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Abstract— Safety-critical failures often have fatal consequences
in aerospace control. Control systems on aircraft, therefore, must
ensure the strict satisfaction of safety constraints, preferably with
formal guarantees of safe behavior. This article establishes the
safety-critical control of fixed-wing aircraft in collision avoidance
and geofencing tasks. A control framework is developed wherein
a run-time assurance (RTA) system modulates the nominal flight
controller of the aircraft whenever necessary to prevent it from
colliding with other aircraft or crossing a boundary (geofence)
in space. The RTA is formulated as a safety filter using control
barrier functions (CBFs) with formal guarantees of safe behavior.
CBFs are constructed and compared for a nonlinear kinematic
fixed-wing aircraft model. The proposed CBF-based controllers
showcase the capability of safely executing simultaneous collision
avoidance and geofencing, as demonstrated by simulations on the
kinematic model and a high-fidelity dynamical model.

Index Terms— Aerospace control, aircraft navigation, collision
avoidance, control barrier function (CBF), geofencing.

I. INTRODUCTION

SAFE behavior is of utmost importance for aerial vehicles

due to the severity of consequences in the case of

an incidental failure. Thus, on-board control systems must

satisfy strict safety constraints while operating aircraft during

flight. Safety constraints may span a wide range of criteria,

including bounds on the aircraft’s flight envelope and control

surfaces (envelope protection), altitude, speed, acceleration,

Received 18 July 2024; revised 17 November 2024; accepted 26 January
2025. Approved for public release: distribution is unlimited. Case Number
AFRL-2024-0947 and AFRL-2024-2450. The views expressed are those of
the authors and do not reflect the official guidance or position of the United
States Government, the Department of Defense, or the United States Air Force.
This work was supported in part by the National Science Foundation (CPS
Award) under Grant 1932091; in part by AFOSR; and in part by Nodein
Inc., through USAF Award, under Grant FA864922P0787. Recommended by
Associate Editor I. Prodan. (Corresponding author: Tamas G. Molnar.)

Tamas G. Molnar is with the Department of Mechanical Engi-
neering, Wichita State University, Wichita, KS 67260 USA (e-mail:
tamas.molnar@wichita.edu).

Suresh K. Kannan is with Nodein Autonomy Corporation, Farmington,
CT 06085 USA (e-mail: kannan@nodein.com).

James Cunningham and Kyle Dunlap are with Parallax Advanced
Research, Beavercreek, OH 45431 USA (e-mail: james.cunningham@
parallaxresearch.org; kyle.dunlap@parallaxresearch.org).

Kerianne L. Hobbs is with the Autonomy Capability Team (ACT3), Air
Force Research Laboratory, Wright-Patterson AFB, OH 45433 USA (e-mail:
kerianne.hobbs@us.af.mil).

Aaron D. Ames is with the Department of Mechanical and Civil
Engineering, California Institute of Technology, Pasadena, CA 91125 USA
(e-mail: ames@caltech.edu).

Digital Object Identifier 10.1109/TCST.2025.3536215

Fig. 1. Overview of the safety-critical control framework for fixed-wing
aircraft. The motion of a single aircraft is controlled to avoid collisions with
other aircraft and prevent crossing a geofence in 3-D space. To this end, the
proposed CBF-based RTA system intervenes into the nominal flight controller
whenever necessary to avoid dangers.

load factors, orientation, angular rates, angle of attack, control

surface deflections, and their rates, as well as bounds on

an aircraft’s trajectory (safe navigation) that may include

geofences (keep-in or keep-out zones) and collision avoidance

with the ground or other air vehicles. Such strict safety

specifications necessitate control systems that are designed

in a safety-critical fashion, preferably with guarantees or

certificates of safe behavior under certain operating conditions.

Recently, this has led to the idea of run-time assurance (RTA)

systems [1] that serve as an added module to the aircraft’s

nominal flight controller and intervene whenever necessary to

avoid the violation of safety. RTA is often used to supervise

complex control systems whose safe behavior is difficult to

guarantee or verify, such as learning-based controllers [2], [3].

RTA systems showed promising results in indoor flight with

quadrotors [4], navigation of unmanned fixed-wing aircraft

along safe corridors [5], neural network-based aircraft taxiing

application [6], and aerial refueling task in naval aviation [7].

How to design safe control laws for use in RTA, however,

is still an open problem.

Safety has long been of interest in the aerospace control

literature. Many studies have focused on safe aircraft
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navigation, where the overall motion is controlled in scenarios

like collision avoidance, trajectory tracking, and geofencing.

Approaches include the use of potential fields [8], [9],

velocity obstacles [10], control barrier functions (CBFs) [11],

controlled invariant sets [12], and reinforcement learning [13],

[14]. Notably, CBFs provide provable safety guarantees as

opposed to most learning-based methods. Furthermore, some

CBF formulations can be used to generate control invariant

sets [15], while CBFs can even be constructed from artificial

potential fields [16] and velocity obstacles [17]. Most CBF-

based controllers respond to the current state of the system

without a preview of future trajectories. This may lead to

suboptimal behavior compared to other methods with preview,

such as motion planning algorithms or model predictive

control, but it also makes CBF-based controllers easy to

compute.

CBFs demonstrated success in collision avoidance on

quadrotors in simulation [18], [19] and experiments [16],

as well as on fixed-wing aircraft in the context of probabilistic

safety certificates [20], learning-based [21] and data-driven

CBFs [22], and multiaircraft control [23]. Trajectory tracking

by fixed-wing aircraft also leveraged CBF theory to keep

path following errors within prescribed bounds, via high-

order CBFs [24], barrier Lyapunov functions [25], and robust

CBFs [26]. Moreover, geofencing—where the aircraft is

navigated to avoid a restricted territory beyond a “geofence”

like the airspace of a country or private property—was also

addressed by CBFs with success on quadrotors [27], [28].

A CBF-based fixed-wing aircraft RTA system for simultaneous

collision avoidance and geofencing is yet to be developed.

Notably, Corraro et al. [29] addressed simultaneous colli-

sion avoidance and geofencing without CBFs, for tactical

unmanned aircraft considering multiple intruder aircraft, fixed

obstacles, no-fly zones, and bad weather areas. An optimal

control problem was formulated with risk assessment and

probabilistic safety constraints. In this work, we instead

focus on deterministic safety constraints and develop a

CBF-based RTA system for simultaneous collision avoidance

and geofencing. We use a reduced-order model of the aircraft

dynamics to formulate the CBF and synthesize a controller

in closed form that provides formal guarantees of safety. The

approach of developing safety-critical controllers via reduced-

order models and CBFs has been successful on a variety of

autonomous systems, including legged, wheeled, and flying

robots, manipulators, and heavy-duty trucks [30]. Now we

seek to extend this approach to establish RTA for fixed-wing

aircraft.

In this article, we propose a safety-critical RTA system

for fixed-wing aircraft using CBFs, as summarized in Fig. 1.

Specifically, we accomplish simultaneous collision avoidance

and geofencing in 3-D space on a nonlinear kinematic model

of an aircraft. To the best of authors’ knowledge, this is the first

application of CBFs to simultaneous collision avoidance and

geofencing for fixed-wing aircraft. First, we encode multiple

safety constraints (related to collision avoidance and multiple

geofence boundaries) into a single CBF candidate. Second,

we establish how to construct CBFs for nonlinear aircraft

dynamics. We introduce and compare three approaches: high-

order CBFs, backstepping-based CBFs, and model-free CBFs.

We highlight that a careful CBF construction is required

to leverage all control inputs and make the aircraft both

accelerate, pitch, and roll for safe collision avoidance and

geofencing. This challenge can be addressed, for example, via

backstepping, and this work is the first application of CBF

backstepping to fixed-wing aircraft. Finally, we demonstrate

the behavior of the proposed RTA by simulations of the

kinematic model and also a high-fidelity dynamical model.

This article is structured as follows. Section II describes the

nonlinear model of fixed-wing aircraft kinematics. Section III

provides background on CBFs. Section IV introduces the main

contributions by establishing and simulating the proposed

CBF-based RTA system. Section V closes with conclusions.

II. MODELING THE AIRCRAFT’S MOTION

First, we introduce a kinematic model, called 3-D Dubins
model, that describes the motion of fixed-wing aircraft.

