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ABSTRACT: Direct incorporation of malonate units into polymer backbones is a synthetic challenge. Herein, we report the alternating and 
controlled anionic copolymerization of epoxides and Meldrum’s acid (MA) derivatives to access poly(alkyl malonates) using (N,N’-bis(sali-
cylidene)phenylenediamine)AlCl and a cyclopropenium chloride cocatalyst. This unique copolymerization yields a malonate-containing re-
peat unit while releasing a small molecule upon MA-derivative ring-opening. Mechanistic and computational studies reveal that the nature of 
the small molecule released influences overall polymerization kinetics, side reaction behavior, and molecular weight control. Controlled copol-
ymerization of MA derivatives with a range of epoxides ultimately yields a library of new poly(alkyl malonates) with diverse and tunable thermal 
properties. 

Introduction 
The copolymerization of epoxides is a powerful approach to syn-

thesize a diverse range of polymers.1–3 In particular, extensive cata-
lyst development has enabled exceptional activity and selectivity in 
the copolymerization of epoxides with anhydrides (Figure 1A) or 
carbon dioxide (CO2) to yield polyesters and polycarbonates, re-
spectively.4–9 Chemists have since leveraged these catalytic ap-
proaches to copolymerize epoxides with other monomers such as 
carbonyl sulfide,10–11 cyclic thioanhydrides,12 lactones,13–17 isothiocy-
anates,18 and aldehydes19 to synthesize new and/or underexplored 
polymers of interest . 

Poly(alkyl malonates) are a class of polymers that remain inacces-
sible via controlled epoxide copolymerization. While these aliphatic 
polyesters show promise as polymer electrolytes in lithium-ion bat-
teries and contain potentially degradable functionalities, their syn-
thesis and exploration is challenging, as there are limited strategies 
to directly incorporate malonate units into polymer backbones. 20–24 
As such, poly(alkyl malonates) are usually made via step-growth 
polymerization, a route that prohibits molecular weight control, pre-
cise architecture design, and facile substituent derivatization.20, 25–27 
Other approaches toward malonate-containing polymers—such as 
the polymerization of alkylidene malonates or malonate-substituted 
cyclopropanes—usually incorporate malonate units as side chains 
rather than into the main polymer backbone.28–31 To the best of our 
knowledge, chain-growth approaches such as the ring-opening 
polymerization (ROP) of lactones and the ring-opening copolymer-
ization (ROCOP) of epoxides and cyclic anhydrides have not yet 
been used to access poly(alkyl malonates), as many reported cyclic 
malonates are unstable under laboratory conditions.32  

We envisioned that poly(alkyl malonates) could be accessed in a 
well-controlled fashion through the copolymerization of epoxides 
and Meldrum's acid (MA) derivatives, a class of malonate-

containing heterocycles.33–34 Owing to their facile derivatization, 
participation in multi-component reactions, and stimuli-triggered 
decomposition to aldehydes/ketones, CO2, and/or ketenes, MA de-
rivatives have been explored in polymer chemistry and engineering 
as monomers,35–40 handles for post-polymerization reactivity,41–46 

 
Figure 1. (a) Copolymerization of epoxides and anhydrides to access 
polyesters, (b) Curing of epoxides and MA derivatives to access 
poly(ether ester) resins, and (c) Copolymerization of epoxides and MA 
derivatives to access poly(alkyl malonates).  
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and building blocks in thermoset design.40,47–51 Hawker and cowork-
ers demonstrated that MA derivatives can undergo decomposition 
to the corresponding ketene, which upon coupling with alcohols, 
yielded polyesters.52–53 However, Serra and coworkers were the first 
to illustrate epoxide/MA derivative copolymerization during the 
Lewis acid- or base-initiated curing of diglycidyl ethers with MA de-
rivatives, enabling access to malonate-containing crosslinked 
poly(ether ester) networks (Figure 1B).50–51 When 4-dimethyla-
minopyridine (DMAP) was used as an initiator in these systems, it 
was postulated that acetone release could occur during ring-opening 
of MA derivatives.54 Although this intriguing reactivity was not lev-
eraged to access alternating poly(alkyl malonates), this example in-
spired us to explore MA derivatives as comonomers in controlled 
epoxide copolymerization. 

