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Constructive Safety-Critical Control:
Synthesizing Control Barrier Functions for
Partially Feedback Linearizable Systems

Max H. Cohen

Abstract—Certifying the safety of nonlinear systems,
through the lens of set invariance and control barrier
functions (CBFs), offers a powerful method for controller
synthesis, provided a CBF can be constructed. This letter
draws connections between partial feedback linearization
and CBF synthesis. We illustrate that when a control affine
system is input-output linearizable with respect to a smooth
output function, then, under mild regularity conditions, one
may extend any safety constraint defined on the output
to a CBF for the full-order dynamics. These more general
results are specialized to robotic systems where the con-
ditions required to synthesize CBFs simplify. The CBFs
constructed from our approach are applied and verified in
simulation and hardware experiments on a quadrotor.

Index Terms—Constrained control, control barrier
functions, feedback linearization, Lyapunov methods.

|. INTRODUCTION

AFETY has emerged as a fundamental requirement for
modern control systems. With safety framed as set invari-
ance, control barrier functions (CBFs) have become a popular
tool for designing controllers that endow systems with safety
guarantees [1]. Given a CBF, one may construct a controller
enforcing set invariance using convex optimization [1] or
smooth universal formulas [2], [3]. Synthesizing a CBF-based
controller, however, first requires constructing a valid CBF
— a task often cited as the greatest challenge of CBF-based
approaches. For low-dimensional systems, computational tech-
niques such as sum-of-squares programming [4], [5] and
Hamilton-Jacobi reachability [6], [7] often provide a viable
pathway to address such challenges. Alternatively, one may
construct hand-crafted CBFs for specific systems [8]. Yet each
of these approaches tends to scale poorly with the dimension
and complexity of the system.
A popular approach to constructing CBFs for complex high-
dimensional systems is via backstepping [9], [10], [11]. This
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approach effectively extends a safety constraint that is not
controlled invariant to a CBF defining a control invariant set
(the zero superlevel set) contained within the original safety
constraint. This is accomplished by imposing a particular
layered structure on the dynamics, defining smooth virtual
CBF-based controllers [2] at each layer, and then “backstep-
ping” through such controllers to compute a CBF for the
overall system. The main limitations of this approach are the
structural requirements of the dynamics and the controllability
assumptions imposed on each layer, which precludes the direct
application of such ideas to underactuated systems.

Similar to backstepping, high order CBFs (HOCBFs) [12],
[13], [14], [15] extend a safety constraint to a barrier-like
function that may be used to enforce forward invariance of
a safe set contained within the constraint set. In contrast to
backstepping, HOCBFs place no structural requirements on
the dynamics other than that they are control affine. Inspired
by input-output linearization [16], such approaches treat the
safety constraint as an output, differentiate this output until
the input appears, and then impose CBF-like conditions on
the highest derivative of the output. However, by treating the
safety constraint as an output, these approaches implicitly
require such a constraint to have a uniform relative degree on
the safe set, which is restrictive in the context of CBFs [17]. As
noted in [10], [15], [18], even simple safety constraints may
not have a uniform relative degree and, in such a situation,
the functions constructed following the approaches in [12],
[13], [14], [15] may not meet the criteria of a HOCBF. Similar
limitations arise when using such a methodology to construct
CBFs, rather than HOCBFs, from a high relative degree safety
constraint [19].

In this letter, we demonstrate how techniques from feedback
linearization [16] facilitate the construction of CBFs, with an
emphasis on applications to underactuated robotic systems.
Instead of treating safety constraints directly as outputs, as
in prior works [11], [12], [13], [14], [19], we define the
states relevant to the safety constraint as outputs. Leveraging
the structural properties of the resulting output dynamics,
we employ methods from [9], [10] to construct CBFs for
the full-order dynamics, thereby relaxing the restrictive uni-
form relative degree requirements found in existing high
relative degree CBF frameworks. Specifically, we establish that
when a nonlinear control system is input-output linearizable
with respect to a smooth output function, then, under mild
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Fig. 1. We present a methodology to systematically generate
control barrier functions for high-dimensional underactuated systems
from inequality constraints on the system’s output. A video of
an experimental demonstration of our approach can be found at
https://youtu.be/GYvQjcojLIQ.

regularity conditions, one may extend any smooth inequality
constraint on the output to a CBF for the full-order system
(Section IIT). We illustrate the utility of these results by
specializing them to robotic systems where the conditions
required to construct CBFs simplify (Section IV). The benefits
of our approach are highlighted through both simulations and
hardware demonstrations (Section V).

