A QUANTITATIVE FRAMEWORK FOR LAYERED MULTIRATE CONTROL

Toward a Theory of
Gontrol Architecture

NIKOLAI MATNI®, AARON D. AMES®, and JOHN C. DOYLE

omplex engineered and natural control sys-
tems, such as those used in robotics, the
power grid, human sensorimotor control,
and the Internet, are characterized by need-
ing to operate robustly and reliably across
many spatiotemporal scales despite being implemented
using highly constrained hardware and software. Re-
markably, a universal design pattern centered around
layered control architectures (LCAs) has emerged to address
these challenges across vastly different domains. These
LCAs are the central object of study of this article
(see “Summary”).

INTRODUCTION

Before proposing a broad definition of LCAs, we
consider a familiar representative example from aero-
space engineering, namely, the widely used guid-
ance, navigation, and control (GNC) approach to
aircraft control. Here, the overall task of flying an
aircraft from an initial location to a goal location
is decomposed into tractable subproblems, as
illustrated in Figure 1, taken from the Apollo mis-
sion documentation [1]:

» Guidance determines a desired trajectory from
the aircraft’s current location to a goal location,
in addition to nominal control actions, such as
changes in forward and rotational velocity, for
following the desired trajectory.

>

v

Navigation is tasked with estimating the air-
craft’s state from onboard sensors, such as
accelerometers and gyroscopes, and external
signals, such as GPS.

»

v

Control applies forces directly to the aircraft
via actuators, for example, steering, thrust
and aileron deflection, in order to execute the

Digital Object Identifier 10.1109/MCS.2024.3382388
Date of current version: 24 May 2024

PHOTO CREDIT: CALTECH

52 IEEE CONTROL SYSTEMS » JUNE 2024 1066-033X/24©2024|EEE
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

trajectory planned by the guidance, all while main-
taining aircraft stability.

We highlight some salient features of the GNC approach
that we aim to capture in our broader theory of LCAs. The
first and most important aspect is that an overall complex
task (aircraft control) is decomposed into modular subtasks
(GNC) of different complexity that operate at different fre-
quencies over different spatiotemporal resolutions. These
control modules, or as we call them, layers, are allowed to
interact but only via well-defined interfaces. For example,
the control layer must operate at a high frequency, as it is
tasked with stabilizing the unstable aircraft dynamics
about a nominal trajectory in the face of an uncertain and
dynamic environment and hence is limited to simple feed-
back laws that can be implemented in real time [for exam-
ple, proportional derivative (PD) control or a linear quadratic
regulator (LQR)]. In contrast, the guidance layer, which must
contend with vast spatiotemporal scales in planning an air-
craft’s route, typically issues commands at a much slower
frequency than the control layer, as it must solve a longer-
horizon trajectory planning problem. Despite this modu-
larization, the layers are nevertheless coupled via the
exchange of a reference trajectory from guidance to control
and a tracking error from control to guidance. Enabling
both guidance and control is the navigation layer, which is
responsible for aircraft state estimation.

Summary
This article focuses on the need for a rigorous theory
of LCAs for complex engineered and natural systems,
such as power systems, communication networks, autono-
mous robotics, bacteria, and human sensorimotor control.
All deliver extraordinary capabilities, but they lack a coher-
ent theory of analysis and design, partly due to the diverse
domains across which LCAs can be found. In contrast,
there is a core universal set of control concepts and theory
that applies very broadly and accommodates necessary
domain-specific specializations. However, control meth-
ods are typically used only to design algorithms in compo-
nents within a larger system designed by others, typically
with minimal or no theory. This points toward a need for
natural but large extensions of robust performance, from
control to the full decision and control stack. It is encour-
aging that the successes of extant architectures, from
bacteria to the Internet, are due to strikingly universal
mechanisms and design patterns. This is largely due to
convergent evolution by natural selection and not intelli-
gent design, particularly when compared with the sophis-
ticated design of components. Our aim here is to describe
the universals of architecture and sketch tentative paths
toward a useful design theory.

ENVIRONMENTAL FORCES VEHICLE
STRUCTURE
CONTROL CONTROL FORCE
ACTUATOR é';m& GENERATING 'ég:??m
SYSTEM FORCES SYSTEM TORGLES N = VEHICLE MOTION
M. R Z =
cgy \ =
2y
A :
CONTROL -
ACTUATION B ——— e
COMMANDS 3 VEnCUE
_ STAMUZATONIOOP) nioeacx
—— — QuANTITES
o — — GLOMETRICAL QUANTITIES
CONTROL INFORMATION SYSTEM ({mﬂm\.
COUMING INFORMATION ACCELERATION, FTC. /
SYSTEM PROCESSING CONTROL
CONTIO SYSTEM INFORMATION
COMMANDS 3IONALS
.9
3299]
INVIRCHMENTAL QUANTITHIS —_ — —_— _9_‘
MANEUVER ——T -
COumAE ' GUIDANCE LOGP
GUIDANCE AND NAVIGATION SYSTEM vouaie
COURLING COMPUTER GUIDANCE SENSOR fee0eAx
SYSTEM SYSTEM AND SYSTEM Suliies
GUDANCE NAVIGATION
COMMMNTS INFORMATION
9% -9 SIGNAS
\ ot <]
[ENVIIONMENTAL INFORMADION] ‘ (’5 chepg ity
IYITM APOIMATION |

POGIANS -

INVIRONMENTAL QUANTITRS

FIGURE 1 The GNC architecture used for Apollo missions (taken from [1]).

JUNE 2024 <« IEEE CONTROL SYSTEMS 53
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Despite the surprising universality of LCAs, they have yet to be a central
object of study within the systems and controls community.

A Model LCA

This article seeks to initiate a quantitative study of LCAs,
such as the one described previously. To ground our dis-
cussion of LCAs, we begin with the “model LCA” in
Figure 2, which is composed of three layers, which
broadly decompose across timescales and complexity/
flexibility (by convention, we place slower, more com-
plex layers “higher” in the stack and faster, more rigid
layers “lower”):

» Decision making: The top layer operates at the slowest
frequency of the architecture but is tasked with making
complex logical decisions. Primarily the domain of
semantic logic and other discrete decision-making
tools, the decision-making layer establishes mission
objectives (for example, which locations to visit via
goal waypoints) and other system actions (for example,
delivering a payload and exchanging or collecting
information). In the context of GNC, this would be a
higher “mission layer” that specifies the goal location.

>

M

Trajectory planning: The intermediate layer, sitting
between decision making and feedback control,
operates at a moderate frequency to generate trajecto-
ries that accomplish the mission objectives specified
by the decision-making layer. Typical techniques
employed at this layer include optimization-based
[for example, model predictive control (MPC) and
mixed-integer programming] and sampling-based
(for example, rapidly exploring random tree search)
methods. The generated trajectories, which are con-
strained to satisfy the mission objectives specified by
the decision-making layer, are transmitted to the
feedback control layer. This is precisely the guidance
layer in GNC.

Flexible
and Slow

Semantic Logic

Discrete Planning e bl Ll

Optimization
Sampling Methods
Continuous Planning

Trajectory Planning Intermediate

PID Control
CLFs/CBFs

Rigid and

Feedback Control Real Time

FIGURE 2 LCAs are ubiquitous across natural and engineered
systems. We seek to initiate a quantitative study of LCAs based
on the illustrated three-layer abstraction. PID: proportional-
integral-derivative; CLF: control Lyapunov function; CBF: control
barrier function.

54 |EEE CONTROL SYSTEMS » JUNE 2024

» Feedback control: The bottom layer operates at the
fastest frequency of the architecture and is tasked
with tracking the trajectories generated by the plan-
ning layer. This layer is the home of feedback con-
trol, and while offline computation to synthesize
control gains may be sophisticated and expensive,
online evaluation is typically constrained to be
simple, fast, and rigid. In addition to ensuring that
the system tracks the desired trajectory, feedback
control also provides robustness to high-frequency
and dynamic disturbance processes. This is the con-
trol layer in GNC.

A small note on terminology is in order before proceed-
ing. Although the word feedback appears only in the bottom
layer, it should be understood that some degree of feed-
back, either implicit or explicit, is present at all layers. For
example, if trajectory planning is implemented using MPC,
implicit feedback is provided by measuring the current
system state. Thus, we ask the reader to interpret the use of
the word feedback as indicating real-time explicit feedback
control unless described otherwise.

This architectural pattern or similar ones, which
should be familiar to control theorists, appear consistently
and broadly across domains despite both extreme diver-
sity in the systems on which they are deployed and the
remarkable advances in sensing, actuation, and computa-
tion that have occurred over the past decades. Despite the
surprising universality of LCAs, they have yet to be a cen-
tral object of study within the systems and controls com-
munity. This article is motivated by this current gap in
the literature.

A Brief Overview of Control Architecture Research

While we defer more detailed literature reviews to appro-
priate sections, we pause to highlight that this article builds
upon and is inspired by a rich literature, both academic and
industrial, on process control and automation architecture.
Work providing a qualitative perspective about control
architectures can be found in [2] and [3]. While these works
place a heavier emphasis on industrial applications and
implementations, such as the use of programmable logic
controllers to implement distributed control systems, they
also touch upon topics core to this article. An interesting
observation is that both papers acknowledge the impor-
tance of control architecture while also recognizing its
mercurial and difficult-to-define nature. Although different
terminology is used, a layered and multirate perspective is
provided in both. Indeed, using MPC for planning and

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

simple feedback control (PD control) for tracking is identi-
fied as a common design pattern and is one that we revisit
in great detail in the sequel. We view these important qual-
itative perspectives as complementary to the frameworks
we propose and as further supporting the need for a more
rigorous quantitative framework for reasoning about LCAs.
Domain-specific work centered around control architec-
ture can be found in [4] for smart grid applications, in [5]
for cyberphysical system applications, and in [6] and [7] for
Internet congestion control. Once again, we see the key
themes of this manuscript, such as layered multirate con-
trol implemented using diverse components, discussed.
For example, the templates proposed in [4] can be directly
mapped to the proposed layered strategies in LCAs via
optimal control decomposition. Lee et al. [5] propose a five-
layer architecture (called the 5C architecture), with each
layer having different complexity and spatiotemporal
scope, and initial quantitative methodologies for layering
as optimization decomposition can be found in [6] and [7].
This latter perspective serves as a key starting point for the
framework proposed in this article. Finally, we note that
although not the subject of this article, an important
enabling technology for control architecture design will
inevitably be appropriate modeling languages and frameworks,
which may, for instance, be inspired by or build upon sys-
tems modeling language [8].

Article Organization

The rest of the article is broadly organized into three parts.
In the first part, which includes the “LCAs via Optimal
Control Decomposition” and “LCAs for Robotic Systems”
sections, we propose a framework for deriving LCAs via
optimal control decomposition. We then provide concrete
instantiations of LCAs for robotic systems to illustrate the
already impressive practical impact of layered control
system design. In the second part, composed of the “Archi-
tecture Design as Multicriterion Optimization” and “A
Case Study in Sensorimotor Control” sections, we propose
an alternative perspective and frame architecture design
as multicriterion optimization. A key takeaway of this sec-
tion is that matching diversity across layers with diversity
in control tasks can lead to LCAs that perform better than
any individual layer could on its own. We illustrate these
concepts in the section “A Case Study in Sensorimotor
Control.” Finally, in the third part, which includes the
“Key Concepts in Control Architecture” section, we
indulge in a more speculative discussion and introduce
qualitative definitions of what we believe to be other key
concepts in control architecture. Finally, we end with the
“Conclusions” section.

LCAs VIA OPTIMAL CONTROL DECOMPOSITION

We propose a minimal quantitative framework for deriv-
ing and reasoning about LCAs, such as those illustrated in
Figure 2. Our starting point is a control policy synthesis

problem that captures the key ingredients of modern com-
plex systems that LCAs have evolved to address, namely, 1)
the mix of discrete/logical decision making with continu-
ous dynamics and control and 2) the diversity in times-
cales at which different layers of a system (and its
environment) evolve. Inspired by the layering as optimiza-
tion decomposition [6], [7] approach to layered architec-
tures, originally applied to network congestion control,
our strategy is to systematically decompose the overall
synthesis problem into tractable subproblems, each associ-
ated with a specific layer.

We consider specifications that the system must meet and
safety constraints that the system must obey. We restrict our-
selves to specifications expressed using formal logic,
although alternative formulations are certainly possible.
These specifications describe system goals; for example, in
robotic applications, such a goal might be to navigate to a
target or to perform a household task. Safety constraints, in
contrast, are often expressed in terms of set membership
constraints on a system'’s physical state; for example, in aero-
space applications, such safety constraints may be expressed
in terms of state/input inequality constraints enforcing the
aerodynamic flight envelope. Design problems also typi-
cally include auxiliary performance objectives (for example,
fuel efficiency, speed, and robustness), which are optimized
subject to the specification and safety constraints. The goal,
then, is to find the most efficient system design, as mea-
sured by the auxiliary performance objectives, that meets
the system specifications and safety constraints.

Our framework thus centers around an overall synthesis
problem that seeks to find a control policy that satisfies
high-level specifications, subject to system dynamics as
well as state and input constraints. In the interest of clarity,
we omit auxiliary performance objectives in the initial for-
mulation but highlight natural ways in which they can be
incorporated throughout. After defining the overall syn-
thesis problem, we show that through suitable relaxations
and decompositions, 1) the three-layer architecture described
previously can be derived, and 2) familiar optimization-
based trajectory planning and feedback control algorithms
emerge naturally in an attempt to minimize the errors
induced by these relaxations and decompositions.

Notation

We use subscripts to denote continuous time; for example,
x; is the state x at time t € R. We use parenthesized num-
bers to denote discrete time; for example, x (k) is the state
x at discrete-time step k € N. We use boldface to denote
infinite-horizon signals in both continuous and discrete
time; that is, x =(x:)i=0 or x=(x(0), x(1),...), depending
on the context. We use the notation x(Ti:T>) to denote
finite-horizon discrete-time signals; thatis, x (T : T2) = (x(T1),
x(T1 +1),..., x(T2)). Finally, we use parentheses to concat-
enate two vectors; that is, if a€R" and beR”, then
c=(a,byeR"".

JUNE 2024 « IEEE CONTROL SYSTEMS 55

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

The Overall Synthesis Problem
We assume that the system specifications are defined using
a form of temporal logic, with linear temporal logic (LTL)
and signal temporal logic (STL) being the most commonly
used in the controls community; in the sequel, we use *TL
to denote such general temporal logics. In particular, we let
the system goals be specified by a given *TL formula ¢
defined over a finite set A% of atomic propositions.

The system state evolves according to the continuous-
time dynamics

X 5Ct=f(Xt,Mt) (1)

where x: € R" is the system state and u; € R" is the control
input. To simplify exposition, we assume nominal dynam-
ics without any model uncertainty or process noise. Of
course, real systems are subject to both, and how to system-
atically account for such uncertainty in LCAs remains an
important open problem (see the “Robust LCAs” section).
The state and control inputs are subject to safety constraints
of the form xy € X ER" and u € U S R™.

We also define, for a suitable sampling time 7, the cor-
responding discrete-time model

Za x(k+1)= fa(x(k), u(k)) @)

where x (k) = xtr, 1(k) =k, and fs is a discretization of the
continuous-time dynamics f. Albeit somewhat cumber-
some, we introduce both continuous- and discrete-time
dynamics to highlight the multirate nature of typical LCAs,
wherein the decision-making, trajectory planning, and
feedback control layers all operate at different loop rates;
that is, each layer recomputes or updates its action at a dif-
ferent frequency. Where the switch from continuous- to
discrete-time models is made in the LCA is often subject to
computational constraints and loop rate requirements,
which are in turn dictated by system specifications, safety
constraints, and dynamics; see the “Multirate LCAs” and
“Continuous-Time LCAs” sections. Nevertheless, a common

X2

N
>

Uy

Xq

FIGURE 3 A mobile robot (the GritBot) modeled as a Dubins’ car.
The GritBot utilizes an LCA to allow for the safe implementation of
user algorithms [9].

56 IEEE CONTROL SYSTEMS » JUNE 2024

design pattern, which we adopt here, is to use continuous-
time models for real-time feedback control (to emphasize
fast loop rates) and discrete-time models for both trajectory
planning and decision making.

To verify the satisfaction of the *TL specifications ¢, we
assume the existence of a labeling function L: X — 2% that
associates a label encoding the TRUE atomic propositions at
every state x € X. Finally, we define the trace, or run, of
system X under a control input sequence u to be the sequence

& (x, u):=(L(x(0)), u(0) (L (x(1)), u(1))...

where the signals x = (x(0), x(1),...), u=(u(0), u(1),...) are
discrete-time trajectories from the sampled system Xj. If
such a trace satisfies the specification ¢, we write & (x, u) E .

We can now finally pose the overall synthesis problem
as finding a possibly time-varying state feedback policy
ur: X — U such that

E(x,u)Fo,
xe= f(x,u(xs)), xo given
xveX,u(x)eU Vvi=0. 3)

Example 1 (Running Example: Robot Navigation)

We use a simple robot navigation problem as a running
example to illustrate the concepts introduced in this sec-
tion (see Figure 3). Suppose the system is a Dubins’ car
(also called a unicycle) with dynamics

X1| [cos6 O u
. 9 1
X2|=|sin6 0 [u])
. 2
0 0 1
and that the state and input constraints are the simple
box constraints

XZ{(Xl,xZ,O)’max{|X1|,|X2|}Sl,‘9‘S%}
U ={(us, uz)\max{|u1 ‘,|u2|}51}.

To specify the system goals, we define the sets X1 =
{(x1, x2, 0) | xf+x3<0.1%} and Xa={(x1, x2,6) | x1=0.9,
x2=09}. The task specification is for the robot to first
visit set X1 and then visit X», thatis, to go to a small circle
in the center of the space and then go to the upper-right
corner (see Figure 4). This can be expressed in LTL via
the specification

¢=F(X1 NFX;) §)
where A and F are the and and eventually atomic

propositions, respectively.

Layering via Problem Decomposition and Relaxation
Toward our goal of deriving an LCA, we strategically
rewrite the global problem (3) by introducing redundant

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

variables and subsequently relaxing consistency constraints
among these redundant variables to allow for modulariza-
tion across layers. We emphasize that while problem (3) is
fundamental—in that it is dictated by the physics of the
system as well as the specification and safety constraints of
the problem—and that the proposed framework of prob-
lem decomposition and relaxation is foundational to a
theory of LCAs, the particular realizations of these ideas
that follow are architectural design choices. They are by no
means unique, although they are chosen to be broadly rep-
resentative of approaches taken in the literature.

Decision-Making Layer

The *TL specifications ¢ are defined over a discrete state
and input spaces, whereas the global problem (3) is defined
over continuous state and input spaces. Toward bridging
this gap, we assume that the continuous state space X
admits a partitioning S. Ideally, such a partition is such that
for any cell s € S, we have that L(x) = L(y) for all x,y €s;
that is, all states in a partition satisfy the same atomic prop-
ositions and are “semantically equivalent.” However, if the
partition of the state space is coarse, this may not hold true,
and partitioning may introduce conservatism. It is natural
to consider this partition as defining a discrete state space
for a Markov decision process (MDP), and with slight abuse
of notation, we use s € S to denote such a discrete state as
well. Similarly, a discrete action space A is induced by this
partition and the system X, allowing us to define the MDP
dynamics s(i+1) = fupr(s(i), a(i)). The MDP dynamics
evolve in discrete time, with dynamics defined to be con-
sistent with traces of the sampled system X;. However,
the MDP dynamics typically correspond to a subsampling
of X4 that is, s(i) is determined by x(k§), for 6 € N,
a discrete sampling time. In general, this subsampling
may be irregular, for example, if each time step of the
MDP is associated with a change in a discrete state, but
note that our model can capture this phenomenon by includ-
ing the null action @ such that s(i + 1) = fmor (s (i), @) = s (i)
for all s(i) € S.

Example 2 (Running Example: Robot Navigation)

A possible discrete state space S, with | S| = 142, is dis-
played in Figure 4(b), where each square corresponds to
a discrete state s € S. This induces corresponding dis-
crete actions A = {1, |, —, —, @} and MDP dynamics cor-
responding to those of a typical grid world problem (for
clarity of exposition, we assume that diagonal move-
ment is not allowed). In particular, letting s = (s1,52)
denote the (x1,x2) grid position, we then have

G13), 2()) a() =@
131), s2(0) + 1) ai) =t

G1(i+1), 520+ 1) =1 s100), s200) 1) ai) =1 (6)
(51() +1, 52(3)) a(i) =~

(s1(1) — 1, s2(7))

a(i) =

where we show only dynamics for allowable actions a
that would not take the system outside of the state space
S. Note that due to the resolution of state-space discret-
ization, the set 81 is an underapproximation of the cor-
responding continuous set Xi.

Given this definition and toward the goal of isolating a
decision-making layer, we introduce redundant discrete
planning variables s and a, which are subject to the MDP
dynamics fupp:

E(s,a)E @, s(i+1) = fupr(s(i), a(i)), s(0) = x(0)
x(k) €s(|k/8)), x(k) = xir, Vk €N
Xr = f(xr,ui(xr)), X0 given
xre X, ui(xr) € U, vVt =0. (7)

Slightly abusing notation, here, the first line replaces the
trace over continuous variables (x,u) with one defined over
discrete variables (s, a) satisfying the MDP dynamics, and we
write s(0) © x(0) to emphasize that the discrete-state initial
condition s(0) must be consistent with the continuous-state

X2
A
1
X
-1
>» X
4 T
(a)
X2
A
1 ? S
LY
oy
{lo
S t\
1| 8rere
®
v d
»
- {97e
> X

-1 1
(b)

FIGURE 4 (a) Continuous and (b) discrete state space in the robot
navigation running example. We see that due to the resolution of
the partition, the set of discrete states S1 is an underapproximation
of the corresponding first objective set X1. The blue circles illus-
trate the discrete state-space trace defined by the decision-making
layer; the red arrow shows the reference trajectory generated by
the planning layer, using the blue circles as waypoint constraints;
and the black dashed line is the actual system evolution, as driven
by the feedback control layer on the continuous-time dynamics.

JUNE 2024 « IEEE CONTROL SYSTEMS 57

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

initial condition x(0) = xo. The second line enforces consis-
tency between the remainder of the discrete plan of the
first line and the underlying continuous control system X.
In particular, the constraint x (k) € s(|k/8]) ensures that the
continuous-state discrete-time trace (x(0), x(1),...) induces
the correct discrete-state trace (s(0), s(1),...). Similarly, the
constraint x (k) = xi; ensures consistency between the con-
tinuous-state discrete-time trace (x(0),x(1),...) and the
continuous-state trajectory x¢>o.

