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ABSTRACT While control barrier functions provide a powerful tool to endow controllers with formal safety
guarantees, robust control barrier functions (RCBF) can be used to extend these guarantees for systems with
model inaccuracies. This paper presents a generalized RCBF framework that unifies and extends existing
notions of RCBFs for a broad class of model uncertainties. Main results are conditions for robust safety
through generalized RCBFs. We apply these generalized principles for more specific design examples: a
worst-case type design, an estimation-based design, and a tunable version of the latter. These examples are
demonstrated to perform increasingly closer to an oracle design with ideal model information. Theoretical
contributions are demonstrated on a practical example of a pendulum with unknown periodic excitation.
Using numerical simulations, a comparison among design examples are carried out based on a performance
metric depicting the increased likeness to the oracle design.

INDEX TERMS Control barrier function, model uncertainty, robust safety, safe control, safety filter.

I. INTRODUCTION
Safety is one of the most important requirements when design-
ing an autonomous system. Motivated to find control inputs
with formal safety certification, safety-critical controllers can
be designed using methods such as model predictive con-
trol [1], reference governor [2], or Hamilton-Jacobi-based
reachability [3]. Relying on a safety verification tool called
barrier certificates [4], control barrier functions (CBFs) pro-
vide one such framework, and this has been widely adopted
in the recent literature [5], [6]. In simple terms, safety (or
set invariance) is defined by staying in safe states corre-
sponding to the positive values of a scalar-valued function h.
The CBF framework provides a sufficient condition for safe
control in the form of a lower bound on the time deriva-
tive ḣ. One of the widely utilized applications of CBFs has
been a control design paradigm called safety filters [6], [7],
where the deviation from a given controller is penalized in a
quadratic program (QP) while subject to a CBF-based safety
constraint.

Proven to be a powerful tool in synthesizing safe con-
trollers, the CBF literature has expanded towards various
directions, including higher order derivatives to increase feasi-
bility [8], [9], sampled-time systems [10], [11], [12], different
time-explicit safety definitions [13], [14], and more general
temporal logic specifications [15]. One particular research
direction that has gathered much interest is robustness against
unmodeled dynamics. CBF-based safety guarantees may de-
grade if there is a mismatch between the real system and
the model used to represent it. This mismatch may emerge
from unknown external disturbances [16] or complex internal
dynamics omitted to facilitate the implementation.

Two main approaches have arisen for robustness against
deterministic uncertainties: input-to-state safety (ISSf) and ro-
bust control barrier functions (RCBFs). On one hand, the ISSf
framework (which is inspired from input-to-state stability for
control Lyapunov functions [17]) can be used to obtain an
arbitrarily small (graceful) degradation of safety guarantees
in the presence of uncertainty [16], [18], [19], [20]. On the
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other hand, motivated to obtain zero safety degradation, the
RCBF framework investigates conditions to sufficiently ensure
the CBF-based safety condition for systems with uncertainty
under the worst possible case [21].

This paper advances the theoretical and practical un-
derstanding of RCBFs by generalizing their framework to
accommodate a wide spectrum of uncertainties. In particular,
we present an overview of the sufficient conditions for feasible
robust safety-critical control against different forms of uncer-
tainties. Then, we study solutions for specific problem setups
with increasing likeness to an oracle controller. Robust safety
filters designed based on these principles are implemented on
a practical example, and we illustrate the theoretical findings
using simulations.

A. LITERATURE ON RCBF
The study of robust optimization in the presence of uncer-
tainty spans back to earlier studies [22], [23], even in the
context of barrier-Lyapunov functions [24]. One of the key
contributions for the CBF-based controllers was given in [21],
where the CBF-based safety constraint was modified, hence
the name robust CBF (RCBF). Providing conditions for suf-
ficiently compensating the uncertainty under the worst-case
scenario, the RCBF framework proves to be an effective
method to guarantee robust safety. The RCBF framework
received attention so much so the definition has expanded
rapidly to other types of uncertainties ever since. For example,
uncertainties with state dependence were addressed in the
form of parametric uncertainties [25], [26], [27], or in a more
general form [13], [28], [29]. The more challenging case of
uncertainties in how control inputs are related to the state
dynamics were considered in works [30], [31], [32], [33].

The framework was also adopted by less conservative meth-
ods relying on estimators with deterministic or probabilistic
residual estimation errors. RCBF definitions in these works
took different forms to incorporate the estimator and the er-
ror compensation. For example, adaptive control techniques
were adopted for parametric uncertainties [25], [26], [27],
[34], where limitations in the parameter space were used in
the RCBF definition. Various disturbance and state observer
approaches were implemented for online uncertainty estima-
tion [29], [35], [36], [37], [38], [39], [40], [41], where bounds
on the Euclidean norm of the uncertainty, its derivative or
its underlying dynamics were incorporated into the RCBF
definition, and various forms of Lipschitz constants were uti-
lized. Learning-based and data-driven extensions of the RCBF
framework typically utilize Lipschitz constants or bounded
Jacobians regarding the uncertainty [42], [43], [44]. When un-
known dynamics are estimated with probabilistic confidence
bounds, adding these terms in the RCBF definition provides
safety guarantees with high probability [45], [46], [47], [48],
[49], [50].

Robustness requirements for deploying safety-critical con-
trollers with specified sampling interval were also addressed
within the RCBF framework. In this context, the definition of
the RCBF incorporates the Lipschitz constants of the system

and constraint functions, along with the bounds of the control
space [10], [11], [51]. Other types of imperfections addressed
using the RCBF framework are robustness against measure-
ment errors [52] and unmodeled input dynamics [53], which
utilize Lipschitz constant and integral quadratic constraints,
respectively. The RCBF framework was also extended to
higher order CBF formulations [54], [55].

B. CONTRIBUTIONS
The aforementioned boom in the robust safety-critical control
literature inevitably led to a fractured landscape of different
RCBF definitions that rely on various assumptions on the
system, safe set and uncertainty. Motivated by the lack of
such a study, we present an overview of the general robust
safety-critical control design principles within the scope of
the CBF framework as the first contribution of the paper. In
particular, we elevate the RCBF formulation by considering a
general form of uncertainty. This generalization not only uni-
fies existing approaches but also establishes a foundation for
deriving simplified verification conditions and implementable
solutions for robust safety-critical controllers.

The second contribution of the paper demonstrates the util-
ity of the general framework by developing a robust safety
filter for a previously unaddressed type of uncertainty. Specif-
ically, we propose a novel sufficient condition to guarantee
feasibility and robust safety and to enable the derivation
of closed-form controllers in certain scenarios. Additionally,
leveraging the generalized framework, we introduce a tunable
controller design that incorporates disturbance observers, ex-
tending the state of the art by reducing conservativeness. The
tunability concept, originally conceived for the ISSf frame-
work, is adapted here to improve flexibility and performance,
demonstrating its broad applicability across different RCBF
methods.

Finally, the theoretical advancements are validated through
application to a physics-based example involving a pendu-
lum with unknown periodic excitation. Numerical simulations
showcase the efficacy of the proposed methods, compare their
performance metrics to an idealized oracle design and high-
light the significant reduction in conservativeness achieved by
the proposed controllers. These results underscore the poten-
tial of the generalized RCBF framework to unify, extend, and
enhance existing approaches of robust safety-critical control.

C. ORGANIZATION
The paper is organized as follows. Section II provides the
theoretical foundation, introducing the general principles of
CBFs and extending these concepts to RCBFs to address
system uncertainties. Section III presents the detailed design
steps of a robust safety filter for a specific set of uncertainty
assumptions. In Section IV we extend these principles for a
less conservative problem setup with a disturbance observer.
Section V introduces a detailed discussion on the performance
of previously proposed controllers on a practical application
platform. Section VI concludes the paper with a summary and
future work.
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II. GENERALIZED RCBF FRAMEWORK
A continuous function α : R → R is called extended class
K∞ function (denoted as α ∈ Ke∞) if α(0) = 0, it is
strictly increasing, and limr→±∞ α(r) = ±∞. The term
∇h : Rn → R

n denotes the gradient vector of a function
h : Rn → R. Also, ‖ · ‖ denotes the 2-norm.