Kinematic models are popular in navigation and path

planning [31], [32]. This model is derived in Appendix A

from six-degrees-of-freedom (6-DoF) dynamics using certain

assumptions (see Assumption 3). The main assumption is

that the angles of attack and sideslip are negligible. We use

this model for safety-critical controller synthesis, to design

acceleration and angular velocity commands for the aircraft in

a provably safe fashion.

Consider the fixed-wing aircraft in Fig. 2. We describe its

motion by using its: position along North, East, and down

directions, n, e, and d; roll, pitch, and yaw Euler angles, φ,

θ , and ψ ; speed, VT; angular velocities about the front, right,

and down axes, P , Q, and R; and longitudinal acceleration,

AT. Specifically, we use the 3-D Dubins model detailed in

Appendix A as governing equation

ṅ = VTcψcθ

ė = VTsψcθ

ḋ = −VTsθ

φ̇ = P + sφ tθ Q + cφ tθ R

θ̇ = cφ Q − sφ R

ψ̇ = sφ

cθ

Q + cφ

cθ

R

V̇ T = AT (1)

where s(·), c(·), and t(·) stand for sin(·), cos(·), tan(·),
respectively, and

R = gD

VT

sφcθ (2)

with gD being the gravitational acceleration.

The top three rows of (1) give the velocity of the center

of mass. The next three rows of (1) are the typical 3–2–1

Euler angle kinematics [33] that relate orientation to angular

velocity. The last row of (1) associates speed with acceleration.

Note that (1) is true for the motion of any rigid body in an

inertial frame. Meanwhile, (2) makes this an aircraft model

by stating that the airplane must roll in order to turn left

or right (R �= 0 requires φ �= 0). The model has seven states

(three positions, three orientation angles, and speed), while

we consider three control inputs (acceleration and angular
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Fig. 2. Illustration of aircraft kinematics: position coordinates n, e, and d ,
Euler angles φ, θ , and ψ , speed VT, angular velocities P , Q, and R, and
acceleration AT.

velocities related to rolling and pitching). The state x and input

u read

x = [
n e d φ θ ψ VT

]�
u = [

AT P Q
]�

. (3)

To compress notations, we introduce the position vector r,

the velocity-related states ζ , and the velocity vector v

r =
⎡
⎣n

e
d

⎤
⎦, ζ =

⎡
⎣VT

θ

ψ

⎤
⎦, v(ζ ) =

⎡
⎣VTcθcψ

VTcθ sψ

−VTsθ

⎤
⎦. (4)

With these, the dynamics (1) and (2) become

ṙ = v(ζ )

ζ̇ = fζ (ζ , φ, R, AT, Q), R = ρ(ζ , φ)

φ̇ = fφ(ζ , φ, R, Q, P). (5)

These dynamics form a cascaded structure, where the

evolution of higher level states depends on lower level states.

Specifically, the evolution of the position r is given by the

velocity-related states ζ . The evolution of ζ depends on the

remaining state φ, the state-dependent turning rate R, and two

control inputs AT and Q. Finally, the evolution of the last state

φ involves the third control input P . Overall, the dynamics

have a three-level cascaded structure, where the control inputs

enter at the second and third levels (with an auxiliary algebraic

formula for R). Importantly, the right-hand side expressions

fζ (ζ , φ, R, AT, Q) =
⎡
⎢⎣

AT

cφ Q − sφ R
sφ

cθ

Q + cφ

cθ

R

⎤
⎥⎦, ρ(ζ , φ) = gD

VT

sφcθ

fφ(ζ , φ, R, Q, P) = P + sφ tθ Q + cφ tθ R (6)

are affine in the turning rate R and the control inputs AT,

P , and Q. We will leverage this structure when designing

controllers.

Furthermore, we also write (1) and (2) into the compact

form

ẋ = f(x) + g(x)u (7)

where x and u are given in (3) and

f(x) =
⎡
⎣v(ζ )

fξ (x)

0

⎤
⎦, g(x) =

⎡
⎣ 03×3

gξ (x)

1 0 0

⎤
⎦ (8)

with

fξ (x) = gD

VT

⎡
⎣sφcφsθ

−s2
φcθ

sφcφ

⎤
⎦, gξ (x) =

⎡
⎢⎣

0 1 sφ tθ
0 0 cφ

0 0
sφ

cθ

⎤
⎥⎦. (9)

In what follows, we synthesize controllers for the aircraft

model given by (1) and (2), with the end goal of formal safety

guarantees with respect to collision avoidance and geofencing.

In particular, we design safe controllers for the control-affine

form (7) of the model by using CBFs constructed based on the

cascaded structure (5) of the dynamics. When designing the

controller, we consider that the position r of the aircraft is safe

at time t if the pair (r, t) is inside a safe set S ⊂ R
3 × R≥0

defined by the collision avoidance and geofencing constraints

(see details in Section IV).

Problem Statement: Consider system (7) and design a

controller k:Rn × R → R
m , u = k(x, t) that guarantees

safety with respect to collision avoidance and geofencing.

Specifically, the controller must ensure that the trajectory r(t)
of the closed-loop system is maintained within a prescribed

set S: (r(t), t) ∈ S, ∀t ≥ 0 for initial positions satisfying

(r0, 0) ∈ S.

III. CONTROL BARRIER FUNCTIONS

We utilize CBFs [34] to guarantee safety on fixed-wing

aircraft with respect to collision avoidance and geofencing.

In particular, we consider time-dependent CBFs because safety

depends on the time when other aircraft move or the geofence

is updated.

Notations: If α:R → R is continuous and strictly increas-

ing with α(0) = 0 and limr→±∞ α(r) = ±∞, then α is

of extended class-K∞ (α ∈ Ke∞). Norms are denoted by

‖u‖2 = u�u and ‖u‖2
� = u��u for u ∈ R

m and positive

definite � ∈ R
m×m . The zero vector in R

3 is 0, the zero matrix

in R
m×n is 0m×n , and the identity matrix in R

3×3 is I.

A. Theoretical Background

Motivated by the aircraft model (7), consider control

systems with state x ∈ R
n and control input u ∈ R

m

ẋ = f(x) + g(x)u. (10)

Let f:Rn → R
n and g:Rn → R

m×n be locally Lipschitz

continuous. Given these dynamics, our goal is to design a

locally Lipschitz continuous controller k:Rn × R → R
m ,

u = k(x, t) such that the closed control loop

ẋ = f(x) + g(x)k(x, t) (11)

exhibits safe behavior. We characterize the behavior by the

solution x(t) of (11) with initial condition x(0) = x0 ∈ R
n ,

and we assume that x(t) exists for all t ≥ 0.

We consider the system to be safe if the solution x(t) at

any time t is kept within a safe set C ⊂ R
n × R, stated as

follows.

Definition 1: System (11) is called safe with respect to C
if (x(t), t) ∈ C, ∀t ≥ 0 holds for all x0 ∈ R

n that satisfies

(x0, 0) ∈ C. In other words, safety means that set C is forward

invariant along (11).
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Let C be given as the 0-superlevel set of a continuously

differentiable function h:Rn × R → R, with boundary ∂C

C = {
(x, t) ∈ R

n × R : h(x, t) ≥ 0
}

∂C = {
(x, t) ∈ R

n × R : h(x, t) = 0
}
. (12)

Then, we characterize safety using the scalar-valued function

h, whose positive (or negative) sign indicates safe (or unsafe)

behavior. In the context of aircraft collision avoidance or

geofencing, h is related to the signed distance of the aircraft

from other aircraft or the geofence, respectively, that must

kept positive for safety. The expression of h will be detailed

in the following. Throughout this article, we assume that the

underlying set C is nonempty, it has no isolated points, and that

∂h/∂x(x, t) is nonzero for all (x, t) ∈ ∂C (i.e., 0 is a regular

value of h).

Given set C and function h, the theory of CBFs establishes a

method to synthesize controllers with formal safety guarantees.

CBFs are defined as follows, by using the derivative of h along

system (10) that quantifies the effect of the input u on safety

ḣ(x, t, u) = ∂h
∂t

(x, t) + ∂h
∂x

(x, t)f(x) + ∂h
∂x

(x, t)g(x)u. (13)

Definition 2 [11]: Function h is a CBF for (10) on C if

there exists α ∈ Ke∞ such that for all (x, t) ∈ C

sup
u∈Rm

ḣ(x, t, u) > −α(h(x, t)). (14)

Given a CBF, the following theorem establishes formal

safety guarantees for controllers.