Our first relaxation is to decompose problem (7) by iso-
lating the discrete planning problem

£(s,a)F @, s(i+1) = fuor(s(0),a (7)), 5(0) = x(0) ®

which we view as the decision-making layer problem. Here,
the decision-making layer assumes that any discrete plan
(s,a) can be realized by the underlying continuous control
system X. Solving the decision layer problem (8), for example,
using *TL synthesis methods, yields a discrete state and action
plan (s, a) that satisfies the specification ¢. We show next how
this high-level plan can be used to define a trajectory plan-
ning problem using a similar decomposition and relaxation
technique. We note that *TL synthesis methods are computa-
tionally expensive, and hence, replanning at this layer is typi-
cally done at a slower timescale, with the faster lower layers
used to mitigate unexpected disturbances in the interim.

Example 3 (Running Example: Robot Navigation)

The decision-making layer problem for this example
becomes one of finding a state/action trace (s,a) that sat-
isfies the specification (5), subject to the discrete-time
discrete-state dynamics (6).

Trajectory Planning Layer
Removing the decision-making layer problem (8) from
problem (7) leaves us with

x(k) €s(k/8)), x(k) = xkr, Vk €N
X = f(xr,ue(xr)), X0 given
xt€ X, ur(xr) € U, vVt = 0. ©)

Toward the goal of isolating a trajectory planning layer, we
introduce a redundant continuous-state discrete-time trajec-
tory variable r = (r(0), r(1),...), constrained to be consistent
with the discrete-time state x = (x(0),x(1), ...). The resulting
strategically rewritten equivalent problem is then given by

r(k) es(k/s]),r(k)e X
r(k) = x(k), x (k) = xkr, Vk € N
X = f(xr, ui(xe)), xo0 given
xi€ X, ui(x)) € U, vVt = 0. (10)
The first line isolates a trajectory generation problem,
defined now over the reference trajectory variable r(k),
ensuring that 1) the trajectory is consistent with the discrete

58 IEEE CONTROL SYSTEMS » JUNE 2024

plan, as enforced by r(k) € s(|k/&]), and 2) the trajectory is
safe, as enforced by r(k) € X. As above, the second line
enforces coupling between different layers: (k) = x(k)
ensures that the trajectory and system states are consistent,
and once again, x (k) = xx. ensures consistency between the
discrete-time system X; and the continuous-time system X.

Our next relaxation is to decompose problem (10) by iso-
lating a middle-layer trajectory planning problem, which
takes the form of the feasibility problem

r(k) es(lk/8]), r(k) e X, vk =0, r(0) = x(0). (11)
Here, we drop all consistency constraints that r(k)=
x (k) = xir except for those enforcing the initial condition
7(0) = x(0), and a reference trajectory r that satisfies the
state constraint r(k) € X and specification constraints
r(k) € s(lk/8]) is searched for. Due to this decomposition
and relaxation of the constraints, the reference trajectory
produced by solving feasibility problem (11) is not guaran-
teed to be dynamically feasible, and therefore, the tracking
error between the true system state x (k) and the planned
trajectory r (k) should be accounted for when enforcing the
specification and safety constraints r(k) € XNns(|k/§]).
Letting C(k):= XNs(lk/S]) denote the intersection of the
specification and safety constraints at discrete-time step k,
define the tightened constraint set C(k), and replace the
specification and safety constraints with 7 (k) € C(k). How
to appropriately tighten this constraint set depends on the
feedback control layer, but once the tracking error has been
characterized, standard tools can be used.

To promote reference trajectories that are easy to track
by the underlying continuous system X, the feasibility
problem (11) is often modified to produce approximately
dynamically feasible solutions. For example, it is common
to decompose the control policy into a feedforward term
ug, depending on the reference trajectory, and a feedback
term up, depending on the system state (or more specifi-
cally, on the tracking error). For example, a typical such
decomposition is to simply set u:(xt) = us(r([t/7])) + un(er)
for tracking error e;:=x;—r(|t/7])). Another standard
approach is to assume that the reference trajectory obeys
simplified planning dynamics 7 (k + 1) = folan (7 (k), 11t(k)). A
common choice for these simplified planning dynamics is
to use a reduced-order model defined by y(k +1) = from (y (k),
v(k)), where y€R" and v€R’, with p<n and s<m.
This case can be integrated into the proposed framework
by replacing the consistency constraint r (k) = x (k) with a
reduced-order consistency constraint y(k) = z.(x(k)), for
7:: R" — R?, some projection map encoding the model order
reduction. To distinguish this important special case, in the
sequel, we reserve r(k) for full-order reference trajectories,
that is, reference trajectories defined over the entire state
with both r(k), x(k) € R", and use y(k) to denote reduced-
order model states, as these are often used as tracked outputs
at the feedback control layer.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Finally, we make the following additional modifica-
tions. First, toward employing a receding horizon control
approach, we restrict the trajectory planning problem to be
over a finite horizon N. Second, we encode additional desir-
able properties of the trajectory, such as smoothness, via a
running cost function C(r,u) and a terminal cost Cn(r).
Integrating these elements with those described previously
yields the planning problem solved at discrete-time step k:

minimize S C(r(i), us(i)) + Cu(r(k + N))
i—k

subject to (i + 1) = folan (v (i), us (i), r (k) = x (k)

r()e Cl),i=kk+1,....k+N. 12
The planning problem (12) is typically solved and imple-
mented in a receding horizon fashion, for example, via MPC,
and thus is limited to being resolved at an intermediate fre-
quency (that is, more frequently than the decision layer prob-
lem but less frequently than the feedback control layer).

We end by noting that this is but one approach to defin-
ing a planning problem given a discrete state plan s. Alter-
native approaches consider, for example, loss functions that
penalize deviations of the reference trajectory r from par-
ticular waypoints that are consistent with the discrete state
plan s. It is hopefully clear that problem (12) is equivalent
to such an approach, up to hard/soft constraints.

Example 4 (Running Example: Robot Navigation)

By converting the state trace (s(0), s(1),...) computed by
the decision-making layer from discrete (s1,52) coordinates
to continuous (x1,x2) coordinates, for example, by choos-
ing the centroid of cell (s1,s2), these can be used to define a
sequence of waypoints ((p1(0), p2(0)), (p1(1), p2(1)),...),
with (p1(i), p2(i)) € R?, that can be used as state constraints
within the planning layer. These waypoints are indicated
with blue circles in Figure 4. In Figure 4(a), we illustrate
their use as waypoints for continuous trajectory planning,
and in Figure 4(b), we demonstrate their use as a feasible
state trace in the discretized state space S.

We formulate the planning problem using a reduced-
order linear model composed of decoupled single-
integrator dynamics in the x1 and x» directions; that
is, we set y(k)=(y1(k), y2(k)), v(k)=(vi(k), v2(k)), and
from (y(k), v(k)) = (y1(k) + Tv1(k), y2(k) + 7v2(k)). In this
case, we are using a reduced-order model that proj-
ects out the angle 6 and that introduces feedforward
linear velocity inputs (v1,v2). We use the waypoints
((p1(0), p2(0)), (p1(1), p2(1)),...) to define constraints on the
trajectory of the form |yi(k) — p1(lk/8])|<A for A half
the length of the square cells defining the discrete state
space and idem for the x> coordinate; that is, we ask that
the reference trajectory follow the sequence of discrete
cells defined by the discrete-state trace (s1(i), s2(i)) but
allowing appropriate time within each cell, as dictated by
the sampling rate § used at the decision-making layer.

We additionally impose smoothness and control effort
penalties in the objective and constrain the reference tra-
jectory to satisfy tightened state constraints [here, we
assume that the feedback control layer can guarantee a
tracking error of at most 0.05 in either of the (x1,x2) coor-
dinates]. The resulting planning problem solved at time
step k over a horizon N is then given by

k+N

> v+ -y@) E+lo6)

i=k
subject to ¥ (i + 1) = from (y (i), v (7))
y (k) = (x1(k), x2(k))
ly1() —pr(li/8])| < A-0.05
|y2() — p2(li/8])| < A 0.0
y(eX= {(x1,xz) \ mjax|x,- |< 0.95}

i=kk+1,...,k+N.

minimize

13)

An illustrative example of the resulting reference trajec-
tory is shown in red in Figure 4(a).

Real-Time Feedback Control Layer

Finally, we consider the feedback control layer. At discrete-
time step k, given a solution (r(k : k + N), us (k : k + N)) to the
planning layer problem (12), we must contend with the remain-
ing constraints, now truncated to the planning horizon N:

r(i) = x(i), x() = xir,i=k,k+1,...,K

X = f(xr, ui(xe)), xo given

xt € X, ui(xy) € U, Vt € [kr, (k+ N)t]. (14)

We relax this problem by 1) removing the state con-

straint x: € X, as this is addressed within the planning
problem (12), and 2) allowing for the state x to deviate from
the reference trajectory 7, as the reference trajectory r is not
expected to be dynamically feasible:

minimize f(km)r <|| es Hé + H Utp,s ||122)ds
kt
subject to: &+ = f(xs, s + U 1), Xo given

Uit + Ut € Uu. (15)

In the above, for a positive semidefinite matrix P, we let
| z|? = z" Pz, define the tracking error e; :=x,—r(|t/7]),
and slightly abuse notation by letting us: = us(|t/7]) be
the zero-order holds of their corresponding discrete-time
signal. This problem can be viewed as a “best effort” track-
ing controller.

Loop rate constraints lead to either offline computed
feedback policies that approximately solve the problem
(such as LOR tracking), to simple-to-implement approaches
such as PD control, or to myopic simplifications that can be
solved in real time via, for example, quadratic program-
ming. All these approaches can be viewed as further relax-
ations of the above tracking problem (15). While widely
used, the proposed relaxation (15) and its extensions

JUNE 2024 « IEEE CONTROL SYSTEMS 59

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

typically lack tracking error guarantees. To address this
concern, recent work has leveraged Lyapunov-based tech-
niques to certify tracking error bounds, which in turn
allow for a principled tightening of the constraints used in
the planning layer. We highlight some of these techniques,
as applied to robotic LCAs, in the next section.

Example 5 (Running Example: Robot Navigation)
While many feedback control approaches are possible,
here, we take this opportunity to briefly introduce dif-
ferential flatness-based control and show how it can be
used in this context. To synthesize a feedback controller
that tracks the reduced-order model reference trajectory
(o) =W (t/7]), v(t/7]), we first identify the flat out-
puts [10] such that the state and inputs can be written as a
function of these flat outputs and derivatives. For the
unicycle dynamics, a flat outputis & = (x1,x2), as verified
by the relationship

X1 &1 _
x2(= & =) (16)
¢ arctan %
S N
B el ST Y (A 9E (7)
B+

To synthesize a feedback controller, it is convenient to
definetheflatstatez := (£1, &2, €1, £2) = (x1, x2, 11, %) € R?
and flat control input a = (&1, &2) = (¥4, ¥2) € R?, result-
ing in the linear dynamics

at (18)

0010
. 0001
Zt:OOOOZt+
0000

A f‘om

for z; € R* and a: € R%. With slight abuse of notation,
we may then write x;=x,(z) and u:=u,(z,a:) by
making the appropriate identifications between
(1, 1, E) and (z1,4:). We can then synthesize a feedfor-
ward-plus-feedback policy using, for example, PD con-
trol by setting

ar=01—Kp((z1,22)1 — (Y1,¥2)) — Kb ((z3,24) e —0v1) (19)
for appropriately tuned positive definite matrices K
and K}. Note that in this case, the feedforward term o,
can be approximated via a finite difference; that is,
o= (t/7]) = o(t/7]-1)) /7.

We now discuss how to translate the flat state z; and
flat input a; to a control input u; composed of feedforward
and feedback terms given current measurements of z; =

60 IEEE CONTROL SYSTEMS » JUNE 2024

(x1, x2, X1, X2)r. We define the feedforward term to be
given precisely by the mapping from flat state and input
to control input:

Ui (ze,ar) = Uy (2¢,ar).

If the mapping u, exactly captures the system dynamics,
then no additional feedback term will be required. How-
ever, in practice, the Dubins’ car is often used as a
reduced-order model for planning trajectories for more
complex systems, such as quadrupeds [see Figure S1 in
“Multirate LCAs in Practice” as well as the “Example 6
(Running Example: Robot Navigation)” section]. Thus,
a feedback term to ensure that flat and actual states
match is additionally required. One such option is,
again, a PD controller:

U, 1(z¢) = —Kp((x1,x2)t — (21,22)t+7) — Kp((%1,%2)r — (23,24) t+7)

for positive definite matrices Kr and Kp. Note here that
the flat look-ahead state z:+. is obtained by forward
integrating the flat dynamics (18) with the a; given as in
(19) and z: = (x1,x2,X1,%2)¢ obtained from hardware mea-
surements. The final control input is then the sum of
both the feedforward and feedback terms; that is,

ue(ze,ar) = Ui (2,) + U, (2¢) (20)
as suggested in the feedback control problem (15). A con-
ceptual rendering of the resulting evolution of the actual
system state is presented with a dashed black line in
Figure 4.

Discussion

We obtained an LCA by introducing redundant variables
and suitable relaxations to decompose the overall synthesis
problem (3) into tractable decision-making, trajectory gen-
eration, and feedback control subproblems, as specified in
(8), (12), and (15), respectively. This highlights another key
feature of LCAs: they allow for intractable global problems
to be decomposed into tractable subproblems, often with
minimal loss in performance or efficiency. We note that the
proposed decomposition is only one of certainly many
approaches and is chosen to be consistent with the rest of
the article. Indeed, while the above framework provides a
more formal perspective on LCAs, it still has an element of
“art” to it. In particular, how to relax the overall synthesis prob-
lem as well as how to bridge the simplifications among the differ-
ent layers of the resulting architecture are still up to the
designer. Nevertheless, by posing the problem in this way,
there is a natural nested optimization structure that
emerges that may allow for more principled methods of
LCA design to be defined. We highlight next some key
open questions and concepts that we do not treat in depth
but that certainly deserve more investigation.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

What About the Hardware?

Each layer described previously delineates a functional com-
ponent of an overall decision and control stack. Equally
important are the physical substrates used to implement these
functional layers. For example, a motor used in a robotic
system to actuate a joint is composed of different scales of com-
ponents, ranging from circuit elements to microprocessors to
motor components. While these physical substrates are closely
related to the layers they implement, they are distinct; to make
this explicit, we use the term levels for physical substrates and
reserve layers for functional components. We expand on this
idea, and introduce other key concepts of LCAs not touched
upon here, in the “Key Concepts in Control Architecture”
section. Furthermore, in the “Architecture Design as Multi-
criterion Optimization” section, we present a quantitative
framework to inform how to choose diverse hardware to
implement diverse functionality as a function of diversity in
the control task at hand, and we instantiate this perspective
in the “A Case Study in Sensorimotor Control” section.

How Many Layers Should There Be?

This section presents an approach to deriving an LCA with
three layers, each operating at different spatiotemporal reso-
lutions. While these three layers, namely, decision making,
trajectory generation, and feedback control, are commonly
found in complex engineered systems, this pattern is by no
means the only one possible. Indeed, all the concepts intro-
duced above can be applied recursively, leading to layers of
layers. For example, there can be several layers of trajectory
planning, operating at different loop rates, using different
planning models, and planning over different horizons; see,
for example, the “Continuous-Time LCAs” section. Similarly,
nested control loops are a standard control design pattern
that can be interpreted as different layers of real-time feed-
back control. While we present a framework for deriving
layers given an overall problem formulation, we still lack
quantitative tools for deciding how many layers there should
be as well as what information should be exchanged among
them. This is undoubtedly a key open question.

Multirate Control

In the above, we hint at the role of multirate control in LCAs
that seeks to address implicit timing constraints. Low-layer
feedback control (15) operates in (near) real time, trajectory
generation (12) at a slower rate, and decision making (8) at a
slower rate still. This suggests that ideas from singular per-
turbation analysis and timescale separation (see, for exam-
ple, [11] and [12] and the references therein) may also be
used to provide further rigor to the approach. We further
explore multirate LCAs in robotic systems in the “Multirate
LCAs” section.

Robust LCAs
We omit uncertainty due to process noise and modeling
errors in our development. However, practical LCAs must be

robust to these effects. Promising approaches to tackling
uncertainty among layers include the use of robust Lyapu-
nov certificates for guaranteeing the bounded tracking error
of a reference trajectory by the feedback control layer (see, for
example, the “Continuous-Time LCAs” section) and, more
generally, the use of assume-guarantee contracts [13], [14].
These approaches are intuitive and effective, but it is never-
theless of interest to investigate whether such certificates can
be derived by applying similar decompositions and relax-
ations to a robust overall synthesis problem that explicitly
acknowledges uncertainty in its initial formulation.

Layered Sensing Architectures

We also emphasize that although our focus in this section has
been on fully observed state feedback control problems, analo-
gous layered decompositions for sensing and output feedback
problems need to be developed. A promising starting point is
to recognize that different sensors, ranging from semantically
rich and complex sensors (for example, cameras and lidar) to
simple single-output sensors [for example, inertial measure-
ment units (IMUs) and gyroscopes], are naturally assigned
to each of the decision-making (for example, computer vision
and semantic segmentation), trajectory generation (for
example, visual inertial odometry + simultaneous localiza-
tion and mapping), and feedback (for example, IMUs) layers.

Learning in LCAs

The use of rich perceptual sensors, such as cameras, invariably
introduces learning into the resulting LCAs, which is a topic
we cannot hope to do justice within the scope of this article.
This is, however, an exciting and important direction to be
explored, with learning and data-driven techniques poised
to make a significant impact in designing effective LCAs.

Related Work

The framework proposed above is inspired by a rich litera-
ture seeking to establish principles of LCA design, although
it is not necessarily explicitly identified as such.

Layering as Optimization Decomposition

The layering as optimization decomposition (see [6] and [7]
and the references therein) and the reverse/forward engi-
neering (see [15] and [16] and the references therein) para-
digms have been particularly fruitful in tackling Internet and
power grid control problems, respectively. Both of these
frameworks can be loosely viewed as using the dynamics of
the system to implement a distributed optimization algo-
rithm through vertical (layering) and horizontal (distributed)
decomposition. These methods ensure that the state of the
system converges to a setpoint that optimizes a utility func-
tion. These approaches can scale to large systems by taking
advantage of the structure underlying the utility optimiza-
tion problem and can simultaneously identify and guarantee
stability around an optimal equilibrium point. Nevertheless,
they do not explicitly consider optimal control, and in

JUNE 2024 « IEEE CONTROL SYSTEMS 61

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

particular, transients, in their analysis, making them an
important but incomplete first step toward a theory of LCAs.

Decision Making and Continuous Control

This line of work seeks to make explicit that although formal
specifications are inherently discrete, in order to ensure that a
system satisfies them, designers must account for continuous
dynamics and control. One line of work seeks to reformulate
*TL specifications into continuous control tasks through the
use of control Lyapunov functions (CLFs) and control barrier
functions (CBFs) [17], [18], [19]; see, for example, [20] and [21].
An alternative approach is to encode *TL constraints via
mixed-integer linear constraints in robust/optimal control
problems [22], [23], [24] or to abstract the continuous control
problem into an uncertain finite-state MDP and use robust
dynamic programming [25]. Closely related is the work of Fan
etal. [26], wherein decision making is done via SAT-based tra-
jectory planning methods, which solve a satisfiability
problem over quantifier-free linear real arithmetic. Other
representative works that explicitly acknowledge the inher-
ently hybrid (discrete/continuous) nature of the decision-
making and control problem, and that seek to bridge the gap
in a principled way, include reactive planning approaches [27]
and the use of CBFs for determining the magnitude of distur-
bance that a system can be subject to while still ensuring the
satisfaction of STL specifications [28]. Barrier functions have
also been applied to partially observable MDPs in the context
of distribution temporal logic [29] and coherent risk measures
(such as conditional value at risk) [30], [31] to enforce safety
constraints at a planning level. More broadly, risk-aware plan-
ning and control is considered in [32], [33], and [34]. Implicit in
all of the above is a layered architecture wherein the high-
layer decision-making component operates on a discrete
abstraction of the underlying continuous-time system, and
similarly, the underlying continuous-time system implements
planning/control layers in order to meet the plan specified by
the top decision-making layer.

Trajectory Generation and Continuous Control

Approaches to dynamics-aware trajectory generation typi-
cally follow a classic two-phase approach, wherein first a
graph is constructed whose nodes are collision-free con-
figurations and whose edges correspond to feasible paths
among these configurations; see, for example, [35] and the
references therein. More recent approaches based on
graphs of convex sets [36]; motion primitives [37], [38];
optimization-based methods [39]; control Lyapunov, bar-
rier, and contraction metrics [40], [41], [42], [43], [44], [45]; and
reachability techniques [46] have also been proposed to
bridge the gap between low-layer fast-timescale control and
middle-layer intermediate-timescale trajectory generation.
The common theme in all these approaches is the use of
simplified dynamics in the trajectory generation layer,
allowing for fast replanning, and a low-layer feedback con-
troller that provides certifiable guarantees on the tracking

62 IEEE CONTROL SYSTEMS » JUNE 2024

error. Finally, most closely related to the framework pre-
sented in the previous discussion are the results found in
[47], [48], [49], and [50], wherein it is shown that a two-layer
trajectory generation/feedback control LCA can be obtained
by suitably relaxing consistency constraints between the
state and reference trajectory. A key feature of this approach
is that the trajectory planning problem is augmented with a
tracking penalty regularizer that promotes dynamic feasi-
bility of the synthesized reference signal.

LCAs FOR ROBOTIC SYSTEMS

LCAs have long found use in robotic systems; empirically, it
is well known that this is the best (and arguably only) way to
implement controllers in practice. Yet, despite this empirical
evidence, there is very little analysis of LCAs. Conversely,
while the control community applies rigorous approaches to
controller synthesis, it is often applied only to a single layer.
This points to a unique opportunity for the controls commu-
nity: reverse engineering and analyzing the LCAs deployed
on robotic systems that have proved useful in practice.

To put the central role of LCAs in robotic systems in con-
text, one should first consider the hardware itself. A robotic
system, broadly defined, typically consists of three main
components: sensors used for perception, a central proces-
sor, and motor controllers used for driving actuators. Con-
crete examples of this include cameras mounted on a
legged robot for localization and mapping and proximity
sensors on a vehicle for advanced driver assistance. In this
context, LCAs (as shown in Figure 5) are often deployed
relative to these physical levels on hardware (see the “Key
Concepts in Control Architecture” section for more exam-
ples of how levels and layers interact in LCAs). Perception
leads to a decision-making layer operating at a discrete/
semantic level of abstraction, the central processor leads to
reference signal generation using reduced-order models,
and, finally, at the actuator level, real-time algorithms
instantiate feedback control. (The robotics literature refers
to these different layers as high-level, midlevel, and low-
level control. We, however, argue that these are better
viewed through the lens of LCAs and hence use the layered
terminology defined in the previous sections.)