A. SAFETY AND CONTROL BARRIER FUNCTIONS
Consider a nonlinear system affine in control:

ẋ = f (x, t ) + g(x, t ) u, x(t0) = x0 ∈ R
n, (1)

where terms x ∈ R
n, u ∈ U ⊆ R

m and t ∈ T � [t0,∞) de-
note the state, input and time from a given initial time
t0 ∈ R, respectively, while functions f : Rn × T → R

n and
g : Rn × T → R

n×m describe dynamics. Substituting a feed-
back controller k : Rn × T → R

m into the input u = k(x, t )
leads to the closed loop system:

ẋ = f (x, t ) + g(x, t ) k(x, t ). (2)

If we can find an open set X ⊂ R
n on which functions f , g

and k are locally Lipschitz continuous in x and piece-wise
continuous in t for all t ∈ T, then there exists a time interval
I (x0, t0) ⊆ T for each initial condition x0 ∈ X such that (2)
has a unique solution x(t ) for all t ∈ I (x0, t0) [56]. Throughout
the paper we assume that the solution is forward complete,
that is, I (x0, t0) = T.

Our goal is to obtain a formal guarantee that, initiated from
a set, the solution never leaves the set.

Definition 1 (Safety, [6]): The closed loop system (2) is
safe w.r.t. a set S ⊂ X ⊂ R

n if for all x0 ∈ S we have that
x(t ) ∈ S for all t ≥ t0.

In particular, we consider set S defined as the 0-superlevel
set of a continuously differentiable function h : X → R:

S = {
x ∈ X ⊂ R

n | h(x) ≥ 0
}
, (3)

∂S = {
x ∈ X ⊂ R

n | h(x) = 0
}
, (4)

Int(S ) = {
x ∈ X ⊂ R

n | h(x) > 0
}
. (5)

Here, ∂S and Int(S ) denote the boundary and the interior of
S, respectively.

Definition 2 (Regular value): A number p ∈ R is called a
regular value of the function h : X → R if for each xp ∈ X

satisfying h(xp) = p we have ∇h(xp) 
= 0.
If 0 is a regular value of h, then a non-zero gradient exists

for h everywhere on ∂S. Then a vector y ∈ R
n is an ele-

ment of the tangent cone of S at a point x ∈ ∂S if we have
∇h(x)�y ≥ 0 [57]. Nagumo’s theorem provide a condition for
safety by utilizing tangent cones [58], [59]:

Theorem 1 (Nagumo’s theorem, [58]): Let S be the 0-
superlevel set defined as in (3) with a continuously differen-
tiable function h : X → R, and let 0 be a regular value of h.
The closed loop system (2) is safe w.r.t. S if and only if:

∇h(x)� ( f (x, t ) + g(x, t )k(x, t )) ≥ 0, ∀(x, t ) ∈ (∂S × T) .

(6)

Remark 1: A proof of Nagumo’s theorem is in [57, §4.2].
While this proof is constructed for autonomous systems, it can
be extended to nonautonomous ones by introducing the time
variable as a fictitious state; see [57, §4.2.2] for details.

Our overarching goal is to design safety-critical controllers
k(x, t ) such that the corresponding closed loop system (2) is
safe. Control barrier functions provide a sufficient condition
for the existence of a safe controller. Note that, hereafter we
will utilize the Lie derivative notation L f h and Lgh for the time
derivative of h along the system:

ḣ(x, u, t ) = ∇h(x)� f (x, t )︸ ︷︷ ︸
L f h(x,t )

+∇h(x)�g(x, t )︸ ︷︷ ︸
Lgh(x,t )

u. (7)

Definition 3 (Control barrier function [60]): Let S be the
0-superlevel set defined as in (3) with a continuously differ-
entiable function h : X → R, and let 0 be a regular value of
h. Then, the function h is called a control barrier function
(CBF) for (1) on (X × T) if there exists a α ∈ Ke∞ such that
∀(x, t ) ∈ (X × T):

sup
u∈U

[
L f h(x, t ) + Lgh(x, t )u

]
>−α(h(x)). (8)

Defining the point-wise set of controllers:

KCBF(x, t )� {u∈U | L f h(x, t )+Lgh(x, t )u≥−α(h(x))}, (9)

the existence of h implies that KCBF(x, t ) is not empty
∀(x, t ) ∈ (X × T). Safety is ensured for controllers taking
values in KCBF.

Lemma 1 ([60]): Let h be a CBF for (1) on (X × T). A
controller k(x, t ), that is Lipschitz continuous in x and piece-
wise continuous in t , ensures that the system (2) is safe w.r.t.
S ⊂ X if k(x, t )∈KCBF(x, t ) holds ∀(x, t ) ∈ (X × T).

Proof: The Ke∞ definition implies α(h(x)) = 0, ∀x ∈ ∂S .
Thus, (9) implies that any controller k(x, t )∈KCBF(x, t ) satis-
fies (6). The regularity conditions on the controller k ensure
the existence of a unique solution x(t ), and Theorem 1 com-
pletes the proof. �

Remark 2: In Definition 3 we look for a strict inequality in
the condition (8), whereas the inequality is non-strict in the
definition of KCBF in (9). As elaborated in the works [5], [21],
[59], [61], the strict inequality in the CBF definition allows
us to endow the CBF-based controllers with useful properties
such as continuity and Lipschitz continuity.

The following set definition will keep the notation compact
throughout the paper:

G = {(x, t ) ∈ (X × T) | Lgh(x, t ) = 0}. (10)

The set G contains x and t values that the vector valued
function Lgh(x, t )� ∈ R

m vanishes. That is, the input relative
degree of h becomes more than one for any (x, t ) ∈ G.

Remark 3 ([59]): The condition

L f h(x, t ) > −α(h(x)), ∀(x, t ) ∈ G, (11)

is a necessary condition for the inequality (8). This implies
that, should (8) hold, then safety can be shown with L f h when
the input relative degree of h is more than one. Furthermore,
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if U = R
m, then (11) amounts to a necessary and sufficient

condition to verify whether a function h is CBF [59]. This
is an easier condition to check whether a given h is a CBF
for a system. We will utilize this property to obtain simpler
sufficient conditions that ensure the feasibility of the robust
safety-critical control problem.

B. SAFETY FILTERS
We can utilize CBFs in a pointwise optimization problem
under the context of correcting a given–possibly unsafe– nom-
inal controller. In particular, the goal is to ensure safety in a
minimally invasive fashion. Consider the controller

kQP(x, t ) = argmin
u∈U

‖u − kd(x, t )‖2

s.t. L f h(x, t ) + Lgh(x, t )u ≥ −α(h(x)).
(12)

Here kd : X × T → U is an existing controller, Lipschitz con-
tinuous in x and piecewise continuous in t , with desired
guarantees like optimality and stability. The constraint ensures
safety, while the cost function penalizes the deviation from
kd. As a result, a minimum intervention occurs only when
necessary (i.e., when kd(x, t ) /∈KCBF(x, t )). If U can be repre-
sented with affine constraints, this problem becomes quadratic
programming (QP). The following theorem summarizes key
points about this CBF-based controller scheme (often referred
to as safety filter).

Theorem 2 ([59], [62]): Let S be the 0-superlevel set de-
fined as in (3) with a continuously differentiable function
h : X → R, and let 0 be a regular value of h.
� If U = R

m, then h is a CBF for (1) on (X × T) if and
only if (11) holds.

� Let h be a CBF for (1) on (X × T), then the QP
(12) is feasible, and kQP(x, t ) ∈ KCBF(x, t ) for all
(x, t ) ∈ (X × T). This implies that the system (2) is safe
w.r.t. S when u = kQP(x, t ).

� If U = R
m, then the QP has a closed-form solution:

kQP(x, t ) = kd(x, t ) + max
{
0,�(x, t )

}
Lgh(x, t )�,

(13)
where the function � : X × T → R is defined as:

�(x, t ) �
{

�(x, t ) if Lgh(x, t ) 
= 0,

0 if Lgh(x, t ) = 0,
(14)

with the function � : X × T → R given as:

�(x, t ) � −L f h(x, t ) + Lgh(x, t )kd(x, t ) + α(h(x))

‖Lgh(x, t )‖2
.