We hypothesized that a controlled copolymerization of epoxides 
and MA derivatives to synthesize alternating poly(alkyl malonates) 
could be realized by using well-defined salenMX catalysts (salen = 
N,N′-bis(salicylidene)ethylenediamine) paired with nucleophilic 
cocatalysts. In epoxide/anhydride copolymerization, these cata-
lyst/cocatalyst pairs initiate polymerization, activate the epoxide for 
ring-opening, and associate with propagating anionic chain ends 
(Figure 1A).55 We predicted that these catalytic systems would func-
tion similarly in epoxide/MA derivative copolymerization. Based on 
precedent with anionic initators,54 we also hypothesized that a 
(salen)MX catalyst  paired with a nucleophilic cocatalyst could allow 
ring-opening of the MA derivative to proceed with ketone/aldehyde 
release to furnish the malonate moiety without the ether linkage, ul-
timately yielding alternating poly(alkyl malonates) (Figure 1C).  

This strategy was further motivated by  previous examples of small 
molecule elimination during ROP.  For example, ROP of O-carbox-
yanhydrides is driven by loss of CO2 and provides alternative access 
to poly(lactic acid).56–57 Hillmyer and coworkers similarly illustrated 
that ROP of a cyclic esteracetal occurs with loss of acetaldehyde at 
high catalyst loadings.58 During the ring-opening polymerization of 
1,3-dioxolan-4-ones, Shaver and coworkers leveraged small mole-
cule release to access a range aliphatic and alicyclic polyesters.59–63  

Herein, we report a chain-growth approach in which epoxides are 
copolymerized with MA derivatives to yield highly alternating 
poly(alkyl malonates) while releasing a small molecule (Figure 1C). 
Kinetic and computational mechanistic studies reveal that the iden-
tity of the small molecule released during copolymerization signifi-
cantly impacts polymerization behavior. We propose a mechanism 
for this transformation which is distinct from what is known for 
epoxide/anhydride copolymerization. Evaluation of a series of epox-
ide comonomers yielded a diverse library of poly(alkyl malonates) 
with tunable thermal properties, highlighting the utility of epox-
ide/MA derivative ROCOP.  
Results and Discussion 

Initial Copolymerization Optimization. Initial copolymeriza-
tion screenings were performed with propylene oxide (PO) and 
2,2,5,5-tetramethyl-1,3-dioxane-4,6-dione, otherwise termed dime-
thyl Meldrum’s acid (DMMAMe,Me) (Table 1). DMMAMe,Me was se-
lected to avoid unwanted reactivity with acidic protons of unmethyl-
ated MA and was readily synthesized on a multi-gram scale from 
commercially-available MA (see Supporting Information).64 In 

Table 1. Initial catalyst and CTA screen for PO/DMMAMe,Me copolymerization.

 

Entrya Catalyst Equiv DMMAMe,Me Equiv CTA Conv of DMMAMe,Me (%)b Mn theo (kDa) Mn GPC (kDa)c Đc 

1 (H-salph)AlCl 100 0 28 2.4 2.7 1.13 

2 (H-salph)AlCl 100 1 67 3.8 4.2 1.09 

3 (H-salph)AlCl 100 10 86 1.2 1.9 1.18 

4 (CyPr-salph)AlCld 100 1 45 2.6 3.5 1.07 

5 (salcy)CoOAce 100 1 52 3.0 3.7 1.35 

6 (salcy)AlCl 100 1 38 2.2 2.4 1.10 

7 (H-salpn-tBu)AlCl 100 1 26 1.5 1.9 1.38 

8 (CH3-salpn-H)AlCl 100 1 12 0.7 1.4 1.21 

9 (H-salph)AlCl 200 1 21 2.4 2.7 1.09 
 a[PO]0:[DMMAMe,Me]0:[catalyst]0:[[CyPr]Cl]0 = 5X:X:1:1 where X = equiv DMMAMe,Me. bDetermined by 1H NMR spectroscopic analysis of crude 
polymerization mixtures. cDetermined by GPC in THF, calibrated relative to monodisperse polystyrene standards. dNo exogenous [CyPr]Cl added. 
eTrace epoxide homopolymerization observed. 
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epoxide/anhydride ROCOP, anhydride ring-opening by an alkox-
ide intermediate produces a carboxylate species that performs rate-
determining epoxide ring-opening.55 We hypothesized that 
DMMAR,R (where R,R notates the substituents of the ketone/alde-
hyde releasing during the polymerization) ring-opening followed by 
ketone/aldehyde release would produce a carboxylate intermediate 
that would preferentially perform epoxide ring-opening (vide infra). 
Thus, a range of (salen)MX catalysts with cyclopropenium chloride 
([CyPr]Cl) as a cocatalyst were screened at 25 °C (Table 1). 
[CyPr]Cl was selected as a cocatalyst due to its demonstrated sup-
pression of transesterification during epoxide/anhydride copoly-
merization as compared to other common cocatalysts. 65 This same 
transesterification suppression is observed in PO/DMMAR,R copol-
ymerization at elevated temperatures, rationalizing the selection of 
[CyPr]Cl (vide infra).  