This section gives concrete instantiations of LCAs for
robotic systems. We start by defining robotic system
dynamics and subsequently work our way up the layers of
a typical instantiation of LCAs for robotic control. A goal of
this section is to highlight the importance of multirate con-
trol in the context of LCAs. We start with the feedback con-
trol layer, termed the real-time feedback control layer herein to
highlight the fast loop rate at which it is implemented. We
then discuss trajectory planning paradigms and end by
highlighting approaches to their integration with the real-
time feedback control layer. We forego a discussion of the
decision-making layer for the sake of brevity. See [51] for a
formal inclusion of decision making with the methods pre-
sented in this section.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Robot Dynamics

Robotic systems are inherently governed by nonlinear equations
of motion. These represent the physical evolution of the system
and are typically obtained from Euler-Lagrange equations:

D(Qz)q"t-l‘C(th]t)L.]t-i-G(qt) = Bu; (21)

where g: € Q are the configuration variables of the system,
g+ € T;Q is a vector of velocities (which take values in the
tangent space to the configuration space), D(qr) is the iner-
tia matrix, C(q:,§:) is the Coriolis matrix, G(g:) contains the
gravity-related terms, and B is the actuation matrix. Defin-
ing the state vector, x: = (§:,4:) € TQ, where, for simplicity,
we can work with a local coordinate chart of Q wherein
TQ = R" for n even, allows for the formulation of a control
system affine in the control input:

Xt =f(Xt)+g(Xt)th (22)

where f:R"—R" and g:R"—R"XR" can be directly
obtained from (21). The end result is a control system of the
form (1), with the additional structural property that the
control input appears in an affine fashion, an observation
that has important ramifications for controller synthesis.

Real-Time Feedback Control Layer

We begin by tackling the feedback control problem (15) for
robotic systems. We assume that a trajectory, containing
both a (reduced-order) reference trajectory and a feedfor-
ward control term, is available. We discuss approaches to
solving this trajectory problem after addressing the feed-
back control problem. Emphasis is placed throughout on
the need for real-time feedback control.

Linear Control

For robotic systems, the most common form of real-time con-
troller (historically called “low-level control”) is a simple
linear feedback controller acting on the error, such as a PD
controller implemented at the motor control layer. These
controllers are highly effective in practice when implemented

properly. It is important to stress that this is not due to the
dynamics being linear (they are not), nor does it imply that
the dynamics are even locally linear (again, they are not).
Rather, these controllers work well exactly because of their
use within an LCA, running at a fast loop rate and actuating
as a function of tracking error. This second observation, that
linear control actuates only on the error (and thus is inde-
pendent of model information) is critical. To provide a pre-
cise instantiation of real-time linear controllers, consider a
continuous-time reference signal r = (r;,7;) that we wish to
track (decomposed into a reference position and velocity)
and an associated feedforward control input u#¢. Then, the
simplest form of feedforward and feedback control becomes

(23)
24)

ur = Ui+ it — Kp(qe — 14,6) — Kp(§e — 74,1)

=t Ut + T+ Ut (G — Tot, Gt — Tyt)

for Kp, Kp positive definite matrices [see, for example, the
Dubins’ car control policy (20)]. Given the decoupled nature
of this controller, it can be deployed in a decentralized fash-
ion, that is, actuator by actuator, on the motor controllers at
a very fast loop rate (faster than 1 kHz). It is important to
note that many variations of this controller are possible. For
example, an integral term can be added, or a reference
velocity signal from a higher layer can be tracked, in which
case the Kp term might be removed.

The fact that linear controllers can stabilize the nonlinear
dynamics associated with a robotic system can be made rigor-
ousin certain cases. To this end, assume that the robotic system
is fully actuated; that is, B is invertible, and, for simplicity, take
B = I. Then, picking us: = G(g:) in (23) results in asymptotic
stability of the tracking of the reference signal r. To see this, let
e;=q—r; and e; = q — #; be the position and velocity error
in tracking the reference signal r. Define the error signal
e := (ey, €7), and consider the Lyapunov function candidate

Vi) = %é,,TD(eq +15)eq+ %e,,Terq

a

High Layer
Decision Making

Middle Layer
MPC Planning

%

Low Layer
CBF Control

Grid World Abstractions Discrete-Time Abstractions

Event Based

Frequency 1/T Hz

Environment Observation Oy

i 4 Reference State and Input a True System Trajectory System and Environment
iy Reference :Error e(t)
X(IT). o [State /‘—‘\‘ -
v i - and Input i npu
Goal Cell | © ‘ i { Time Ermrp Reference Trajectory
2 ! R} s
- r T = - + -
cgoal i—1 i i+1 i+2 Bound € Time

True System Dynamics

Continuous Time
A

System State x(t) ‘

\ { Multirate Control

FIGURE 5 Multirate robotic control can be viewed through the lens of layered architectures (taken from [51]).

JUNE 2024 « IEEE CONTROL SYSTEMS 63

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

which is positive definite since D(g) is symmetric positive
definite. Then, differentiating V along solutions of (21) yields

V(e) <—éqKpeg <0

as D(q,q) —2C(q,4) is skew symmetric. Invoking LaSalle’s
principle then shows asymptotic stability of (eg, ¢5)=(0,0); that
is, it shows that the reference signal is asymptotically tracked.

Nonlinear Control
The use of Lyapunov functions in certifying linear control-
lers” ability to asymptotically track reference signals points
to nonlinear controllers, based on Lyapunov functions, that
can achieve improved performance. Indeed, to maximize
performance in robotic systems, it is necessary to exploit
the full nonlinear dynamics of the system, which can be
done only with nonlinear controllers. These controllers
must, however, be synthesized in a way that yields both
theoretical guarantees while also being deployable in prac-
tice; that is, they must be implementable at fast loop rates
(>1 KHz). With this in mind, a key attribute of the nonlinear
controllers we define next is that they can be expressed as
convex optimization problems that can be solved quickly,
for example, linear programs and quadratic programs (QPs).
With the goal of driving the error signal e = (e, é;) to
zero exponentially, consider a CLF V satisfying

kilel*=V(e) =k: el

inf V(e,u) <—AV(e) (25)

for c,ki,k2,A > 0. Importantly, due to the affine nature of
the dynamics (22), V is affine in the input u,

Veu) = %(f(x) +g()u—+)

and can therefore be expressed as a QP when U = R”:

um(e) = argmin | u — ug I?
ueR?

subject to V(e,u) <—AV(e) (26)
which computes a minimal deviation from the desired
feedforward control input us: while tracking the refer-
ence signal exponentially: e;=x;—7 — 0. Importantly,
there are many variations of QP-based controllers that
are used for real-time control in robotic systems, that is,
those that utilize the dynamics as a constraint and can
therefore account for constraints on forces and moments
in real time. In all cases, the fact that these are QPs means
that they can be implemented in real time at loop rates of
1 kHz or greater, even on complex robotic systems like
walking robots.

Multirate LCAs
In LCAs, planning layers typically operate using reduced-
order models. These are simpler, usually lower-dimensional,

64 IEEE CONTROL SYSTEMS » JUNE 2024

representations of the components of the full-order dynamics
(21) of interest, designed to capture essential behavior needed
for the control task. Thus, reduced-order models are often
application dependent, and their generation is often heuristic
in nature: some of the most common reduced-order models
used for robotic control are the single integrator, double inte-
grator, and unicycle. These are often leveraged for control
synthesis in the context of kinematic models, for example, for
mobile robots. The overarching goal in the design of these
reduced-order models is the ability to generate reference sig-
nals that are (approximately) dynamically feasible and can be
tracked well by a real-time feedback controller.

This trajectory generation is typically performed over a
longer horizon, requiring more computation time; it is there-
fore natural to view the interplay of trajectory generation and
feedback control through the lens of multirate LCAs, that is,
through the lens of LCAs for which the controllers at differ-
ent layers operate at different frequencies or rates. This can be
captured using continuous models (such as singular pertur-
bation theory [11], [12]). Yet, in the case of robotic systems, it is
advantageous to be more concrete about the timescale sepa-
rations present among layers. One way to explicitly capture
this is through the use of discrete-time reduced-order models
at the planning layer and continuous-time full-order models
at the real-time feedback control layer. An additional advan-
tage of discrete-time models at the planning layer is that they
can provide an effective means of generating reference trajec-
tories; this discrete instantiation better allows for planning
forward in time, for example, through MPC.

To that end, consider a linear discrete-time reduced-
order model

y(k+1) = Aromy (k) + Bromo (k) (27)
that will be used by the trajectory planning layer, where the
reduced-order model state y € R? and inputs v € R° are
typically (but not necessarily) of a lower dimension than
full-order state x € R" and inputs u € R"; that is, p <n,
and s < m. The reduced-order state is often related to the
full system state via a projection map: 7.(x) = y. For robotic
systems, a commonly used projection is 7 (x) = 7:(q,9) = g;
that is, one considers reduced-order models on the configu-
ration variables only. Additionally, v € R® is an auxiliary
input to the reduced-order model that is used to generate a
reference signal sent to the real-time controller; we use v to
denote this auxiliary input, as it can often be interpreted as
a velocity command. Analogously, we typically require an
embedding of the auxiliary input v into the full-order
dynamics (22) via z°(v) = u. While this section focuses on
discrete-time linear reduced-order models, neither feature
(discrete time or linear) is essential. In the “Continuous-
Time LCAs” section, we explore the use of nonlinear contin-
uous-time reduced-order models within multirate LCAs.

Proceeding with the discrete-time linear reduced-order
model (27), we follow the approach proposed in intermediate

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

subproblem (10) to couple the discrete-time reduced-order
model state y(k) and the underlying continuous-time
dynamics (22). As in [52], we model the dynamics of the com-
bined multirate LCA composed of a planning layer operat-
ing in discrete time with sampling period = together with
the full-order control system (22) defined on 7~ := Uken-, T%,
with 7% := (kt,(k+ 1)7), as follows:

Slow: y(k+1) = Awomy (k) + Bromv (k),
Fast: & = f(xe) + g () (ue + us(k)),
Coupling: y(k) = 7x(xxe), us(k) = z"(v(k)).

ke Nxo
te Tk
(28)

Here, the planning layer operates at a slow loop rate, defined
by the sampling rate 7, in discrete time on a reduced-order
model, while the real-time feedback controller operates at a
fast timescale (represented by a continuous-time evolution).
Analogous to the coupling constraints in subproblem (10),
the reduced- and full-order models are coupled via 7, and
7°, where 7z°(v(k)) is held constant over the interval
(kt,(k + 1) 7) on which the “fast” low-layer feedback control-
ler operates and 7x(xx:) is used to update the current state of
the reduced-order model every discrete step.

The goal is to synthesize controllers u and v for the fast
and slow dynamics in a synergistic fashion to achieve an
overall control objective. In particular, suppose we syn-
thesize a controller, v(k) = vn (y(k)), that achieves a con-
trol objective for the reduced-order linear model (27); that
is,theclosed-loopsystem y (k + 1) = AromY (k) + Bromva (v (k))
drives y (k) — y; for a desired goal state y,. The evolution of
the discrete-time system can also be used to give a set of
tracking goals for the real-time feedback controller expressed
by the error terms: ex: = (mx(x:) —y(k+1)). [Note that this
causes a discrete jump in the error every discrete step. To
avoid this, a smooth function of time r:(k) on 7% can be
defined such that 7 (k) =y (k) and rg+1)(k)(k) =y(k+1),
wherein the error term becomes ex = (7:(x) — 7). This can
be achieved by converting the discrete-time system y(k +1) =
Aromy (k) + Biomv (k) into a continuous-time system y=
AtomY + Bromv, with v implemented in a sample-and-hold
fashion; that is, Afom and Biom are defined by

Afom = 108 (Arom), Biom = Afom (Arom = 1) " Brom
when the log and inverse are well defined. In the case when
they are not, one can assume that the discrete-time system
came from Euler integration, Arom = (I + AfomT) and Brom =
Bfom T, to obtain Afom = (Arom —I) /T and Bfom = Brom/T. In
either case, the result is a continuous reference signal:

t
re(k) = ek (k) +(feAL’(”)ds)Bcvfb(y(k)), te Tk.

kt

Alternatively, the discrete-time system (27) can be replaced
by a continuous-time system at the slow control layer, as
done in [52], to generate a smooth reference signal a priori.]

A controller can be synthesized that ideally drives this
error to zero, such as a linear controller, as in (23), which
here takes the form

uf(Xkr)

u (ex,x (k7)) = 7° 0 U O 7 (Xke) + (Ot >TI<p(7zx (x) —y(k+1))

ox

ub(ex,r)

(29)

or using the Lyapunov controller in (26), with e replaced by
ert and ug replaced by us(x(kt)) for t € Tk. The end result
is the closed-loop multirate system

Slow: For k € Nxo:

y(k + 1) = Ammﬂx(xkr) + Bromvfb O ﬂx(xkr) (30)
Fast: For ex: = (mx(x:) —y(k+1)) and t € Tk
= f(xr) + g () (st (xae) + i (ek,r)) - (1)

Here, the state xi. at the beginning of the sampling period
informs the next iteration of the slow dynamics, while the
slow dynamics inform the fast dynamics through the feed-
forward input (which depends on v) and ek, which drives
the system to the next desired setpoint y(k+ 1) over the
interval 7. To provide a specific example of the generation
of closed-loop policies, we begin with slow controller syn-
thesis viewed as a planning problem.

Slow Trajectory Generation

We view trajectory generation as a planning problem (12),
which can be solved using MPC. In particular, consider a
goal state y, for the reduced-order model, obtained, for
example, from a higher decision layer, with the objective of
synthesizing a controller that achieves this objective sub-
ject to a safety constraint expressed as state constraints
S={yeR": h(y) 20} and input constraints V; that is,
the system must evolve such that y(k) € S and v(k) € V for
all k= 0. To this end, we can formulate an MPC problem
resembling that proposed in (12), with an N =1 planning
horizon and positive (semi)definite cost matrices Q,Qx = 0
and R >0, as a QP:

k+N-1
minimize 2 (y@=ysla+lo@)I?)
i=k
+Hyk+N) =g | b
subjectto y(i+1) = Aromy (i) + Bromv (i)

y (k) = 7x(xw)

y@),yk+N)eS, v(@),vk+N)eV
i=k. ., k+N-1 (32)
with |y [4 = y" Qy. At each discrete-time step k > 0, prob-
lem (32) is solved to produce a sequence of nominal
reduced-order model states y =y (k:k+N) and inputs
v =v'(k:k+ N —1). The planning layer controller is then
chosen as v(k)=ovmrc(y(k)):=v'(k), as is the standard
approach in MPC.

JUNE 2024 <« IEEE CONTROL SYSTEMS 65

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Multirate LCAs in Practice
To highlight the practical impact of the multirate LCAs we
present, we provide an overview of successful experimen-
tal implementations in safe navigation, safe locomotion, and
data-driven locomotion. In all cases, a multirate LCA facilitates
the ability to realize controllers in practice. The commonality of
the approaches and, more specifically, architectures in these
disparate applications on different hardware platforms shows
the broad applicability of LCAs for robot control.

SAFE NAVIGATION

Consider the problem of safe navigation with a ground robot
[S1]—in this case, both a wheeled vehicle and a quadruped.
Following the “Example 6 (Running Example: Robot Naviga-
tion)” section, the differential flatness of the Dubins’ car is uti-

lized to create a linear system (18) that is discretized as in (34).
Using this discrete-time linear reduced-order model, an MPC
problem is formulated as in (32), wherein safety is enforced
(avoiding obstacles) while planning a path toward a goal. This
generates a discrete-time reference trajectory that is sent to the
Dubins’ car and tracked with a real-time controller as in (35).
This paradigm is illustrated in Figure S1. In particular, the dis-
cretely updated reference signals are shown (in red) along with
the tracking of these reference signals by the real-time control-
ler (in green). Importantly, the input to the Dubins’ car model
can be viewed as a reference velocity that can be tracked on
hardware with onboard controllers. This further layering allows
for the experimental deployment on both a wheeled vehicle
and a quadruped, as, again, shown in Figure S1.

12
- Safe Set x Waypoints
104 == T|ghtened Safe Set = Reference
.y o SR ~— Path
81 V
/! i
E 6 Y | i
> i :
1 1
4 : :
1 1
] 1
2 1 1
Start i Obstacle i Goal
0 .
0 2 4 6 8 10 12 14

8
X (m)
(a)

Path
Reference Trajectory

Obstacle

Obstacle

FIGURE S1 A multirate LCA using the Dubins’ car and differential flatness (from [S1]). (a) Reference trajectories are generated with
a discrete-time linear reduced-order model and tracked by the Dubins’ car model. These signals can be passed to hardware and
tracked onboard with real-time controllers, on both (b) a wheeled vehicle and (c) a quadruped.

66 IEEE CONTROL SYSTEMS » JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

SAFE LOCOMOTION

As noted throughout the “Multirate LCAs” section, LCAs pro-
vide an effective paradigm for enforcing safety constraints on
complex robotic systems by enforcing safety (framed as set
invariance) at both the planning layer [for example, in the MPC
problem (32) as a state constraint] and at the real-time control
layer via a CBF [for example, as in the QP (33)]. To demonstrate
this, consider the stepping stone problem, where the goal is for
a legged robot to precisely place its feet on a series of stepping
stones. This is safety critical in that if this foot placement target
is missed by the feet, the robot will fall. Additionally, it requires
a layered approach, in that the system must maintain safety
while also remaining dynamically balanced.

In [S2], an LCA formulation was implemented on a qua-
drupedal robot (ANYmal) to realize stepping stone behavior
experimentally. This is illustrated in Figure S2. In particular,
a safety constraint is implemented at the planning layer via a
CBF (via MPC with a kinematic reduced-order model) and at
the real-time control level (as a CBF constraint in a whole-body
controller). Implementing CBFs at both layers resulted in no

User Commands

Segmented Terrain
: Gait Pattern Base Reference

‘ e f —] ___,éT?

=

Y

MPC (~30 Hz)

x(t), u(?)
Second-Order
CBF T
WBC 400 Hz —>

failures (missing the stepping stone) over 140 steps. Without
the LCA framework, more failures were observed; that is, just
enforcing a CBF constraint at the real-time layer leads to five
failures, while implementing CBFs at only the planning layer
leads to six failures. This demonstrates the practical utility of
LCAs for safety-critical systems.

DATA-DRIVEN LOCOMOTION
Finding reduced-order models on which to instantiate multirate
control can be challenging, often requiring domain-specific knowl-
edge. This can be addressed by learning reduced-order models
via data-driven methods. To provide an example of this para-
digm, consider again the problem of legged locomotion, where
reduced-order models are used at the planning layer. The goal is
to learn this model and deploy the learned model experimentally.
Following [S3] and [S4], we learn a linear reduced-order
model at the planning layer and leverage this model to pose
an MPC problem. In particular, given sufficiently rich (persis-
tently excited) data collected from the robot, Hankel matri-
ces can be used to exactly determine the forward evolution

FIGURE S2 (a) An LCA used to realize dynamic walking on stepping stones (from [S2]). (b) This framework was implemented
on ANYmal, with (c) the result of walking as illustrated. WBC: whole body control; RF: right front; LF: left front; RH: right hind;

LH: left hind.

(Continued)

JUNE 2024 < IEEE CONTROL SYSTEMS 67
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Multirate LCAs in Practice (continued)

of linear time-invariant systems [S5]. Following [S6], given
a user-defined reduced-order model state y € R and input
v € R®, one can define the data-driven state transition matrix

Here, vin and yini are the reduced-order inputs and state
observed in the past over an estimation horizon Tin. Equation
(S1), which defines linear relationships between the control in-

put and state over the next N steps, can be used as a constraint
in the MPC problem (32) instead of the explicit dynamic con-
straint y(k+ 1) = Acwomy (k) + BromV (k).

G(data) over N steps:

Vini
Yini

Vkk+N

Yik+n = G(data) (81)

()

Hierarchical Control Loop
1 kHz

Past Reduced-Order States
and Inputs (Past Reduced-
Order Trajectory)

(Vini» Yini) Iﬁ

Robot Dynamics

Full-Order States
Xt

QP-Based Nonlinear
Controller
for the Full-Order Model

Joint-Level Torques|
T

Optimal Reduced-Order Trajectory Data-Driven Predictive Control for Path Planning

=z

[$]

(]

: des||2 des 2 el

v min (Y — Y +|[Ve— ¥) e}

[y} = 7(Vini ; Yini) K (v.y) kz=0 | Elle + I el §
Vini
subjectto Y =G | Yini

[User-Defined Input af Transition Matrix
VieV €, k=0,...,.N-1

Data Collection

\

Offline Experiments for the
Computation of the Hankel Matrices and
the Transition Matrix

Collected Output Data (y)

29 30 31
Collected Output Data (v9)

I i \ ‘.J_ ' b { \ ' ‘ ' C R
L |
25 26 27 28 29 30 31 32 33 34 35
Time (s)

FIGURE $3 A data-driven LCA on a quadrupedal robot (from [S3]). Data are collected from the robot to determine the data-driven state
transition matrix G(data), which is then used in an MPC problem to plan trajectories. The reduced-order model state and input are
passed to a nonlinear optimization-based controller at the real-time layer to control the robot. Dynamic walking results that is robust
to (a) pushes, (b) external pulls, (c) rough terrain, and (d) natural terrain, based on the (e) hierarchical control loop and data collection.

(Continued)

68 IEEE CONTROL SYSTEMS > JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Multirate LCAs in Practice (continued)

This approach was experimentally deployed on a quad-
ruped robot, as described in Figure S3. The robot consid-
ered has 18 degrees of freedom, and thus, the state is 36D
(x € R*). A reduced-order model is considered with a 10D
state y € R consisting of select body positions, velocities,
and orientations. The reduced-order input v € R consists of
ground reaction forces. With this reduced-order model, data
are collected, G(data) is computed, and (S1) is leveraged in
an LCA via an MPC problem at the planning layer, which is sub-
sequently implemented on the robot via a nonlinear real-time
controller similar to (33). The end result is robust data-driven
dynamic walking.

REFERENCES
[S1] D. R. Agrawal, H. Parwana, R. K. Cosner, U. Rosolia, A. D. Ames,
and D. Panagou, “A constructive method for designing safe multirate

Fast and Safe Feedback Control

The solution (y’,v") to each MPC subproblem solved at
discrete-time step k can further be leveraged to synthesize
a lower-layer real-time feedback controller. In particular,
we can transmit these solutions to the fast lower layer to
define the error signal ex: = (7:(x:) —y" (k+ 1)), which can
in turn be driven to zero using the Lyapunov controller
(26) (replacing e with ex) and using us (k) = 7°(vmrc (y (k))).
While this will drive 7:(x) — y"(k +1)) (the next step pro-
duced by the MPC problem) with the input from the MPC
problem vmec(y(k)) as a reference, there is no guarantee
that the safety constraints will be satisfied over the time
interval 7%. To address this shortcoming, we can combine
the Lyapunov controller (26) with the CBF controller (37)
into an optimization problem that resembles optimization
problem (15). However, in this case, we can exploit the con-
trol-affine structure of the dynamics (22) to obtain a QP
through the use of Lyapunov and barrier functions:

um(exy) = argmin | u — z° (omrc (y (K))) |* + pS*
uckl, seR

V(exy,x,u) <—AV (exs) + 6
T (o, 1) =— g, (x1)

subject to
(33)

with ., := hoz. assumed to be a valid CBF:

sup) % I fx) + g(x)u)] >_ o ().