(15)

Interested reader is referred to works for details [62], [63].
Remark 4: ([62], [63]) For a scalar input system, i.e.,

m = 1, the safety filter (13) simplifies to:

kQP(x, t )=

⎧⎪⎨⎪⎩
min{kd(x, t ),�QP(x, t )} if Lgh(x, t )<0,

max{kd(x, t ),�QP(x, t )} if Lgh(x, t )>0,

kd(x, t ) if Lgh(x, t )=0,

(16)

where �QP : X × T → R is given as:

�QP(x, t ) � −L f h(x, t ) + α(h(x))

Lgh(x, t )
. (17)

Remark 5: Since the Lipschitz properties are preserved
through a max/min operation [64], the safety filter in (13)
(and (16)) can be shown to be Lipschitz continuous in x if
all functions have the same property [21], [65].

Safety guarantees may degrade when the CBF-based con-
trol design relies on a partially known system model. Thus,
successful implementation of a CBF-based safety-critical
controller depends on the resilience of the design against
uncertainties emerging from unmodeled dynamics. Next, we
investigate conditions to obtain robust safety for the CBF-
based safety condition (8) for a general type of uncertainty.

C. GENERALIZED ROBUST CBFS
Consider the system

ẋ = f (x, t ) + g(x, t ) u + μ(x, u, t ). (18)

where f and g are the nominal (known) system functions, and
μ : X × U × T → R

n represents the uncertainty in the model.
A controller k yields the closed loop system

ẋ = f (x, t ) + g(x, t ) k(x, t ) + μ(x, k(x, t ), t ). (19)

Evaluating ḣ along the open loop system (18) yields:

ḣ(x, u, t ) = L f h(x, t ) + Lgh(x, t )u + Lμh(x, u, t ). (20)

The uncertainty prevents us from looking for the condition
ḣ ≥ −α(h), cf. (7). This motivates the introduction of robust
control barrier functions (RCBFs) as follows. The main goal
is to find a set of controllers KRCBF(x, t ) ⊆ U such that a con-
troller k(x, t ) ∈ KRCBF(x, t ) implies the condition ḣ ≥ −α(h)
under the worst-case scenario. This goal can be achieved by
modifying the condition (8) by introducing a compensation
term, which will be denoted as σ in this paper.

The compensation term takes different forms based on what
we know about the system and the uncertainty. For example, if
there exists a μ ≥ 0 such that ‖μ(x, u, t )‖ ≤ μ for all x ∈ X,
u ∈ U and t ≥ t0, then we can use [21], [66]:

σ (x) = μ‖∇h(x)‖. (21)

Consider that the uncertainty affects the system dynamics
through input channels, that is, μ(x, u, t ) = g(x, t )d (x, u, t ).
This case is called matched uncertainty. If the input uncer-
tainty d satisfies ‖d (x, u, t )‖ ≤ d with a d ≥ 0 for all x ∈ X,
u ∈ U and t ≥ t0, then, instead of (21), we can use:

σ (x, t ) = d‖Lgh(x, t )‖, (22)

to scale the compensation with Lgh(x, t ) which characterizes
the effect of d on ḣ. If ‖d (x, u, t )‖ ≤ du‖u‖ for all x ∈ X,
u ∈ U and t ≥ t0, which can occur if there is a sector-bounded
uncertainty in the input [32], then one can use a compensation
of the form

σ (x, t ) = du‖Lgh(x, t )‖‖u‖. (23)
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The input-to-state safety type of robust controllers utilize a
robustifying function of the form [16], [18]:

σISSf (x, t ) = ‖Lgh(x, t )‖2ε, ε > 0, (24)

and

σTISSf (x, t ) = ‖Lgh(x, t )‖2ε(h(x)),

ε(r) > 0,
dε

dr
(r) ≤ 0, ∀r ∈ R, (25)

where the latter introduces the ‘tunability’. Table I in [66]
provides a summary of various forms of σ in the literature
as well as the underlying assumptions on the uncertainty.

Definition 4 (Robust control barrier function, generalized
from [21]): Let S be the 0-superlevel set defined as in (3)
with a continuously differentiable function h : X → R, and
let 0 be a regular value of h. The function h is called a robust
control barrier function (RCBF) for (18) on (X × T) if there
exist functions α ∈ Ke∞ and σ : X × U × T → R such that

sup
u∈U

[
L f h(x, t )+Lgh(x, t )u−σ (x, u, t )

]
>−α(h(x)), (26)

∀(x, t ) ∈ (X × T).
Given a RCBF h with functions α ∈ Ke∞ and σ , we can

define the point-wise set of controllers:

KRCBF(x, t ) � {u ∈ U |
L f h(x, t ) + Lgh(x, t )u − σ (x, u, t ) ≥ −α(h(x))}.

(27)

The following lemma summarizes the sufficient condition
so that controllers from KRCBF guarantee the robust safety:

Lemma 2: Let h be a RCBF for (18) on (X × T) with a
function σ . Any controller k(x, t ), that is locally Lipschitz
continuous in x and piecewise continuous in t , satisfying
k(x, t )∈KRCBF(x, t ) for all (x, t ) ∈ (X × T) ensures that the
system (19) is safe w.r.t. S if the following condition holds for
all u ∈ KRCBF(x, t ) and (x, t ) ∈ (∂S × T)

Lμh(x, u, t ) + σ (x, u, t ) ≥ 0. (28)

Proof: The Ke∞ definition implies α(h(x)) = 0, ∀x ∈ ∂S.
Thus, it is evident from (27) and (28) that any controller
k(x, t )∈KRCBF(x, t ) for all (x, t ) ∈ (X × T) ensures that (6)
is satisfied. The regularity requirements on the controller k
ensure the existence of a unique solution x(t ), and Theorem 1
completes the proof. �

In general, it is a challenging task to find a proper σ . For
example, choosing a function that takes large positive values
may satisfy the condition (28) conservatively. However, this
decreases the feasibility of the control problem by making
the set KRCBF smaller, cf. (27). It is important to construct
the compensation compatible with the safety problem (for
example by adding ∇h or Lgh into σ ) and the uncertainty
assumptions to mitigate this trade-off; see e.g. (21)–(23).

Furthermore, notice that the condition (28) is posed over the
boundary of S. Consequent to this observation, robust safety
is primarily related to the values that the function σ takes

when x ∈ ∂S . This gives us a certain relaxation factor that
will be used in the ‘tunable’ setting in Section IV.

D. ROBUST SAFETY FILTERS
We can update the optimization problem (OP) in (12) based
on the RCBF condition (26) to get the robust safety filters:

kOP(x, t ) = argmin
u ∈U

‖u − kd(x, t )‖2

s.t. L f h(x, t ) + Lgh(x, t )u − σ (x, u, t )≥−α(h(x)),
(29)

where kd is the desired controller. Relying on the RCBF defi-
nition and Lemma 2, we can summarize conditions such that
kOP ensures the closed-loop robust safety.

Theorem 3: Let h be a RCBF for (18) on (X × T) with
functions α ∈ Ke∞ and σ . Then, the OP (29) is feasible, and
kOP(x, t ) ∈ KRCBF(x, t ) for all (x, t ) ∈ (X × T). Furthermore,
the system (19) is safe w.r.t. S when u = kOP(x, t ) if kOP

is locally Lipschitz continuous in x and piecewise contin-
uous in t , and σ satisfies (28) for all u ∈ KRCBF(x, t ) and
(x, t ) ∈ (∂S × T).

Proof: The existence of a RCBF implies that KRCBF(x, t ) is
not empty for any (x, t ) ∈ (X × T), thus the constraint in (29)
is feasible. Furthermore, this ensures kOP(x, t ) ∈ KRCBF(x, t )
for all (x, t ) ∈ (X × T). Since σ satisfies (28), Lemma 2 con-
cludes the proof. �

It is noted that the controller should have appropriate
regularity properties for closed loop safety. Another design
concern for σ is the implementation of the OP (29). In partic-
ular, the class of the OP depends on the structure of σ (x, u, t )
with respect to u. For example, if σ is affine in u, and U can be
represented with affine constraints, then the problem remains
a QP. Other functions can be put into other solution-friendly
forms such as second order cone program (SOCP) [32], [67],
or mixed-integer quadratic program [43].

III. IMPLEMENTATION OF GENERAL PRINCIPLES
In this section, we outline the design process for a novel safety
filter tailored to address a specific set of uncertainty assump-
tions. We derive a sufficient condition to ensure feasibility and
establish robust safety guarantees. Then we demonstrate the
controller on an application.