However, most catalyst/cocatalyst pairs studied exhibited poor 
activity for PO/DMMAMe,Me ROCOP, even at high catalyst loadings 
(Table 1, entry 1, and Table S1, entries 4, 7, and 10). Inspired by a 
report from Darensbourg and coworkers in which exogenous chain 
transfer agents (CTAs) were required to initiate epoxide/CO2 co-
polymerization, one equivalent of adamantane carboxylic acid 
(AdCO2H) was added as a CTA to PO/DMMAMe,Me copolymeriza-
tions.66 Conversion to polymer improved with most catalysts stud-
ied (Table 1, entry 2, Table S1, entries 1−12, and Table SX, entries 
1–2). As acceleration by CTA is not generally observed in copoly-
merization of PO, we rationalized that this reactivity was connected 
to DMMAMe,Me ring-opening and subsequent acetone release. Be-
cause (salen)AlX catalysts paired with nucleophilic cocatalysts usu-
ally propagate as anionic, 6-coordinate species,55 it is likely that 
DMMAMe,Me ring-opening first yields a 6-coordinate alkoxide inter-
mediate that may not readily facilitate acetone release if an open co-
ordination site is unavailable to accept the resulting carboxylate 
(Scheme S2). As such, we hypothesize that CTAs may provide a 
proton to facilitate acetone release, accelerating turnover of the cat-
alytic cycle (Scheme S2). Further, we also hypothesize that the CTA 
may function to protonate strongly coordinating species that inhibit 
epoxide binding to the catalyst (vide infra) Consistent with detailed 
studies of CTA function in epoxide/anhydride ROCOP, minimal 
differences in polymerization activity were observed when a carbox-
ylic acid (AdCO2H) versus an alcohol (1,6-hexanediol (1,6-HD)) 
was used, as each CTA ultimately reacts to yield the same dormant 
chain ends (Table S1, entry 15, and Scheme S1).67–68 As excess CTA 
offered a negligible increase in activity at 25 °C and decreased poly-
mer molecular weight (Table 1, entry 3), one equivalent of CTA was 
chosen for standard conditions. 

Subsequent catalyst screening with one equivalent of AdCO2H 
revealed the initial selection of (salph)AlCl with [CyPr]Cl enables 
fastest conversion to polymer and good molecular weight control 
(Table 1, entry 2). Bifunctional (CyPr-salph)AlCl demonstrates 
slower polymerization than its binary analogue (Table 1, entry 4).65 
Likewise, Co- and Al- catalysts featuring nonplanar ONNO geome-
tries (such as salcy or salpn ligands) exhibit slower polymerization 
than (salph)AlCl; these results are consistent with previous studies 
which indicate that distorted ONNO orientations can slow epoxide 
activation (Table 1, entries 5−8).65,69 While catalysts featuring salpn 
backbones have shown good activity in copolymerization of 3-diox-
olan-4-ones with lactones,62–63 their slower activity in 
PO/DMMAMe,Me copolymerization emphasizes a need to balance 
both acceleration of epoxide-binding and facilitation of small-mole-
cule release (Table 1, entries 7−8). As (salph)AlCl/[CyPr]Cl 
demonstrated the highest conversion to polymer in 24 hours and 
yielded an extremely narrow dispersity (Đ = 1.09), this 

catalyst/cocatalyst pair with one equivalent of CTA was selected for 
all following polymerizations (Table 1, entry 2). 