T (1, 10)

Here, p >0 is a penalty associated with the relaxation term
&> 0, which can be interpreted as an instantaneous analog
to the tracking cost (15) that penalizes [x—7r ||(22 Note that
input constraints can also be added to the QP (33), but this
would require a relaxation of the CBF condition or the
input constraints to ensure feasibility (see [53], which

controllers for differentially-flat systems,” IEEE Contr. Syst. Lett., vol. 6,
pp. 2138—-2143, 2022, doi: 10.1109/LCSYS.2021.3136465.

[S2] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered
safety for legged robots via control barrier functions and model predictive
control,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Piscataway, NJ,
USA: IEEE, 2021, pp. 8352—-8358, doi: 10.1109/ICRA48506.2021.9561510.
[S3] R. T. Fawcett, K. Afsari, A. D. Ames, and K. A. Hamed, “Toward a
data-driven template model for quadrupedal locomotion,” IEEE Robot.
Autom. Lett., vol. 7, no. 3, pp. 7636—7643, Jul. 2022, doi: 10.1109/LRA.
2022.3184007.

[S4] R. T. Fawcett, L. Amanzadeh, J. Kim, A. D. Ames, and K. A.
Hamed, “Distributed data-driven predictive control for multi-agent col-
laborative legged locomotion,” 2022, arXiv:2211.06917.

[S5] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A
note on persistency of excitation,” Syst. Control Lett., vol. 54, no. 4, pp.
325-329, 2005, doi: 10.1016/j.sysconle.2004.09.003.

[S6] J. Coulson, J. Lygeros, and F. Dérfler, “Data-enabled predictive
control: In the shallows of the DeePC,” in Proc. 18th Eur. Control Conf.
(ECC), Piscataway, NJ, USA: |IEEE, 2019, pp. 307-312, doi: 10.23919/
ECC.2019.8795639.

considers the interplay between continuous and discrete
dynamics in the context of input constraints).

The solution us (ex:) to the QP (33) can be used in the
multirate dynamics (31), which, when combined with the
MPC problem (30), yields a closed-loop multirate controller
instantiated via an LCA. The power of the closed-loop mul-
tirate LCA, as opposed to a single-layer feedback controller
using Lyapunov and barrier functions, is that information
from the MPC problem encodes knowledge of future
system behavior via the reduced-order model. Conversely,
the fast layer accounts for the full nonlinear dynamics of
the system that are not present in the slow layer. Thus, we
are able to synthesize an LCA that leverages the nonlinear
dynamics of the system at the real-time feedback control
layer while looking ahead to future behaviors defined in
the trajectory planning layer via a synergistic coupling of
the two. Formal guarantees for the multirate LCA pre-
sented here can be found in [51] and [52].

Example 6 (Running Example: Robot Navigation)
Consider again the Dubins’ car, which, for the moment,
we view as the full-order dynamics. We aim to instanti-
ate a discrete-time planning layer via MPC. To deter-
mine the corresponding reduced-order model, we
leverage the fact that the dynamics of the Dubins’ car
Gt = from(gr)ur, with g=(x1,x2,6) and wu=(u1, u2), as
given in (4), are differentially flat per the “Example 5
(Running Example: Robot Navigation)” section. For the
flat output &= (x1, x2), denote the relationships among
the states, inputs, and flat outputs by g=4g.(&, €) and
u=u,(& &). Note that we make a slight deviation
from the notation used in the “Example 5 (Running
Example: Robot Navigation)” section to be consistent
with the configuration space notation defined in this
section and use g to denote the state, rather than x.

JUNE 2024 « IEEE CONTROL SYSTEMS 69

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

To apply the approach outlined in this section, we
can forward integrate the flat continuous-time linear
dynamics (18) over the time interval 7% =[kz, (k +1)7]
to obtain the discrete-time reduced-order model

— AT T A8 e
y(k+1)—eA y(k)+f0 Ao Beomds v (k). (34)

[——
rom
Brom

Here, y(k)=(£(k), (k) €R*, and v(k)=£&(k)eR*. We
note that here, the reduced-order model is actually
higher dimensional but is “reduced” in complexity by
being linear. Utilizing this system, a feedback controller
v (y (k)) can be synthesized. For example, this can be
chosen to be the result of the MPC problem (32); that is,
v (y (k) =omec(y (k). The result is the error ex:=
(gt —q-(y(k+1))) and a feedforward input us(y(k))=
u,(y (k), v (y(k))). This can be used to synthesize a
linear feedback controller of the form (29), modified
slightly to exploit differential flatness, as in (20):

u(ens, y (k) = use(y (k) + Kpe:
= us(y (k) + um(ext) (35)
for Kp, a positive definite matrix.

The final feedback controller is given by setting y (k) =
(X1,ke, X2,k0, X1,kc, X24). This paradigm is deployed experi-
mentally in “Multirate LCAs in Practice.” Alternatively,
in the expression above, we could consider a continuous
reference signal e: = (q: — q,(y+)), where y; is the solution
to (18) given a feedback controller v=Kgsy, that is, by
solving 17=(A+BKm)y with initial condition y(k7)=
(1,ke, X2,k0, X1,kc, X24c) . This paradigm is deployed experi-
mentally as described in “Continuous-Time LCAs in Prac-
tice” and is discussed in more detail in the next section.

Continuous-Time LCAs

We observe that we can further layer the control architecture
defined in the “Example 6 (Running Example: Robot Naviga-
tion)” section by viewing the unicycle as a reduced-order
model wherein continuous multirate control can be applied.
That is, we can view um (ex:, 1 (k)) as a reference velocity [see
the “Example 7 (Running Example: Robot Navigation)” sec-
tion], which we want a more complex robot to track, that is, a
quadruped or drone, as described in “Continuous-Time
LCAs in Practice.” The end result is a three-layer architecture
with two planning layers and one feedback control layer: 1) a
slower discrete-time planning layer using a linear model,
2) an intermediate reference signal generation layer using a
continuous-time unicycle model, and 3) a fast feedback con-
trol layer for the tracking of the reference signal by the under-
lying complex robotic system. This observation highlights
that layers can often be added in a fairly modular fashion,
allowing for the benefits of each layer to be enjoyed. This sec-
tion explores the bottom two layers of the LCA described

70 IEEE CONTROL SYSTEMS » JUNE 2024

previously, namely, the interplay between a continuous-time
reference signal generation layer and a real-time feedback
control layer, in more detail. Implicit throughout is the
assumption that the loop rates at each layer, and the commu-
nication among layers, happen sufficiently fast. We focus on
safety-critical systems, wherein safe reference signals are
generated by the trajectory generation layer to be tracked by
the real-time control layer. We show that formal guarantees
of safety can be obtained for these LCAs and that, impor-
tantly, this architecture enables theory to be widely deployed
in practice.

Safe Reference Signal Generation
Consider a continuous-time reduced-order model

f/t = from (]/t,vr) (36)

where, as above, the reduced-order dynamics fiom, state
y: € R?, and auxiliary input v € R® are chosen to be simpler
than the full equations of motion (21) while nevertheless cap-
turing the essential features of the control problem at hand.
We recall that we assume that the reduced-order state y is
related to the full system state x via the projection 7.(x) =y
and that the auxiliary input v can be embedded into the full
dimensional input space via the embedding 7°(v).

Assume now that the reduced-order model (36) is used
to generate a desired reduced-order state trajectory y* and
a corresponding feedback law v”(y;) for the auxiliary input,
for example, via the techniques described in the previous
section. Now consider the objective of ensuring that the ref-
erence signal satisfies a safety constraint, encoded by
making the set S={y € R:h(y) >0} forward invariant,
for some differentiable function 1 : R” — R. We can leverage
CBFs if h satisfies the CBF condition with respect to the
reduced-order dynamics:

sup I (y,v) = suﬂg[% Sfrom (y,v)] >—ah(x) 37)

veR®

where o > 0 is a positive constant. (Note that, more gener-
ally, can be chosen to be an extended class K function.
We opt for a positive constant for simplicity of exposition.)
If fiom is affine in the auxiliary control input v, this inequal-
ity can be expressed as a QP of the form (26), with the result
being a safety filter operating on the reduced-order model
within the reference signal generating layer:

Usafe (y) = al'gﬁlcin || U= Ud (y) HZ

veR?

subject to /1(y,v) =—ah(y). (38)

This safety filter can then be integrated into reference signal gen-
eration in a variety of ways, for example, forward integrating the
closed-loop dynamics 1/ = from (Vt, Usafe (Y1) to generate a refer-
ence signal r, with corresponding error e, : = y: — ry:, which
can then be tracked with a linear or nonlinear controller, that
is, replacing e in (26) with e,. Alternatively, the safe input vsae
can be tracked by the real-time controller, as described below.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Real-Time Feedback Control

To provide a concrete example of the use of continuous-time
reduced-order models at the planning layer coupled with
real-time feedback controllers, consider the case when we
have a kinematic reduced-order model with y = g; that is,
our reduced-order model operates on the configuration
variables, §: = from(q:,v:), where now the auxiliary input v,
is naturally associated with the generalized velocities §:.
Consider a safe velocity, v (q), generated from the QP (38).
Following [54], assume that this velocity is passed to a real-
time controller via the error signal éae,t : = §t — Usate (41); that
is, the real-time controller takes the safe velocity from the
reduced-order model as a reference, with the goal of track-
ing this reference signal. Assume a real-time feedback con-
troller us = um (X1, Vsate (q)) that can exponentially track this
reference velocity, for example, via the controller (26), with
e; replaced by ésafe,r, resulting in exponentially fast tracking:

< Me™¥|

Gaater esate| (39)
for M,A > 0, with the error calculated along solutions of
the closed-loop system x: = f(x:) + g (x¢) 1t (X1, Vsate (1)) . The
following theorem, adapted from [55], provides formal
guarantees for the reduced-order model-based LCA
applied to the full-order dynamics (21). For experimental
implementations related to this formal result, see “Contin-
uous-Time LCAs in Practice.”

Theorem 1
Consider a control system (22), where x = (g,4), and a
safe set S={g€Q:h(g) =0}. Assume that i has a
bounded gradient; that is, there exists K, > 0, subject to
[9h/3q |, < Ku, forall g € S. Let vsare(q) be the safe veloc-
ity given by the QP (38), with corresponding error
Csafe = — Vsafe(q) satisfying (39). If A > a, safety is
achieved for the full-order dynamics (22):
4(0), bsare(0)) €S = gq(t) €S, Vi=to (40)
where

Mewsluz 0} @

Su={(geu) R : i) - K
Note that to certify “fast enough” tracking by the real-
time controller, a Lyapunov certificate can be used [54] (see
Figure 6). Assume that the real-time feedback controller
tracks the error és per a Lyapunov function, as in (25):
V (ésate) <—AV (ésate). Then, for any differentiable vsare (7) sat-
isfying the CBF condition (37), safety for the full-order
dynamics is achieved if A > o:

(q(O), esate(0)) €Sv = q(f) eS8y, Vt=ty

where
SV = {(q/ésafe) (S Rzn : hV(q/ésafe) > O}

hv(q/ésafe) :=—V(q/ésafe) + Olgh(q), e = (Z’_Tj)kl

Interestingly, this result is established by synthesizing a
CBEF for the full system dynamics, hv, using the CBF for the
reduced-order model, i, together with the Lyapunov func-
tion for the tracking controller, V.

Example 7 (Running Example: Robot Navigation)
Returning to the running example, we can view the Dubins’
car as a reduced-order model used to enforce safety con-
straints on a complex mobile robot, such as a quadruped.
Recall that the Dubins” car dynamics (4) take the form
Gt = from(qt)ur, where q = (x1,x2,6) and u = (u1,u2). Con-
sider a barrier function defined on the Dubins’ car dynam-
ics, aimed at avoiding collisions with obstacles:

h(q) = do—r — kcos (6 — 6o)

where do =] (x1 —x%,x2—x9) |, with (x, x9) the position
of the obstacle, 6= arctan((x5—x2)/(x}—x1)), and
k > 0 a tunable parameter.

Let u’(q) be the feedback controller (20) synthesized
in the previous section for tracking a nominal trajectory.
Then, the safety filter (38) yields a QP on the Dubins’ car:

Usare(q) = argmin [u—u(g) >

ueR?

subject to g_Zﬁom (q)u =—ah(q) 42
where | u HZ =u"Tu, with T = diag(1,R), where R > 0 isa
control cost parameter. The result is a reference velocity
Usafe (9) = (U1,safe (), U2, sate (7)) On the forward velocity and
change in heading. These reference signals can be sent to a
robot with more complex dynamics as though they were joy-
stick commands. Theorem 1 guarantees safety for the more
complex system under the assumption of good tracking.

Discussion

An underlying principle in designing LCAs for robotic
systems is to synergistically leverage the strengths at
each layer. For example, the lowest layer can handle

Robotic System
D(q)q + C(q, 9)g+ G(q) = Bu

Velocity Tracking ds
u: g—gs <
V<-AV

Safe Velocity
Vhg, > -ah

FIGURE 6 An LCA (from [54]) for controlling robotic systems via
continuous reference signal generation. In this case, a safe refer-
ence velocity is generated that is tracked by a real-time controller
realized on the robot.

JUNE 2024 « IEEE CONTROL SYSTEMS 71

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Continuous-Time LCAs in Practice

To illustrate the practical consequences of Theorem 1, we Here, go € R” is the centroid of the obstacle and r its radius.
highlight how a common reduced-order model can be used The safety filter (38) can be expressed as the QP

to achieve safety across a variety of robotic systems, including

a drone, quadrupedal robot, manipulator, and full-scale automo- Vsare (@) = argmin||v — v (q) |°
tive system. This diverse set of robotic systems has very dif- ver ;
ferent underlying dynamics, and yet, deploying a well-designed subject to (g=g0) , >—allg—qol-r) (S3)

LCA does not require direct knowledge of these dynamics, rath- la=gol

er, only “good” onboard tracking controllers that allow planning
layers to operate on reduced-order models rather than on the
underlying complex system dynamics (as illustrated in Figure 6).

where v?(q) =—Kr(q — q9) is a desired velocity that drives the
system to a goal position g4 € R". In the case of planar collision
avoidance g, o, g € R? (representing the spatial position in the
plane), which is the case that will be considered in the context
of the experimental implementation on a drone and quadruped.

The result of (S3) is a safe velocity vsae(q) that can be
tracked with existing onboard tracking controllers. This was
implemented on both drone and quadruped hardware plat-
Gt = from (qt, Vi) = Vi (S2) forms. We highlight that while these platforms have dramati-
cally different underlying dynamics, by leveraging a well-de-
signed LCA, the exact same safe reference velocity, Vsae(q),
can be used and tracked on both platforms. The results can be

DRONES AND QUADRUPEDS
We wish to enforce collision avoidance with obstacles in the
environment. To begin, consider the “simplest” kinematic mod-
el of a robot, a single integrator:

obtained by setting y: = q:. Collision avoidance is encoded by
the safety constraint S={q € R": h(q) = 0} for

h(@) =llg—qol-r. seen in Figure S4: safety is achieved [as certified by h(q) = 0]
Drone = 1 Starte—~1 T 0.8 T T T :g 1 T T T]
: é_“ % 04k E Desired, dg|
= - - .
:g E Safei > r Safe, g -
z © 0 S ; .
o 3, Actual, g
1 1 1 > 1 1 1
0O 5 10 15 20 0 5 10 15 20
Position, gy (m) Time, t(s) Time, f(s)
Single Integrator
(@
1 Lp— T 0.8 T T @ 0.5 T T
é ?/ta:}/ \\ ’E\ g Desired, dd i
$ O \O,' Goaly Z 0.4 i = ;
c AR ’ AN w =
9 == = E
= -1 I’ \e m Safei =
a \ (@] 0 g
Quadruped & , N) . . 2 .
= 0 1 2 3 4 0O 5 10 15 20 0 15 30 45
Position, g4 (m) Time, t(s) Time, t(s)
Single Integrator
(b)
= 1 Starth ==« T 0.8 T T g 0.5 I T T]
*g\, 1 % Desired, v, |
s -
i) = 4
= Safei = Actual, v
o s} b
o 1 1 g O 1 1
5 10 15 20 0 15 30 45
Position, g; (m) Time, t(s) Time, t(s)
Unicycle

(©

FIGURE $4 Experimental results on a drone and quadruped (from [54]). Both the (a) drone and (b) quadruped use a single-integra-
tor (S2) reduced-order model and the corresponding QP (S3). Suitable integration into an LCA yields safe behavior. Additionally, a
(c) unicycle (Dubins’ car) model is used on the quadruped to achieve safe behavior that is less conservative.

72 |EEE CONTROL SYSTEMS > JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

for both the drone and quadruped tracking reference signals
Vsae (@) produced by (S3). For the quadruped, we can also use
the Dubins’ car as a reduced-order model instead of the single
integrator, as described in the “Example 7 (Running Example:
Robot Navigation)” section. In this case, the resulting safe ve-
locity usae(q) produced by the QP (38) is tracked as a refer-
ence signal. The resulting behavior is again safe but less con-
servative due to the Dubins’ car being a better representation
of the movement of the quadruped in the plane; that is, a bet-
ter reduced-order model produces less conservative behavior
while still maintaining safety.

MANIPULATORS

Consider a robot manipulator, as illustrated in Figure S5. The
control task is to achieve collision-free behavior between the
robot and environment while accomplishing a task (in this
case, flipping a burger). Importantly, there is no access to the
proprietary onboard real-time controllers of the commercial
robot arm, and therefore, safety must be achieved through
an LCA.

Let A(g) c R® be the set of all points on the robot (which de-
pends on the configuration of the robot g € R") and B c R® be
the set of all points in the environment. Collision-free behavior
between the robot and environment, captured by A(Q)nB =@
or A(g) C B, with B the complement of B, is encoded by a bar-

rier function S ={q € R":sdas(q) = 0} defined in terms of the
signed distance ([S7]):

h(q) = sdas(q):= inf | pa—pall— inf |pa—pel.. (S4)
pseB pseB
distance(A(q), B) penetration(A(q), B)

The advantage of using the signed distance, as opposed
to the distance, is that the addition of the “penetration” term
which gives a negative value when this occurs—as opposed to
the distance which is strictly nonnegative. This negative value
allows for convergence back to the safe set S per the fact that
CBFs render S attractive.

The challenge with using the signed distance as a barrier
function is that it is discontinuous on a set of measure zero
[S8]. To accommodate for the discontinuities, consider

oh _ 9sdas _ asdﬁé +5(q)

aq aq aq (85)

which decomposes sdas(q) into its differentiable and nondiffer-
entiable component, where the gradient of the nondifferentiable
component, 8, is viewed as a disturbance that is nonsmooth
on a set of measure zero; as a result, we can design a con-
troller that is robust to adversarial disturbances of magnitude
matching the essential supremum || § |, = esssup:=ol|5(q2) |

-

~
EWEHEBEE
=
reE [
4 P

— h(q) (Hardware)
— h(q) (Simulation)
— Maximum Value of h(q)

1 1.5 2 2.5 3 3.5

FIGURE S5 Achieving safety on a robot manipulator (from [55]). The manipulator executes a series of preplanned trajectories, and
a safety filter is instantiated via a reduced-order model to prevent collisions with the environment. The value of the barrier function
is shown, wherein nonnegative values imply collision-free behavior.

(Continued)

JUNE 2024 < IEEE CONTROL SYSTEMS 73
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Continuous-Time LCAs in Practice (continuea)

For the reduced-order model, we consider a kinematic
model of the robot arm (S2); that is, g: = v:, with q: € R", for
n, the number of degrees of freedom (in this case, n =6). To
enforce a safety filter on the reduced-order model, the goal is
to leverage a QP of the form (38). Yet, in this case, due to the
fact that the signed distance is not continuously differentiable,
we leverage the decomposition in (S5) to obtain the QP

Vsate (g, t) = argmin||v —v?(q) |
veR"

. dsdSs :
subjectto =3 2v=—a (sdas(q)) + 1 8 Lo Gmax

(S6)
with gmax = ¢|.. and || 8. defined as above. Here, vq(q) is
obtained from a series of preplanned trajectories that must be
executed while avoiding collisions; that is, va(q) = Kr(qh— q),
with g’y the next waypoint (in time) of the preplanned trajectory.

The QP in (S6) was implemented experimentally on a FA-
NUC robotic manipulator in a kitchen scenario [55]; that is, the
robot was required to do a variety of cooking-related tasks
while avoiding collisions with the environment. As illustrated in
Figure S5, the robot was able to perform a variety of complex
tasks while maintaining safety h(q) = sdas(q) = 0.

AUTOMOTIVE SYSTEMS
For complex real-world applications, domain-specific reduced
models are needed. Additionally, as in the application to ma-

>
\

(Safety) Function
o

Barrier

-
<

nipulators, real-world settings also require extended notions
of safety to account for differences between the reduced and
full-order dynamics.

To provide an example of this, consider adaptive cruise con-
trol (ACC), where the control objective is to achieve a desired
speed subject to maintaining a safe distance from a lead car. In
this setting, consider a reduced-order model (36) defined by a
point mass model of a vehicle moving in a straight line:

ye 0 ,
y=[_1 1 i]u, F.(y) =co+ciy2+Cays
—FEW [T
from (y) grom(y)
= Vo—J2

where y1 (in meters) is the position, y2=y1 (in meters per
second) is the velocity, m is the mass of the car (in kilograms),
the input u (in newtons) represents the wheel force F., and
F: is the rolling resistance; typically, co, ¢y, and cz are de-
termined empirically. Finally, z is the distance between the
vehicles, where it is assumed that the lead vehicle is traveling
at a constant speed vo.

The key safety constraint is keep a safe distance from
the car in front of you. This is generally encoded by the “half
the speedometer” rule, which states that D = v/2 (with D in
meters and v in kilometers per hour); that is, the distance be-
tween two vehicles should be at least half the current speed.
Converting this to m and s results in the safety constraint

y >

FIGURE S6 A safety filter implemented on a full-scale truck [S12]. (a) When the safety filter (S7) is implemented, safety is achieved.

(b) The nominal controller v¥ violates the safety condition.

74 IEEE CONTROL SYSTEMS » JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

(Continued)

Continuous-Time LCAs in Practice (continuea)
z>1.8y2, which can be translated to a barrier function
h(y,z) =z—1.8y2=0. It is easy to verify that this is a valid
CBF and can be implemented in practice [S9], but we con-
sider the generalization

h(y,z)=z— (ao+a1y2+a2vo+a3y§+a4y2vo+asv3)

for which the parameters, a;, can be determined such that
z > 1.8y2 is satisfied while allowing for actuation limits and
other practical considerations to be enforced.