To summarize, the contributions of this letter are twofold:

o We present a framework for constructing CBFs for high-
dimensional and underactuated systems inspired by the
methods developed in [9]. In contrast to [9], we establish
the existence of a smooth controller required for the initial
step in the CBF backstepping procedure. Furthermore,
we formally characterize the properties required of the
system output, safety constraint, and candidate CBF to
ensure the applicability of the techniques described in [9]
to general control affine systems.

o We present examples illustrating the design of CBFs
for various underactuated robotic systems and apply the
developed theory on a quadrotor, which constitutes the
first demonstration of CBF backstepping on hardware.

Notation: Define 9S and Int(S) as the boundary and interior

of a set S. A continuous function « : R — R is said to be an
extended class Ko function (o € K£F)) if i) «(0) = 0, ii) «
is strictly increasing, iii) lim,— +o0 @(r) = F00. For smooth
functions y: R" — R™ and g : R" — R™™ we define
Lgy(x) == g—)’;(x)g(x) as the Lie derivative of y along g with
higher order Lie derivatives defined as in [16].

Il. PRELIMINARIES AND PROBLEM FORMULATION

Consider a nonlinear control affine system:
x = f(x) + gx)u, (1)

with state x € X € R” and control input u € R"”, where
f: X —> R'and g : X — R are smooth (differentiable
as many times as necessary) on the open and connected set
X. By taking u = k(x) with k : X — R™ locally Lipschitz
we obtain the closed-loop system x = f(x) + g(x)k(x), which,
for each initial condition xo € X, produces a continuously
differentiable trajectory x : /(x9) — A& defined on a maximal

interval of existence /(xg) € Rx>o. A set S C X is said to
be forward invariant for the closed-loop system if, for each
Xo € S, the resulting trajectory satisfies x(f) € S for all 7 €
I(xgp). A popular approach to designing controllers enforcing
forward invariance is through CBFs.

Definition 1 [1]: A continuously differentiable function
h: X — R defining a set S C X as:

S={xeX:hkx >0} 2)

is said to be a CBF for (1) on S if there exists a € K¢, and
an open set & C X satisfying S C £ such that for all x € &:

sup A(x,u) = sup {th(x) +Lgh(x)u} > —a(h(x)). (3)
ueR™ ucR™
When £ is a CBF, we say that S as in (2) is a safe set.

The existence of a CBF implies the existence of a locally
Lipschitz feedback controller k : £ — R™ enforcing the
forward invariance of S [1], [17]. One example of such a
controller is the optimization-based safety filter:

k(x) = argmin  1[lu —kq(x)|*
uelRm

st Leh(x) + Lgh(x)u > —a(h(x)), “4)

where kg : X — R™ is a desired controller. The main objective
of this letter is to systematically construct CBFs using methods
from feedback linearization [16]. Central to our approach is
the notion of relative degree.

Definition 2 [16]: A smooth function y : X — R” is said
to have relative degree' y € N with respect to (1) on an open
set £ C X if for all x € £:

i) LeLiy(x) =0, Vie{0,...,y -2},

i) rank(LgLfV “y(x)) — . (5)
Let y have relative degree y on £ C X and define:
N y(x)
Cl : € RPY, (6)
-1
Ny L{ ™ y(x)

noting that the output dynamics are given by:

i]] Uk

= " |= S (7
My—1 L; y(X)1
y LIy(x) + LgL{ " y(x)u

Given a smooth output y : X — R” and a smooth inequality
constraint ¥ : R” — R on y defining a constraint set:

C={xed:yFx) =0} ®)

that is not necessarily controlled invariant, our goal is to
construct a CBF and safe set S C C so that enforcing forward
invariance of S leads to satisfaction of the output constraint.