Kinetic Behavior of PO/DMMAMe,Me Copolymerization. We 
sought to validate the proposed repeat unit in which acetone is re-
leased rather than incorporated into the main polymer chain. 1H 
NMR spectroscopic analysis of crude polymerization mixtures 
showed the formation of acetone alongside the expected polymer re-
peat unit (Figure S32). 1H and 13C{1H}  NMR spectroscopy of pre-
cipitated PO/DMMAMe,Me copolymers corroborate the copolymer 
repeat unit in which acetone is released rather than incorporated 
(Figures S34-35). MALDI-TOF MS analysis of low-molecular 
weight PO/DMMAMe,Me copolymers prepared with 10 equivalents 
of 1,6-hexanediol (1,6-HD) as CTA is consistent with this proposed 
PO/DMMAMe,Me  repeat unit (m/z = 172.1) (Figure 2, Figure S29). 
Although it is possible that MALDI-TOF MS is unable to detect any 
incorporated acetone linkages, the combination of 1H and 13C{1H} 
NMR spectroscopy and MALDI-TOF MS provides strong evidence 
for the proposed repeat unit. MALDI-TOF analysis confirms the 
presence of both CTA and Cl− (from catalyst and cocatalyst) initi-
ated chains. As the copolymerization is performed in an excess of 
epoxide to full conversion, PO-derived hydroxyl end groups are ob-
served for both Cl– and CTA-initiated chains.  

Even with the occurrence of small molecule release, 
PO/DMMAMe,Me copolymerization with (salph)AlCl and [CyPr]Cl 
is well-controlled. At 25 °C, conversion (%) of DMMAMe,Me to poly-
mer increases linearly with time (Figure 3A) and molecular weight 
increases linearly with conversion (Figure 3B). The resulting poly-
mer boasts a narrow and unimodal molecular weight distribution (Đ 
= 1.09) (Figure 3C and Table S2). These results are consistent with 
controlled polymerization in which each equivalent of initiator (Cl− 

from catalyst/cocatalyst and CTA) produces one active chain. Se-
quential DMMAMe,Me addition results in full monomer consumption 
ion, further corroborating active chain ends (Figure S3).  

The observed linear conversion versus time (Figure 3A) is con-
sistent with pseudo-zero order kinetics, as expected in epoxide co-
polymerization when epoxide is in excess. For example, while epox-
ide/anhydride copolymerization with (salph)AlCl and bis(tri-
phenylphosphine)iminium chloride ([PPN]Cl) as a cocatalyst ex-
hibits a first-order dependence on epoxide and a zero-order depend-
ence on anhydride, the use of excess epoxide results in overall 

 
Figure 2. MALDI-TOF mass spectrum of PO/DMMAMe,Me copolymer. 
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pseudo zero-order polymerization kinetics.55 Preliminary rate-law 
determination experiments performed with one equivalent of CTA 
confirm a first-order dependence on PO and a zero-order depend-
ence on DMMAMe,Me (Figure S5). These kinetic results indicate that 
in PO/DMMAMe,Me ROCOP catalyzed by (salph)AlCl/[CyPr]Cl 
with 1 equivalent of AdCO2H, epoxide binding and ring-opening is 
likely rate-determining. 

However, PO/DMMAMe,Me copolymerization at 25 °C is slow, 
thus preventing the targeting of higher molecular weights in reason-
able timeframes (Table 1, entry 9, Table S4, entries 1−2). When 
PO/DMMAMe,Me copolymerizations were performed at 60 °C to ac-
celerate polymerization, we were surprised to find that conversion 
to polymer no longer exhibited a linear relationship with time and 
required nearly 30 hours to consume 100 equivalents of DMMAMe,Me 
(Figure 4A, 1 equivalent CTA). These results indicate that raising 
the polymerization temperature from 25 °C to 60 °C caused a devia-
tion from the previously observed pseudo zero-order polymeriza-
tion kinetics. 

Further investigation revealed that this unexpected deviation 
from zero order kinetics was accompanied by a decarboxylation side 
reaction. GPC chromatograms of PO/DMMAMe,Me copolymers 
made at 60 °C exhibit low-molecular weight tailing that is not ob-
served at 25 °C (Figure S8). Furthermore, 1H NMR spectroscopy of 
crude polymerization mixtures ran at 60 °C reveal the formation of 
trace propylene carbonate, a byproduct of PO/CO2 coupling (Fig-
ure S9).70 Given the documented decarboxylation of MA deriva-
tives, these results suggest that carboxylate intermediates can un-
dergo decarboxylation (Figure 4B, Pathway B) rather than perform 
epoxide ring-opening (Figure 4B, Pathway A).71-72 Decarboxylation 
would presumably form CO2 and an Al enolate that likely cannot 
continue polymerization; instead, protonation by CTA is required 
to remove the inactive chain from the metal center, resulting in pol-
ymer chain termination (Figure 4B).  