Let v(y) be the “nominal” ACC system, that is, the current
algorithm on the vehicle, which drives the velocity y» — v4. We
can then instantiate a safety filter in the form of a QP:

Vsare (y) = argmin|| v — ve (y) |F
veR®

2

| [2L gemtn|
subject to h(y,v)z—ah(y)+W, EEO-
(S7)

The added term €(h(y)) is a “tunable” term that enforces a
generalization of input-to-state safety [S10] termed tunable input-
to-state safety [S11]. Here, € is a function that can be tuned and

high-dimensional nonlinear systems (for example, via
Lyapunov and barrier functions), yet model uncertainty
and “looking ahead” in nonlinear systems is challenging.
Adding a reference signal generation layer that uses contin-
uous-time reduced-order models mitigates model uncer-
tainty while still yielding formal guarantees, such as on
safety. Adding a discrete planning layer above the reference
signal generating layer allows for longer horizon planning,
for example, via MPC with a discrete-time linear reduced-
order model. Combining these together mitigates the weak-
nesses at each layer while enjoying their strengths. This use
of diverse models, timescales, and control approaches was
highlighted through experimental demonstration on a wide
variety of robotic systems. We return to the idea of diversity
across layers enabling behavior that cannot be achieved by
any single layer in the “Architecture Design as Multicrite-
rion Optimization” section, where we introduce a quantita-
tive notion of a diversity-enabled sweet spot (DeSS) in LCAs.

Final Remarks

The success of LCAs in robotic systems, and the ability to
add and remove layers as needed, points to the power of
these methods. It also conveys their complexity: different
models at different layers, and the interfacing among these
models, result in complex and notationally intensive math-
ematical models, and establishing formal guarantees
becomes daunting. Yet, the fact that these approaches work
in practice, and are widely understood as the “way to con-
trol robots,” points to the value in formalizing and

must have a positive derivative; we pick €(h(y)) = eoe”"¥). The
safety filter (S7) was implemented on a class 8 truck without a
trailer [S12]. As shown in Figure S6, the nominal ACC controller v?
results in a safety violation and, in fact, a collision. Using the safety
filter on this nominal controller results in safe system behavior.

REFERENCES

[S7] J. Schulman et al., “Motion planning with sequential convex
optimization and convex collision checking,” Int. J. Robot. Res.,
vol. 33, no. 9, pp. 1251-1270, 2014, doi: 10.1177/0278364914528132.
[S8] T. Sakai, “On Riemannian manifolds admitting a function whose
gradient is of constant norm,” Kodai Math. J., vol. 19, no. 1, pp. 39-51,
1996, doi: 10.2996/kmj/1138043545.

[S9] A.Mehra, W.-L. Ma, F. Berg, P. Tabuada, J. W. Grizzle,and A. D. Ames,
“Adaptive cruise control: Experimental validation of advanced controllers
on scale-model cars,” in Proc. Amer. Control Conf. (ACC), Piscataway, NJ,
USA: IEEE, 2015, pp. 1411-1418, doi: 10.1109/ACC.2015.7170931.

[S10] S. Kolathaya and A. D. Ames, “Input-to-state safety with control
barrier functions,” IEEE Contr. Syst. Lett., vol. 3, no. 1, pp. 108—113,
Jan. 2019, doi: 10.1109/LCSYS.2018.2853698.

[S11] A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe
controller synthesis with tunable input-to-state safe control barrier func-
tions,” IEEE Contr. Syst. Lett., vol. 6, pp. 908-913, 2022, doi: 10.1109/
LCSYS.2021.3087443.

[S12] A. Alan, A. J. Taylor, C. R. He, A. D. Ames, and G. Orosz, “Control
barrier functions and input-to-state safety with application to automated
vehicles,” 2022, arXiv:2206.03568.

analyzing LCAs. It can be argued that this is a central chal-
lenge for the control community moving forward: going
beyond homogeneous system models and analyzing het-
erogeneous models interacting within an LCA.

ARCHITECTURE DESIGN AS
MULTICRITERION OPTIMIZATION
The previous sections illustrate how an LCA can be naturally
derived from a global decision and control problem, and they
provide a concrete instantiation of these ideas in the context of
robotic systems. These results highlight both the power of
LCAs and the art and complexity involved in designing them.
We highlight that many idealized assumptions were made in
the first part of the article: we assumed that the control system
hardware was already fixed, that we knew how many layers
were needed and what each layer should do, and how layers
should interact within the LCA. In this section, which marks
the start of the second half of the article, we try to address
some of these idealized assumptions and propose a frame-
work rooted in multicriterion optimization for quantitative
reasoning about architecture design choices, such those
described in the previous two sections. A key theme that we
explore in this section is that while each layer may be subject to
specific constraints and tradeoffs, by leveraging diversity across
layers, these tradeoffs can be mitigated to yield high-perform-
ing LCAs, such as those highlighted in the previous sections.
We begin with a familiar illustrative example: long-distance
travel. We consider three possible “travel layers,” namely, air
travel (implemented via aircraft and airports), public transit

JUNE 2024 « IEEE CONTROL SYSTEMS 75

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

(implemented via buses and bus stops), and walking (imple-
mented via human sensorimotor control). Each of these travel
layers is subject to speed—accuracy tradeoffs (SATs), which are
themselves a function of architectural design choices (but we
will not focus on these here): air travel is fast but inaccurate
since we can fly only between airports; public transit is moder-
ately fast and moderately accurate, as we are limited to bus
stops; and walking is slow but extremely accurate. These travel
layers can be placed in a speed-accuracy plot, as in Figure 7.

However, as we all know, when traveling long distances,
it is most efficient to appropriately combine these travel
layers: we walk to the bus stop, take the bus to the airport, fly
to the airport nearest our destination, take the bus to the stop
nearest our destination, and then walk to our destination.
Although not usually thought of in this way, this is an LCA
for travel, with air travel serving as a fast but inaccurate
layer, public transit serving as an intermediate layer, and
walking as a slow but accurate layer. The resulting LCA,
which implements diverse layers using diverse components,
is nearly as fast as flying and just as accurate as walking. We
call such an LCA that leads to minimal tradeoffs between
speed and accuracy an architectural sweet spot.

It is our claim that such sweet spots are ubiquitously
enabled through diverse layers being appropriately combined
in LCAs. (Diverse layers typically require diverse hardware,
or levels. We discuss levels in more detail in the “Key Con-
cepts in Control Architecture” section.) Indeed, we see com-
parable diversity in sensorimotor control, robotics, computer
networks, and biology, in order to mitigate what appears to be
a universal constraint on individual layers, namely that the
lower the layer in the “stack,” the faster the layer must operate
but the more limited it is in its capabilities. Nevertheless, by
appropriately combining slow decision making with moder-
ate speed trajectory generation and fast feedback control, we

a
Slow
@
EO—O)
o} o
HEY == ==

Fast I

Accurate Inaccurate

FIGURE 7 Each individual “travel layer” is subject to SATs, but com-
bining them appropriately in an LCA enables an overall transporta-
tion system with minimal tradeoffs in either speed or accuracy.

76 IEEE CONTROL SYSTEMS » JUNE 2024

are able to design autonomous systems that are as flexible as
the decision-making layer and as accurate and fast as the feed-
back layer. In the remainder of this section, we propose a
quantitative framework for reasoning about such DeSSs.

Pareto Surfaces and Pareto Minimax Points

Our goal is to both characterize the fundamental tradeoffs
that different control architectures induce and to determine
whether a control architecture enjoys a (diversity-enabled)
sweet spot. To formalize these concepts, we turn to multi-
criterion optimization.

Multicriterion Optimization

Multicriterion optimization problems seek to minimize a
vector-valued objective function. Following [56, Ch. 4], we con-
sider a vector optimization problem that seeks to minimize
the vector-valued objective

C(x) = (Ci(x),...,Ca(x))

with respect to the positive orthant R{. Such an optimiza-
tion problem should be interpreted as having d different
objectives C;, each of which we would like to make small.

In contrast to scalar-valued objectives, we must take care in
defining appropriate notions of optimality. In particular, we
may define both optimal and Pareto-optimal points. A feasi-
ble point x" is optimal if it is unambiguously better than any
other feasible point, where better is defined in terms of the
partial order induced by the positive orthant; that is, a feasible
x" is optimal if for any other feasible y, C(x") < C(y), thatis, if
Ci(x") = Ci(y) for all i=1,...,d. Most engineering design
problems are subject to fundamental tradeoffs between opti-
mization criteria C;, and such an optimal point typically does
not exist. Instead, a family of Pareto-optimal points can be
defined, wherein a feasible point x?° is Pareto optimal if for
any feasible y, if C(y) < C(x"°), then C(y) = C(x?°); that is, a
feasible point xP° is Pareto optimal if no other point exists that
is unambiguously better. Indeed, the existence of multiple
Pareto-optimal points implies that there is a fundamental
tradeoff between the different objectives.

The standard approach to solving such a multicriterion
optimization problem is via scalarization. A common approach
to scalarization is to take a weighted sum of the objectives; that
is, for 2 € R%,, define the scalarized objective C4(x)=A"C(x) =
£7-12:Ci(x). By sweeping over weighting parameters A > 0, we
obtain a family of Pareto-optimal points x7°(1), which in turn
defines a Pareto surface (C1(x"°(1)), ..., Ca(x*°(1))) € R%. (Up
to boundary points, such an approach is guaranteed to recover
all Pareto-optimal points if the objective functions C; are convex
in x; see [56, Ch. 4]) An alternative, but also important, scalariza-
tion approach is to consider minimizing the maximum of the
objectives; thatis, Cmax (x) = max{Ci(x), ..., C;(x)}. The result-
ing solution x™™ is called the minimax Pareto-optimal point.

A familiar example of bicriterion optimization in con-
trol is LOR optimal control. Indeed, defining the vector-
valued objective <Z;§’:0||x(k) Hi, 20w () ||§), we recognize

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

the LQR objective Z}=¢ | x(k) [} +pllu®) b +|x(N) [as a
scalarization of the competing small state and control
cost objectives. An alternative, albeit less common, sca-
larization would be to consider the maximum objective
max{Zﬁ’:oH x (k) ||§, 20w () ||§} See Figure 8 for an exam-

ple of a typical Pareto curve for an LOR problem.

Sweet Spots Are Nearly Optimal Points

We now have the required concepts to formally define a
sweet spot. Intuitively, a sweet spot is a point on the Pareto
surface that is nearly optimal. We quantify this notion of
near optimality by defining a o sweet spot to be a minimax
Pareto-optimal point that is o away from being an optimal
point in the following sense:

o = supmax{Ci(x™) — C1(x*°(2)), ... Ca(x™™) — Ca(xP°(1)) }.
A>0 (43)

In words, the measure o characterizes the biggest loss in
optimality in any of the criterion C; of a minimax Pareto-
optimal point relative to any other Pareto-optimal point. Note
that if there exists an optimal point x°, then ¢ = 0 and that
o increases as the tradeoff between objectives becomes
more severe. See Figure 9 for a qualitative illustration of
when o is small or large as a function of the geometry of
the Pareto surface.

Diversity Enables o Sweet Spots

One of our key claims, which is broadly supported by exam-
ples in engineering, science, and biology, is that diversity
enables nearly optimal sweet spots despite individual layers
being subject to strict and at times severe tradeoffs. We begin
with a simple stylized example for which the suboptimality
measure ¢ can be computed exactly. We then explore a case
study in sensorimotor control in the next section.

Co(X)

> Cy(x)
(a)

lllustrative Example: Bicriterion Least Squares
We study the bicriterion least-squares problem

minimize, (with respect to R?) (| A1x — b1 [3,|| A2x — b2 [7)
44)

through the lens of DeSSs. We assume that b1, b, € R"
A, A2 e R™ and x e R*. Our stylized architecture
design problem is to design the matrices A1 and Az by
selecting their rows, possibly with replacement, from a pal-
ette of 2m linearly independent rows V = {v1, ..., van} C R*™.
Our goal is to quantify how diversity in the row spaces of Ai
and Az affects the resulting o sweet spot of the bicriterion prob-
lem. We begin with some simple observations:

» If we assume that we design A; and Az to respec-
tively have full row rank, then it is clear that each
individual objective can be made zero. We make this
assumption going forward, and hence, we have
o= max{” Ar1x™ = b1, | A2x™ = b2 ”i}

2
s

State Cost
p = oo

» Control Cost

FIGURE 8 A Pareto surface and minimax Pareto-optimal point for
an LQR. By varying the weight p on the control cost, the Pareto
surface is traced out.

>Ci(x)
(b)

FIGURE 9 The measure o of a minimax Pareto point quantifies how much of a tradeoff there is between competing objectives by compar-
ing the minimax Pareto-optimal point to all other Pareto-optimal points. An (a) small o and (b) large o A small ¢ indicates that there

exists a point that is nearly optimal.

JUNE 2024 « IEEE CONTROL SYSTEMS 77

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Diversity enables nearly optimal sweet spots despite individual layers heing
subject to strict and at times severe tradeoffs.

» If we further assume that the stacked matrix

A =[AT, AJ]" has full row rank, thatis, that A1 and A

do not share any rows selected from V, then o = 0. This

is easily verified by setting x™™ = A~'b, with b = (b1,b2).
Thus, our remaining task is to characterize the o sweet
spot for optimization problem (44) when A; and A, share
a common row space. Toward that end, we consider the

minimax scalarization (44)
minimize, max{|A1x—b: [|A2x —b2 |3} @5)

and its dual (see “Bicriterion Least Squares: Additional
Details” for details):

| 225
A2

P
e M2 02

Al = Al o
AM+2A2=1,21,22 > 0.

. T
maximizea, a2 241 b1 —

subject to
(46)

This allows us to immediately reconfirm that o =0 if
A1 and Az do not share any rows, as in this case, any dual
feasible solution has u1 = 12 = 0. Similarly, when A1 = A,
a simple argument shows that o =1/4[b1—b> ||§ A
generalization of this argument is presented in Theorem 2

400+

3501

300+

2
2

250+

200

150+

1) = Asx = by I

100

50+

fi(x) = | Ayx; = by ||§
(a)

100 150 200 250 300 350

and proved in “Bicriterion Least Squares: Additional
Details,” which allows us to characterize the solution
when A1 and A, share k rows.

Theorem 2

Consider the bicriterion least-squares problem (44). Sup-
pose that A1 and A» are both full row rank, and assume,
without loss of generality, reordering rows in A; and
elements in b; if necessary, that A1 and A, share their
first k rows. Then, the minimax solution x™ to the sca-
larized problem (45) defines a ((1/4)” Ef (b1 —b) H;)
sweet spot, as defined in (43). Here, Ex = [e, ..., ex], with
ei € R™ the standard basis elements.

Theorem 2 makes clear that the more diverse the matri-
ces A1 and A, that is, the smaller the number of shared
rows k, the less severe the tradeoff; similarly, the less diverse
the matrices A1 and A», that is, the larger the number of
shared rows k, the more severe the tradeoff. We compute a
family of the resulting Pareto curves and minimax-optimal
points for m = 5 in Figure 10(a) and plot the evolution of the
suboptimality measure o as a function of the number of

100 1

801

607

40

Suboptimality Measure o

201

0 1 2 8 4 5
Number of Shared Rows

(b)

FIGURE 10 Increased diversity in row spaces provably leads to less severe tradeoffs, as quantified by a smaller suboptimality measure
o, in the bicriterion least-squares problem (44). (a) We observe how the Pareto surface for the bicriterion least-squares problem (44)
becomes increasingly unfavorable as we decrease the diversity across As and Aa. This is true both in terms of the overall Pareto sur-
face and the suboptimality measure o. (b) We plot the suboptimality measure o as a function of shared rows across A and Az for the
bicriterion least-squares problem (44). We observe that o deteriorates as we decrease diversity across A1 and Aa.

78 1EEE CONTROL SYSTEMS > JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

shared rows in Figure 10(b). Parameters are randomly gen-
erated so as to ensure the requisite linear independence
conditions and such that | (b1 — b2);| is approximately even
for all i. Details of how the parameters are generated can be
found in “Bicriterion Least Squares: Additional Details,”
and the code used to create these plots can be found at
https://colab.research.google.com/drive/1jK0f]bSzxBb78y
Hcru8EsRle9V-aZYYx?usp=sharing.

To further gain insight into the LCA design problem, let
us view A1 and A, as defining two layers, with layer i
aimed at addressing control subtask b;. This analogy rein-
forces that diversity is not enough to ensure a small subop-
timality measure o. The control subtasks, herecharacterized
by b1 and b,, must themselves also be compatible with
system diversity (or lack thereof). For example, even if
k=1, a very large (ef (b1 — b2))? will nevertheless lead to
a severe tradeoff between optimizing the two objectives,
resulting in a large o. Conversely, diversity is needed in
A1 and A; only if the control subtasks b1 and b2 are also
diverse; if b1 = by, then A=A, will still yield o =0.
Connecting this back to the travel example, if a destina-
tion is just a block away, then diversity is not required,
and just walking is an optimal travel LCA. Conversely, if
the destination is extremely remote, then the three layers

Bicriterion Least Squares: Additional Details
DUAL TO PROBLEM (45)
Recall that the minimax least-squares problem is given by

o Aax = ba |2}

minimizex max{|| A1x —b1| (S8)

To derive an interesting dual problem, we consider the fol-
lowing equivalent problem:

minimizex; x,¢ t
subjectto ||Aixi—b1|f <t
| Azxz— b2 |5 <t
X1 = Xo.

(S9)
The corresponding Lagrangian is given by
L(t x1,X2,A1,A2,V) =t+A1(|A1x1— b1 Hg—t)+7lz(||A2X2—b2||§—t)
+2VT(X1 — X2) (S10)
for A1,12 > 0.

We rewrite the Lagrangian in the more suggestive form

L(t, X1, X2, A1, A2, V) = t(1 = A1 = A2) + A1 | A1x1— b1 |3
+2v X1+ A2 | A2x2— b2 ||§—2VTX2. (S11)

Recalling that the dual function is defined as
g1, A2, v) = tiXm: L(t, x1, X2, A1, A2, V)
and that the dual problem is given by

maximize i 1. > o g (A1, Az, V)

of commercial air travel, public transit, and walking will
still be very slow. Thus, this simple example hints at an
explanation as to why diverse layers are needed by systems
that must accomplish diverse tasks across diverse environ-
ments at diverse spatiotemporal resolutions. We explore a
(still stylized) control problem in the next section that fur-
ther reinforces this concept.

Olfactory
3 I
10 Optic
Q Cranial)
5 (Sensory) Auditory
Z 104 Vestibular
@
o
2
S 10?
< Spinal 3
(Sensorimotor) <
100 R
107" 10° 10!

Mean Axon Diameter (pm)

FIGURE 11 The axons per nerve (oc resolution) versus the mean
axon diameter (oc speed) for four key cranial nerves and the larg-
est (Ax) sensorimotor axon that occurs in spinal and peripheral
nerves (in copies from one to hundreds).

we immediately conclude that g(41,12,v) is bounded be-
low if and only if A1+A2=1, v 1L ker(Ay) e v=Alu; for
unconstrained 1, and v L ker(Az) v =Alu, for uncon-
strained 2. Under these conditions, the minimizers are
xi =—A] ((uil2A)) + b)), which, after simplification and collect-
ing like terms, results in the dual problem (46).

PROOF OF THEOREM 2

Under the assumptions of Theorem 2, the set of feasible w1
and w2 in the dual problem (46) is given by w1 = > = Exa
for any acR¥. It follows from the Karush—Kuhn-Tucker
conditions of the dual problem (46) that the optimal solution
is (ui, t5, A1, Ab) = (ExEk (b1 — b2)/4, ExEF (b1 — b2)/4,1/2,1/2)
and that the corresponding o sweet spot of the problem
satisfies

o =L ELb1—ba) 5.

EXPERIMENTAL DETAILS FOR FIGURE 10

We set m =5 and n =10 and draw the entries of A and Az
independent identically distributed (i.i.d.) according to a stan-
dard normal distribution (duplicating shared rows across A
and A2 as necessary). This ensures the linear independence
of rows with a probability of one. We draw the entries of b1 i.i.d.
according to a standard normal and set bz = b1+ A, where
A ~ N(0,100/m).

JUNE 2024 « IEEE CONTROL SYSTEMS 79

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

A CASE STUDY IN SENSORIMOTOR CONTROL

We adapt the following from Nakahira et al. [57] and Naka-
hira et al. [58]. Our goal in this section is to highlight how
diverse layers, and the diverse hardware used to imple-
ment them, in the human sensorimotor LCA (see Figure 11)
enable astonishingly efficient DeSSs despite severe SATs.
To that end, we first derive robust performance limits for
a simplified model of sensorimotor control subject to
communication that is delayed and quantized due to its
implementation using physiological hardware composed of
axons. We then identify a simple layered architecture com-
posed of delayed but accurate vision (planning) and fast but
inaccurate reflex control (feedback) layers and show that
this architecture is optimal for the aforementioned senso-
rimotor control model and leads to a DeSS. Finally, we show
that despite the simplicity of the model and analysis, it is
shockingly predictive of real-world behavior, as confirmed
in “Experimental Validation in a Biking Simulator.”

A Simplified Model
Consider an initial minimal model with discrete-time
dynamics

x(k+1) =ax (k) +wk —Tw) + Quk —Tu))

u(k) =K(x(0:k),w(0:k),u(0:k—1)) 47)
where x(k) € R is the state, w(k) € R is the disturbance,
u(k) € R is the control action generated by the controller K,
and Q: R — .7z, for .“& C R, a finite set of cardinality 2R isa
quantizer that limits communication between the controller
and the actuator to R bits/sampling interval. The form of the
control law in system (47) implies that the controller is full
information, as the control signal u (k) is allowed to depend on
all current and past states x(0:k), current and past distur-
bances w(0: k), and past control actions u(0: k — 1).

A schematic for this model appears in Figure 12, where
we use P to denote the plant defined by (47). The control
signal u is transmitted to the actuator (colocated with the

—_

Control Law (Design Variable)
. Controller
K

(Brain)

Channel
(Neural Signaling)

Commemeee Disturbance

Advance Warning
(Visual Information)

Pant Sensing
(Body Dynamics) (Reflex Feedback)
Actuation
Delay of T (Motor Control)

FIGURE 12 The feedback system model for sensorimotor control.

80 IEEE CONTROL SYSTEMS » JUNE 2024

physical plant P) via the communication channel C, which is
defined by the composition of the quantizer Q with the
delay block T.. This delay block implies that the controller
command u(k) takes T.(=0) sampling intervals to reach
and be executed by the actuators; that is, u (k) affects the
plant T, + 1 sampling intervals only later. (We assume that
the channel C is memoryless and stationary with rate R,
allowing us to restrict the quantizer Q to be memoryless
and static as well. Generalizations that lift this assumption
can be found in [57]) Note that because Q and the delay
block commute the dynamics (47) and Figure 12 are indeed
consistent. We assume |w (k)| <1 and x(0) = 0. The dis-
turbance is known to the controller, with an advance
warning of T (= 0) sampling intervals; that is, the control-
ler has access to w (0 : k) even though the disturbance affects
the plant T + 1 sampling intervals only later.
The robust control problem can then be posed as

minimize su “ x (k) Hoo
KQear kzo,uw(g ll.<1
subjectto dynamics (54) (48)

where Qr is the space of control laws defined by the pair of
mappings (K,Q), with Q constrained to be a static memory-
less quantizer of rate R; that is, Q: R — .“&. This cost func-
tion is standard in L; robust control [59], except that a
communication channel C, composed of a quantizer Q and
a delay T, is inserted into the feedback loop. Perhaps sur-
prisingly, this problem formulation still allows for a simple
and intuitive analytic solution. Indeed, without quantiza-
tion or delay, the control law

u (k) =—ax (k) —w (k)

ensures that x(k+ 1) = 0. Thus, any errors in the state are a
direct consequence of quantization and/or delay or to satu-
ration of the control signal u.