Lemma 1 [11]: If h is a CBF for (10) on C, then any locally

Lipschitz continuous controller k that satisfies

ḣ(x, t, k(x, t)) ≥ −α(h(x, t)) (15)

for all (x, t) ∈ C renders (11) safe with respect to C.

Note that if the derivative of h is independent of the control

input u, i.e., ∂h/∂x(x, t)g(x) ≡ 0 in (13), then h cannot be

used directly to synthesize safe controllers. In such cases,

methods like high-order CBFs [35], [36] or backstepping [37]

can be applied to construct a CBF from h and use it for control.

These methods are discussed further in Section IV. The main

idea behind high-order CBFs is introducing ḣ + α(h), which

occurs in (15), as a high-order (or extended) CBF

he(x, t) = ∂h
∂t

(x, t) + ∂h
∂x

(x, t)f(x) + α(h(x, t)) (16)

whose 0-superlevel set is Ce see (12). If the extended CBF

he is maintained nonnegative, then safety can be guaranteed

based on (15), similar to the case when h is a CBF.

Lemma 2 [36]: If he is a CBF for (10) on Ce, then any

locally Lipschitz continuous controller k that satisfies

ḣe(x, t, k(x, t)) ≥ −α(he(x, t)) (17)

for all (x, t) ∈ C ∩ Ce renders (11) safe with respect to C∩Ce.

B. Safety Filters

Based on Lemma 1, controllers can be designed for (10) in

a safety-critical fashion by enforcing (15) during controller

synthesis. Such safety-critical control designs are often

established by so-called safety filters that modify a desired

but not necessarily safe controller kd:Rn × R → R
m to a safe

controller k. In the context of aircraft control, the desired

controller kd may be a flight controller that tracks a desired

trajectory, such as the controller in Appendix B. This can be

modified for safety, for example, by the optimization problem

k(x, t) = argmin
u∈Rm

‖u − kd(x, t)‖2
�

s.t. ḣ(x, t, u) ≥ −α(h(x, t)) (18)

that minimizes the difference of the desired and actual inputs

subject to the safety constraint (15). Note that a symmetric

positive definite weight matrix � ∈ R
m×m is useful for scaling

the various components of the control input when these have

different physical meanings and orders of magnitude.

We remark that the formulation above does not include input

constraints (as u ∈ R
m). To enforce input limits, one could

saturate the controller, or add input constraints to (18) and

relax the safety constraint to maintain feasibility. However,

these methods lose formal safety guarantees. Formally

addressing input constraints while maintaining safety requires

more advanced CBF approaches, such as those in [15], [38],

[39], [40], and [41]. These methods are beyond the scope of

this article and will be explored as future work. Instead, the

controllers proposed here are tuned so that the resulting control

inputs remain within reasonable bounds in simulations.

Importantly, the optimization problem (18) is feasible if h
is indeed a CBF that satisfies (14), and it can be solved in

closed form. By factorizing � as � = W−�W−1 with positive

definite W ∈ R
m×m , (18) transforms into

k(x, t) = kd(x, t) + Wk̂(x, t)

k̂(x, t) = argmin
û∈Rm

∥∥û
∥∥2

s.t. a(x, t) + b(x, t)û ≥ 0 (19)

where

a(x, t) = ḣ(x, t, kd(x, t)) + α(h(x, t))

b(x, t) = ∂h
∂x

(x, t)g(x)W. (20)

Then, (19) can be solved as follows [42]:

k(x, t) = kd(x, t) + �(a(x, t), ‖b(x, t)‖)Wb(x, t)� (21)

with

�(a, b) =
⎧⎨
⎩

0, if b = 0
1

b
max

{
0, −a

b

}
, if b �= 0.

(22)

Since the safety filter (21) is given explicitly, it is fast and

easy to evaluate it, which is an advantage of using CBFs.

Finally, we remark that the controller given by (21) and (22)

is continuous but not necessarily differentiable. Yet, differ-

entiable controllers may be preferable in certain scenarios.
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As established by Cohen et al. [42], a smooth over-

approximation of � in (22), such as

�(a, b) =
⎧⎨
⎩

0, if b = 0
1

νb
ln
(

1 + e−ν a
b

)
, if b �= 0

(23)

with parameter ν > 0, leads to a smooth controller in (21)

that still satisfies (15) (and it approaches (22) for ν → ∞).

Henceforth, we will use the safety filter [see (21) and (22)]

and the smooth safety filter [see (21)–(23)] for safety-critical

control.

C. Compositions of Safety Constraints

In practice, control systems may need to satisfy more than

one safety constraints simultaneously. In such cases, the safe

set C is composed of multiple sets Ci related to each safety

constraint. For example, as illustrated in Fig. 1, an aircraft

may execute both collision avoidance and geofencing at the

same time, associated with sets Ccoll and Cgeo. This leads to

the overall safe set C = Ccoll ∩ Cgeo. With this as motivation,

now we briefly revisit a method established in [43] to combine

multiple safety constraints and express them by a single CBF.

First, consider the scenario when safety must be maintained

against Nc constraints simultaneously, associated with sets

Ci , functions hi , and index i ∈ I = {1, . . . , Nc}. Safety is

interpreted with respect to the intersection C = ∩i∈ICi of the

sets

∩
i∈I

Ci =
{
(x, t) ∈ R

n × R : min
i∈I

hi (x, t) ≥ 0

}
. (24)

Then, a single CBF candidate can be constructed by a smooth

approximation of the min function [43], [44]

h(x, t) = − 1

κ
ln

(∑
i∈I

e−κhi (x,t)

)
(25)

with a smoothing parameter κ > 0, where the approximation

error is bounded by

− ln Nc

κ
≤ h(x, t) − min

i∈I
hi (x, t) ≤ 0 (26)

and diminishes as κ → ∞. Formula (25) establishes a simple

way to combine multiple barriers, ultimately providing a single

CBF candidate for use in the safety filter (21), with derivative

ḣ(x, t, u) =
Nc∑

i=1

e−κ(hi (x,t)−h(x,t))ḣi (x, t, u). (27)

Formula (25) includes the evaluation of Nc exponential

functions; hence, its computation time increases with the

number Nc of constraints. Yet, a significant benefit of

constructing a single CBF by (25) is that it enables the use of

closed-form safety filters like (21) that are easy to compute.

Without such composition, safety filters would require solving

optimization problems like (18) with Nc the number of

constraints, which would ultimately lead to more computation

especially if Nc is large. Further details on the properties of

the CBF composition method in (25) can be found in [43].

The framework in [43] can also be used for more complex

compositions of safe sets, as combinations of set intersections

and unions, which correspond to AND and OR logic between

safety constraints, respectively. For example, the geofence in

Fig. 1 can also be expressed by unions and intersections:

Cgeo = C1 ∪ C2 ∩ C3. As such, the union of individual sets

∪
i∈I

Ci =
{
(x, t) ∈ R

n × R : max
i∈I

hi (x, t) ≥ 0

}
(28)

can be captured by a single CBF candidate analogously to (25)

h(x, t) = 1

κ
ln

(∑
i∈I

eκhi (x,t)

)
. (29)

Combinations of set unions and intersections can be addressed

by the recursive applications of (25) and (29). Note that (14)

must hold for h to be a valid CBF. This requires a control-

sharing property [45], [46] that the individual barriers hi are

compatible and do not lead to contradicting constraints for the

control input. Establishing the conditions for obtaining a valid

CBF after a general composition is still an open problem, and

initial results can be found in [43]. Overall, (25) and (29)

provide a systematic way of encoding complex compositions

of safety constraints into a single CBF candidate. This will

be leveraged below in the context of simultaneous collision

avoidance and geofencing where the geofence is composed of

multiple boundaries.

IV. RTA ON FIXED-WING AIRCRAFT

Now we present our main contributions, wherein we use

CBFs to formally guarantee safety on fixed-wing aircraft

in collision avoidance and geofencing tasks. We establish

safety-critical controllers for the system (7) by utilizing the

safety filter (21) as RTA system with an appropriate choice

of CBF. We address the nontrivial problem of CBF synthesis

for aircraft dynamics, discuss various choices of CBFs, and

demonstrate the performance of the resulting controllers by

numerical simulations.