TA vector-valued output may have different relative degrees for each
of its components. For simplicity of notation, we focus on outputs whose
components share the same relative degree.
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I1l. CBFs FOR FEEDBACK LINEARIZABLE SYSTEMS

In this section, we establish that when (1) is partially
feedback linearizable with respect to a smooth output function
then, under mild regularity conditions, one may construct a
CBF and corresponding safe set whose forward invariance
implies satisfaction of the output constraint. The following
lemma is the starting point of our approach and outlines the
regularity conditions that i must satisfy.

Lemma 1: Let ¥ : R — R be a smooth function defining
aset C; C R? as:

Ci={yeR :y(y =0} )
Let D; D C; be an open set and suppose that:
d
a—‘i(y) £0, VyeD\IntC). (10)

Then, for any smooth o € K¢, there exists a smooth
ki : D1 — RP such that for all y € Dy:
oy
a_y(Y)kl(Y) > —a(P(y)). (11)

For any o > 0, one example of such a function is given by:

IV N L
W(”H )5y "

ki) = ¢(aw o),

$(a.b) {0 p— (12)
a,0) =\ _giSa2+ob?
+2—b+”b¢g

Proof: Define a(y) = a(¥(y), b(y) = |3 ]? and
W = {(ab) € RZ :a > 0 or b > 0}. Using a
similar argument to those in [2], [10], [20], one can show
that (a, b) — ¢(a, b) from (12) is smooth on W. It follows
from (10) that, fory € Dy, b(y) = 0 only if y € Int(C;), which
implies that, for y € Dy, b(y) = 0 only if a(y) > 0. Hence,
for each y € Dy, we have (a(y), b(y)) € W. Since (a, b)
¢(a, b) is smooth on W, y +— a(y), b(y) are smooth on Dy,
and (a(y), b(y)) € W for each y € Dy, y — ¢ (a(y), b(y)) is
smooth on Di, implying that y — k;(y) from (12) is smooth
on Dj. To show (11) we compute:

0 0
a—w(ym(y) — pa@). b | Ly
y ay

0 =0
= —a a 2 o 2
¥)++/ éy) +ob(y) b(y) 7é 0.

Recall from (10) that when b(y) = 0 and y € D, we have
a(y) > 0, implying that 0 > —a(y). Moreover, when b(y) #
0, one can verify that S 2R aEY)szb(y)z > —a(y) for any

o > 0. Using these observations to lower bound (13) implies
that (11) holds, as desired. ]

The conditions in Lemma 1 are equivalent to the statement
that ¥ is a CBF for a single integrator. The particular form of
¥ will heavily depend on the specific problem under consider-
ation (examples are provided in Section V) and Lemma | does
not state how to choose ¥ for a given engineering problem.
Rather, Lemma 1 provides verifiable conditions on i under
which one may construct a CBF /# whose zero superlevel set is
contained within that of v using the method developed herein.
Importantly, these conditions do not require x — V¥ (y(x)) to
have a uniform relative degree on C, which would be overly

restrictive. Indeed, the gradient of relevant safety constraints
may vanish at points on Int(C) [10], [15], [18]. Instead, we
will require the output y to have a relative degree, which is
less restrictive.” To this end, let y have relative degree y € N
on £ C X and consider the output dynamics (7) of system (1).
The output dynamics in (7) are in strict feedback form and are
thus amenable to backstepping [9], [10]. We will thus leverage
backstepping for (7) to construct a CBF, which may be used
to enforce satisfaction of the original output constraint on (1).
Following [9], we propose the CBF candidate:

y—1
hx) = YY) — Y - 1Ly —ki(g;0)117
i=1
y—1
=y(m) =Y sl — k(&)1 (14)
i=1
where ¢ defines C; C RP asin (9), u; > O0forie{l,...,y—