A. WORST-CASE-BASED DESIGN
We start with the following assumption.

Assumption 1: The matrix g(x, t ) has full column rank
for all (x, t ) ∈ (X × T), and thus the left pseudo-inverse
g† : X × T → R

m×n exists:

g†(x, t ) = (
g(x, t )�g(x, t )

)−1
g(x, t )�. (30)

Since the number of nonzero singular values of a matrix is
equal to its rank, this assumption also implies that there exists
a constant ρ > 0 such that

min
i∈{1,...,m}

ρi(x, t ) ≥ ρ, ∀(x, t ) ∈ (X × T), (31)
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where ρi(x, t ) is the i-th singular value of g(x, t ) at any point
(x, t ) ∈ (X × T).

Assumption 1 is common in disturbance rejection prob-
lems [68], [69]. Using the left pseudo-inverse g†, we can
separate matched and unmatched uncertainties:

μ(x, u, t ) = g(x, t )d (x, u, t ) + �(x, u, t ), (32)

where d : X × U × T → R
m is the uncertainty matched with

input, and it is defined as:

d (x, u, t ) � g†(x, t )μ(x, u, t ). (33)

The remaining term � : X × U × T → R
n is called the un-

matched uncertainty, where g†(x, t )�(x, u, t ) = 0 holds for
all x ∈ X, u ∈ U and t ∈ T.

Consider the following assumption on how much the uncer-
tainty can affect the system dynamics:

Assumption 2: There exist d0, d1,�0,�1 ≥ 0 such that

‖d (x, u, t )‖ ≤ d0 + d1‖u‖,
‖�(x, u, t )‖ ≤ �0 + �1‖u‖, (34)

∀(x, t ) ∈ (∂S × T) and ∀u ∈ U.
Remark 6: While ultimate boundedness (d1 = �1 = 0) is

a common assumption in the RCBF literature [13], [21], [50],
[70], it may be too restrictive when the uncertainty scales
with the control input (an example will be given in the next
part). We include the terms d1 and �1 to incorporate an affine
relationship between ‖u‖ and the uncertainty bound. While a
similar problem was studied in [32] for d0 = �0 = �1 = 0,
our solution accounts for a more general problem and requires
extra conditions to ensure the feasibility.

We consider a compensation of the form:

σ1(x, u, t ) = ‖Lgh(x, t )‖ (d0 + d1‖u‖)
+ ‖∇h(x)‖ (�0 + �1‖u‖) . (35)

The set of KRCBF with σ1 becomes

Kσ1
RCBF(x, t ) = {

u ∈ U | Lgh(x, t )u

−‖Lgh(x)‖ (d0 + d1‖u‖)−‖∇h(x)‖�1‖u‖≥−	(x, t )
}
,

(36)

where 	(x, t ) � L f h(x, t ) + α(h(x)) − ‖∇h(x)‖�0. The next
theorem provides a novel sufficient condition to ensure the
feasibility of the robust safety filter with σ1.

Theorem 4: Let Assumption 1–2 hold with constants ρ >

0 and d0, d1,�0,�1 ≥ 0, and let U = R
m. A continuously

differentiable function h with a regular value of 0 is a RCBF
for the system (18) on (X × T) with σ1 given as in (35) if

d1 < 1 − �1/ρ, (37)

and

	(x, t ) > 0, ∀(x, t ) ∈ G, (38)

where 	(x, t ) � L f h(x, t ) + α(h(x)) − ‖∇h(x)‖�0. This im-
plies that, should (37)–(38) hold, the set Kσ1

RCBF(x, t ) is not
empty for any (x, t ) ∈ (X × T).

Proof: Our goal is to show that (37)–(38) are sufficient for
the RCBF definition (26) with σ = σ1. We consider two cases
separately: (x, t ) ∈ G and (x, t ) ∈ (X × T) \ G.

For the first case, we have Lgh(x, t ) = 0 (cf. (10)), and the
condition in the RCBF definition (26) becomes

	(x, t ) > ‖∇h(x)‖�1‖u‖. (39)

If ‖∇h(x)‖�1 = 0, then this condition holds trivially for any
u ∈ R

m since the left hand side is strictly positive ∀(x, t ) ∈ G
per (38). If ‖∇h(x)‖�1 > 0, then (39) becomes

‖u‖ <
	(x, t )

‖∇h(x)‖�1
. (40)

Since the right hand side is strictly positive, there exists a
δ > 0 such that (40) holds for all u satisfying ‖u‖ ≤ δ. Thus,
Kσ1

RCBF(x, t ) is not empty for any (x, t ) ∈ G.
For the second case, (x, t ) ∈ (X × T) \ G implies

Lgh(x, t ) 
= 0. Thus, ‖∇h(x)‖ > 0 and (26) becomes

Lgh(x, t )u − ‖Lgh(x, t )‖d1‖u‖ − ‖∇h(x)‖�1‖u‖ >

−	(x, t ) + ‖Lgh(x, t )‖d0︸ ︷︷ ︸
χ (x,t )

. (41)

Since U = R
m, we can choose u such that Lgh(x, t )u =

‖Lgh(x, t )‖‖u‖ (i.e., the same direction as the vector
Lgh(x, t )). This selection simplifies (41) to⎛⎜⎝‖Lgh(x, t )‖(1 − d1) − ‖∇h(x)‖�1︸ ︷︷ ︸

M(x,t )

⎞⎟⎠ ‖u‖ > χ (x, t ). (42)

If M(x, t ) > 0, then ∃u ∈ R
m satisfying (42) regardless of

the sign of χ . Thus, M(x, t ) > 0 is a sufficient condition for
the RCBF definition when (x, t ) ∈ (X × T) \ G. Recall that
‖∇h(x)‖ > 0, which implies M(x,t )

‖∇h(x)‖ > 0 where

M(x, t )

‖∇h(x)‖ = ‖∇h(x)�g(x, t )‖
‖∇h(x)‖ (1 − d1) − �1. (43)

Here we used Lgh(x, t ) = ∇h(x)�g(x, t ). Note that
1 − d1 > 0 per (37). Since (31) implies

min
q∈Rm\{0}

‖q�g(x, t )‖
‖q‖ ≥ ρ, ∀(x, t ) ∈ (X × T), (44)

we have

M(x, t )

‖∇h(x)‖ ≥ ρ(1 − d1) − �1. (45)

Using (37) we can show that M(x,t )
‖∇h(x)‖ > 0. Thus, (37)–(38) are

sufficient for the RCBF condition (26) with σ1. �
Theorem 4 provides a condition for the existence of a

controller ensuring robust safety when U = R
m. While it is

typically a challenging problem to find such explicit con-
ditions for U ⊂ R

m, recent developments led to a rigorous
framework for incorporating input bounds implicitly using
backup CBFs [71], even for a robust problem [72].
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Remark 7: If we consider the case �1 = 0, then the suffi-
cient condition (37) simplifies to d1 < 1, which is equivalent
to the condition found in [32] (given as 0 ≤ d < 1). However,
with �1, the condition (37) includes the case of an unmatched
uncertainty changing with u.

Condition (38) implies that when Lgh(x, t ) = 0 the barrier
function condition ḣ ≥ −α(h) should be attainable merely by
f under the worst case scenario. The existence of a α ∈ Ke∞
satisfying (38) with given f and �0 is a property that h should
have for the RCBF definition.

Theorem 4 provides sufficient conditions ensuring the
point-wise feasibility of the robust safety filter with the com-
pensation σ1, which is tailored to cancel the uncertainty in a
worst-case manner.

Theorem 5: Let Assumption 1–2 hold with constants ρ > 0

and d0, d1,�0,�1 ≥ 0. If h is a RCBF for the system (18)
with σ1 as in (35), then the system (19) is safe w.r.t. S when
u = kOP(x, t ) if kOP is locally Lipschitz continuous in x and
piecewise continuous in t .

Proof: Considering Assumption 1 and the compensation σ1

as in (35), the condition (28) becomes:

Lgh(x, t )d (x, u, t ) + ∇h(x)��(x, u, t )

+ ‖Lgh(x, t )‖ (d0+d1‖u‖)+ ‖∇h(x)‖ (�0+�1‖u‖) ≥ 0.

(46)

Thus, if the uncertainty satisfies Assumption 2 with constants
d0, d1,�0,�1 ≥ 0, the compensation σ1 as in (35) satisfies
the condition (28). Theorem 3 completes the proof. �

It is noted that the safety constraint becomes non-smooth
due to ‖u‖, therefore duality conditions cannot be used to
calculate the closed-form solution in a general case. Yet, it
can be shown that the constraints in the OP (29) can be repre-
sented as a rotated second order cone, and thus can be solved
effectively using efficient algorithms such as [73]. Moreover,
a closed-form solution may exist for the scalar input case.