Fundamental Limits Due to Delay and Quantization

In this section, we provide an exact solution to the robust con-
trol problem (48) for fixed advance warning T: and actuation
delay T,. In particular, we show that the worst-case state
deviation can be expressed as a function of the plant pole 4,
the channel rate R, and the net delay of the system T := T, — Tx.
The achievable performance takes a different form depend-
ing on the net delay regime that the system is operating
under. When the net delay T is positive (T > 0), this corre-
sponds to a system in which the control action u (k) can affect
the plant T sampling intervals only after the disturbance w (k)
affects the state. Conversely, when the net delay T is nonposi-
tive (T < 0), this corresponds to a system in which there is
advance warning of the disturbance, allowing the controller to
act in advance. These two qualitatively different cases are
treated separately. We then use these insights in the next sec-
tion to pose an LCA design problem that seeks to identify an
appropriate combination of fast but inaccurate and slow but
accurate neural signaling to enable a DeSS.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Theorem 3
Suppose that |a|< 2%. Then, the minimal state devia-
tion achievable in robust control problem (48) is

T
Sla=t+]aT |28~ |a)™ T >0
i=1

(2R —la|)" ifT<0. 49)
Conversely, if |a | > 2R then the system cannot be stabi-
lized, and the optimal value to optimization problem

(48) is infinite.

The performance limits (49) are remarkably simple and
intuitive. The net warning case (T < 0) has only one term due
to quantization, with the stabilizability condition |a|< 2%
well known from the networked control system literature [60].
With no dynamics (2 = 0), this reduces to a trivial rate distor-
tion theorem with error 27%. The net delayed case (T < 0) is
more interesting, with the first term due to the delay alone
and the second term an additional contribution due to quanti-
zation. As expected, both grow rapidly with increased net
delay T and unstable a > 1, for reasons familiar and intuitive.

SATs in Neural Signaling
We now add a tradeoff between temporal and spatial reso-
lution in neural signaling to our model via the net delay T
and data rate R. We believe this is the first important con-
straint in explaining the extreme heterogeneity found in the
nervous system and is analogous to the SAT highlighted in
the travel example above. The nervous system communi-
cates between components and the body with a variety of
nerves, which are bundles of axons. Axons are the wiring by
which spiking neurons communicate
long-range using action potentials,

yet remarkably simple relationship between data rate R
and signaling delay Ts:

R = /’Loz Ts (50)

where A is a resource measure that scales with the axon
area a.

Next, we explore the surprisingly rich consequences of
the constraint R = A.Ts on our minimal model of senso-
rimotor control using Theorem 3. For simplicity, we write A
from now on, as the resource dependence is understood.
One can verify that if R = ATs and T, := Ts+ T., then the
optimal performance specified in Theorem 3 becomes

i‘ai'l|+|uT‘(2‘T’—|u|)"l if T>0
i=1

(21T~‘—|g|)71 if T<0.
30
— — Delay Cost
— - — Quantization Cost
20 Total Cost

Cost

FIGURE 13 The impact of speed versus accuracy. The cost of delay
sup|iwl. <1]| xa|.., the cost of quantization supjjw|. <1|| Xq .., and the
total cost supjjw|. <1] x4 .. are shown with varying delay Ts when
A=0.1, a=1.

o . . 10
and it is possible to derive some 0

rough tradeoffs from well-known
physiology. Figure 11 examines some
of the tremendous diversity of axon 100

numbers and sizes among the cra-

Optimal Cost

nial and peripheral nerves. We argue

that much of this arises due to hard

10°

— — Delay Cost
— - — - Quantization Cost
—— Opt Total Cost

) 10—1

constraints on speed versus accuracy.

We suppose that our channel C
(see Figure 12) is a single nerve with
uniform signaling delay Ts and
assume that the total delay T is the
sum T, = Ts+ T. with an additional
fixed delay T. due to gray matter
computation and other communica-
tions. Initially, we assume that T. is
fixed and given and that T is variable
and depends on the nerve composi-
tion, as in Figure 11. Following the
arguments provided in [57] and [58],
we use the physiologically plausible

Optimal Delay / Channel Rate

107"
6

10!

100

107"

4

2 0

Advance Warning (Tw)

(@)

10!

100

107"

0

2

4

Computational Delay (Tc)

6

0

2

4

Computational Delay (Tc)

(b)

FIGURE 14 (a) A warned (T. =0, T > 0) system versus (b) a delayed (Tw =0, Tc > 0) system.

JUNE 2024 « IEEE CONTROL SYSTEMS 81

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Figure 13 describes the system performance when vary-
ing delay Ts (and, thus, channel rate R) for Tc = T, = 0 and
a fixed resource level a. Increased delay increases the delay
error term sup|wl. <1 xa|.:= ‘ ai’1| but reduces the
quantization error term supjo|.<1/x,[,:=@" —|al)™.
Consequently, the optimal system-level performance is
achieved at intermediate levels of delay and channel rate.
Because of the exponential dependence, there is no analytic
formula for the optimum, but the error is convex, and the
minimum is easily found numerically. Next, we consider in
more detail the consequences of these formulas by varying
the additional delays and plotting the resulting optimal
errors, bits, and delay.

Figure 14 gives the optimal delays Ts (and resulting net
delay T) and channel rate R = AT; that achieve the mini-
mum total error when varying T, =0 and T. =0 sepa-
rately in the two special cases: 1) T = T, — T < 0 (warned)
and 2) T=Ts+T.> 0 (delayed). What results are clearly
two distinct regimes with distinct physiology. When the
computation delay T. is greater than zero, the system has a
net delay T, and the delay cost increasingly dominates the
total cost, leading to both the data rate R and signaling
delay Ts becoming constant (that is, suggesting axons of a
large and constant radius p) independently of T.. This cor-
responds to the reflexes on the right half of Figure 11, with
nerves having relatively few large axons—these are the
physiological analogs to aircraft and airports from our
travel example. The total error, due mostly to delay, can be
much larger than the disturbance. Concretely, in running
or cycling on rough terrain or through heavy traffic, a rela-
tively small but well-placed perturbation to the foot or
wheel can be amplified into a crash, even a fatal one; this
effect gets worse at high speeds, when the delay is rela-
tively larger. Our nervous system invests in large nerves,
axons, and muscles to avoid such crashes, consistent with
the theory.

With increasing advance warning T > 0, the net delay T
becomes nonpositive, and in this case, the errors due to quan-
tization increasingly dominate the total cost. Further, this
total cost goes to zero as T« increases, exactly the opposite of
the delayed case. Further, as the advance warning Ty
increases, so does the data rate R, and consequently, the axon
radius p decreases (as & = 7Rp? is fixed). This corresponds to
the left side of Figure 11, with many relatively small axons—
these are the physiological analogs to walking in our travel
example. In running or cycling, we can start with huge errors
to remotely located objects and given enough time, drive
them to zero. Here, we are limited largely by the resolution of
our vision in accurately locating the object, again consistent
with the theory.

Thus, we have an extremely simple model that connects
the high-layer requirements of advance warning and
planning (for example, as enabled by vision) to the low-
layer control implemented by fast reflexes. In the sequel,
we explore further aspects of this model and introduce
additional constraints and generalizations.

A Minimal LCA

One of the most important features of a visual system is its
distributed nature, in which sensors, actuators, and com-
putational components are interconnected via sparse
communication. Figure 15 sketches a minimal model of
this kind that is composed of two copies of each component
in Figure 12. The plant dynamics are given by x(k+1)=
ax(k)+u(k)+w(k), except the disturbance is now composed
of two terms w(k) =v(k) + r(k—T,), as is the control action
u(k)=ur(k —Tr) + un(k — Tr), each generated by its own
sensors, computing, and communication components.
Visual trajectory planning is done through the control loop
involving Qmu, which is responsible for tracking, via the
control signal un(k), a visual target whose change in posi-
tion is captured by r. We assume a very simplified view of
vision whereby remote (in space)
sensing means that r (k) is seen, but it
takes T, for the disturbance to arrive,
effectively creating an advance

warning of T, though the physical
details are all causal.

On the other hand, local (reflex)
compensation is done through the
control loop involving Qr. Distur-

K, K, Control Law (Design Parameter)
L H
High-Level Planning
=--+--= r--l---i K (Cortex: Tracking Target)
1 N o | it
i Q i 1| Qu i E T, i Channel
o '3 | i i (Neural Signaling)
! i
X : TL i : TH :
[el ey ol K, Low-Level Error Correction
L (VOR: Motion Compensation)
Channel
QT (Neural Signaling)
v T, e—r

bances, such as those caused by
body and head motion, are captured
by v and are sensed directly by the
vestibular-ocular reflex, which
computes a control action ur(k) to

(Head Motion) (Target Motion)

(Eye Movement)

FIGURE 15 Modeling visual processes as an LCA. VOR: vestibular—ocular reflex.

82 |EEE CONTROL SYSTEMS » JUNE 2024

compensate. The control commands

T |Delay of T (un(k),ur(k)) from both loops are

sent to the plant through different
signaling pathways, modeled by
channels with rates Ry and R: and

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

delays Tn and Ti, respectively, after which their gains are
summed to produce the final previously described control
action u (k) = ur(k — Tr) + un(k — Tr). Connecting this LCA
back to the formalism introduced in the “LCAs via Opti-
mal Control Decomposition” and “LCAs for Robotic Sys-
tems” sections, we immediately recognize un as a
feedforward control term computed at the planning layer,
which provides advance warning of the coming reference
position r and u1. as a feedback control term computed at the
feedback control layer and executing in near real time to com-
pensate for unforeseen disturbances v.

Using the tradeoff (50) in both signaling pathways, and
bounding | v |, and ||| from above by one and &, respec-
tively, the optimal performance is then given by

TL
{Zla“|+|aﬂ\<zm—|a|>*1}~+6(2R”—\a\)*l.
i=1

This result follows by noting that the total system can
be decomposed into two independent subsystems,

Experimental Validation in a Biking Simulator
Sensorimotor control was studied in the context of the mul-

tisensory task of mountain bike riding, using a video game
as the experimental platform [58]. The game captures tunable
requirements on player performance that require layered ar-
chitectures in the nervous system to create DeSSs, due to the
constraints imposed by physiology; see Figure 15. Naively,
success in the biking task seems to require speed and accu-
racy that the raw hardware lacks, making nonlayered solutions
infeasible. The layered nervous system breaks the overall bik-
ing problem into a high trails (trajectory planning) layer of slow
but accurate vision with trail look ahead for advance warning
and a low bumps (feedback control) layer that uses fast but in-
accurate muscle spindles and proprioception to sense and re-
ject bump disturbances. The motor commands from these two
control loops to the muscles simply add in the optimal case as

Action Quant: 1 Action Delay: @ Vision Delay: -85

Whell Position”

Future -
Present
Past

ey ‘

FIGURE S7 Players see a winding trail scrolling down the screen
at a fixed speed, with a fixed advance warning (the visible trial
ahead), both of which can be varied widely. The players aim to
minimize the error between the desired trajectory and their
actual position, using a gaming steering wheel.

corresponding to the Qn and Q1 loops, and thus, so can its
performance. The first subsystem is a delayed system driven
by v and controlled by ur, while the second subsystem is a
warned system driven by r and controlled by ux. From our
previous analysis, it is expected that the first system achieves
better performance when its nerves are composed of a few
large and fast axons, whereas the second system achieves
better performance when its nerves are composed of many
small and slow axons. These phenomena can indeed be
observed in real visual systems [61]. Specifically, the optic
nerve has approximately 1 million axons of mean diameter
0.64 ym, with a conductive velocity (CV) of 0.46 ym, while the
20,000 vestibular axons have a mean diameter of 2.88 ym,
with a CV of 0.41 ym, significantly larger and less numerous
and slightly less variable.

We conclude by emphasizing that a key enabler for
DeSSs is diversity in the hardware used to implement
diverse layers to address diverse system tasks. For exam-
ple, in the biking example discussed in “Experimental Vali-
dation in a Biking Simulator,” if the trail planning layer had

FIGURE S8 Bumps are added using motor torque in the wheel.
Experiments can be done with bumps only, trails only, or both
together; with varying trail speed and/or advance warning; and
with additional quantization and/or time delay in the map from
the wheel position to the players’ actual position.

5 [— Bump — Trail — Both]|

(9]

.2

=

g

2 0

o

W _5 ‘ . ‘
10 15 20 25

Time (s)

FIGURE 89 Errors in the case of bump only, trail only, and both.

(Continued)

JUNE 2024 <« IEEE CONTROL SYSTEMS 83

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Experimental Validation in a Biking Simulator (continued)

Delay (s)
-0.2 0 0.2 0.4

-0.6

-0.4

10

L. Error

Total Error

Delay Error

Rate Error

1 2 3 4 5 6 7
Rate (b/Unit Time)

FIGURE $10 The error under added delay (blue), the error under
added quantization (red), and the error under added delay plus
quantization (black). In the last case, the added delay T and
quantization rate R are subject to the component constraint
T = (R - 5)/20. The dot shows the averaged error of four sub-
jects, and the shadowed area indicates the standard error of
the mean for these subjects.

well as in experiments [S13], [58], though muscles have their
own constraints, as demonstrated by Fitts’ law [62].

Nakahira et al. [58] developed experimental tasks and cor-
responding sensorimotor control models that mimicked three
aspects of mountain biking: compensation by the spinal cord
for the random shaking coming down the trail, the anticipation
of turns in the trail by the visual system, and the stabilization
of images on the retina by the oculomotor system to compen-
sate bouncing. Two driving experiments were performed. The
first was to test the interactions among layers, and the second
was to test the errors caused by delays and rate limits in con-
trol within a layer. In the two experiments, subjects followed
the trail on a computer screen and controlled a cursor with a
wheel to stay on the trail. The goal of the subjects was to mini-
mize errors between desired and actual trajectories shown on
a computer monitor by moving the steering wheel (see Fig-
ures S7 and S8).

In the first experiment, the higher layer and the lower layer
are coordinated, and the authors compared how the subjects’
control behaviors and the resulting errors differed in three
settings: 1) when there were random force disturbances to the
steering wheel due to bumps on the ground (denoted as “bump
only”), 2) when the trail trajectory was curved and changed
direction (denoted as “trail only”), and 3) when both existed
(denoted as “both”). Rejection of bump disturbance in the first
and last settings is likely to be performed at the lower-layer
reflex, while trajectory following in the second and last settings
is likely to be performed at the higher-layer planning.

84 IEEE CONTROL SYSTEMS » JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Delay (s)
-0.2 0 0.2 0.4

-0.4

10

Total Error

L., Error

Rate Error
Delay Error

1 2 3 4 5 6 7
Rate (b/Unit Time)

FIGURE S11 The delay error max(0, T) (blue), rate error (27 — 1)~
(red), and total error max(0, T) + (27 — 1)~ (black), with varying
component signaling delay T and rate R subject to the compo-
nent constraint T = (R - 5)/20.

The experimental results are shown in Figure S9. The ob-
served error in setting 3 (with both bumps and trail curvature)
positively correlated with the sum of the errors from the first two
settings, with either bumps or trail curvature (Pearson correla-
tion coefficient = 0.57), suggesting that the two signals tended to
have a consistent sign and amplitude. Moreover, the two signals
showed no significant difference in the two-side t-test analysis.
The results suggest that the two layers could be analyzed sepa-
rately. This separability motivates the modeling of each layer sep-
arately and to further decompose the errors into those caused by
neural signaling delays or rate limits in the control loop.

The impact of neurophysiological limits was studied in the
second experiment. We observed changes in lateral control
error in three settings: when external delays were added in the
display, when external quantizers were added in the actua-
tion effect of the steering wheel, and when both were added.
These manipulations served as noninvasive probes for how
component constraints affect system behavior. The lateral er-
rors in the three settings are provided in Figure S11, and their
corresponding theoretical prediction is available in Figure S10
(see the modeling details in the “A Case Study in Sensorimo-
tor Control” section). The bridge between the constraints at
the two levels highlights the benefits of the heterogeneity ob-
served in nerves (Figure 11) and the advantages of layering in
sensorimotor control (as in Figure 15).

REFERENCE

[S13] Q. Liu et al., “Experimental and educational platforms for study-
ing architecture and tradeoffs in human sensorimotor control,” in
Proc. IEEE Amer. Control Conf., 2019, pp. 483-488, doi: 10.23919/
ACC.2019.8814470.

Developing a general quantitative design framework for multirate LCAs
that enable DeSSs is arguably the most important open problem
in engineering today.

to update the nominal trajectory faster than the vision
could handle, the LCA would fail to enable a DeSS. It is this
multirate nature of control tasks, characterized by local fast
corrections and global slow updates, and which seems to
be ubiquitous across engineered and natural complex sys-
tems, that allows for corresponding multirate LCAs to be
designed that enable DeSSs. Developing a general quantita-
tive design framework for multirate LCAs that enable
DeSSs is arguably the most important open problem in
engineering today and one that control theorists are partic-
ularly well suited to tackle.

KEY CONCEPTS IN CONTROL ARCHITECTURE
In the first and second parts of the article, we introduced
two concepts core to LCAs, namely, layers and DeSSs, and
proposed quantitative frameworks for their analysis and
design. In this final part, which should be viewed as a glos-
sary of LCA terminology, we highlight that these are but a
subset of the components that can be universally found in
LCAs across domains. Although we do not have quantita-
tive techniques for reasoning about them, we present qual-
itative descriptions and illustrate their importance using
various case studies.

Table 1 reports concepts we believe are essential to the
study of universal control architectures in the context of
three familiar examples: clothing (see “Clothing as an

LCA”), sensorimotor control, and the power grid. We also
indulge in a more fanciful digression in “Lego as an LCA.”
These were introduced and developed in [58] and [63] and
conceptually underpin much of the previous discussion.

» Levels: Conceptually, levels can be thought of as the
(usually physical) substrates or components used to
implement a system. All complex systems have
many levels or scales; for example, in biology, levels
range from molecules to synapses, cells, circuits, sys-
tems, and organisms. Analogous levels can be iden-
tified in familiar engineered systems. For example,
in circuits, levels range from atoms to wires, resis-
tors, capacitors, and transistors as well as integrated
circuits and printed circuit boards. Deducing the
levels experimentally is often necessary for under-
standing (reverse engineering) the design of existing
control architectures found in nature and legacy
engineered systems.

» Layers: Layers are complementary to levels and con-
ceptually describe a functional decomposition of
the overall behavior of a system. LCAs typically
decompose across complexity and spatiotemporal
scales, with more complex functionality imple-
mented in higher global layers at a slower frequency
and more rigid/structured functionality imple-
mented in lower local layers at a higher frequency;

()
TABLE1 Key concepts in control architectures are present across all engineered systems. Here, we illustrate these concepts
using clothing, the human sensorimotor control system, and the power grid.

- v

Levels Layers Laws DeSSs
Physical Functional Pareto surface Near-optimal Pareto point
Clothing Garment Inner (soft, comfort) Warm versus Inner + middle + outer =
“’mlm:‘: ~= Fabric Middle (insulation) waterproof versus waterproof, warm, soft
'M TTT s Fibers Outer (windproof) soft
NEEANNA Thread
Sensorimotor Nerve, muscle, Goals Speed versus Vision + reflex =
< axon, muscle fiber Planning accuracy fast accurate motion
T Reflex
i
Power grid Grid Economic dispatch Sustainable versus Traditional + renewable +
[/ T Local distribution Secondary frequency control resilient versus active control = sustainable,
Transmission Primary frequency control efficient resilient, efficient power
lines, substations
. J

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

JUNE 2024 « IEEE CONTROL SYSTEMS 85

Clothing as an LCA

CIothing is a familiar example that surprisingly highlights
many universal concepts of control architecture [63]. The
levels are familiar, ranging from thread and fibers to fabric,
garments, and outfits, and we focus on the latter, with gar-
ment/outfit notation to denote levels. The layers for mak-
ing clothing for harsh conditions are the outer/middle/inner
garments. The outer layers provide waterproofing and wind
proofing, the middle layers are insulating, and the inner lay-
ers are compatible (soft) for interfacing with skin. So, layers
and levels are orthogonal decompositions of outfits, and both
can have further decompositions. This architecture of cloth-
ing creates a DeSS so that outfits are weatherproof, warm,
and soft when no individual garment or part provides all these
features. Of note, skin and the rest of the body contain major
evolved controls for thermoregulation so that clothing can be
considered an extension on top of the skin of the complex
feedback controls involved in the exquisitely tight control of
the central temperature characteristic of healthy humans.
Adding layers in this way is an important consequence of lay-
ered architectures.

Though clothing layering is usually purely passive, the out-
er layer provides a barrier function against wind and rain, the
middle layer provides a barrier to heat loss, and the inner layer
provides a soft barrier between the possibly rough outer layers
and skin. It may seem strange to think of these as layers of pas-
sive control, but there is no other discipline that can integrate
such passive mechanisms (which abound in engineering) into a
full-stack theory of active/passive/lossless control layers.

A basic concept shown in the clothing example for under-
standing control architecture is “barriers.” We naturally think
of active controllers as creating barriers in the state space of
controller/plant feedback interconnection, and the theories
of Lyapunov and barrier functions and robust control exten-
sions are explicitly aimed to make this rigorous, useful, and
scalable [S14], [S15], [S16], [18]. What barriers in this sense
allow for is showing that the set of possible controlled tra-
jectories in state space robustly avoids “bad” regions. But
if we want a more “full-stack” theory of architecture, where
the higher levels and layers are typically active control, it will
be necessary to include lower-layer control that is passive
or even lossless. “Barriers” are already familiar in studying
passive controllers but as post hoc analysis and less for
design [S17]. We should probably think of active/passive/
lossless as one example where there are both layers (for
example, in a car that has active steering and braking, has
passive nonslip tires, and is designed to be as lossless as
can be in drag and friction) and levels (for example, in a
car, active control is implemented in passive components
plus power supplies, and physics tells us everything is mi-
croscopically lossless, which can be made rigorous using
control theory [S18]).

86 IEEE CONTROL SYSTEMS » JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Even the simplified proximal levels, layers, stages of dress-
ing, and DeSSs described here are minimal essentials to
creating functional outfits, and nothing simpler will work in a
harsh environment. In particular, random piles of garments
are vanishingly unlikely to make an outfit. Concretely, consider
a small 30-garment wardrobe, with 10 each of garments for
shell/warm/soft layers. Layering allows potentially 10° diverse
but functional outfits, which is a much larger n® outfits versus
3n garments. But there are exponentially more (2°° =1e9) pos-
sible piles of garments, and the piles/outfits ratio of 2"/n® obvi-
ously grows exponentially with n garments in each layer.