A. Position-Based CBF Candidates

We seek to execute simultaneous collision avoidance and

geofencing on the aircraft in a provably safe fashion via

CBFs. Both collision avoidance and geofencing correspond to

safety constraints on the position r of the aircraft. Accordingly,

we have a safe set S defined over the position space and time

S = {
(r, t) ∈ R

3 × R≥0 : hp(r, t) ≥ 0
}

(30)

where hp is a position-based CBF candidate described in the

following. We seek to ensure (r(t), t) ∈ S, ∀t ≥ 0 for all

(r0, 0) ∈ S. Note that while we focus on position constraints

only, attitude constraints could be addressed in a similar

fashion by constructing CBFs that depend on the Euler angles.

1) Collision Avoidance: To avoid collisions, we enforce

that the signed distance between the controlled aircraft and

another aircraft is nonnegative for all time. That is, we require

hp,i (r(t), t) ≥ 0, ∀t ≥ 0, with

hp,i (r, t) = ‖r − ri (t)‖ − ρi (31)

where ri (t) is the other aircraft’s position, and ρi > 0 is a

collision radius containing the combined size of both aircraft
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and an additional buffer distance if desired. If there are

multiple other aircraft, we get multiple collision constraints

with index i . The corresponding derivatives are

ḣp,i (r, t, v) = ni (r, t)�(v − vi (t)) (32)

with ṙi (t) = vi (t) and

ni (r, t) = r − ri (t)
‖r − ri (t)‖ . (33)

2) Geofencing: For geofencing, we keep the aircraft on one

side of a “fence,” modeled as a plane at ri with unit normal

vector ni . That is, we require hp,i (r(t), t) ≥ 0, ∀t ≥ 0, where

hp,i (r, t) = n�
i (r − ri ) − ρi (34)

and ρi ≥ 0 is the distance to be kept from the geofence.

Again, index i indicates the possibility of multiple geofence

constraints, that is, geofences with more complex geometry.

The derivatives of the CBF candidates are

ḣp,i (r, t, v) = n�
i v. (35)

Note that zero is a regular value of hp,i for both (31) and (34),

i.e., the gradient of hp,i is nonzero when hp,i (r, t) = 0.

3) Simultaneous Collision Avoidance and Geofencing:
Given Nc number of safety constraints, these can be combined

into a single CBF candidate hp(r(t), t) based on (25) and (29).

For simplicity, we make the following assumption.

Assumption 1: Safety constraints are linked with AND

logic: one must avoid collision with aircraft 1 AND aircraft 2,

etc., AND obey geofence 1 AND geofence 2, and so on.

This assumption is made only to keep the exposition simple

since AND logic only requires (25) for CBF composition.

Combination of AND and OR logic could also be handled

straightforwardly via combining (25) with (29). Considering

Assumption 1 and using (25) leads to the CBF candidate

hp(r, t) = − 1

κ
ln

(
Nc∑

i=1

e−κhp,i (r,t)

)
(36)

with κ > 0. Note that hp(r, t) = hp,i (r, t) if Nc = 1.

We remark that (36) approximates a convex polytope for

geofencing when hp,i are given by (34). Nonconvex regions

could be obtained as the union of convex polytopes, i.e.,

by using (29).

Ideally, we would use the position-based CBF candidate hp

directly as CBF: h(x, t) = hp(r, t). However, the correspond-

ing safety constraint in (15) with αp ∈ Ke∞

ḣp(r, t, v(ζ )) ≥ −αp

(
hp(r, t)

)
(37)

is independent of the controller and may not always hold. As a

result, (14) in Definition 2 is not satisfied, hp is not a CBF, and

hp cannot be used directly to synthesize safe controllers for (7).

We rather call hp as CBF candidate, and in the following,

we use it to construct a CBF h for controller synthesis.

TABLE I

PARAMETER VALUES FOR NUMERICAL SIMULATIONS (WITH SI UNITS)

B. RTA With Velocity-Based Extended CBF

First, we employ so-called extended CBFs (or high-order

CBFs) proposed in [35] and [36]. Extended CBFs, defined as

follows, depend on the velocity v:

he,i (r, v, t) = hp,i (r, t) + 1

γp

ḣp,i (r, t, v) (38)

with γp > 0. For collision avoidance, the extended CBF is

he,i (r, v, t) = ‖r − ri (t)‖ − ρi + 1

γp

ni (r, t)�(v − vi (t))

(39)

see (31). For geofencing, the extended CBF becomes

he,i (r, v, t) = n�
i (r − ri ) − ρi + 1

γp

n�
i v (40)

see (34). It can be shown that zero is a regular value of

he,i in (39) and (40), i.e., the gradient of he,i is nonzero

when he,i (r, v, t) = 0. For simultaneous collision avoidance

and geofencing, the extended CBFs can be combined as in (25)

he(r, v, t) = − 1

κ
ln

(
Nc∑

i=1

e−κhe,i (r,v,t)

)
. (41)

With these definitions, we use the extended CBFs directly

h(x, t) = he(r, v(ζ ), t). (42)

Importantly, enforcing h(x, t) ≥ 0 implies that (37) holds

with α p(r) = γpr . Therefore, based on applying Lemma 2,

the safety filter (21) guarantees h(x(t), t) ≥ 0, t ≥ 0 and

hp(r(t), t) ≥ 0, ∀t ≥ 0 (if h(x0, 0) ≥ 0 and hp(r0, 0) ≥ 0

hold). This means guaranteed safety in collision avoidance

and geofencing. Details and proof of the safety guarantees

provided by extended CBFs are in [36].

The performance of the proposed safety-critical controller

is demonstrated by simulating the aircraft model (7) with

the safety filter [see (21) and (22)] and the extended

CBF [see (38)–(42)]. The simulation parameters used
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Fig. 3. Simulation of RTA in collision avoidance using extended CBF. The
aircraft successfully maintains safety. (a) Trajectory. (b) CBF. (c)–(g) Relevant
states and inputs.

throughout this article are listed in Table I, and the desired

controller kd is considered to be the trajectory tracking

controller detailed in Appendix B. Note that safety guarantees

do not depend on the choice of desired controller, and other

flight controllers could also be used in RTA.

Fig. 3 illustrates a collision avoidance scenario. First, the

controlled aircraft is tracking a straight-line trajectory at a

constant speed with its desired controller kd. Then, another

aircraft approaches from the right, which would result in a

collision if the controlled aircraft did not respond. Thus, the

safety filter intervenes and the controller k starts to deviate

from the desired one kd. As a result, the controlled aircraft

accelerates while pitching and moving up to safely avoid

the other aircraft. Then, the safety filter stops intervening,

and the aircraft starts to use its desired controller kd to

track its original course once again. Remarkably, the collision

avoidance maneuver is generated automatically by the CBF.

Observe in Fig. 3(d)–(g), however, that the aircraft only

leverages acceleration and pitching for collision avoidance,

while it refrains from turning left or right via rolling and

yawing. The safety filter only modifies two of the control

inputs, AT and Q, that cause acceleration and pitching, while

it does not affect the third input, P , that would induce rolling

and consequently turning. This behavior is caused by the

cascaded structure (5) of the dynamics and the construction

of the extended CBF. Namely, the inputs AT and Q enter the

cascaded dynamics at the second level through the evolution

of the velocity-related states ζ , while the input P shows up

at the third level in the equation of the roll angle φ. Since

the velocity-dependent extended CBF he(r, v(ζ ), t) includes

the states ζ but not the roll angle φ, the resulting safety filter

includes AT and Q but not P . Hence, the safety filter cannot

make the plane roll, which prevents it from turning left or

right; see (2).

While the collision avoidance example was successful,

lacking the ability to turn can be detrimental for RTA. Fig. 4

highlights this by showcasing a geofencing scenario with a

vertical plane as geofence. Since the extended CBF he cannot

induce turning, the safety filter forces the aircraft to slow down

and stop in front of the geofence. Although this behavior is

safe from geofencing point of view, it is obviously infeasible

in practice to make the aircraft stop. The geofencing task could

only be accomplished with the ability to turn. This motivates

us to construct a better CBF, which respects the cascaded

structure of the dynamics and incorporates all states (including

the roll angle φ) so that the safety filter leverages all control

inputs (including the roll motion P).