Remark 8: The lack of a general solution prevents us show-
ing the Lipschitz continuity for the robust safety filter with
σ1. In [52], authors show that relaxing the safety constraint
with a slack variable can ensure Lipschitz property at the
expense of losing the safety guarantee. Furthermore, authors
in [32] ‘conjecture that the solution remains locally Lipschitz
continuous when the constraint is described by two second
order cone constraints’. Showing the Lipschitz properties for
a general case is left for a future work. The scalar input case
has the same Lipschitz properties as the QP in (16).

B. EXAMPLE
To demonstrate the theoretical concepts we consider a pendu-
lum, depicted in Fig. 1, whose angle from the vertical position
denoted as θ . A mass m is carried by the massless rod and
its distance from the pivot l changes periodically in time
according to a time-dependent constraint. A motor provides
the control torque u and G is the gravitational acceleration.
This may be considered as the simplest model for a child on
a swing who is moving its center of mass up and down to

FIGURE 1. (Left panel) Mechanical model of a swing. The distance l
changes periodically. (Right panel) The safety goal θ ≤ θmax as the white
rectangle, the set S as green ellipse, the set G highlighted by the
dashed-dotted line, and the simulated trajectory for u = kd(x, t ) ≡ 0 is
shown by the red curve.

destabilize the hanging down position while the input torque
is applied to ensure safe swinging.

The equation of motion is derived in Appendix A using
Lagrangian equations. Choosing the angle and angular speed
as states, i.e., x � [θ, θ̇ ]�, we can obtain:

ẋ =
[

x2

− G
l (t ) sin x1 − 2 l̇ (t )

l (t ) x2

]
︸ ︷︷ ︸

f (x,t )

+
[

0
1

ml (t )2

]
︸ ︷︷ ︸

g(t )

u. (47)

It is noted that the system functions f and g can be calculated
explicitly when l (t ) and l̇ (t ) are given. We let U = R.

To enforce physical safety, we want to limit the angle:
|θ | ≤ θmax = π/6. Excluding θ̇ from h(x) would imply that
G = R

2 × R, and the necessary condition (11) cannot be
shown for a general periodic excitation of l (t ). Thus, we
enforce the goal using a quadratic function h : R2 → R:

h(x) = 1

2
x�Ax + c, A =

[
a1, a2

a2, a3

]
,
A is negative definite,

a2 < 0, c > 0.

(48)
The corresponding set S ∈ R

2 is an ellipse with a slight tilt
in counterclockwise direction for a2 < 0, see the green do-
main in Fig. 1 for parameters a1 = −7.30, a2 = −0.25 s,
a3 = −1 s2 and c = 1. Observe that S is a subset of the
original safety goal |θ | ≤ θmax (white region). Therefore, en-
suring the invariance of S is sufficient. We take the desired
controller as kd(x, t ) ≡ 0, and simulate (47) for m = 30 kg
and l (t ) ≡ L = 1.75 m (this time-invariant configuration is
denoted as case (A)). Starting from x0 = [0, 1.4 rad/s]�, the
simulated trajectory (red curve in Fig. 1) leaves S even for
a constant l . Below we design safety filters to ensure safety
w.r.t. S for two scenarios: ideal and partially known models.

1) IDEAL CASE
We will use safety filter to keep the system safe. To do this,
first we need to show that h is a CBF for the system (48).

Proposition 1: The function h as defined in (48) is a CBF
for (47) with α(h) = αch for any αc > 0.

The proof of Proposition 1 is given in Appendix B. Since
U = R and m = 1, the closed form solution of the safety
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FIGURE 2. (Left panel) Simulated trajectories when the safety filter is implemented for case (A), and curves marking where the desired controller is
intervened. (Middle panel) Simulated trajectory when the safety filter is implemented for case (B). (Right panel) The maximum θ along the limit cycle as a
function of ω (for r/L = 0.2) and r/L (for ω = 4.8 rad/s).

filter in (16) can be implemented. The system is simulated
with the same conditions as above (case (A) and same x0)
using αc = 1.5 1/s, see the black trajectory in the left panel
of Fig. 2. When θ approaches θmax with a large rate θ̇ , the safe
control is activated, i.e., kQP(x, t ) = �QP(x, t ), and it slows
down the swing to ensure safety. The controller switches back
to kd(x, t ) = 0 when state is ensured to be contained in S with
no control. This cycle is repeated until the trajectory converges
to a stable limit cycle inside S.

The curve where the switch occurs between safe
control and no control can be found explicitly using
�QP(x, t ) = kd(x, t ) = 0. This equation yields two solu-
tions in the form of time-varying parabolas in the state
space (depicted in the left panel of Fig. 2 for case
(A)). We have kQP(x, t ) ≡ kd(x, t ) inside the curves, and
kQP(x, t ) = �QP(x, t ) outside. Note that the stable limit cycle
that trajectories converge to grazes the switch curves, which
implies that its shape can be modified through h and α. We
leave the further analysis of the effect of these particular selec-
tions on the nonlinear characteristics of the system trajectories
as a future work, and focus on improving the resilience of the
CBF condition against uncertainties.

Next, we consider the case where a periodic excitation of
the form l (t ) = L + r sin(ω t ) is introduced with known am-
plitude and frequency values (case (B) is for r/L = 0.2 and
ω = 4.8 rad/s). Implementing the safety filter (16) success-
fully keeps the system safe, because it has full information of
the model f (x, t ) and g(t ), see the middle panel of Fig. 2. The
safety results hold for different ω and r values. The right panel
in Fig. 2 shows the values max |θ (t )| over all t > ts, where ts
denotes the time it takes for trajectories to converge to the
limit cycle.

2) PARTIALLY KNOWN MODEL
Let us consider the case where the amplitude of the periodic
excitation, r, is not known. The uncertainty emerging from the
unknown periodic excitation can be separated from the known
part in (47) (called the ‘nominal system’). We give detailed
calculations in Appendix C, where we use Taylor expansion

FIGURE 3. Simulation results when the safety filter kQP is implemented
with partial information. (Left panel) The maximum θ along the limit cycle
as a function of ω (for r/L = 0.2), and r/L (for ω = 4.8 rad/s). (Right panel)
Simulated trajectory for case (B).

with the assumption r � L to obtain:

ẋ =
[

x2

−G
L sin x1

]
︸ ︷︷ ︸

f (x)

+
[

0
1

mL2

]
︸ ︷︷ ︸

g

u

+
[

0
r
L

(
G
L sin(ωt ) sin x1−2ω cos(ωt )x2− 2

mL2 sin(ωt )u
)]

︸ ︷︷ ︸
μ(x,u,t )

,

(49)

cf. (47). The function μ represents the uncertainty, and it
depends on state, input, and time. When we design the safety
filter (16) considering μ ≡ 0, the resulting controller becomes
indifferent to the periodic excitation. Consequently, we ob-
serve θ > θmax for a large enough r at certain ω, see the left
panel in Fig. 3. The visual depiction of the safety violation is
given in the right panel for case (B).

Our goal is to design a robust safety filter using σ1 as
in (35). To use this framework we check Assumption 1–2.
Assumption 1 is satisfied for (49) since g 
= 0. In addition,
in Appendix C we show that

�(x, u, t ) ≡ 0 ⇒ �0 = �1 = 0, (50)
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FIGURE 4. Left, middle and right panels show simulation results for the robust safety filters with σ1, σ2 and σ3, respectively. The top row depicts the
trajectories for the case (B). The bottom two rows demonstrate the robust safety results for various unknown periodic excitation r ≤ r and ω ≤ ω.
Increasing αc allows trajectories to get closer to the boundary of S.

d (x, u, t ) ≤ d0 + d0|u|, (51)

cf. (34), and that assuming r ≤ r and ω ≤ ω we have

d0 ≈ 2mLrω

√
2c

−a3
, d1 = 2

r

L
. (52)

We pick r = 0.2L and ω = 6.0 rad/s, which yields
d0 = 310 Nm and d1 = 0.4.