One near universal in architectures is that they select
functional but extremely thin and sparse subsets within the
set of all possible “piles.” These thin sparse subsets are even
more extreme in the levels and layers below the garments
level. Baking is another familiar example, with visible levels
of ingredients and layers, such as cake, frosting, crust, fill-
ing, and so on. The levels and stages of baking are explicit
in a recipe, but the supply chains that provide the ingredients
are typically hidden behind convenient consumer interfaces.
Random piles of ingredients and random stages of baking are
extremely unlikely to produce anything even edible.

There are myriad tradeoffs and laws throughout the lay-
ers, levels, and stages that constrain what is possible, most
obviously in the physical constraints on lower-level materials
and the high-level users of the clothing architecture but also
on all the stages of supply chains. But many constraints are
evolved or designed as part of the architecture, such as the
fabric/garment levels and outfit/garment layers, which were
presumably not part of the earliest clothing using animal
skins, even though all must obey physical laws. These added
constraints in higher layers and levels are “constraints that
deconstrain” ([64]) in that they are essential to creating the
DeSS that is the very goal of architecture. The result is that
a limited repertoire of fibers can create enormously diverse
garments, which are functional due only to the constraints
imposed by the universal architecture used by designers,
manufacturers, and users. Baking has completely different
details but is architecturally essentially the same.

This clothing architecture in harsh environments might be
greatly simplified in others. Outfits in some tropical settings
have one or even no layers, and garments can have a fabric
made of plastics with low-level polymers but no threads or fi-
bers. And so on. So, diversity among architectures is as uni-
versal as the diversity that any one architecture enables, and
once the centrality of this diversity is recognized, both diversi-
ties motivate an integrated theory to design and upgrade all
important architectures. But this is new and confusing even
among experts, which we also hope to change.

(Continued)

Clothing as an LCA (continued)

REFERENCES

[S14] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in Proc. Int. Workshop Hybrid Syst. Comput.
Control, Springer-Verlag, 2004, pp. 477-492, doi: 10.1007/978-3-540-
24743-2_32.

[S15] M. Vidyasagar, Nonlinear Systems Analysis. Philadelphia, PA,
USA: SIAM, 2002.

[S16] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robust-
ness of control barrier functions for safety critical control,” IFAC-

Lego as an LCA
L ego is a simple and convenient toy system that illustrates
many essentials of architecture, uses conventional digi-
tal control, and has transparent processes for the supply
chain to (dis)assemble toys [S19]. Consider a familiar sce-
nario where a child is repeatedly assembling, operating, and
disassembling Lego robots to build a new one and, further,
focus on the building of one robot from a box full of old par-
tial robots and isolated basic parts. There are roughly 4,000
diverse standard Lego parts, which are produced by a manu-
facturing supply chain that is hidden (virtualized) from the
child. There is an infinite variety of possible robots, which are
nevertheless a vanishingly small subset of all nonfunctional
Lego assemblies.

Focusing on building one robot, the minimal levels would be
parts/robots consisting of the lower-level parts that then make
up an assembled robot, though additional levels could include
various functional subassemblies. The simplest stages would
be disassembly/parts/assembly, which form a bow tie with a
large but relatively thin knot of parts compared to the infinite
variety of robots and assemblies as inputs and outputs. This
depends on a universal snap protocol to make both disassem-
bly and assembly easy. Building a Lego toy is a minimal ex-
ample of the classic thin knot consisting of a set of parts plus
the protocols specifying how the parts can be assembled. The
most basic Lego has just one snap protocol and thousands of
parts in its “knot.” Most architectures have many more of both,
totals that are still tiny compared to the variety of systems with
a shared architecture.

This proximal part of the Lego supply chain would also
have a control hourglass, where a child builder would take
instructions and convert them into step-by-step assembly via
the snap protocol. The thin middle waist layer would include
the universal snap, here controlled repeatedly to control the
overall assembly. The top layer would be the infinite possible
instructions to assemble working robots, and the bottom layer
would be the huge variety of supply chain steps that these in-
structions would control and the robots and subassemblies
this produces.

PapersOnLine, vol. 48, no. 27, pp. 54—61, 2015, doi: 10.1016/j.ifacol.
2015.11.152.

[S17] A. V. D. Schaft and D. Jeltsema, “Port-Hamiltonian systems theo-
ry: An introductory overview,” Found. Trends Syst. Control, vol. 1, no. 2,
pp. 173-378, 2014, doi: 10.1561/2600000002.

[S18] H. Sandberg, J.-C. Delvenne, and J. C. Doyle, “On lossless ap-
proximations, the fluctuation-dissipation theorem, and limitations of
measurements,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 293—
308, Feb. 2011, doi: 10.1109/TAC.2010.2056450.

A universal feature this illustrates but that can be a source
of confusion is that the snap protocol is necessarily central
to both the bow tie assembly knot and the control hourglass
waist. In the bow tie knot, it is the physical mechanism that
holds parts together and allows robots and their parts to be
easily (dis)assembled. This bow tie alone would be useless,
however, without an additional hourglass control of the snap
process in each step of the (dis)assembly of a robot. The bow
tie has essentially infinite diversity in the input of old robots
or partial assemblies and the output of new robots. The hour-
glass also has infinite diversity in the top layer of instructions
and the low layer of physical assembly steps, with a thin mid-
dle-layer waist that performs snap by snap (dis)assembly ac-
cording to instructions.

The Lego snap is a sweet spot in the space of alterna-
tive connection and control protocols [S19]. One alternative
is smooth bricks with no snap, which would be easier to as-
semble but would not be able to make robots. Another would
be adding glue, which would make the robot more robust to
trauma but make reuse difficult. The snap protocol is highly
efficient, reusable, and robust but fragile to finely targeted at-
tacks, such as removing imperceptibly thin and small bits of
plastic just at the interface so that the snap would not hold. The
process and the built robot, however, would be largely robust
to similar removals away from the snaps, except in the comput-
ers controlling the robot. This extreme “robust yet fragile” fea-
ture is ubiquitous in real architectures [S20], with one aspect
captured in Bode’s integral formula.

The snap also makes it easy to manufacture new Lego
parts that work with existing parts and architecture. The
knot and waist utilizing the snap protocol form the “core”
of the architecture “crux” for the control of assembly, which
here is done by a child infinitely more complex than any
Lego robot. This process could in principle be replaced
by special-purpose assembly machines not greatly more
complex than the robots they build, but attempts to build a

(Continued)

JUNE 2024 < IEEE CONTROL SYSTEMS 87
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Lego as an LCA (continued)
truly self-replicating universal Lego robot or machine have
proved challenging.

In addition to the parts/robot levels, the functioning robot
has, minimally, layers of computer/(sense and actuate)/plant,
where the “plant” here would be the uncontrolled raw robot.
This control system is distinct from the one doing assembly,
and the computer would have sublayers of software/hard-
ware, making this a toy version of a standard digital control
system. Note that the software would typically be vastly more
complex than the rest of the robot, and computer hardware
would introduce vastly more levels, including microscopic
components like transistors. A robot toy without sensors, ac-
tuators, and computers would be infinitely simpler, with only
minimal functionality, but would still have some important ar-
chitectural features. The complexity of the design process for
a new robot would also be dominated by the control software,
which would then be easily added in the assembly process.
This assumes that the complex computer hardware is de-
signed and manufactured separately and arrives as a com-
pleted brick component. The design and manufacture of the
computer hardware would be vastly more complex than most
robots using it as a component.

These minimal starting points illustrate the most essential
universal architectural features beyond stages, levels, and
layers, including DeSSs and virtualization, in both assembly
and control. There is obviously large diversity in the parts and
huge diversity in the possible toys, but the integrated func-
tionality of a built robot with a digital controller illustrates how
diverse parts enable this functionality but require the specific
architectural layers, level, and stages to realize this function-
ality. An essential element of the DeSS is the use of virtu-
alization in both the assembly and control of a Lego robot.
The simplest is how the snap protocol is largely hidden in the
assembled robot. It has not disappeared completely, as dis-
assembly would reveal, but it is completely hidden in normal
operation. This virtualizes both the parts and the assembly
process so that the real-time control of the robot can ignore
them. The control layers of software/hardware/(sense and
act)/plant also have virtualization by every layer. The sense-
and-act layer virtualizes the plant into an input-output system
amenable to control, and the computer hardware virtualizes
these details so that control can become a highly virtualized
software design problem. These hardware layers severely
constrain what control is possible but, if well designed, greatly
facilitate both the design and implementation of sophisticated
control. This creates a DeSS, where the resulting system has
the flexibility and evolvability of software but speed and accu-
racy in the sensing and actuation hardware of the robot plant.
Creating a DeSS is the most essential reason why an archi-
tecture and virtualization are used at all, when no individual
component alone could make up the robot or its control.

88 IEEE CONTROL SYSTEMS » JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

The big advantage of Legos as a case study is that for
simple assemblies, the process is transparent and doable by
children, yet it illustrates many essential and universal fea-
tures of architecture more generally. It also illustrates that
when active control is added via specialized parts for sens-
ing, computing, and actuation, the complexity explodes so
that essentially all the design challenges are dominated by
control and software, and then the remaining physical parts
only enable that control. Together, all these architectural uni-
versals create a highly virtualized system with a DeSS far
beyond what any level or layer could provide by itself. These
kinds of efficiency, robustness, and evolvability tradeoffs ad-
dressed by virtualization dominate the design of most archi-
tectures in biology and technology and necessarily lead suc-
cessful architectures to adopt some nearly universal features.
Most are minimally present in toy Lego robots, and even more
are present in the myriad cruxes in bacteria of replication,
transcription, translation, metabolism, transport, and signal
transduction, where all the cores have extremely conserved
protocols for billions of years and even mostly conserved mo-
lecular machines.

With an explicit inclusion of control, the gap between
the complexity of Lego and free-living bacteria is enormous,
where the latter make not only all the parts and do self-
replication but control allostasis and homeostasis in ways
that typically do not arise in robots with external supplies
of parts and energy. Nevertheless, they share striking uni-
versals, from levels, stages, and layers to cruxes of bow tie
stages and hourglass controls; knot, waist, and core proto-
cols; and virtualization and DeSSs. While there is no com-
parable universal terminology, we are proposing one here
that is aimed to be maximally consistent with those special-
ized domains that do explicitly consider architecture. Bac-
teria and Legos surprisingly illustrate the most essential
universals, but a large variety of other less familiar domains
could as well. Particularly for experts in many domains of
biological, medical, neurological, and technical systems,
there are equally rich if less accessible examples of uni-
versal architectures.

Bacteria, however, are the original from which all else has
evolved and remain arguably the most perfect. Their robust-
ness and evolvability are due to the universal architectures
that they share with all lineages descending from them, but
their fragilities to hijacking are also devastatingly universal.

REFERENCES

[S19] M. E. Csete and J. C. Doyle, “Reverse engineering of biological
complexity,” Science, vol. 295, no. 5560, pp. 1664—1669, 2002, doi:
10.1126/science.1069981.

[S20] J. M. Carlson and J. C. Doyle, “Complexity and robustness,”
Proc. Nat. Acad. Sci., vol. 99, no. suppl_1, pp. 2538-2546, 2002, doi:
10.1073/pnas.012582499.

There is a viable path toward a quantitative and universal theory of LCAs that
the controls community is particularly well suited to pursue.

v

v

see, for example, Figure 2. Layers are the main
architectural mechanism for taming complexity by
breaking down a complex overall task into tractable
subtasks (see the “LCAs via Optimal Control
Decomposition” section) and that enable DeSSs [58],
[62] by matching the spatiotemporal resolution of
each layer with a corresponding control subtask (see
the “Architecture Design as Multicriterion Optimi-
zation” section).

Laws: Almost universally, we observe that hard-
ware components have SATs, which impose a law
on the low-level hardware that can then lead to
high-level laws or constraints on optimal control-
lers. In neuroscience, vision is slower and more
accurate than reflexes and proprioception. In immu-
nology, adaptive immune responses take several
days longer to mount than innate immune responses,
but adaptive responses are more specific to the
disease-causing pathogen. In computers, different
storage components (for example, registers, cache,
random-access memory, and disks) have extremely
different speed, size, and cost. Typically, there are
low-level hardware laws from physics that can
directly impact higher levels as well as entirely new
laws that arise at higher layers that have no parallel
in physics and are associated with names like Turing,
Shannon, and Bode. Developing an integrated
theory of laws across layers and levels is essential to
a theory of architecture.

DeSSs: In engineering, complex system functional-
ity requires diverse hardware, and most hardware
is involved in diverse functions. If built out of
homogeneous components, the SATs imposed by
lower levels would make robust control impossi-
ble. However, these SATs allow for extreme diver-
sity in the hardware, which can be leveraged with
the right architectures to provide diverse func-
tionality. Highly diverse hardware-level compo-
nents (which are constrained by SATs) enable
performance sweet spots that largely overcome the
severe hardware-level SATs of individual compo-
nents. In computers, such sweet spots include vir-
tual memory management systems. In neuroscience,
extreme diversity in axon sizes, receptors, and neu-
rotransmitters is abundant [57], [58] but largely
hidden. By itself, diversity of components only
enables sweet spots of function; to achieve these
functional sweet spots requires specific architectures

to maximize the utility of diverse components, which
we call DeSSs. We proposed a quantitative theory
of DeSSs by viewing architecture design as multi-
criterion optimization and provide examples of
these concepts at play.

Bow Ties, Hourglasses, Virtualization,

and Abstraction

Fortunately, some features of LCAs are very familiar,
particularly universal bow ties and hourglasses that appear
in complex highly evolved systems at every scale and
context. In both bow ties and hourglasses, two outer
deconstrained stages and layers, with very diverse com-
ponents that are evolvable and even swappable, are
linked in the middle via a narrow highly constrained
knot/waist with little diversity or evolvability. We call
this constraints that deconstrain (as in [64]). The terminol-
ogy of bow ties and hourglasses is not standard and can
be confusing, but the distinction between them is useful
and important. For a biologically motivated case study,
see “Bow Ties and Hourglasses in Bacterial Metabolism.”
Both the bow tie and hourglass enable virtualization via
universal shared interfaces, like operating systems (OSs),
adenosine triphosphate (ATP), wall plugs, this text, ribo-
somes and translation, HTML, TCP/IP, high-definition
media interfaces, membrane potentials, faucets, dash-
boards, and so on:

» Bow tie: Diversity is the aspect of architectures that is
most familiar and easiest to discuss in the stages
making up supply chains. Diverse proteins are
produced by highly conserved translation “knot”
protocols with amino acid inputs and controlled by a
transcription hourglass. In metabolism, diverse
carbon sources and molecules are linked via a thin
“knot” of a few metabolic carriers and precursors.
Diverse electric power sources and user appliances
are linked in a bow tie via standard knot protocols
(for example, 110 V and 60 Hz) in power grids. These
examples all involve the flow of materials and
energy through various stages and, with respect to
diversity, have a bow tie shape, with diverse sources
and products at the edges and highly conserved and
less diverse “knots” in the middle. This enables
independent and, thus, rapid evolution on both ends
of the bow tie.

Hourglass: An hourglass is used to describe the shape
of layered communication and computing systems
required to control bow ties. Diverse software runs

)

M

JUNE 2024 « IEEE CONTROL SYSTEMS 89

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

on diverse hardware in an hourglass linked via less
diverse “waist” OS in computers and their networks.
Humans have diverse skills and memes and diverse
tools, linked in an hourglass by shared languages
and a poorly understood brain OS. Genes, apps,
memes, words, technologies, and tools are highly
modular and swappable, massively accelerating
evolvability beyond what is possible with only the
slow accumulation of small innovations.

>

v

Virtualization: Hourglasses rely on virtualization to
enable diversity both above and below the hour-
glass “waist.” For example, OSs in computers act as
protocols that virtualize the wildly diverse hardware
and computer networks in modern computing sys-
tems, which in turn has led to the incredible prog-
ress and diversity of software and data. In decision
and control systems, low-level unstable dynamics
are virtualized by the feedback control layer, allow-
ing the planning layer to use simple, reduced-order,

and stable models for trajectory generation. Indeed,
a commonly used model for trajectory generation
in robotics across a wide variety of platforms (for
example, quadrupeds, quadrotors, and mobile
robots) is the Dubins’ car, or unicycle, model—we
expounded on this particular example of virtual-
ization in robotics in previous sections [see
Figure S1 in “Multirate LCAs in Practice” and the
“Example 6: (Running Example: Robot Naviga-
tion)” section]. Here, the reference trajectory serves
as the protocol between diverse planning and
control layers, where each can be constructed using
a diversity of algorithms, abstractions (see below),
hardware, and software.

» Abstraction: Whereas the implementation of LCAs is
enabled by bow ties, hourglasses, and virtualization,
the design of layered architectures would be impos-
sible without abstractions. For example, when writing
computer software, engineers abstract OS/hardware

Bow Ties and Hourglasses in Bacterial Metaholism

An example that naturally embodies the structural features
of layered architectures is the organization in the bacte-
rial cell. A bacterial cell performs diverse types of complex
functions on many timescales, from digesting nutrients and
synthesizing macromolecules to adapting to environmental
disturbances, cell cycling and decision making, and long-term
evolution. This wide range of functions is fundamentally en-
abled by the layered architecture with bow ties and hourglass-
es (see Figures S12 and S13).

The lowest layer, or plant, consists of metabolites con-
nected by reactions and summarized in a stoichiometry ma-
trix. The overall organization has a bow tie with very diverse
input and output stages and a thin low-diversity knot stage
of precursors and carriers (ATP, nicotinamide adenine di-
nucleotide plus hydrogen, and so on) that are then cofactors
throughout. Catabolic pathways convert input nutrients to
knots, and then anabolic pathways make output products.
We can also crudely view a bacterial cell as having two lay-
ers, with a low layer of metabolism and a high layer of gene
expression, and then add structural features within a layer
and between layers in the bacterial cell. Namely, each layer
has a bow tie shape with a small knot (of carriers and pre-
cursors for metabolism) that connects diverse inputs and
outputs on both sides. The high layer, viewed as a controller
of the low layer, has an hourglass shape, with a thin univer-
sal waist (OS-like of transcription and translation) control-
ling and connecting diverse high-layer genes to diverse low-
layer actuation by proteins. Bow ties and hourglasses are
further universal features of complex architectures but are
hidden and cryptic in normal operation, enabling efficiency
and flexibility but potentially hiding fragilities.

90 IEEE CONTROL SYSTEMS » JUNE 2024
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

A bacterial cell's metabolism layer obtains energy and materi-

als from nutrients in the environment by using enzymes to catalyze
reactions. The stoichiometry captures the structure but not rates of
these reactions, and it has a bow tie shape; see Figure S12.

Anabolism

Catabolism (Biosynthesis)

ADP
Carbohydrate & ATP >
Fat NADP*
a G-NADPH

Proteins

Amino Acids
Nucleotides
Triose-P, ..., Hexose-P Lierelz
Pyruvate

Oxaloacetic Acid
o-Ketoglutarate

Acetyl-S-CoA
Succinyl-S-CoA

RER
—_—

Few
Precursors and
Carriers

Diverse
Products

Diverse
Nutrients

FIGURE $12 A bow tie in the low layer of metabolism stoichiom-
etry in bacterial cells. ADP: adenosine diphosphate. CoA:
coenzyme A; PEP: phosphoenolpyruvate.

(Continued)

Bow Ties and Hourglasses in Bacterial Metaholism (continuea)

Diverse Genes
Transcription
Translation

Diverse Proteins
RMetaboIic

FEw
PRIECURSORS AND.
CARRIFZRS

Drvrrsr
LPPropuUcC7is

DIvVERSE
S NOUTRIENTS

FIGURE $13 An hourglass in the gene expression layer to control the metabolism stoichiom-
etry layer. Squares represent enzymes that locally regulate some metabolic reactions. The
low layer is the stoichiometry of bacterial metabolism, with a bow tie shape. The metabolic
reactions are locally regulated by enzymatic binding reactions, such as allostery (squares),
which is in turn regulated by the high layer of gene expression. The gene expression layer,
viewed as a controller for the low stoichiometry layer, has an hourglass shape, connecting
diverse genes with diverse proteins via a thin waist of transcription and translation machin-
ery. The gene expression layer regulates the low metabolism stoichiometry layer but also
takes supply from and is enabled by the metabolism stoichiometry.

Diverse nutrient molecules are digested in the catabolism stage,
and diverse macromolecules are synthesized in the anabolism
stage, but the intermediate “knot” is a very thin stage of a few pre-
cursors and carriers. The ATP/adenosine diphosphate pair is the
carrier for energy from catabolism to use for anabolism.

As metabolism happens on a fast timescale that is intrinsi-
cally unstable, regulation of these rapid reactions is needed
locally because of delays in diffusion. Local enzymatic regu-
lations through binding reactions serve as local actuators to
be further controlled by higher layers. With these local enzy-
matic regulations stably maintaining a steady state of the cell’s
metabolism, this establishes a supply chain of molecules for
energy, redox potential, and molecular building blocks used
to perform tasks at a higher layer. This higher layer then can
perform dynamics that take this supply chain as given and
focus on goals with a virtualized molecular supply chain. For
example, gene expression is one such layer. Here, building
blocks, such as nucleic acids and amino acids, are used to

Other Cell
Functions

build up large molecules, such as
ribonucleic acids (RNAs) and pro-
teins. The dynamics of gene ex-
pression can then focus on which
RNAs and proteins are produced
when and where, without worrying
about the supply chain of building
blocks or energy for synthesis.
This “digital layer” is in contrast to
those focusing on energy, redox
potential, and molecular concen-
trations in the metabolism layer.

Supplies and Enables

BOW TIES AND HOURGLASSES
IN BACTERIAL METABOLISM
While the higher gene expression
layer is fundamentally supplied
and enabled by the lower metabo-
lism layer, this higher layer regu-
lates the lower metabolism layer
on a slower timescale. While
metabolic reactions tend to hap-
pen faster than seconds, gene
expressions tend to happen in
tens of minutes. The gene regu-
latory network can make more
complex decisions and change
the enzyme compositions pre-
cisely to actuate and coordinate at a global scale on the
metabolism layer. For example, while rapid fluctuations in
the ATP concentration need to be stabilized by local enzy-
matic feedback, a shift in the nutrient source requires the
coordination on the gene expression level to stop express-
ing enzymes for old nutrients and start expressing enzymes
to digest new nutrients.