In support of this hypothesis, MALDI-TOF MS of 
PO/DMMAMe,Me copolymers made at 60 °C contain a low-intensity 
series consistent with decarboxylated, terminated PO/DMMAMe,Me 
copolymers (Figure S30); this series is not detected in mass spectra 
of copolymers made at 25 °C (Figures S29). Furthermore, the ex-
pected isopropyl end groups were also visible by 1H NMR spectros-
copy of precipitated PO/DMMAMe,Me copolymers made at 60 °C 
(Figure S10). To further support this hypothesis, PO/DMMAMe,Me 
copolymerization was run at 100 °C with 10 equivalents of CTA to 

increase the concentration of terminated, decarboxylated end 
groups. 2D NMR spectroscopy of the resulting isolated 
PO/DMMAMe,Me copolymers further corroborated the structure of 
isopropyl ester end groups that form by decarboxylation and subse-
quent protonation (Table S18, and Figures S40-S44). These results 
indicate that while protonation liberates the catalyst to continue 
propagation, it does so at the cost of termination of another polymer 
chain. 

 
Figure 4. (a) Restoration of pseudo zero-order kinetics when 
[PO]0:[DMMAMe,Me]0:[(salph)AlCl]0:[[CyPr]Cl]0:[AdCO2H]0 = 
500:100:1:1:10 and T = 60 °C and (b) Proposed mechanism of decar-
boxylation. 

Figure 3. [PO]0:[DMMAMe,Me]0:[(salph)AlCl]0:[[CyPr]Cl]0:[AdCO2H]0 = 500:100:1:1:1 and T = 25 °C for (a) Conversion of DMMAMe,Me versus 
time (b) Mn GPC (kDa) versus conversion of DMMAMe,Me (c) GPC chromatograms with increasing monomer conversion, calibrated relative to mono-
disperse polystyrene standards. 
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Although malonate decarboxylation at 60 °C occurs only to a 
small portion of chain ends, we anticipate that it influences polymer-
ization kinetics such that zero-order kinetics are suppressed. First, 
the resulting enolate may coordinate to the catalyst, preventing 
epoxide binding until protonation occurs; second, protonation to 
produce a terminated chain reduces the overall concentration of 
CTA, an important additive for polymerization. To confirm this hy-
pothesis, copolymerizations were performed with 10 equivalents of 
CTA at 60 °C, where changes to CTA concentration are negligible 
and decarboxylated intermediates can more readily be protonated. 
Excitingly, this copolymerization exhibits pseudo zero-order kinetic 
behavior (Figure 4A, 10 equivalents of CTA). Although CTAs may 
influence the polymerization through other chain-transfer events, 
this result suggests that mediation of the decarboxylation side reac-
tion is important for maintaining zero-order polymerization kinet-
ics. Unfortunately, use of excess CTA produces low molecular-
weight polymers with increased chain termination, rendering this 
approach to mediating decarboxylation impractical. 

Design and Polymerization of Benzaldehyde-releasing 
DMMAPh,H. To restore zero-order kinetic behavior while maintain-
ing molecular weight control, we sought out synthetic strategies to 
allow the Al enolate to continue propagation with suppressed chain 
termination. As (salen)Al enolates readily react with aldehydes, we 
aimed to modify DMMAR,R such that a reactive aldehyde is released 
during polymerization.73 Therefore, PO was copolymerized with 
5,5-dimethyl-2-phenyl-1,3-dioxane-4,6-dione (DMMAPh,H), a MA 
derivative that releases benzaldehyde instead of acetone upon ring-
opening but yields the same repeat unit accessed by 
PO/DMMAMe,Me copolymerization. We hypothesized that benzal-
dehyde insertion after decarboxylation would produce an Al alkox-
ide that can continue propagation, thereby restoring pseudo zero-
order kinetic behavior (Figure 5A).  

Copolymerization of PO and DMMAPh,H at 60 °C with one equiv-
alent of CTA yielded the expected copolymer alongside benzalde-
hyde formation (Figure S33). 1H and 13C{1H}  NMR spectroscopy 
of precipitated PO/DMMAPh,H copolymers corroborate the copoly-
mer repeat unit consistent with benzaldehyde release (Figures S45-
46). Furthermore, MALDI-TOF MS analysis of low-molecular 
weight PO/DMMAPh,H copolymer is consistent with the proposed 
repeat unit (m/z = 172.1) (Figure S31). The low-intensity series 
corresponding to decarboxylated, terminated chains previously ob-
served at 60 °C with the PO/DMMAMe, Me copolymer is no longer 
observed in the MALDI-TOF MS of the PO/DMMAPh,H polymer, 
suggesting suppressed chain termination. 