With Assumption 1–2 satisfied, we can utilize σ1 as in (35)
for robust safety. Note that the condition (37) holds since
�1 = 0 and d1 < 1. Moreover, since �0 = 0, (38) simpli-
fies to L f h(x, t ) + α(h(x)) > 0, cf. (36). This condition holds
since h was shown to be a CBF for (47), see Remark 3.
Consequently, Theorem 4 establishes that h is a RCBF.

Proposition 2: The function h in (48) is a RCBF for (49)
with α(h) = αch and σ1 as in (35) for any αc > 0.

The robust safety filter with σ1 will be called as kSOCP.
Implementing kSOCP for different values of αc ∈ [0.75, 7.5]
1/s, r ≤ r and ω ≤ ω, we give simulation results in the left
panels of Fig. 4. The trajectory for αc = 1.5 1/s (case C) is
depicted in the top panel, which converges to a limit cycle
inside S without leaving it. We find the values max |θ (t )| over
all t > ts, where ts denotes the settling time of convergence to
the limit cycle. Our findings, shown in the bottom two panels,
align with the theoretical results.

IV. LESS CONSERVATIVE CONTROLLER DESIGN
This section presents more sophisticated methodologies to
design less conservative robust safety-critical controllers,

leveraging observer-based uncertainty estimation and tunable
compensatory mechanisms to improve control performance
while maintaining rigorous safety guarantees.

A. OBSERVER-BASED CONTROLLER
Recall that, with the uncertainty μ, ḣ becomes:

ḣ(x, u, t ) = L f h(x, t ) + Lgh(x, t )u + Lμh(x, u, t ). (53)

While the function Lμh is unknown, it can be estimated so that
the barrier function-based safety condition ḣ ≥ −α(h) can be
ensured less conservatively.

Assumption 3: Given a controller k : X × T → U, there
exist functions L̂μh : X × T → R and � : T → R such that:

∣∣∣Lμh (x(t ), k(x(t ), t ), t ) − L̂μh(x(t ), t )
∣∣∣ ≤ �(t ), ∀t ≥ t0.

(54)

This assumption implies the existence of an estimator with
a deterministic error bound. Some of the well-known ob-
server and estimator techniques were implemented in the
CBF framework to satisfy Assumption 3, for example, [29],
[36], [37], [38], [39], [40], [41]. In an effort of finding an
estimator satisfying Assumption 3, we propose the function
σ2 : X × T → R:

σ2(x, t ) = −L̂μh(x, t ) + �(t ), (55)

where the first term cancels Lμh, and the second term com-
pensates for the residual error.
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Assumption 4: The input relative degree of h is less than or
equal to the uncertainty relative degree of h:

Lμh(x, u, t ) = 0, ∀(x, t ) ∈ G, ∀u ∈ U. (56)

This assumption implies that the lowest-order time deriva-
tive of h that the uncertainty μ can affect is equal to or higher
than the lowest-order time derivative of h that the input u
can affect. Consequently, the term Lμh can be canceled in ḣ
using u. Assumption 4, which can be relaxed, see Remark 10,
allows us to find sufficient conditions such that h is a RCBF.
In particular, using (56), the bound (54) implies

L̂μh(x(t ), t ) ≥ −�(t ), ∀(x, t ) ∈ G. (57)

Thus, extending Remark 3 for the RCBF definition requires

L f h(x, t )≥−α(h(x)) + 2�(t ), ∀(x, t ) ∈ G, (58)

to hold for the inequality (26). If U = R
m, (58) is a necessary

and sufficient condition for (26).
Theorem 6: Let S be the 0-superlevel set defined as in (3)

with a continuously differentiable function h : X → R, and let
0 be a regular value of h. Let the uncertainty μ and functions
L̂μh and � satisfy Assumptions 3 and 4.
� If U = R

m, then h is a RCBF for (18) on (X × T) with
σ2 in (55) if and only if (58) holds.

� If h is a RCBF for (18) on (X × T) with σ2, then the
system (19) is safe w.r.t. S when u = kOP(x, t ).

� Substituting σ2, the OP in (29) becomes a QP. Further-
more, if U = R

m, then the QP has a closed-form solution
given in the form (13)–(14) with �(x, t ) = �ob(x, t ) de-
fined as:

�ob(x, t )�−L f h(x, t )+Lgh(x, t )kd(x, t )+α(h(x))−σ2(x, t )

‖Lgh(x, t )‖2
.

(59)

Proof: The proof for the first two statements can be ex-
tended from the discussion in Remark 3 and the proof of
Theorem 5, respectively. Furthermore, since the OP becomes
a QP with σ2, the last bullet point can be followed from the
proof of Theorem 2 (as given in [21], [60], [62]) with simple
modifications for σ2. �

Remark 9: Analogous to the CBF-based QP (16), the ro-
bust safety filter (13)–(14) with (59) can be simplified for the
scalar input case (m = 1):

kQP,ob(x, t )=

⎧⎪⎨⎪⎩
min{kd(x, t ),�QP,ob(x, t )} if Lgh(x, t )<0,

max{kd(x, t ),�QP,ob(x, t )} if Lgh(x, t )>0,

kd(x, t ) if Lgh(x, t )=0,

(60)

where �QP,ob : X × T → R is defined as

�QP,ob(x, t ) = −L f h(x, t ) + α(h(x)) + L̂μh(x, t ) − �(t )

Lgh(x, t )
.

(61)

HIGH-GAIN DISTURBANCE OBSERVER
Motivated by the estimator-based compensation setup, we
consider an observer L̂μh : X × T → R utilized in [35], [37]:

L̂μh(x(t ), t ) = kobsh(x(t )) − ζ (t ), (62)

where kobs > 0 is the observer gain and ζ (t ) denotes an aux-
iliary state. In particular, given an initial condition ζ (0) = ζ0,
ζ (t ) satisfies the following ODE:

ζ̇ (t )=

kobs

⎛⎜⎝L f h(x(t ), t ) + Lgh(x(t ), t )u(t ) + kobsh(x(t ))︸ ︷︷ ︸
	(x(t ),u(t ),t )

−ζ (t )

⎞⎟⎠ .

(63)

Note that (63) is a linear ODE, and convolution integral can
be used to find the solution:

ζ (t ) = ζ0e−kobst + kobs

∫ t

0
e−kobs(t−t̃ )	

(
x(t̃ ), u(t̃ ), t̃

)
dt̃ .

(64)

We can find a deterministic error bound �(t ) for the ob-
server (62). Focusing on the explicit time dependency with a
slight abuse of notation, we use Lμh(t ) = Lμh(x(t ), u(t ), t ).

Assumption 5: There exist constants Lμh0,L ≥ 0 such
that: ∣∣Lμh(t0)

∣∣ ≤ Lμh0, ∀t0 ∈ R, (65)∣∣Lμh(r) − Lμh(s)
∣∣ ≤ L|r − s|, ∀r, s ∈ T = [t0,∞). (66)

While (65) accounts for the boundedness of the initial un-
certainty, (66) constitutes an upper bound on how fast the
effect of the uncertainty changes in time. That is, L is the
Lipschitz constant of Lμh in t . Lipschitz bounds are com-
monly utilized in RCBF formulations [42], [43], [52] and
these can be obtained from sampled data using Strongin’s
estimator [74], [75].

Using the observer error e(t ) � Lμh(t ) − L̂μh(t ), the fol-
lowing lemma gives us the error bound �(t ).

Lemma 3 ([35]): Consider a function h with the time
derivative given in (53) and an observer defined in
(62)–(64) with a gain kobs > 0 and the initial condition
ζ0 = kobsh(x0). Let the function Lμh satisfy Assumption 5.
Then, the following bound holds for the observer error
e(t ) = Lμh(t ) − L̂μh(t ):

|e(t )| ≤
(

Lμh0 − L
kobs

)
e−kobst + L

kobs︸ ︷︷ ︸
�(t )

, ∀t ∈ T. (67)

The proof (which can be seen in [35] in detail) is omit-
ted here. Starting from |e(t0)| = Lμh0, the error moves into
a narrower band determined by L

kobs
as the time progresses

(assuming Lμh0 > L
kobs

). Note that the faster the uncertainty
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dynamics are (specified by a larger L), the wider the steady-
state error band gets. A larger kobs not only shrinks the steady
state error band, but it also forces a faster initial decay.