To implement the gene expression layer’s complex
and diverse control of the metabolism layer, the cell orga-
nizes the gene expression controller in an hourglass shape;
see Figure S13. Diverse signals in the form of combinatorial
gene activation are mapped to diverse actions in expressed
enzymes and other regulatory proteins via a thin waist that
is the universal protocol of transcription—translation machin-
ery. This hourglass structure is essential for the gene expres-
sion layer’s control actions to scale up and facilitate diversity,
namely, coping with diverse and complex disturbances and
performing diverse and complex actions on and via enzymes.

as memory and compute, often ignoring, for exam-
ple, device-level drivers and timing constraints.
Note, however, that as software approaches the
limits of what the underlying hardware can imple-

ment, these abstractions may no longer be valid,
hence the need for, for example, real-time program-
ming languages for embedded systems that directly
access hardware resources. In decision and control

JUNE 2024 < IEEE CONTROL SYSTEMS 91
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

The impact in both the theory and application of nascent versions of these
concepts has already been astounding both within and outside our community.

systems, abstractions abound. At the feedback con-
trol layer, the plant and controller are abstracted as
mathematical operators operating on continuous- or
discrete-time signals. At the trajectory planning
layer, the potentially complex low-level closed-loop
control system is abstracted using a simple dynamics
model, such as a unicycle. This abstraction is valid
thanks to the virtualization enabled by the feedback
control layer below, but it also breaks down if the
planned trajectories extend beyond the tracking
capabilities of the closed-loop system, again showing
that abstractions are useful only within operating
ranges where virtualization can be reliably enforced.
Because virtualization greatly enables the use of
effective abstractions, these two distinct concepts are
often confused.

CONCLUSIONS

We introduced a lexicon for key concepts in layered (control)
architectures—levels, layers, stages, laws, DeSSs, hour-
glasses, bow ties, virtualization, and abstraction—and instan-
tiated them in familiar and diverse examples, such as
clothing, bacteria, GNC, robotics, and human sensorimotor
control. These concepts are mostly familiar but are referred to
using different terms across domains; thus, one primary goal
of this article was to establish a common language to unify
the study of architecture. Furthermore, for certain concepts,
we also proposed quantitative frameworks for the analysis
and synthesis of LCAs, grounded in robotics and sensorimo-
tor applications.

We are very much aware that this article poses more
questions than it answers and is likely to confuse (and
perhaps even anger) applied and theoretical researchers
alike. Nevertheless, we believe that underneath the cum-
bersome jargon and mathematical notation needed to
convey our message, there is a viable path toward a quan-
titative and universal theory of LCAs that the controls
community is particularly well suited to pursue. With
that in mind, we hope that if the reader leaves this article
with but one core message, it is that complex systems are
composed of diverse levels and layers and that their anal-
ysis and design fall squarely within the skill set and
expertise of the controls community. Indeed, the impact
in both the theory and application of nascent versions of
these concepts has already been astounding both within
and outside our community, and we are excited about the
potential future impact that this emerging field of study
will have.

92 |EEE CONTROL SYSTEMS » JUNE 2024

ACKNOWLEDGMENT

The work of Nikolai Matni was supported in part by
National Science Foundation (NSF) Awards CPS-2038873,
EECS-2231349, and SLES-2331880 and NSF CAREER Award
ECCS-2045834. The work of Aaron D. Ames is supported in
part by NSF Award CPS-1932091.

AUTHOR INFORMATION

Nikolai Matni (nmatni@seas.upenn.edu) is an assistant
professor in the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA
19104 USA, where he is also a member of the Department
of Computer and Information Sciences (by courtesy); the
General Robotics, Automation, Sensing, and Perception
Lab; the Penn Research in Embedded Computing and In-
tegrated Systems Engineering Center; and the Applied
Mathematics and Computational Science graduate group.
He has held positions as a visiting faculty researcher at
Google Brain Robotics, New York, NY, USA; as a post-
doctoral scholar in electrical engineering and computer
science at the University of California, Berkeley, Berkeley,
CA, USA; and as a postdoctoral scholar in the comput-
ing and mathematical sciences at the California Institute
of Technology (Caltech), Pasadena, CA, USA. He received
the Ph.D. degree in control and dynamical systems from
Caltech in June 2016, and he received the B.A.Sc. and
M.A.Sc. degrees in electrical engineering from the Uni-
versity of British Columbia, Vancouver, BC, Canada. His
research interests broadly encompass the use of learning,
optimization, and control in the design and analysis of au-
tonomous systems. He is a recipient of the Air Force Office
of Scientific Research Young Investigator Program Award
(2024), National Science Foundation CAREER Award
(2021), Google Research Scholar Award (2021), IEEE Con-
trol Systems Society George S. Axelby Award (2021), and
2013 IEEE Conference on Decision and Control (CDC) Best
Student Paper Award. He was also a coauthor of papers
that won the 2022 CDC Best Student Paper Award and the
2017 American Control Conference Best Student Paper
Award. He is a Senior Member of IEEE.

Aaron D. Ames received the B.S. degree in mechanical
engineering and the B.A. degree in mathematics from the
University of St. Thomas, Saint Paul, MN, USA, in 2001,
and the M.A. degree in mathematics and the Ph.D. degree
in electrical engineering and computer sciences from the
University of California, Berkeley, Berkeley, CA, USA, in
2006. From 2006 to 2008, he served as a postdoctoral schol-
ar in control and dynamical systems with the California

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

Institute of Technology (Caltech). In 2008, he began his
faculty career at Texas A&M University, College Station,
TX, USA. He was an associate professor with the Wood-
ruff School of Mechanical Engineering and the School of
Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA, USA. Since 2017, he has been a
Bren Professor of Mechanical and Civil Engineering and
Control and Dynamical Systems, Caltech, Pasadena, CA
91125 USA. His research interests include the areas of
robotic, nonlinear, safety-critical control, and hybrid sys-
tems, with a special focus on applications to dynamic ro-
bots, both formally and through experimental validation.
He was a recipient of the 2005 Leon O. Chua Award for
Achievement in Nonlinear Science and the 2006 Bernard
Friedman Memorial Prize in Applied Mathematics from
the University of California, Berkeley. He received the
National Science Foundation CAREER award in 2010, the
2015 Donald P. Eckman Award, and the 2019 IEEE Control
Systems Society Antonio Ruberti Young Researcher Prize.
He is a Fellow of IEEE.

John C. Doyle received the B.S. and M.S. degrees in
electrical engineering from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 1977 and the Ph.D.
degree in mathematics from the University of Califor-
nia, Berkeley (UC Berkeley), Berkeley, CA, USA, in 1984.
He is currently the Jean-Lou Chameau Professor of Con-
trol and Dynamical Systems, Electrical Engineering, and
Bioengineering at the California Institute of Technology,
Pasadena, CA 91125 USA. His research interests include
mathematical foundations for complex networks, with ap-
plications in biology, technology, medicine, ecology, neuro-
science, and multiscale physics that integrate theory from
control, computation, communication, optimization, and
statistics (for example, machine learning). He received the
1990 IEEE Baker Prize (for all IEEE publications) for work
that was listed in the world top 10 most important papers
in mathematics in 1981-1993, the IEEE Automatic Control
Transactions Award (1988, 1989, and 2021), the 1994 Ameri-
can Control Conference O. Hugo Schuck Award, the 2004
Association for Computing Machinery Special Interest
Group on Data Communication Paper Prize, and the 2016
Test of Time Award, and he was included in Best Writing on
Mathematics 2010. His individual awards include the 1977
IEEE Power Hickernell Award, 1983 American Automatic
Control Council Eckman Award, 1984 UC Berkeley Fried-
man Award, 1984 IEEE Centennial Outstanding Young
Engineer Award (a one-time award for the IEEE 100th an-
niversary), 2004 IEEE Control Systems Field Award, and
world records and championships in various sports. He is
a Member of IEEE.

REFERENCES

[1] C. Draper et al., “Guidance and navigation,” Massachusetts Inst. Tech-
nol., Cambridge, USA, 1965. [Online]. Available: https://www.ibiblio.org/
apollo/hrst/archive/1713.pdf

[2] M. Bauer and J. C. Schlake, “Changes to the automation architecture:
Impact of technology on control systems algorithms,” in Proc. 22nd IEEE
Int. Conf. Emerg. Technol. Factory Autom. (ETFA), 2017, pp. 1-8, doi: 10.1109/
ETFA.2017.8247697.

[3] T. Samad, P. McLaughlin, and J. Lu, “System architecture for process
automation: Review and trends,” J. Process Control, vol. 17, no. 3, pp. 191-201,
2007, doi: 10.1016/j.jprocont.2006.10.010.

[4] T. Samad and A. M. Annaswamy, “Controls for smart grids: Architec-
tures and applications,” Proc. IEEE, vol. 105, no. 11, pp. 2244-2261, Nov. 2017,
doi: 10.1109/JPROC.2017.2707326.

[5] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architec-
ture for industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3,
pp- 18-23, Jan. 2015, doi: 10.1016/j.mfglet.2014.12.001.

[6] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proc. IEEE, vol. 95, no. 1, pp. 255-312, Jan. 2007, doi: 10.1109/
JPROC.2006.887322.

[7] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE]. Sel. Areas Commun., vol. 24, no. 8,
pp. 1439-1451, Aug. 2006, doi: 10.1109/JSAC.2006.879350.

[8] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language. San Mateo, CA, USA: Morgan Kaufmann,
2014.

[9] D. Pickem et al., “The Robotarium: A remotely accessible swarm robotics
research testbed,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Piscataway,
NJ, USA: IEEE, 2017, pp. 1699-1706, doi: 10.1109/ICRA.2017.7989200.

[10] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory gen-
eration for differentially flat systems,” Int. . Robust Nonlinear Control:
IFAC-Affiliated |., vol. 8, no. 11, pp. 995-1020, 1998, doi: 10.1002/(SICI)1099-
1239(199809)8:11<995:: AID-RNC373>3.0.CO;2-W.

[11] P. Kokotovi¢, H. K. Khalil, and J. O'reilly, Singular Perturbation Methods
in Control: Analysis and Design. Philadelphia, PA, USA: SIAM, 1999.

[12] Y. Zhang, D. Subbaram Naidu, C. Cai, and Y. Zou, “Singular pertur-
bations and time scales in control theories and applications: An overview
2002-2012,” Int. J. Inf. Syst. Sci., vol. 9, no. 1, pp. 1-36, 2014.

[13] R. Alur and T. A. Henzinger, “Reactive modules,” Formal Methods Syst.
Des., vol. 15, no. 1, pp. 7-48, 1999, doi: 10.1023/A:1008739929481.

[14] Y. Chen, J. Anderson, K. Kalsi, A. D. Ames, and S. H. Low, “Safety-
critical control synthesis for network systems with control barrier func-
tions and assume-guarantee contracts,” IEEE Trans. Control Netw. Syst.,
vol. 8, no. 1, pp. 487-499, Mar. 2021, doi: 10.1109/ TCNS.2020.3029183.

[15] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-side
primary frequency control in power systems,” IEEE Trans. Autom. Control,
vol. 59, no. 5, pp. 1177-1189, May 2014, doi: 10.1109/TAC.2014.2298140.

[16] D. Cai, E. Mallada, and A. Wierman, “Distributed optimization de-
composition for joint economic dispatch and frequency regulation,” IEEE
Trans. Power Syst., vol. 32, no. 6, pp. 4370-4385, Nov. 2017, doi: 10.1109/
TPWRS.2017.2682235.

[17] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,” in
Proc. 53rd IEEE Conf. Decis. Control, Piscataway, NJ, USA: IEEE, 2014, pp.
6271-6278, doi: 10.1109/CDC.2014.7040372.

[18] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control bar-
rier function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861-3876, Aug. 2017, doi: 10.1109/
TAC.2016.2638961.

[19] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in Proc.
18th Eur. Control Conf., 2019, pp. 34203431, doi: 10.23919/ECC.2019.8796030.
[20] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Contr. Syst. Lett., vol. 3, no. 1, pp. 96-101,
Jan. 2019, doi: 10.1109/LCSYS.2018.2853182.

[21] R. Dimitrova and R. Majumdar, “Deductive control synthesis for alter-
nating-time logics,” in Proc. 14th Int. Conf. Embedded Softw., 2014, pp. 1-10,
doi: 10.1145/2656045.2656054.

[22] V.Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vin-
centelli, and S. A. Seshia, “Model predictive control with signal temporal
logic specifications,” in Proc. 53rd IEEE Conf. Decis. Control, Piscataway, NJ,
USA: IEEE, 2014, pp. 81-87, doi: 10.1109/CDC.2014.7039363.

[23] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Aller-
ton), Piscataway, NJ, USA: IEEE, 2015, pp. 772-779, doi: 10.1109/ALLERTON.
2015.7447084.

JUNE 2024 « IEEE CONTROL SYSTEMS 93

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

[24] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajec-
tory generation with linear temporal logic specifications,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), Piscataway, NJ, USA: IEEE, 2014, pp. 5319-5325,
doi: 10.1109/ICRA.2014.6907641.

[25] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust control of uncertain
Markov decision processes with temporal logic specifications,” in Proc.
IEEE 51st IEEE Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE, 2012,
pp- 3372-3379, doi: 10.1109/CDC.2012.6426174.

[26] C. Fan, K. Miller, and S. Mitra, “Fast and guaranteed safe control-
ler synthesis for nonlinear vehicle models,” in Proc. 32nd Int. Conf. Com-
put. Aided Verification (CAV), Los Angeles, CA, USA. Cham, Switzerland:
Springer-Verlag, Jul. 21-24, 2020, pp. 629-652, doi: 10.1007/978-3-030-
53288-8_31.

[27] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. Robot., vol. 25, no. 6,
pp- 1370-1381, Dec. 2009, doi: 10.1109/ TRO.2009.2030225.

[28] P. Akella and A. D. Ames, “Disturbance bounds for signal temporal
logic task satisfaction: A dynamics perspective,” IEEE Contr. Syst. Lett.,
vol. 6, pp. 20182023, 2022, doi: 10.1109/LCSYS.2021.3137267.

[29] M. Ahmadi, A. Singletary, J. W. Burdick, and A. D. Ames, “Barrier func-
tions for multiagent-POMDPs with DTL specifications,” in Proc. 59th IEEE
Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE, 2020, pp. 1380-1385,
doi: 10.1109/CDC42340.2020.9304266.

[30] M. Ahmadi, X. Xiong, and A. D. Ames, “Risk-averse control via
CVaR barrier functions: Application to bipedal robot locomotion,”
IEEE Contr. Syst. Lett., vol. 6, pp. 878-883, 2022, doi: 10.1109/LCSYS.2021.
3086854.

[31] A. Singletary, M. Ahmadi, and A. D. Ames, “Safe control for non-
linear systems with stochastic uncertainty via risk control barrier func-
tions,” IEEE Contr. Syst. Lett., vol. 7, pp. 349-354, 2023, doi: 10.1109/LCSYS.
2022.3187458.

[32] A. Majumdar and M. Pavone, “How should a robot assess risk? to-
wards an axiomatic theory of risk in robotics,” in Proc. 18th Int. Symp. Ro-
bot. Res. (ISRR), Cham, Switzerland: Springer-Verlag, 2020, pp. 75-84, doi:
10.1007/978-3-030-28619-4_10.

[33] S. Singh, Y. Chow, A. Majumdar, and M. Pavone, “A framework for
time-consistent, risk-sensitive model predictive control: Theory and algo-
rithms,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2905-2912, Jul. 2019,
doi: 10.1109/TAC.2018.2874704.

[34] A. Hakobyan, G. C. Kim, and L. Yang, “Risk-aware motion planning
and control using CVaR-constrained optimization,” IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 3924-3931, Oct. 2019, doi: 10.1109/LRA.2019.2929980.
[35] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Auton., vol. 12, no. 4, pp. 566-580, Aug. 1996, doi:
10.1109/70.508439.

[36] T. Marcucci, M. Petersen, D. v. Wrangel, and R. Tedrake, “Motion plan-
ning around obstacles with convex optimization,” 2022, arXiv:2205.04422.
[37] W. Ubellacker and A. Ames, “Robust locomotion on legged robots
through planning on motion primitive graphs,” 2022, arXiv:2209.07503.

[38] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” Int. |. Robot. Res., vol. 36, no. 8, pp. 947-982, 2017,
doi: 10.1177/0278364917712421.

[39] H. Yin, M. Bujarbaruah, M. Arcak, and A. Packard, “Optimization
based planner-Tracker design for safety guarantees,” in Proc. Amer. Control
Conf. (ACC), Piscataway, NJ, USA: IEEE, 2020, pp. 5194-5200, doi: 10.23919/
ACC45564.2020.9148013.

[40] A. Singletary, T. Gurriet, P. Nilsson, and A. D. Ames, “Safety-critical
rapid aerial exploration of unknown environments,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), Piscataway, NJ, USA: IEEE, 2020, pp. 10,270-10,276,
doi: 10.1109/ICRA40945.2020.9197416.

[41] N. Csomay-Shanklin, A. J. Taylor, U. Rosolia, and A. D. Ames, “Multi-
rate planning and control of uncertain nonlinear systems: Model predic-
tive control and control Lyapunov functions,” in Proc. IEEE 61st Conf. Decis.
Control (CDC), Piscataway, NJ, USA: IEEE, 2022, pp. 3732-3739, doi: 10.1109/
CDC51059.2022.9992902.

[42] S. Singh, A. Majumdar,].-J. Slotine, and M. Pavone, “Robust online mo-
tion planning via contraction theory and convex optimization,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), Piscataway, NJ, USA: IEEE, 2017, pp.
5883-5890, doi: 10.1109/ICRA.2017.7989693.

[43] S. Singh, H. Tsukamoto, B. T. Lopez, S.-J. Chung, and J.-J. Slotine, “Safe
motion planning with tubes and contraction metrics,” in Proc. 60th IEEE

94 |EEE CONTROL SYSTEMS » JUNE 2024

Conf. Decis. Control (CDC), Piscataway, NJ, USA: IEEE, 2021, pp. 2943-2948,
doi: 10.1109/CDC45484.2021.9682865.

[44] D. Sun, S. Jha, and C. Fan, “Learning certified control using contraction
metric,” in Proc. Conf. Robot Learn., PMLR, 2021, pp. 1519-1539.

[45] M. H. Cohen and C. Belta, “Approximate optimal control for safety-crit-
ical systems with control barrier functions,” in Proc. 59th IEEE Conf. Decis.
Control (CDC), Piscataway, NJ, USA: IEEE, 2020, pp. 2062-2067, doi: 10.1109/
CD(C42340.2020.9303896.

[46] S. L. Herbert, M. Chen, S. Han, S. Bansal,]. F. Fisac, and C. J. Tomlin,
“Fastrack: A modular framework for fast and guaranteed safe motion plan-
ning,” in Proc. IEEE 56th Annu. Conf. Decis. Control (CDC), Piscataway, NJ,
USA: IEEE, 2017, pp. 1517-1522, doi: 10.1109/CDC.2017.8263867.

[47] N. Matni and J. C. Doyle, “A theory of dynamics, control and optimi-
zation in layered architectures,” in Proc. Amer. Control Conf. (ACC), Pisca-
taway, NJ, USA: IEEE, 2016, pp. 2886-2893, doi: 10.1109/ACC.2016.7525357.
[48] A. Srikanthan, V. Kumar, and N. Matni, “Augmented lagrangian meth-
ods as layered control architectures,” 2023, arXiv:2311.06404.

[49] A. Srikanthan, F. Yang, I. Spasojevic, D. Thakur, V. Kumar, and N. Mat-
ni, “A data-driven approach to synthesizing dynamics-aware trajectories
for underactuated robotic systems,” in Proc. IEEE/RS] Int. Conf. Intell. Robots
Syst. (IROS), Piscataway, NJ, USA: IEEE, 2023, pp. 8215-8222, doi: 10.1109/
IROS55552.2023.10341651.

[50] H. Zhang, A. Srikanthan, S. Folk, V. Kumar, and N. Matni, “Why
change your controller when you can change your planner: Drag-aware
trajectory generation for quadrotor systems,” 2024, arXiv:2401.04960.

[51] U. Rosolia, A. Singletary, and A. D. Ames, “Unified multirate control:
From low-level actuation to high-level planning,” IEEE Trans. Autom. Con-
trol, vol. 67, no. 12, pp. 6627-6640, Dec. 2022, doi: 10.1109/TAC.2022.3184664.
[52] U. Rosolia and A. D. Ames, “Multi-rate control design leveraging
control barrier functions and model predictive control policies,” IEEE
Contr. Syst. Lett., vol. 5, no. 3, pp. 1007-1012, Jul. 2021, doi: 10.1109/LCSYS.
2020.3008326.

[53] K. Garg, R. K. Cosner, U. Rosolia, A. D. Ames, and D. Panagou, “Multi-
rate control design under input constraints via fixed-time barrier func-
tions,” IEEE Contr. Syst. Lett., vol. 6, pp. 608—613, 2022, doi: 10.1109/LCSYS.
2021.3084322.

[54] T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and
A. D. Ames, “Model-free safety-critical control for robotic systems,” IEEE
Robot. Autom. Lett., vol. 7, no. 2, pp. 944-951, Apr. 2022, doi: 10.1109/LRA.
2021.3135569.

[55] A. Singletary, W. Guffey, T. G. Molnar, R. Sinnet, and A. D. Ames, “Safe-
ty-critical manipulation for collision-free food preparation,” IEEE Robot.
Autom. Lett., vol. 7, no. 4, pp. 10,954-10,961, Oct. 2022, doi: 10.1109/LRA.2022.
3192634.

[56] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[57] Y. Nakahira, N. Matni, and J. C. Doyle, “Hard limits on robust control
over delayed and quantized communication channels with applications to
sensorimotor control,” in Proc. 54th IEEE Conf. Decis. Control (CDC), Pisca-
taway, NJ, USA: IEEE, 2015, pp. 7522-7529, doi: 10.1109/CDC.2015.7403407.
[58] Y. Nakahira, Q. Liu, T. J. Sejnowski, and J. C. Doyle, “Diversity-enabled
sweet spots in layered architectures and speed—accuracy trade-offs in sen-
sorimotor control,” Proc. Nat. Acad. Sci. USA, vol. 118, no. 22, pp. 1-11, 2021,
doi: 10.1073/pnas.1916367118.

[59] M. A. Dahleh and I. J. Diaz-Bobillo, Control of Uncertain Systems: A Lin-
ear Programming Approach. Englewood Cliffs, NJ, USA: Prentice-Hall, 1994.
[60] G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans, “Feedback con-
trol under data rate constraints: An overview,” Proc. IEEE, vol. 95, no. 1, pp.
108-137, Jan. 2007, doi: 10.1109/JPROC.2006.887294.

[61] P. Sterling and S. Laughlin, Principles of Neural Design. Cambridge, MA,
USA: MIT Press, 2015.

[62] Y. Nakahira, Q. Liu, T. J. Sejnowski, and J. C. Doyle, “Fitts’ Law for speed-
accuracy trade-off describes a diversity-enabled sweet spot in sensorimo-
tor control,” 2019. [Online]. Available: https://arxiv.org/abs/1906.00905

[63] J. C. Doyle and M. Csete, “Architecture, constraints, and behavior,”
Proc. Nat. Acad. Sci., vol. 108, no. supplement_3, pp. 15,624-15,630, 2011, doi:
10.1073/pnas.1103557108.

[64] J. Gerhart and M. Kirschner, “The theory of facilitated variation,”
Proc. Nat. Acad. Sci., vol. 104, no. suppl_1, pp. 8582-8589, 2007, doi: 10.1073/
pnas.0701035104.

_ IEEE
L css

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:41:37 UTC from IEEE Xplore. Restrictions apply.