1L, ¢ =0 ... 1) € R, k; : Dy — R is any smooth
function satisfying (11) for all n; € D; D C; for a smooth
globally Lipschitz o € K¢, and:

. 0 A
la62) = i (6) + i () = 5 = KaCn)
Kiv1(Liy1) = ki(§i+1) — wi(m —ki—1(¢,_))) (15)

)‘.
=5 (i1 —ki6)), Vie 2,y =2},
where A; > 0 for each i € {1, ...,y —2}. The CBF candidate
in (14) defines a set S as in (2), which satisfies S C C.
Before proceeding, it will be useful to define D = {x €
X : y(x) € Dy}, where D; C R? is defined as in Lemma 1.
We now illustrate that when y has a relative degree on S and
Y satisfies (10), then (14) is a CBF for (1).

Theorem 1: Consider system (1) with smooth output
y : X — RP, the output constraint ¥ : R — R defining
a constraint set C C X as in (8), and the CBF candidate
h:X — R from (14) defining a set S C C as in (2). Provided
that ¢ satisfies (10) on a set D; D Cy, with C; C R” as in (9),
y has relative degree y on a set £ D S satisfying £ C D, and
Ai > L€y foreach i € {1,...,y — 2}, where ¢, is a Lipschitz
constant of o € K¢, from (11), then A is a CBF for (1) on
S. Moreover, any locally Lipschitz controller k : £ — R™
that renders S forward invariant for the closed-loop system (1)
ensures that x(r) € C for all ¢ € I(xp).

Proof: The proof follows a similar argument to that of
[9, Th. 5]. Since y has relative degree y on &, the matrix
LgL}’ _ly(x) € RPX™ has rank p and is thus right pseudo-
invertible for each x € £. Now, note that since S C £ C D
and n; — ki () satisfies (11) for all n; € Dy, x — ki (y(x))
satisfies (11) for all x € £ C D, where k; exists since
satisfies the conditions of Lemma 1. It then follows that since
Ai > Ly foreachi e {1,...,y —2}, each k; satisfies the same
conditions as those in the proof of [9, Th. 5], which implies
that the CBF candidate /4 in (14) satisfies the same conditions
as those in [9, Sec. IV]. Hence, by following the same steps

2That is, y may have a relative degree even when y does not. A simple
example illustrating this point is the double integrator with state x = (x1, xp) €
R2, output y(x) = xp, and constraint ¢ (y(x)) = 1 — x%. This phenomenon is
also in Section V and may arise when C; from (9) is a compact set (cf. [10,
Footnote 4]).
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as in the proof of [9, Th. 5], one may show that the smooth
feedback controller:

k(x) = Ll 'y [kyl ((x)) — LY y(x)
1 (1130 = Ky (8 2() )

Aoy
2= (00 — ky_l(cyux)))},

where (-)Jr denotes the right psuedo-inverse and A, _1 > {4,
satisfies iz(x, k(x)) > —a(h(x)) for all x € &£, where « is
from (11). Thus, for all x € £, we have:
sup A(x, ) > h(x, k(x)) > —a(h(x)),
ueRm

which implies that # is a CBF for (1) on & C &. Since
S C C any locally Lipschitz controller enforcing the forward
invariance of S ensures that x(7) € C for all 1 € I(xg). [ |

Theorem 1 takes in a CBF 1 for a simple system and, under
relative degree conditions on y, automatically constructs a CBF
h for a more complex system — an approach aligned with build-
ing CBFs based on reduced-order models [10]. Ultimately,
Theorem 1 highlights the interplay between the output y, the
safety constraint v, the system’s actuation capabilities, and
the ability to construct CBFs. By ensuring that y has a relative
degree on £ O S, (1) may be partially transformed into a
strict feedback system (7) on &, enabling the application of
backstepping [9] to construct a CBF. Theorem 1 characterizes
the requirements on ¢, S, and y for such techniques to
apply to general control affine systems (1), complementing
the ideas introduced in [9], which focused on systems already
in strict feedback form. While using outputs to transform a
system into strict feedback form is well-established in the
backstepping literature [21], and has been exploited in the
context of CBFs [11] by viewing ¥ as an output, Theorem 1
is, to our knowledge, the first to make the explicit connection
between more general outputs and the construction of CBFs.
As demonstrated in Section V, this connection has important
practical implications as it enables the application of such
ideas to a broader class of systems than those originally
considered in [9], [10]. Moreover, by not treating i as an
output — as in works such as [11], [12], [13], [14], [15], [19]
— this construction overcomes the restrictive uniform relative
degree requirements on i present in most high relative degree
CBF techniques.