 Indeed, 1H NMR spectroscopy of precipitated PO/DMMAPh,H 
copolymers revealed trace incorporation of aromatic protons (pre-
sumably from benzaldehyde insertion) within the polymer (Figure 
S45). Extensive 2D NMR spectroscopic analysis confirmed that the 
observed benzaldehyde incorporation is consistent with decarboxy-
lation, subsequent benzaldehyde insertion, and further propagation 
with another DMMAR,R (Figure 5B, Figures S49–S64, Scheme S3). 
Additionally, 1H NMR diffusion spectroscopy revealed that this ob-
served linkage exhibits a diffusion coefficient very similar to that of 
the primary epoxide/DMMAR,R protons in the main polymer back-
bone (Figure S65–S67). This analytical evidence supports our hy-
pothesis that benzaldehyde insertion into decarboxylated interme-
diates allows propagation to continue with reduced chain termina-
tion, enabling re-entry into the primary propagation cycle (Scheme 
1).  

Excitingly, this continued propagation after benzaldehyde inser-
tion was indeed accompanied by pseudo zero-order polymerization 
kinetics. During PO/DMMAPh,H copolymerization at 60 °C, conver-
sion (%) to polymer increased linearly with time and molecular 

Figure 5. (a) Chain termination suppressed by benzaldehyde insertion, (b) Inserted benzaldehyde linkage elucidated by 2D NMR spectroscopy, (c) 
Conversion (%) of DMMAR,R versus time when [PO]0:[DMMAR,R]0:[(salph)AlCl]0:[[CyPr]Cl]0:[AdCO2H]0 = 500:100:1:1:1 and T = 60 °C (d) Mn 
control and incorporation (incorp.) of benzaldehyde (BA) (mol%) with varying amounts of DMMAR,R and BA. 
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weight increased linearly with conversion (Figure 5C, Figure S12). 
The observed pseudo zero-order kinetic behavior of PO/DMMAPh,H 

copolymerization enabled an enhanced rate of polymerization: only 
5.5 h was required to consume 100 equivalents of DMMAPh,H, 
whereas 30 h was required for PO/DMMAMe,Me copolymerization 
under the same conditions (T = 60 °C, 1 equivalent CTA) (Figure 
5C). PO/DMMAPh,H copolymerization still required 1 equivalent of 
CTA for productive polymerization, confirming that CTA partici-
pates in other chain-transfer events (besides protonation of decar-
boxylated intermediates) that are needed for polymerization (Table 
S11, entries 1−2).  

With this improved kinetic behavior, molecular weights above 10 
kDa were targeted within 24 h, a feat unattainable with the previous 
acetone-releasing DMMAMe,Me (Figure 5D, entries 1–3, and Figure 
S14 versus Figure S4). Interestingly, the extent of benzaldehyde in-
corporated into the polymer increased as monomer loading in-
creased, suggesting that decarboxylation may increase alongside 
monomer loading (Figure 5D, entries 1–3). GPC traces of 
PO/DMMAPh,H copolymers are bimodal, due to either trace protic 
impurities that lead to bimolecular polymer growth and/or chain-
end coupling occurring as full conversion is reached (Figures S12 
and S16).8,65 Despite rigorous monomer purification, bimodality in 
GPC traces is standard in most epoxide copolymerizations and well-
documented in the literature. 68 Despite this bimodality, use of 
[CyPr]Cl compared to other common cocatalysts allowed the nar-
rowest molecular weight distribution; dispersity broadening con-
sistent with increased transesterification is observed when [PPN]X 
cocatalysts are used (Table S9, entries 5–9 and Figure S13).  

As decarboxylation occurs only minimally during polymerization, 
we anticipated that DMMAPh,H does not need to be utilized in excess 
during polymerization. Indeed, copolymerization of 95 equivalents 
of DMMAMe,Me with just 5 equivalents of DMMAPh,H reached full 
conversion in the same amount of time as polymerization of 100 
equivalents of DMMAPh,H and afforded an improved polymer disper-
sity (Figure 5D, entry 4 versus entry 1, and Figure S17). Directly 
adding 5 equivalents of benzaldehyde to 100 equivalents of 

DMMAMe,Me produced similar results, albeit with slightly reduced 
benzaldehyde incorporation, validating the role of benzaldehyde as 
an enolate scavenger (Figure 5D, entry 6). As the ratio of 95:5 
DMMAMe,Me:DMMAPh,H afforded the narrowest molecular weight 
distribution of all conditions studied, this was selected as the stand-
ard loading for future polymerizations. Increasing monomer loading 
from 100 to 200 equivalents while maintaining this 5:95 
DMMAPh,H:DMMAMe,Me ratio increased polymer molecular weight 
(Table S14, entries 1−3). 

