260

2

0
2

which is written by taking into account the branch cut at Ri= 1
in the first square root term on the right-hand side of
Equation (C22). The sign of the square bracketed term changes
sign when Ri crosses Ric. In the other limit where μ→∞we
find

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠w
n m mW

» - + + ( )i1
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1
1 2

Ri
1

. C27c0
2

0
2

Once again, what stands out is the gross change in character
when Ri passes Ric. The large μ limit (high m or small
horizontal wavenumbers k) shows that the leading-order
behavior of ω0 is that of weakly growing oscillations with
growth rates  m-( )1 2 when Ri>Ric to very strong ( )1
widespread growth when Ri<Ric. While Ri= 1 designates an
important boundary indicating a stark transition in character,
we note that all normal modes show growth for all noninfinite
values of Ri.
The limiting form for when the shear is nearly absent

recovers at leading order the known oscillatory behavior of disk
inertia−gravity oscillations. A series expansion of
Equation (C22) in inverse powers of Ri reveals that


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If we write ω0= ω00+ iωi,0+L and assume that ωi,0 scales
like Ri−1/2, then to leading order we find
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The leading-order expression for b̃2 (denoted by b00
2 ) is

given as

⎜ ⎟⎛⎝ ⎞⎠b
n e

m m m m= + + - +
˜

[ ( ( ) )] ( )
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2
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We observe that the growth rate ω0,i has a μ dependence,
predicting growth for all values of μ, with a corresponding
maximum value at m mº = 2 3max . In this large Ri limit, we
define the maximum growth rate w w mº ( )im max and find that it
is given by

⎜ ⎟⎛⎝ ⎞⎠w d
W

=
+

+ W
=

+
e

( ) ( )
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m

v
H m

1

2 2 2 1 2
1 Ri

2 2 2 1
. C31m
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1

00

0
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We can similarly identify the fastest-growing radial wavenum-
ber based on the definition of μ found in Equation (C23). We
define a corresponding radial wavelength for the fastest-
growing mode (λm), related to m m= =( )k km max via
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km≡ 2π/λm. This leads to

l p
e

=
+

+ ( )
H m

2 3
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1
. C32m
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Finally, the vertical scale characterizing variations in the
parabolic cylinder function is set by β, and we estimate its
value at km based on βʼs leading-order behavior found in
Equation (C30). We therefore say b̃max where

⎜ ⎟⎛⎝ ⎞⎠ ⎡⎣⎢ ⎤⎦⎥b b m m
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6 3
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C33

m m p00

1 4
0

0

1 2
 

In order to help generate an analytic solution to discuss the
physical content of the simulations we have developed in the
text, we have chosen a vertical profile for v that extends
parabolically to infinity. However, we know that the mean
time-instantaneous profiles found in Section 5.1 approach
constant profiles in that limit but show a parabolic profile in the
region around the midplane. Furthermore, since the function
 b( )zm shows Gaussian decay on a length scale defined by β,
it is reasonable to suppose that these analytical solutions are
representative of the more realistic circumstances found in
Section 5.1 so long as the decay scale is less than the particle
scale height, i.e., β<Hp. Additionally, the first few zeros of
 z( )m for given values of m occur for values of ζ= ζ0i< 1.
This feature ensures that the modes have multiple nodes across
the vertical extent. Based on this reasoning, we expect that the
fastest growing of the analytic modes we have developed here
are representative so long as b <˜ 1m . Thus, by Equation (C33)
we require

⎜ ⎟⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠e
e
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1
6 3
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1, C34
1 4

0
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and this expression places the following constraint on m:

⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠e
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+ >
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2

1
6 3

1
, C35
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0
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in order to plausibly apply these approximate—though
analytically derived—solutions to interpret the flow transitions
considered in this study.

Let± ζm,i denote the ith zero of z( )m . For each order m there
are m such zeros that are also those of the Hermite poly-
nomials  z( )m . The values of these are z =  2 22, 1 ,
ζ3,i={0,±1}≈ 0, ± 1.22474, ζ4,i=±1,±2}≈± 0.52464, ± 1.65068,
ζ4,i={0,±1,±2}≈ 0, ± 0.95857, ± 2.02018, and so on (Abramo-
witz & Stegun 1972). Because of the vertical scaling associated
with the fastest-growing mode, βm defined in Equation (C33),
the distance between successive nodes for solution index m is
therefore

b z zD = - -
˜ ( ) ( )z . C36m i m i m i, m , , 1

Due to symmetry considerations, it is enough to quantify Δzm,i
by restricting consideration to values of 1� i�m/2 for even m
and 1� i� (m− 1)/2 for odd m.

Appendix D
Hyperdiffusion and Hyperviscosity Scheme in

PENCIL Code

The flux of viscous momentum can be cast to be proportional
to the rate-of-strain tensor, which can be written as

⎜ ⎟⎛⎝ ⎞⎠d=
¶
¶

+
¶
¶

-  · ( )uS
u
x

u
x

1
2

1
3

, D1mn
m

n

n

m
mn g

which, in the incompressible limit, along with constant
dynamical viscosity μ= νρ, translates to a viscous acceleration
as ν∇2ug, where ν is the kinematic viscosity. Note that, in
Equation (D1), p and q are used as dummy indices in order to
denote the gas velocity components. The viscous acceleration
fvisc, in its most general form can be written as

r
rn=  · [ ] ( )Sf

1
2 . D2visc

With the PENCIL code, however, we are using a higher-order
(sixth) hyperdissipation, and hence the rate-of-strain tensor gets
replaced by a higher-order version as follows:

r
rn=  · [ ] ( )( ) ( )Sf

1
2 . D3n

n
visc

hyper

Here n= 3, which corresponds to the sixth-order hyperdissipa-
tion. With this, a simple hyperviscosity is applied in the
following form:⎧⎨⎩

n m

n r n
=

 =

 +  =[ · ] ( )( )
u

u S
f

, if constant;

2 ln , if constant.
D4

g

g g
visc

3
6

3
6 3

The spectral range over which the hyperviscosity operates is
small, and it is used only as a high-frequency filter in the
numerical setup. Moreover, given its artificial nature, the strict
requirement of momentum conservation is dropped (Lyra et al.
2017; see also the PENCIL code manual). It is important to
note that the simplified expression from Equation (D4) can be
written as the divergence of a rate-of-strain tensor as

=
¶
¶

( )( )S
u

x
. D5mn

m

n

3
5

5

For more details on the hyperdissipation scheme used in the
code, see the PENCIL code manual and Lyra et al. (2017).
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