IV. CBFs FOR UNDERACTUATED ROBOTIC SYSTEMS

We now specialize the previous results to robotic systems
with generalized coordinates q € @ € R” and dynamics:

D(@)q + C(q. 9)q + G(q) = B(q)u. (16)

Here, q € R" is the generalized velocity, D(q) € R"*" denotes
the positive definite and symmetric inertia matrix, C(q, q) €
R™" denotes the Coriolis matrix, G(q) € R”" represents
gravitational and other potential effects, B(q) € R"*" is the
actuation matrix, and u € R is the control input. Note that
by defining x := (q, q) € X = Q x R" we may represent (16)
as in (1) with dynamics:

e
-D(q)"'[C(q. ¥4+ G@]]" [D@ 'B@]
f(x) g(x)

Now, consider a twice continuously differentiable output
y : @ — RP”, which is used to define an output constraint
¥ : R? — R and associated output constraint set:

C={qeQ:vy(y@) =0} (18)

defined in the configuration space Q of (16). Differentiating
the output y twice along the vector fields in (17) leads to
y= L%y(q, q + g—(y](q)D(q)_lB(q)u. Importantly, we see that
the p x m “decoupling” matrix:

dy -

AW = Lelay(@) = 5 @D(@) 'B(a), (19)
depends only on the configuration, implying that the relative
degree depends only on the configuration. Note that when
B(q) = B € R™"™ is constant, m < n, and rank(B) = m, the
output y(q) = BT q always has relative degree 2 as one can
check that rank(A(q)) = m for all q € Q. When y has relative

degree 2, the CBF candidate from (14) simplifies to:
2
h(xX) = ¥ (@) — 5 : (20)

% @i ky (y(q))
3q(q)q— v (y(q

where © > 0 and ky : Dy — R’ is any continuously
differentiable function satisfying (11) for all y(q) € D; D C;.
The following corollary illustrates that (20) is a CBF for (17)
provided v satisfies (10) and (19) has full row rank on a set
containing C.

Corollary 1: Consider system (17) with twice continuously
differentiable output y : Q@ — RP”, the configuration constraint
¥ : R? — R defining a set C C Q as in (18), and the CBF
candidate & : X — R as in (20) defining a set S C C x R"
as in (2). Provided that y satisfies (10) on a set D; D (i,
with C; C R” as in (9), rank(A(q)) = p forallq € & D C
with £ := & x R" C D, then h is a CBF for (17). Moreover,
any locally Lipschitz controller k : & — R that renders S
forward invariant for the closed-loop system (17) ensures that
q(t) € C for all t € I(xq).

Proof: As rank(A(q)) = p for all q € &, y has relative
degree 2 on £ and since S C C x R" and C C &;, we have
S C £&. Finally, since £ € D the conditions of Theorem 1
hold, implying that 4 as in (20) is a CBF for (17) on S. ®

Focusing on robotic systems (16), rather than general
control affine systems (1), offers various benefits due to the
structural properties of (16). In particular, the relative degree
of y depends only on q, implying that the relative degree can
be verified over a lower-dimensional space. This often allows
one to restrict the constraint set so that y has relative degree 2
on C by construction — a procedure exemplified in Section V.
Moreover, when y has relative degree 2, the resulting CBF (20)
may be defined with a general o € K¢, rather than a smooth
globally Lipschitz one as in (14). This formulation also does
not require defining the A; parameters in (14).