DFT Calculations of Epoxide Ring-Opening. In efforts to fur-
ther understand the effect of benzaldehyde insertion on polymeriza-
tion kinetics, we turned to DFT calculations to elucidate how pro-
posed catalytic intermediates might influence epoxide ring-opening. 
Previous mechanastic studies suggest the epoxide likely binds to the 
(salph)Al catalyst trans relative to another chain end (represented 
as X in Figure 6) coordinated to the same Al center. Furthermore,  
extensive mechanistic and computational studies of epoxide/anhy-
dride copolymerization revealed that the trans anion X can possibly 
raise or lower the barrier to epoxide binding and ring-opening by at-
tenuating the Lewis acidity of the Al center.55 DFT analysis (see Sup-
porting Information for computational details) was therefore used 
to examine the barriers of epoxide ring-opening while varying the 
identity of trans anion X derived from relevant PO/DMMAR,R cata-
lytic intermediates (Figure 6). Anions investigated included those 
derived from PO ring-opening (X1), DMMAR,R ring-opening (X2–
X4), and DMMAR,R decarboxylation (X5–X8). We predicted that 
the formation of an alkoxide intermediate may occur prior to small-
molecule release, and these proposed intermediates were included 
in DFT analysis (Scheme 1). A detailed computational analysis of 
the full mechanistic cycle is currently in progress.  

The alkoxide (X1) and carboxylate (X2) intermediates derived 
from PO and DMMAR,R ring-opening show high energy barriers of 
35.8 and 34.2 kcal/mol, respectively (Figure 6). These energy barri-
ers are higher than conventional alkoxide and carboxylate interme-
diates in epoxide/anhydride copolymerization, presumably due to 
the increased steric bulk of DMMAR,R.55 These higher energy 

Scheme 1. Simplified Proposed Mechanism of Epoxide and DMMAR,R Copolymerization (where CTA is neglected and PO and DMMAMe,Me 

Are Used for Simplicity), Including the Primary Propagation Cycle and Return to the Primary Propagation Cycle via Benzaldehyde Insertion 
into Decarboxylated Catalytic Intermediates. 
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barriers are consistent  with PO/DMMAR,R ROCOP's slower cata-
lytic activity compared to that of PO/anhydride ROCOP with the 
same catalyst system.65 Additionally, the alkoxide intermediate (X3) 
arising from DMMAPh,H ring-opening also shows a high energy bar-
rier of 33.3 kcal/mol, whereas the semi-acetal anion (X4, from 
DMMAMe,Me ring-opening) shows a relatively lower energy barrier 
(29.9 kcal/mol).  

Interestingly, lower barriers to ring-opening were generally 
achieved with intermediates derived from decarboxylation (X5–
X7). In particular, the lowest energy barrier is obtained by X7, the 
intermediate obtained from decarboxylation and subsequent ben-
zaldehyde insertion, suggesting that X7 coordination to the Al cen-
ter possibly leads to a rate enhancement (Figure 6). By contrast, X8 
exhibits a higher energy barrier, providing potential rationale for the 
lack of acetone insertion observed during PO/DMMAMe,Me 
ROCOP. The accelerated polymerization rate observed when ben-
zaldehyde is added exogenously to PO/DMMAMe,Me copolymeriza-
tion at 60 °C lends further support to X7's possible role as an accel-
erant of epoxide ring-opening (vide supra). Taken together, these 
computational insights suggest that benzaldehyde insertion and de-
carboxylation not only enable propagation to continue, but possibly 
yields catalyst-coordinated chain-ends that can accelerate epoxide 
ring-opening.  

Copolymerization Scope and Polymer Properties. With an op-
timized copolymerization system in hand, various epoxides were co-
polymerized at a loading of 10:190 DMMAPh,H:DMMAMe, Me to ac-
cess a library of new poly(alkyl malonates). Copolymerization with 
rac-PO or rac-butene oxide (rac-BO) yielded copolymers with glass 
transition temperature (Tg) values of −4.9 and −13.6 °C, respec-
tively (Table 2, entries 1–2, Figure S20 and Figure S21). Copoly-
merization with rac-allyl glycidyl ether (rac-AGE)—whose incorpo-
ration provides handles for post-polymerization modification—
yielded a copolymer with an even lower Tg value of −32.9 °C (Table 
2, entry 3 and Figure S22). Materials with Tg values below room tem-
perature are desirable, as these materials can be used as a midblock 
in thermoplastic elastomers; furthermore, low Tg values are gener-
ally associated with improved segmental relaxation and therefore in-
creased lithium conductivity for battery applications.3,74 Copolymer-
ization with rac-phenyl glycidyl ether (rac-PGE) resulted in a mate-
rial with an increased Tg of 19.8 °C relative to aliphatic copolymers, 

presumably due to increased steric bulk reducing segmental motion 
(Table 2, entry 4 and Figure S23).  