C. RTA With Backstepping-Based CBF

While the extended CBF-based RTA does not leverage

all possible behaviors (acceleration, pitching, rolling, and

yawing), this can be done by other CBF choices [47].

In particular, the method of backstepping [37] offers a

systematic procedure to synthesize valid CBFs for cascaded

systems like (5). Here, we use backstepping to construct a

CBF for use in RTA rather than construct the control law

itself. Importantly, backstepping can provide a valid CBF

whose derivative is affected by all control inputs; hence, the

underlying RTA can leverage all aforementioned behaviors for

safety—even considering 3-D motions and nontrivial cascaded

dynamics.

We proceed with backstepping to design a CBF in two steps.
1) We apply the extended CBF to design a safe acceleration

as and a corresponding safe angular velocity Rs (related

to turning). Note, however, that the aircraft cannot be

commanded directly to turn, as R is not an input.

2) We use the safe angular velocity Rs to construct a CBF

based on backstepping. This will allow us to synthesize

the remaining input, the angular velocity P (related to

rolling), along with the other two inputs AT and Q.
To synthesize the safe angular velocity Rs , we first consider

the extended CBF-based safety constraint

ḣe(r, v, t, a) ≥ −αe(he(r, v, t)) (43)

and the corresponding smooth safety filter to obtain the safe

acceleration as (associated with zero desired acceleration)

as(x, t) = �(ae(x, t), ‖b e(x, t)‖)Web e(x, t)�

ae(x, t) = ḣe(r, v(ζ ), t, 0) + αe(he(r, v(ζ ), t))

be(x, t) = ∂he

∂v
(r, v(ζ ), t)We (44)

with � in (23), a smoothing parameter νe > 0, a weight

We on the various acceleration components, and αe ∈ Ke∞.
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Fig. 4. Simulation of RTA in geofencing using extended CBF. The controller
fails this task as it would command the aircraft to stop in front of the geofence.
This CBF choice lacks the ability to make the aircraft turn left or right. (a)
Trajectory. (b) CBF. (c)–(g) Relevant states and inputs.

We convert the safe acceleration as to the angular velocity Rs

based on (63) listed in Appendix A

Rs = WR(ζ , φ)as(x, t) (45)

where WR is the last row of the inverse of Ma in (64). Note

that the use of a smooth safety filter makes Rs differentiable.

Finally, with the safe angular velocity Rs , we construct the

following backstepping-based CBF proposed by [37]:

hb(x, t) = he(r, v(ζ ), t) − 1

2μe

(Rs − R)2 (46)

with a scaling constant μe > 0. Here, R and Rs

are given by (2) and (45), respectively. Notice that

hb(x, t) ≤ he(r, v(ζ ), t) holds; hence, safety with respect to hb

implies safety with respect to he. The CBF h(x, t) = hb(x, t)
can be used to execute the safety filter (21) for RTA, where the

derivative of hb can be obtained through lengthy calculation

by differentiating the expression of Rs . Incorporating the

turning rate R into the CBF hb allows us to leverage all

control inputs for safety, including the angular velocity P
required for making the aircraft roll and consequently turn.

This process means backstepping: taking a step back from

rolling (P) to turning (R).

The backstepping-based CBF can be established for

collision avoidance with he,i from (39), geofencing with he,i

from (40), and the combination thereof with he from (41).

Since the backstepping calculations are nontrivial, it is

advantageous to first combine multiple safety constraints

into a single one before executing backstepping rather than

doing backstepping multiple times and then combining. The

resulting safety filter (21) is in closed form. It yields safety

with respect to the backstepping-based CBF, hb(x(t), t) ≥ 0,

∀t ≥ 0, which implies safety with respect to the extended

CBF, he(r(t), v(ζ (t)), t) ≥ 0, ∀t ≥ 0, which finally leads to

safe behavior considering the position-based CBF candidate,

hp(r(t), t) ≥ 0, ∀t ≥ 0. Note that the backstepping-based

CBF (46) contains an additional term compared to the

extended CBF (38), which is obtained by adding a term to

the position-based CBF candidate. Thus, these CBFs have

different numbers of parameters. To compare these CBFs

and the resulting controllers, we use the same values for the

parameters shared by the various CBFs (see Table I), and the

comparison reflects the effect of the added terms.

The behavior of the aircraft with the proposed safety-critical

controller is shown in Fig. 5. Model (7) is simulated with

the safety filter [see (21) and (22)], the backstepping-based

CBF [see (46)], and the parameters in Table I. The simulated

scenario is simultaneous collision avoidance and geofencing

where the geofence consists of two planar boundaries. The

aircraft’s RTA system with the proposed backstepping-based

CBF guarantees safety with expected behavior. First, the

safety filter intervenes and makes the aircraft accelerate, pitch

up, and turn left to avoid collision with the other aircraft.

Then, the aircraft is forced to turn right to avoid crossing

the two geofence boundaries. In this case, the safety filter

never stops intervening, as the aircraft keeps moving parallel

to the geofence rather than returning to the original desired

trajectory. Throughout the motion, the backstepping-based

CBF hb is kept nonnegative, which results in maintaining

the three position-based CBFs hp,i (and their smooth under-

approximation hp) nonnegative too, as highlighted in Fig. 5(b).

These indicate that the underlying maneuvers are executed

with guaranteed safety. While attitude and input constraints

are not enforced by the controller, its parameters were tuned

so that Euler angles θ and φ and inputs P , Q, and AT in Fig. 5

evolve within reasonable limits.

D. Model-Free RTA

The main challenge of designing an RTA system is the

synthesis of a CBF that respects the cascaded structure of

the underlying dynamics. This difficulty would vanish if we

could use the position-based CBF candidate hp directly in

a model-free fashion. Next, we discuss a model-free RTA

idea, originally introduced in [48] for robotic systems, and

describe its benefits and drawbacks relative to the cascaded

model-based RTA presented above.

The proposed model-free approach relies on the ability of

the aircraft to track a commanded velocity. Velocity tracking

(or trajectory tracking in general) is well-established for many

aircraft, for example, the desired controller kd itself may often

be a tracking controller. Such tracking controllers solve a

stabilization problem (associated with Lyapunov theory) that

is closely related to ensuring safety (associated with CBF

theory) [48]. As a matter of fact, the tracking controller kd in
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Fig. 5. Simulation of RTA in simultaneous collision avoidance and
geofencing using backstepping-based CBF. Safety is successfully maintained
by leveraging both acceleration, pitching, rolling, and turning. (a) Trajectory.
(b) CBF. (c)–(g) Relevant states and inputs.

Appendix B is constructed through a backstepping procedure

like the safety filter above. Thus, we intend to leverage the

tracking controller (that already accounts for the cascaded

dynamics) to address safety in a model-free fashion without

going through a complicated control design procedure again.

To ensure safety, we design a safe velocity vs(r, t) to

be tracked, by considering the simplified model-independent

kinematics ṙ = v and regarding v as input. In particular,

we synthesize the safe velocity vs(r, t) so that it satisfies

ḣp(r, t, vs(r, t)) ≥ −αp

(
hp(r, t)

)+ σ

∥∥∥∥∂hp

∂r
(r, t)

∥∥∥∥
2

(47)

with some σ > 0; see (37). The additional term with σ

originates from the theory of input-to-state safety [49], [50],

and it is incorporated in order to provide robustness against

tracking errors when the safe velocity vs is being tracked.

We use constraint (47) to synthesize the safe velocity vs

from a desired velocity command vd via a smooth safety filter

vs(r, t) = vd(r, t) + �(av(r, t), ‖bv(r, t)‖)Wvbv(r, t)�

av(r, t) = ḣp(r, t, vd(r, t)) + αp

(
hp(r, t)

)− σ

∥∥∥∥∂hp

∂r
(r, t)

∥∥∥∥
2

bv(r, t) = ∂hp

∂r
(r, t)Wv (48)

with � in (23) and a smoothing parameter νv > 0; see (21).