V. SIMULATIONS AND HARDWARE EXPERIMENTS
Cartpole. We illustrate® the ideas presented herein using the

cartpole. The configuration q = (x,0) € R x S! = Q consists

3Code and further details of our implementation available at

https://github.com/maxhcohen/ReducedOrderModel CBFs.jl.
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Fig. 2. Safe sets and simulation results of the pendulum on a cart with a CBF placed on the cart’s position (left) and the pendulum’s angle (right). In
each plot the dashed black lines denote the boundary of the constraint set and the gray regions denote the states where the constraint is violated.
In the first and third plots, the green regions correspond to S and the purple regionto C \ S.

of the cart’s position x € R and the angle of a pendulum
mounted on the cart 6 € S! with dynamics:

D(q)=[’"c+’”” ’””l“’se],c(q):[ 0 }

mylcost  myl? mpglsin 6
: 0 —mylfsind 1
C(q.4) = [0 oy }B(q) = [0]

where mc,m, € R.o denote the mass of the cart and
pendulum, respectively, / € R.( denotes the length of the
pendulum, and ¢ € R.( denotes the acceleration due to
gravity. We now demonstrate how the choice of output affects
the ability to construct CBFs. Let y(q) = x so that our safety
constraint depends only on the posmon of the cart. In this case,

the decoupling matrix is A(qQ) = zHay etD( L which has rank 1 for
all q € Q implying that any function of the form (20) with
y(q) = x and ¢ satisfying (10) is a CBF for this system. On
the other hand, when y(q) = 6, we have A(q) = %DC((;S)G,
which has rank 1 so long as cos 6§ # 0. Hence, any function of
the form (20) with ¢ satisfying (10) is a CBF for this system
provided that the constraint set C does not contain points such
that cos® = 0. Using these observations, we construct two
CBFs for the two different outputs using the configuration
constraints ¥ (y()) = Xmax—x and ¥ (y(@)) = 62, — (6a—6)%,
respectively, which require the position of the cart to remain
less than xmax and requires the angle of the pendulum to satisfy
|60 — 04| < Omax With 6, € S! a desired angle of the pendulum.
The gradients of each constraint are given by %(x) = —1 and

%(9) = —2(63 —0), respectively, which satisfy (10) for D; =
R. These constraints are used to construct ky satisfying (11)
using (12) and then used to construct CBFs as in (20) whose
corresponding safe sets are illustrated in Fig. 2. These CBFs
are subsequently used to construct controllers as in (4) that
filter a nominal controller that attempts to drive the cart to
a position beyond xpax and a nominal controller that applies
no input, respectively. The results of applying such controllers
are illustrated in Fig. 2. As guaranteed by Corollary 1, such a
controller ensures forward invariance of S and satisfaction of
each constraint.

Planar Quadrotor: We now apply our approach to a planar
quadrotor with configuration q = (x,z,0) € Q = R2 x
S! consisting of the horizontal x and vertical z position and
the orientation 6 with respect to the horizontal plane. The
dynamics are in the form of (16) with [8]:

m 0 0] [X 0 sind 0 F
0O mOf|Z|+]|mg|=|cos® O [M]’
0017]||6 0 0 1
—— S — u
D(q) q G(q) B(q)

where C(q, q) = 0, m, I € R.( are the mass and inertia, g €
R. ¢ is the acceleration due to gravity, and /' € R and M € R
are the thrust and moment applied by the propellers. Our
objective is to design a controller that keeps the quadrotor’s
height above a specified value, which is captured by the output
y(q) = z and the safety constraint ¥ (y(q)) = z — Zmin. 1O
check if this constraint leads to a CBF via Corollary 1, we
first compute %—w(z) = 1 to find that our safety constraint
Y satisfies (10) for D; = R. We then compute (19) to find
that A(q) = % has rank 1 provided cos6 # 0. However,
since the configuration constraint places no limits on 6, such
points are contained in C and, consequently, this ¥ does
not lead to a valid CBF. That A drops rank on C indicates
that these particular choices of y and i are not compatible
with the system’s actuation capabilities, and must be refined
so that A has full rank on C. To this end, we modify our

output function to y(q) = (z,0) and our constraint function
(2—2¢)