Lemma 3 implies that the observer (62) and the error
bound (67) satisfy Assumption 3. Under Assumption 4, see
Remark 10, Theorem 6 can be used to obtain safety results for
the observer-based robust safety filter. We note that, for the
observer (62), the necessary condition (58) becomes:

L f h(x, t ) ≥ −α(h(x)) + 2 max

{
Lμh0,

L
kobs

}
,

∀(x, t ) ∈ G. (68)

More accurate initial uncertainty guess and smaller rate of
change of the uncertainty can alleviate the condition (68).

Remark 10: Assumption 4 can be relaxed for the observer
scheme discussed here. Details can be obtained in refer-
ences [36], [68], yet, in short, the observer can be extended to
estimate disturbances on ẋ rather than ḣ. Then, a high relative
degree CBF framework [8], [9] can be used to ensure robust
safety in the case the input relative degree is more than the
uncertainty relative degree.

Remark 11: There is a causality issue hidden when the ob-
server (62) is implemented to a control system (18), and at the
same time the observed value L̂μh is used to calculate a con-
trol input u. In particular, calculating the controller u(t ) using
(59) requires ζ (t ) (plug (62) into (55)). Yet, (64) implies that
ζ depends on the function u(t̃ ) over t̃ ∈ [t0, t]. We break this
causality loop in the implementation by using a delayed input
when calculating (64) (single time interval). Investigating the
effect of this ad-hoc solution in a mathematically rigorous way
using control barrier functionals [76] is left as future work.
We note that we observed this effect to be negligible in our
examples.

B. TUNABILITY-BASED CONTROLLER
The difference between an oracle safety filter (with full model
information) and a robust design emerges from two sources:
the uncertainty in the model Lμh, and the term σ used to
compensate for it, cf. (8) and (26). The observer (62) alle-
viates both as the observer gain kobs increases. Indeed, for
kobs → ∞, we get L̂μh → Lμh and � → 0. However, in prac-
tice, a high observer gain kobs makes the closed-loop system
more susceptible to imperfections, e.g., the system may be-
come unstable in the presence of input delay [35].

Even for a limited observer gain it is still possible to de-
crease the difference between the oracle design and a robust
safety filter with observer. To see this, notice that the sufficient
condition (28) for robust safety is defined on x ∈ ∂S. Thus, �

can be reshaped inside S as long as it satisfies (28) on the
boundary. Motivated by this observation, as is done in the
tunable ISSf case in (25), the compensation can be reduced
based on how far away a state is from the boundary of S [18].
In particular, we propose

σ3(x, t ) = −L̂μh(x, t ) + �(t )ε (h(x)) , (69)

where, the function ε : R → R satisfies

ε(r) ≥ 0, ∀r ∈ R, and (1 − ε) ∈ Ke. (70)

The second condition in (70) implies that ε(0) = 1, thus
(28) holds for σ3 with an observer satisfying Assumption 3
since x ∈ ∂S ⇒ h(x) = 0 ⇒ σ3(x, t ) ≡ σ2(x, t ). The class-K
property of 1 − ε implies ε(h(x)) < 1 if h(x) > 0. Therefore,
the effect of the error compensation term in (69) gets mitigated
inside S. As a result, the tunability modification yields less
conservative robust safety filters.

Remark 12: Even the necessary condition for the RCBF
definition is relaxed with ε, cf. (58):

L f h(x, t ) ≥ −α(h(x)) + 2�(t )ε (h(x)) ,

∀(x, t ) ∈ G ∩ (X × T) . (71)

Theorem 7: Let S be the 0-superlevel set defined as in (3)
with a continuously differentiable function h : X → R, and let
0 be a regular value of h. Let the uncertainty μ and functions
L̂μh and � satisfy Assumptions 3 and 4. Let ε satisfy (70).
� If U = R

m, then h is a RCBF for (18) on (X × T) with
σ3 in (69) if and only if (71) holds.

� If h is a RCBF for (18) on (X × T) with σ3, then the
system (19) is safe w.r.t. S when u = kOP(x, t ).

� Substituting σ3, the OP in (29) becomes a QP. Further-
more, if U = R

m, then the QP has a closed-form solution
given in the form (13)–(14) with �(x, t ) = �Tob(x, t )
defined as:

�Tob(x, t )�−L f h(x, t )+Lgh(x, t )kd(x, t )+α(h(x))−σ3(x, t )

‖Lgh(x, t )‖2
.

(72)

Proof: The proof of Theorem 6 can be followed with the
only change ε. �

Remark 13: If the function ε is continuously differentiable
on a closed interval, then it is Lipschitz continuous. As a
result, the Lipschitz properties of the resulting controller is
the same as the observer-based QP.

Remark 14: Similar to the observer-based method, the ro-
bust safety filter (13)–(14) with (72) simplifies for scalar
input:

kQP,Tob(x, t )=

⎧⎪⎨⎪⎩
min{kd(x, t ),�QP,Tob(x, t )} if Lgh(x, t )<0,

max{kd(x, t ),�QP,Tob(x, t )} if Lgh(x, t )>0,

kd(x, t ) if Lgh(x, t )=0,

(73)

where

�QP,Tob(x, t )=−L f h(x, t )+α(h(x)+L̂μh(x, t )−�(t )ε(h(x)))

Lgh(x, t )
.

(74)

Henceforth, we will use an exponential function as ε:

ε(h(x)) = e−λh(x), (75)

which satisfies (70) for any λ > 0. Note that λ = 0 returns to
the observer-based design with σ2 as in (55).

64 VOLUME 4, 2025



IEEE Open Journal of

Control Systems

V. EXAMPLE
In this section we continue implementing robust safety filters
to the swing example introduced in Section III-B. In particu-
lar, we first demonstrate that theoretical findings are supported
by numerical simulations for σ2 and σ3. Then, the likeness of
robust controllers (also including σ1) to the oracle design is
investigated using a performance metric.

A. ROBUST SAFETY FOR PARTIALLY KNOWN MODEL
1) OBSERVER-BASED CONTROLLER
The uncertainty for the swing example is matched, that is,
�(x, u, t ) ≡ 0. Thus, Assumption 4 is trivially satisfied. We
use Strongin’s estimator [74] with the simulation data from
the previous configuration to obtain the Lipschitz constant
L ≈ 8 1/s2. For simplicity, we assume we have an accurate
estimate of the initial error, thus, we use Lμh0 = 0.

Proposition 3: The function h defined in (48) is a RCBF for
(49) with α(h) = αch and σ2 as in (55) with observer (62) for
αc ≥ 2a2/a3 and kobs > La3/a2. This implies that the system
(49) is safe w.r.t. S when u = kQP,ob(x, t ) in (60).

Here, αc ≥ 2a2/a3 and kobs > La3/a2 are imposed to ac-
commodate for the extra term 2L/kobs emerging from (71).
Implementing kQP,ob, we run simulations using same condi-
tions as the previous case, see the middle panels of Fig. 4.
The top panel depicts the robust safety of a single trajec-
tory converging to a limit cycle for case (C). The bottom
two panels show max |θ (t )| for kobs = 20 1/s > La3/a2 and
αc ∈ [0.75, 7.5] 1/s ≥ 2a2/a3. Robust safety is consistent.

2) TUNABILITY-BASED CONTROLLER
Next, we consider the observer-based QP enhanced with the
tunability feature with ε chosen in (75).

Proposition 4: The function h defined in (48) is a RCBF
for (49) with α(h) = αch and σ3 as given in (69) with ob-
server (62) and ε in (75) for αc ≥ 2a2/a3, kobs > La3/a2 and
λ > 0. This implies that the system (49) is safe w.r.t. S when
u = kQP,Tob(x, t ).

Simulations are repeated for kobs = 20 > La3/a2 1/s,
λ = 5, and αc ∈ [0.75, 7.5] 1/s ≥ 2a2/a3, see the right panel
of Fig. 4. Again, the robust safety results are consistent
through all simulations.

B. ON THE LIKENESS TO THE ORACLE DESIGN
While increasing αc yields less restrictive conditions for all
configurations, see Fig. 4, it comes with the price of larger
control inputs. This is especially the case for the SOCP,
which requires a more aggressive lower bound for ḣ in or-
der to achieve comparable performance. This is demonstrated
in Fig. 5, where simulated trajectories are depicted for con-
trollers kSOCP (αc = 12 1/s) and kQP,Tob (αc = 2 1/s, kobs

= 20 1/s, λ = 5) with color blue and red, respectively. We
also plot the case where an oracle-based safety filter is imple-
mented (i.e., the full model is used) with αc = 1.5 1/s. Notice
that trajectories are very close to each other. Yet, maintaining
the motion requires larger control input for the SOCP due to

FIGURE 5. Simulated trajectories (left) and control input (right) when the
two robust compensation methods as well as the oracle controller (with
full model information) are implemented. Although results are very close
in the state space, control inputs are considerably different.

its worst-case type of compensation, see the right panel of
Fig. 5. The input of the tunability-based case, however, is
closer to the oracle thanks to its ability to reject the effect
of the unknown dynamics in the controller using L̂μh. The
difference between the robust controllers and the oracle is
given in the bottom right panel.