Epoxide/DMMAR,R copolymerization can also be used to access 
semicrystalline polyesters. Copolymerization with (R)- or (S)-PO 
yielded copolymers with melting temperatures (Tm’s) of approxi-
mately 98 °C (Table 2, entries 5–6, Figure S24 and Figure S25). This 
system is also compatible with disubstituted epoxides, although con-
version to polymer is slowed relative to terminal epoxides (Table 2, 
entry 7). Copolymerization with cis-buteneoxide (cis-BO) yielded a 
polymer with relatively low Mn (3.8 kDa) but exhibited an unexpect-
edly high Tm of 97.4 °C (Table 2, entry 7 and Figure S26). Ring-

Table 2. Epoxide/ DMMAR,R copolymerization scope. 

 
 

Entry Epoxide Conv of DMMAR,R (%)a Mn theo (kDa) Mn GPC (kDa)b Đb Tg (°C)c,d Tm (°C)c,e 

1 rac-PO >99 11.5 7.9 1.39   −4.9 - 

2 rac-BO   94 11.7 6.7 1.38 −13.6 - 

3 rac-AGE >99 15.2 5.9 1.41 −32.9 - 

4 rac-PGE >99 17.6 8.8 1.50 19.8 - 

5 (R)-PO >99 11.5 7.3 1.35  −4.6 98.2 / 86.2 

6 (S)-PO >99 11.5 7.2 1.31 −4.3 98.9 / 86.9 

7 cis-BOf   52   6.5 3.8 1.47   9.5 97.4 
aDetermined by 1H NMR spectroscopic analysis. bDetermined by GPC in THF, calibrated relative to monodisperse polystyrene standards. cPolymers 
isolated and thoroughly dried prior to DSC analysis. dDetermined by DSC. eDetermined by DSC, major polymorph / minor polymorph. fPolymeriza-
tion time = 48 h. 

 
Figure 6. DFT calculations of rate-determining step of PO/DMMAR,R 
copolymerization with different anions, X1–X8; Gibbs free energy val-
ues given in kcal/mol. 
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opening of a meso epoxide with an achiral catalyst is predicted to oc-
cur with net inversion, yielding a copolymer with a racemic mixture 
of trans-2,3 dimethyl units. Although this material was expected to 
be amorphous based on the results with rac-PO, tacticity-independ-
ent crystallinity has recently been reported for PHAs.75–76 Taken to-
gether, the copolymerization of epoxides with DMMAR,R is a viable 
route to access new poly(alkyl malonates) with tunable thermal 
properties.  
Conclusions 

We have developed a new method to copolymerize epoxides with 
MA derivatives to produce alternating poly(alkyl malonates). The 
kinetic behavior of epoxide/DMMAR,R ROCOP is influenced by the 
identity of the small molecule released: at 60 °C, PO copolymeriza-
tion with acetone-releasing DMMAMe,Me deviates from the expected 
zero-order polymerization kinetics, whereas PO copolymerization 
with benzaldehyde-releasing DMMAPh,H exhibits zero-order behav-
ior. This phenomenon is attributed to the insertion of benzaldehyde 
into decarboxylated catalytic intermediates, which allows re-entry 
into the primary propagation cycle. Furthermore, DFT calculations 
suggest that the catalytic intermediate resulting from DMMAR,R de-
carboxylation and subsequent benzaldehyde insertion may acceler-
ate rate-determining epoxide ring-opening. Epoxide/DMMAR,R co-
polymerization was ultimately used to assemble a polymer library of 
new poly(alkyl malonates), where varying the epoxide substitu-
ent(s) allowed tuning of thermal properties. Ongoing work focuses 
on full mechanism elucidation, exploring new catalytic systems for 
improved activity and molecular weight targeting, and expanding 
monomer scope to access new copolymers and stereocomplexes 
with competitive properties. We envision that these findings will al-
low further understanding of epoxide/DMMAR,R copolymerization 
and streamline access to poly(alkyl malonates).  
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