2
to y(y(q)) =1— rr— 992—2
in the (z, 0) space with center (zc, 0), width 2(z; — Zmin), and
height 26p,,x. This constraint ensures that z > zy;, and 6] <
Omax whenever ¥ (y(q)) > 0. To check if ¢ yields a CBF, we

compute (z, 0) = [ —2G Z‘) — 201, which satisfies (10) for

D) = ]Rz, and A(q) = dlag(consle, —7), where diag(-) creates
a diagonal matrix, which has rank 2 provided cosf # 0. By
taking Omax < Z we have the existence of a set £ D C such
that rank(A(q)) = 2 for all q € &, implying that this choice
of y and ¢ leads to a CBF by Corollary 1. Constructing a
CBF using this constraint in (20), where ky is from (12),
and applying the resulting controller (4) to the system, where
kq attempts to stabilize the system to x = 0, leads to the
results in Fig. 3 and Fig. 4, where the quadrotor falls from
its initial state to a height of zpyj, and maintains its height
there for all time. The process outlined above emphasizes
that designing a CBF requires carefully selecting the output
y and constraint ¥ to ensure compatibility with the system’s
actuation capabilities. Importantly, the results in Sections III
and IV guide this selection by providing verifiable conditions
on y and v, which enables the automatic construction of a
CBF when satisfied.

Hardware Demonstration. We now extend the preceding
example to a 3D quadrotor and illustrate the efficacy of our
approach on hardware. The hardware platform is described
in [22] and is modeled as a control affine system (1) with state
X = (p,q,v) € R? x SO(3) x R? representing the position
p. orientation q (represented as a quaternion), and velocity
v, and control input u = (w,7) € s0(3) x R, where @ is
the angular rate and 7 is the thrust. A full expression of the
dynamics can be found in [22]. Our control objective is to

, which defines an ellipse
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Fig. 3. Simulations with a CBF ensuring that z > z,;, where qg and q¢
denote the initial and final position of the quadrotor.

Fig. 4. Simulation results showing the evolution of the quadrotor’s
height (top left), orientation (top right), the safety constraint and CBF
(bottom left), and control inputs (bottom right).

Fig. 5. Experimental results (cf. Fig. 1) illustrating the evolution of the
quadrotor’s height (blue) and CBF (red).

keep the quadrotor’s height above zy,in, where p = (x, y, z) and
z denotes the quadrotor’s height. To this end, we choose our
()utput4 as y(x) = (z, qx, gy), where g, and g, are components
of the quaternion such that q = gy, +qyi+q,j+¢q-k. Given this
output, we define ¥ (y(x)) = z — Zmin — A(2¢> + 2¢7) where
A > 0. This constraint ensures that ¥ (y(x)) > 0 — z >
Zmin and requires the quadrotor’s orientation to remain level
when z = zpin. Leveraging the constructions in Section III,
this leads to the CBF candidate:

h(X) = ¥ (Y(X) — 5 | Ley(x) — ki (Y1,

where k; : R? — R3 is defined as in (12). This CBF is used
to construct a safety filter as in (4), where kg corresponds to
commands given via joystick that lift the quadrotor up before
lowering it to the ground. Applying this safety filter to the

4For the model in [22], the first component of y has relative degree 2
whereas the second and third have relative degree 1. The theory developed
in Section III can be modified to account for this by transforming the output
dynamics into a mixed relative degree cascaded system (cf. [9], [10]), but a
formal presentation of such results is omitted here in the interest of space.

system produces the results in Fig. 1 and Fig. 5, where z
remains above Zmin and & remains positive for all time.

VI. CONCLUSION

We presented a framework for synthesizing CBFs using
ideas from feedback linearization, which were demonstrated
both numerically and experimentally on underactuated robotic
systems. Future research directions include characterizing the
zero dynamics under CBF-based controllers.
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