Matrix Wv and �v = W−�
v W−1

v weigh different velocity

components when considering the deviation between vs and

vd. For example, if we penalize the deviation of vs from vd in

the direction parallel to vd and in the perpendicular direction,

respectively, with weights 1 and 
v, then

�v = Pv + 
v(I − Pv)

Wv = Pv + 1√

v

(I − Pv), Pv = vdv�
d

‖vd‖2
. (49)

Equation (48) represents model-free RTA in the sense

that it does not use expressions from model (7) but

only the position-based CBF candidate hp in (31)–(36).

As opposed, controllers with the extended CBF (38)–(42)

and the backstepping-based CBF (46) depended on the

model. Tracking the safe velocity vs(r, t) obtained from

the model-free RTA yields safe behavior under certain

assumptions about the tracking controller, as established in the

following. Note that making vs to be smooth with the smooth

safety filter formula facilitates velocity tracking.

Assumption 2: Controller u = k(x, t) yields exponentially

stable tracking of the safe velocity vs(r, t). That is, there exist

a Lyapunov function V :Rn × R≥0 → R≥0 and λ > 0 such

that

V (x, t) ≥ 1

2
‖vs(r, t) − v(ζ )‖2 (50)

V̇ (x, t, k(x, t)) ≤ −λV (x, t) (51)

where the derivative of V is taken along (7).

For example, the controller in Appendix B satisfies

Assumption 2. Then, it can be established that the system that

tracks vs is safe if αp is chosen such that αp(r) = γpr and

γp < λ.

Theorem 1: If the safe velocity vs(r, t) in (48) with

αp(r) = γpr is tracked by (7) with a controller u = k(x, t)
such that (50) and (51) hold with γp < λ, then the following set

SV is forward invariant along the closed-loop dynamics (11):

SV = {
(x, t) ∈ R

n × R≥0 : hV (x, t) ≥ 0
}

hV (x, t) = hp(r, t) − V (x, t)
2σ
(
λ − γ p

) . (52)

This guarantees that (x0, 0) ∈ SV �⇒ (x(t), t) ∈ SV , ∀t ≥ 0,

which leads to (r(t), t) ∈ S, ∀t ≥ 0.

Note that the restriction (x0, 0) ∈ SV on the initial

condition is stricter than (r0, 0) ∈ S due to the term

V (x0, 0)/(2σ(λ−γp)) in the expression of hV (x0, 0). However,

the magnitude of this term can be reduced by increasing σ .

Proof: The forward invariance of SV follows from

Lemma 1, by showing that the following inequality holds:
ḣV (x, t, k(x, t)) + γ phV (x, t)

= ḣp(r, t, v(ζ )) + γphp(r, t) − V̇ (x, t, k(x, t))
2σ
(
λ − γp

)
− γpV (x, t)

2σ
(
λ − γp

)
≥ σ

∥∥∥∥∂hp

∂r
(r, t)

∥∥∥∥
2

+ ḣp(r, t, v(ζ )) − ḣp(r, t, vs(r, t))

+ V (x, t)
2σ
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Fig. 6. Simulation of RTA in simultaneous collision avoidance and
geofencing using a model-free approach with position-based CBF. Safety is
maintained, while control inputs are larger than with the model-based method
in Fig. 5. (a) Trajectory. (b) CBF. (c)–(g) Relevant states and inputs.

≥ σ

∥∥∥∥∂hp

∂r
(r, t)

∥∥∥∥
2

+ ∂hp

∂r
(r, t)(v(ζ ) − vs(r, t)) + V (x, t)

2σ

≥ σ

∥∥∥∥∂hp

∂r
(r, t)

∥∥∥∥
2

−
∥∥∥∥∂hp

∂r
(r, t)

∥∥∥∥√2V (x, t) + V (x, t)
2σ

≥
(√

σ

∥∥∥∥∂hp

∂r
(r, t)

∥∥∥∥−
√

V (x, t)
2σ

)2

≥ 0 (53)

where first we used (52); second, we substituted (47) and (51);

then, we expressed the difference of the ḣp terms; next,

we applied the Cauchy–Schwartz inequality and (50);

and finally, we completed the square. Furthermore, safety

with respect to SV implies safety with respect to S,

(x, t) ∈ SV �⇒ (r, t) ∈ S since hp(r, t) ≥ hV (x, t) if

γp < λ.

The performance of the model-free RTA system is

demonstrated in Fig. 6. The same simultaneous collision

avoidance and geofencing task is executed as in Fig. 5.

Model (7) is simulated with the tracking controller from

Appendix B, which is used to track the safe velocity

resulting from the model-free smooth safety filter (48).

The parameters are listed in Table I. The model-free RTA

successfully maintains safety in both collision avoidance and

geofencing, by keeping the smooth under-approximation hp of

the underlying CBF candidates hp,i nonnegative. Note that the

aircraft with the model-free RTA only uses deceleration and

turning to avoid collisions, and it does not move up or down.

This is due to symmetry (and not due to the lack of capability

to leverage pitching): the controlled aircraft moves in the same

horizontal plane as the other aircraft since moving up or down

would be indifferent because the model-free safety filter does

not contain any term like gravity to break the symmetry.

The advantage of this model-free approach is that RTA

becomes simpler, and it leverages the existing flight controller

(i.e., the desired tracking controller). Furthermore, this

approach does not modify the low-level flight control system

that flies the aircraft with desired stable behavior, but only

uses high-level commands about which direction and how fast

the aircraft should fly. The disadvantage of the model-free

approach is that it is hard to tune it in a way that the

safe velocity is easy to track. This can be observed in

Fig. 6(d) and (e), which highlight that tracking the safe

velocity results in larger control inputs than the ones with

the model-based RTA in Fig. 5(d) and (e).

In summary, the velocity-based extended CBF in

Section IV-B may succeed in collision avoidance but

may fail geofencing tasks because it is unable to leverage

all control inputs (like roll motion) to guarantee safety. The

backstepping-based CBF in Section IV-C and the model-free

RTA in Section IV-D both leverage all control inputs and

can successfully accomplish simultaneous collision avoidance

and geofencing. The model-based RTA with backstepping

may be preferable over the model-free RTA in terms of the

magnitude of control inputs. Of course, incorporating model

information enhances the performance of the control design,

but at the price of complexity—this is a fundamental tradeoff

observed in many control systems. Nevertheless, the resulting

controllers enjoy the formal safety guarantees provided by

CBF theory, with both the model-based and model-free RTA.

E. Validation With a Full-Envelope System Identified Model

Finally, to validate that the RTA developed for model (7)

could provide safety on a higher fidelity model, simulations

were run using an implementation of the linearized, stitched

model of the X-62 Variable-stability In-flight Simulator Test

Aircraft (VISTA) (modified two-seat F-16 aircraft) shown in

Fig. 7(a). This is a proprietary dynamical model that was

developed based on [51], where flight test data were used to

identify and combine (i.e., stitch together) linear state-space

models with time delays that represent the 6-DoF dynamics at

various flight conditions. The VISTA simulation was equipped

with a neural network controller (NNC) as the nominal

flight controller. The NNC was trained via reinforcement

learning [14], [52], and it provides the necessary commands

in terms of power lever angle (PLA), roll rate, and normal

load factor to achieve stable wing-level flight at given altitude,

heading, and speed. With the RTA system proposed in this

article, we seek to modulate the NNC whenever necessary to

ensure safety with respect to collision avoidance. This serves
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Fig. 7. Validation simulation of the proposed RTA on a high-fidelity

model. (a) VISTA, whose linearized, stitched dynamical model from [51]
was simulated. (b)–(d) Simulation of RTA in collision avoidance. The VISTA
tracks the acceleration and angular velocity commands obtained from the
RTA that uses 3-D Dubins model and backstepping-based CBF. Safety is
maintained in high-fidelity simulation.

as the first step toward validating that the Dubins model-based

RTA system can be executed on more realistic models, while a

comprehensive validation, including experiments on hardware,

is left for future work.

The high-fidelity simulation results are shown in Fig. 7.

A collision avoidance scenario is considered where the VISTA

is initially headed toward another aircraft and an evasive

maneuver is required from the RTA. To track the nominal

trajectory, the NNC provides PLA, roll rate, and normal

load factor commands, which can be converted to desired

acceleration and angular velocity (i.e., AT, P , and Q).

The RTA modifies these desired values to safe acceleration

and angular velocity commands. The safe commands are

converted back to PLA, roll rate, and normal load factor,

and tracked by the VISTA. The RTA is based on the 3-D

Dubins model (7) and the backstepping-based CBF (46), which

was previously demonstrated in Fig. 5. The corresponding

simulated trajectories are shown in Fig. 7(b)–(d). Remarkably,

the RTA constructed from the lower fidelity 3-D Dubins

model is capable of providing the required evasive maneuver,

and it successfully guarantees safety even in a high-fidelity

simulation—thanks to a carefully designed CBF in (46).

We remark that the high-fidelity simulation environment

was also monitoring additional constraints on the aircraft,

such as limits for angle of attack, angle of side slip, pilot

g command, roll rate, yaw rate, normal load factor, side

load factor, speed, control surface deflections, and their rates.

These constraints include some of the states and inputs of

the Dubins model, as well as additional quantities that are

not present in the model. Upon violation of these constraints,

the simulation terminated. By tuning the parameters of the

proposed controller, we prevented the violation of these

constraints while maintaining safety with respect to collision

avoidance.

Our future plan is to formally address these state and

input constraints by more complex CBF formulations such

as the backup set method [15], [28]. This method uses a

backup controller that could maintain safe behavior with

input-constrained conservative maneuvers like turning the

aircraft away from unsafe regions. By forward integrating

the closed-loop dynamics and computing the corresponding

backup trajectory, safety filters can enforce that this trajectory

leads to a backup set without violating safety. This

strategy ultimately provides formal guarantees of safety while

satisfying input constraints, and its safety filter may integrate a

desired flight controller to achieve a higher performance than

using a conservative backup controller directly. Developing

the required backup controllers and sets, however, needs

significant future research.

V. CONCLUSION

In this article, we developed an RTA system for fixed-wing

aircraft that intervenes into the operation of existing flight

controllers whenever necessary for the safety of the aircraft.

Specifically, we used CBFs to establish controllers with

formal safety guarantees for collision avoidance, geofencing,

and the simultaneous execution thereof. We established and

proved the safety guarantees provided by these controllers,

and we demonstrated safe operation by numerical simulation

of a nonlinear kinematic aircraft model and a high-fidelity

dynamical model. We highlighted that different choices

of CBFs—high-order and backstepping-based CBFs that

use model information, and simplified position-based CBF

candidates in a model-free context—lead to qualitatively

different behaviors while guaranteeing safety. In future work,

we plan to enforce safety with respect to other constraints

in flight envelopes such as angle of attack bounds or attitude

constraints. We also plan to formally address and enforce input

constraints with techniques like the backup set method [15].

Finally, we plan to validate safety-critical controllers by

hardware experiments.

APPENDIX A

EQUATIONS OF MOTION

Here, we derive the equations of the 3-D Dubins

model see (1) and (2). First, we revisit a 6-DoF model

from [33] that governs the rigid-body dynamics of fixed-wing

aircraft. Then, we simplify these dynamics to the 3-D Dubins

model through certain assumptions. While the upcoming

equations are well-known in the literature, they are required

by the controllers in the main body of this article.

Consider the aircraft illustrated in Fig. 2. To describe the

aircraft’s motion, we rely on the North, East, and down

position coordinates, n, e, and d; the roll, pitch, and yaw Euler
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angles, φ, θ , and ψ ; the speed, VT, angle of side slip, β, angle

of attack, α; and the front, right, down angular velocities, P ,

Q, and R

r =
⎡
⎣n

e
d

⎤
⎦, ξ =

⎡
⎣φ

θ

ψ

⎤
⎦, η =

⎡
⎣VT

β

α

⎤
⎦, ω =

⎡
⎣P

Q
R

⎤
⎦. (54)

This yields 12 states that evolve according to the 6-DoF model.

To derive the governing equations of motion, we use

three reference frames: the Earth frame, e, to express global

position; the body frame, b, aligned with the aircraft’s body;

and the wind frame, w, aligned with the velocity vector of the

center of mass. The orientation of the body frame relative to

the Earth frame is given by the Euler angles ξ , whereas the

orientation of the wind frame relative to the body frame is

described by the angle of side slip β and angle of attack α.

The frames are related by the transformation matrices

Reb(ξ) =
⎡
⎣ cψ −sψ 0

sψ cψ 0

0 0 1

⎤
⎦
⎡
⎣ cθ 0 sθ

0 1 0

−sθ 0 cθ

⎤
⎦
⎡
⎣ 1 0 0

0 cφ −sφ

0 sφ cφ

⎤
⎦

Rbw(η) =
⎡
⎣ cα 0 −sα

0 1 0

sα 0 cα

⎤
⎦
⎡
⎣ cβ −sβ 0

sβ cβ 0

0 0 1

⎤
⎦

Rbe(ξ) = Reb(ξ)�, Rwb(η) = Rbw(η)� (55)

where c(·) abbreviates cos(·) and s(·) abbreviates sin(·).

A. Kinematics

First, we characterize the kinematics of the aircraft through

the evolution of its position and orientation. The position r
evolves according to the expression of the velocity v

ṙ = v(ξ , η). (56)

The velocity of the aircraft’s center of mass can be given in

the Earth, body, and wind frames, respectively, by

v(ξ , η) = Reb(ξ)vb(η)

vb(η) = Rbw(η)vw(η)

vw(η) = [
VT 0 0

]�
. (57)

The Euler angles ξ are related to the angular velocity ω by

the Euler angle kinematics [33]

ξ̇ = H(ξ)ω (58)

where the coefficient matrix is

H(ξ) =
⎡
⎣ 1 sφ tθ cφ tθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤
⎦ (59)

and tθ abbreviates tan(θ). Moreover, after laborious calcula-

tion, it can be shown that the following useful identities hold:
∂v
∂ξ

(ξ , η)H(ξ)ω = Reb(ξ)(ω × vb(η))

∂v
∂η

(ξ , η) = Reb(ξ)Rbw(η)

⎡
⎣ 1 0 0

0 VT 0

0 0 VTcβ

⎤
⎦. (60)

These expressions define the underlying acceleration

v̇ = ∂v
∂ξ

(ξ , η)ξ̇ + ∂v
∂η

(ξ , η)η̇ (61)

where the formula of η̇ is introduced in the following.

The kinematics simplify as follows in the special case β ≡ 0

and α ≡ 0. The body–wind frame transformation reduces to

Rwb(η) = Rbw(η) = I; hence, the velocity becomes

v(ξ , η) = Reb(ξ)

⎡
⎣VT

0

0

⎤
⎦ =

⎡
⎣VTcθcψ

VTcθ sψ

−VTsθ

⎤
⎦. (62)

That is, the velocity only depends on the state ζ defined in (4),

which is emphasized by an abuse of notation in the main body

of this article: v(ζ ) is used instead of v(ξ , η). Accordingly,

(∂v)/(∂φ)(ξ , η) = (∂v)/(∂β)(ξ , η) = (∂v)/(∂α)(ξ , η) = 0
holds, and the acceleration in (61) reads

v̇ = Ma(ξ , η)

⎡
⎣AT

Q
R

⎤
⎦ (63)

where AT = V̇ T and

Ma(ξ , η)

=
[

∂v
∂VT

(ξ , η)

[
∂v
∂θ

(ξ , η)
∂v
∂ψ

(ξ , η)

]
Hθψ(ξ)

]

=
⎡
⎢⎣

cθcψ −VT

(
cφsθcψ + sφsψ

)
VT

(
sφsθcψ − cφsψ

)
cθ sψ VT

(−cφsθ sψ + sφcψ

)
VT

(
sφsθ sψ + cφcψ

)
−sθ −VTcφcθ VTsφcθ

⎤
⎥⎦
(64)

with Hθψ being the bottom right 2 × 2 block of H in (59).

B. Dynamics

Next, we describe the dynamics of the aircraft through

the evolution of its velocity and angular velocity. These are

related to the forces and moments acting on the body: the

thrust force, FT, assumed to be aligned with the body with

magnitude FT; the aerodynamics forces, FA, including the lift,

L , drag, D, and crosswind, C , components in wind frame; the

gravitational force mgD with the mass m and the gravitational

acceleration gD aligned with the down axis in Earth frame with

magnitude gD; and the moments M exerted on the aircraft,

with body-frame components L , M , and N

FT =
⎡
⎣FT

0

0

⎤
⎦, FA(η) =

⎡
⎣D(η)

C(η)

L(η)

⎤
⎦, gD =

⎡
⎣ 0

0

gD

⎤
⎦

M =
⎡
⎣ L

M
N

⎤
⎦. (65)

The acceleration of the aircraft’s center of mass can be given

in the Earth frame by

v̇ = 1

m
Reb(ξ)(FT − Rbw(η)FA(η)) + gD. (66)
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Expressing η̇ from (61) and substituting (58)–(60) and (66)

lead to the wind-axes force equations

η̇ = fη(ξ , η, ω) + gη(η)FT (67)

where

fη(ξ , η, ω) = A(η)

(
− 1

m
FA(η) + Rwb(η)Rbe(ξ)gD

+ vw(η) × (Rwb(η)ω)

)

gη(η) = A(η)
1

m
Rwb(η)

⎡
⎣1

0

0

⎤
⎦

A(η) =

⎡
⎢⎢⎢⎣

1 0 0

0
1

VT

0

0 0
1

VTcβ

⎤
⎥⎥⎥⎦. (68)

Furthermore, the body-frame angular acceleration is

ω̇ = fω(ω) + gωM (69)

where fω and gω include the mass moment of inertia J

fω(ω) = −J−1(ω × (Jω)), gω = J−1. (70)

C. Governing Equations

The kinematic and dynamic equations finally lead to the

following 6-DoF model:

ṙ = v(ξ , η)

ξ̇ = H(ξ)ω

η̇ = fη(ξ , η, ω) + gη(η)FT

ω̇ = fω(ω) + gωM. (71)

We simplify the 6-DoF model to the 3-D Dubins model

using the following assumptions.

Assumption 3: The angle of attack, the angle of side slip,

and the crosswind force are zero: α ≡ 0, β ≡ 0, and C(η) ≡ 0.

The dynamics of the angular velocity ω are neglected.

Furthermore, we use the longitudinal acceleration AT = V̇ T

directly instead of the thrust force FT. Then, the dynamics of

β, α, and ω are dropped, leading to the 3-D Dubins model

ṙ = v(ξ , η)

ξ̇ = H(ξ)ω

V̇ T = AT (72)

where η = [
VT 0 0

]�
. By spelling out all terms, this

gives (1). Furthermore, since α ≡ 0, β ≡ 0, and C(η) ≡ 0,

we obtain Rwb(η) = Rbw(η) = I, and the second component

of the body-axes force equations (67), β̇ ≡ 0, simplifies to (2).

Moreover, the third component of (67), α̇ ≡ 0, gives the

required lift force, L = m(gDcφcθ + VT Q), that could keep

α ≡ 0. This shows that the assumption α ≡ 0 implies a specific

state-dependent lift force. Although this may not be true in

practice, we use this assumption as an approximation to reduce

the full dynamics model to simplified kinematics that represent

the aircraft’s overall motion with less complexity.

APPENDIX B

TRACKING CONTROLLER

Finally, we establish a velocity tracking controller for the

3-D Dubins model (7). Note that this controller is independent

of the proposed RTA, it is used in simulation examples only,

and other tracking controllers could also be considered.

The velocity tracking controller is designed to track a

velocity command vc. For the model-based RTA exam-

ples in Figs. 3–5, this command is a desired velocity,

vc(r, t) = vd(r, t), chosen to track a goal trajectory rg(t)

vd(r, t) = vg(t) + Kr
(
rg(t) − r

)
(73)

with a symmetric positive definite gain Kr, where ṙg = vg .

For the model-free RTA example in Fig. 6, the safe velocity

command vc(r, t) = vs(r, t) from (48) is tracked.

We construct an exponentially stable tracking controller for

the 3-D Dubins model (7) by the help of backstepping with

control Lyapunov functions (CLFs) [53] in two steps.
1) We design a desired acceleration ad that would

lead to exponentially stable velocity tracking, with

corresponding thrust AT, angular velocity Q (related to

pitching), and desired angular velocity Rd (related to

turning). AT and Q are inputs to the 3-D Dubins model,

making the aircraft accelerate and pitch. However, the

aircraft cannot be commanded to turn, as R is not an

input, and the desired acceleration cannot be realized

directly.

2) We use Rd in a CLF—constructed based on

backstepping—to synthesize the remaining input:

the angular velocity P (related to rolling). Commanding

P drives the actual angular velocity R to the desired

value Rd, and a desired turning rate is achieved through

rolling. This ultimately yields exponentially stable

velocity tracking.
With this construction, our goal is to establish exponentially

stable velocity tracking through the CLF candidate

V0(x, t) = 1

2
‖vc(r, t) − v(ζ )‖2 (74)

that needs to be driven to zero. Accordingly, the desired

acceleration is designed as

ad(x, t) = ac(x, t) + 1

2
Kv(vc(r, t) − v(ζ )) (75)

where v̇c = ac and Kv is a symmetric positive definite gain.

The desired acceleration ensures exponential stability such that

the following holds for v̇ = ad(x, t) and for any λ > 0 that is

smaller than or equal to the smallest eigenvalue of Kv:

V̇ 0(x, t) = −1

2
‖vc(r, t) − v(ζ )‖2

Kv
≤ −λV0(x, t). (76)

We convert the desired acceleration ad to the inputs AT, Q,

and the desired angular velocity Rd based on (63)⎡
⎣AT

Q
Rd

⎤
⎦ = Ma(ξ , η)−1ad(x, t). (77)
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The resulting AT and Q can be directly commanded as inputs,

which leads to the actual acceleration

v̇ = ad(x, t) + MR(ξ , η)(R − Rd) (78)

where MR is the last column of Ma in (64). Meanwhile, we can

use Rd to design the remaining input P that does not appear

in the derivative of V0. This means backstepping: taking a step

back from rolling (P) to turning (Rd).

In particular, we use backstepping to construct a CLF [53]

V (x, t) = 1

2
‖vc(r, t) − v(ζ )‖2 + 1

2μ
(R − Rd)

2 (79)

with a scaling constant μ > 0. Here, R and Rd are given

by (2) and (77), respectively, while their dynamics are of the

form

Ṙ = fR(x, t) + gR(x, t)P

Ṙd = fRd
(x, t) + gRd

(x, t)P (80)

where fR , gR , fRd
, and gRd

can be obtained—through lengthy

calculation—by differentiating (2) and (77).

Then, we design the remaining input P by enforcing the

condition of exponential stability using CLF theory [54]

V̇ (x, t, u) + λV (x, t) = aP(x, t) + bP(x, t)P ≤ 0 (81)

where, through substituting (78)–(80), the coefficients become

aP(x, t) = −1

2
‖vc(r, t) − v(ζ )‖2

Kv

+ (vc(r, t) − v(ζ ))�MR(ξ , η)(Rd − R)

+ 1

μ
(Rd − R)

(
fRd

(x, t) − fR(x, t)
)

+ λ

2
‖vc(r, t) − v(ζ )‖2 + λ

2μ
(Rd − R)2

bP(x, t) = 1

μ
(Rd − R)

(
gRd

(x, t) − gR(x, t)
)
. (82)

Here, λ > 0 is chosen such that it is smaller than or equal to

the eigenvalues of Kv as suggested above.

Thus, P can be designed, for example, by the following

CLF quadratic program:
P = argmin

P̂∈R

P̂2

s.t. aP(x, t) + bP(x, t)P̂ ≤ 0 (83)

see (18), which has the explicit solution

P =
⎧⎨
⎩

0, if bP(x, t) = 0
min{0, −aP(x, t)}

bP(x, t)
, if bP(x, t) �= 0

(84)

see (21) and (22). Notice that backstepping ensures that this

optimization problem is feasible, i.e., there exists P that

satisfies (81). Namely, even when R = Rd, which means

that bP(x, t) = 0 and P drops from (81), the inequality

still holds because aP(x, t) ≤ 0 with the above choice of λ
based on (76) and (82). Ultimately, with the backstepping

procedure, (79) and (81) provide exponential stability and also

ensure that (50) and (51) hold for vc(r, t) = vs(r, t).
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