Motivated by these observations, we use a performance
metric to compare robust controllers. The performance goal
for this comparison study is taken as minimizing the deviation
from the oracle controller. The logic behind this choice is as
follows: if we have the perfect information of a system model,
then it may be possible to design a controller minimizing
a cost function. Comparing robust controllers to this oracle
controller serves as a meaningful and practical comparison
metric because it eliminates the necessity of specifying this
cost. This metric is merely used for comparing these robust
controller design principles and it does not play a specific role
in designing these controllers.

The performance goal is quantified as minimizing the cost∥∥ks(x, t ) − koracle(x, t )
∥∥, where koracle denotes the oracle con-

troller that is designed utilizing the ideal model information,
and the index s refers to different robust safety filter designs,
i.e., SOCP, QP, ob and QP, Tob. In this comparative study, the
oracle is represented with data generated using simulations for
random system configurations (initial conditions t0 ∈ R and
x0 ∈ S , and amplitude r ≤ r and frequency ω ≤ ω of periodic
excitation). Overall, we generate M = 1000 episodic runs of
length N when u = koracle(x, t ) is utilized. We collect the state,
time and input data from these runs: xi

k , t i
k and ui

k , where k
denotes a time instant in an episode k = {1, . . . , N}, and i
denotes the number among all episodic runs i = {1, . . . , M}.
Based on this, we can define the cost:

Js(p) = 1

MN

M∑
i=1

N∑
k=1

∣∣ ks(xi
k, t i

k; p) − ui
k︸ ︷︷ ︸

ũi
k

∣∣. (76)

to represent the average of the deviation in control ũi
k along

trajectories over all episodes. The term p collects the parame-
ters p = [αc, kobs, λ]�.

We start with the evaluation of kSOCP. The only parameter
in this case is αc. The blue curve in the top panel of Fig. 6
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FIGURE 6. (Left) Deviation of the worst-case-based controller from the
oracle-based design given by the cost JSOCP as a function of αc (blue curve),
and deviation of the observer-based controller from the oracle-based
design given by the cost JQP,ob as a function of αc for various kobs values
(green and purple curves). The minimum values J∗

QP,ob decrease as kobs

increases. (Right) The minimum values J∗
QP,Tob of the cost JQP,Tob over

αc ∈ [0.75, 7.5] 1/s and kobs ∈ {20, 25, 30, 40} 1/s for a fixed λ. This
represents the deviation of the tunable observer-based controller from the
oracle-based design as a function λ.

shows that the cost JSOCP decreases monotonously with αc

and it settles around ∼10 Nm for large αc. Next, we evalu-
ate the performance of kQP,ob. There are two parameters for
this case: αc and kobs. In particular, kobs increases the rate
at which the uncertainty is observed, thus a more accurate
cancellation can be obtained in the controller. The cost JQP,ob

is depicted in the left panel of Fig. 6 as a function of αc for
kobs ∈ {20, 25, 30, 40} 1/s with different colors. Each curve
has a minimum value J∗

QP,ob, which decreases as kobs is in-
creased. This aligns with the discussion that introducing an
estimator mitigates the difference between the robust safety-
critical controller and the oracle-based design. Finally, we
evaluate the tunability modification kQP,Tob which depends on
the parameters αc, kobs and λ. We compute the cost JQP,Tob and
find the minimum J∗

QP,Tob over a range of αc. These minima
are depicted in the right panel of Fig. 6 as a function of
λ for kobs ∈ {20, 25, 30, 40} 1/s. Note that λ = 0 means the
observer-based design without tunability. Our findings sup-
port the argument that tunability (i.e., increasing λ) reduces
the deviation from the oracle-based controller.

VI. CONCLUSION
This work investigated the means to obtain robust safety
guarantees for control barrier function-based safety-critical
controllers in the presence of model uncertainties. We first in-
troduced a general framework providing conditions for robust
safety. Then, we utilized the general framework to investigate
the robust safety conditions of three design methodologies: a
worst-case-based approach, an observer-based approach, and
a modification to the latter via tunability. The theoretical re-
sults were demonstrated on a practical example of a pendulum
with unknown periodic excitation. Finally, we compared the

designs based on a performance metric defined as their devi-
ation from the oracle-based controller. Our findings showed
that improved performance could be obtained by introducing
means in the controller to estimate the effects of the uncer-
tainty. Further improvements could be shown by reshaping the
error compensation based on how safety-critical the state is.

The main future research direction is the development of
a broad and systematic framework for merging different ro-
bustifying compensation designs to pick the most appropriate
design strategy. This framework can include an online scheme
to switch between different compensation strategies to adapt
dynamically to changing conditions. Moreover, future efforts
will be directed to obtain conditions for Lipschitz continuity
of RCBF-based controllers.

APPENDIX
A. DERIVING THE EQUATION OF MOTION
We use Lagrange equations of the second kind to derive
the equation of motion of the swing example introduced in
Section III-B. The degree of freedom of the system is one
but the system has a time dependent constraint. Choosing the
generalized coordinate θ , the kinetic and potential energy T
and U , and virtual power δP of the active force reads:

T = 1

2
m
(
l (t )2θ̇2 + l̇ (t )2) , (77)

U = −mGl (t ) cos θ, (78)

δP = u δθ̇ . (79)

The Lagrangian is defined as L = T − U while the last equa-
tion gives the generalized force Q = u as the coefficient of the
generalized virtual velocity δθ̇ . The Lagrange equation

d

dt

∂L

∂θ̇
− ∂L

∂θ
= Q, (80)

leads to the equation of motion:

ml (t )2θ̈ + mGl (t ) sin θ + 2ml (t )l̇ (t )θ̇ = u. (81)

Choosing the angle and the angular speed as states, i.e.,
x � [θ, θ̇ ]�, we obtain the nonlinear system dynamics:

ẋ =
[

x2

− G
l (t ) sin x1 − 2 l̇ (t )

l (t ) x2

]
︸ ︷︷ ︸

f (x,t )

+
[

0
1

ml (t )2

]
︸ ︷︷ ︸

g(t )

u. (82)

Interested readers can refer to [77], [78] for a detailed nonlin-
ear analysis of a similar system without control.

B. PROOF OF PROPOSITION 1
Proof: We start by showing that 0 is a regular value of h. Since
∇h(x) = Ax, and A is not singular, we have ∇h(x) = 0 only
at x = 0, which is not in ∂S for any c > 0. Also, note that S
is not empty for any c > 0.

Next, we show the necessary and sufficient condition (11)
(recall U = R). We have a1, a2, a3 < 0, and a1 − a2

2/a3 > 0
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FIGURE 7. The necessary and sufficient condition (11) along the G. One
may find a X ⊃ S on which the condition is satisfied.

per the assumptions on A in (48). First, we define the set:

G = {(x, t ) ∈ (R2 × T) | a2x1 + a3x2 = 0}, (83)

which forms the line x2 = − a2
a3

x1 in the state space R
2,

see Fig. 1. Choosing α(h) = αch ∈ Ke∞ with αc > 0, our
goal is to show that there exists an open set X ⊂ R

2 such
that L f h(x, t ) + αch(x) > 0 is satisfied ∀(x, t ) ∈ G. Notice
that L f h(x, t ) = −(a1 − a2

2/a3)a2/a3x2
1 for all x satisfying

Lgh(x, t ) = 0, thus the condition reduces to(
a1 − a2

2

a3

)(
αc

2
− a2

a3

)
x2

1 + αcc > 0, (84)

which is time-invariant, thus any T ⊂ R can be selected.
We separate cases 0 < αc ≤ 2 a2

a3
and αc > 2 a2

a3
. For the

former, one can show that the coefficient of x1 becomes non-
negative, thus (84) holds over any X ⊂ R

2. For latter one, the
left hand side of (84) becomes a concave parabola that crosses
the horizontal axis at

x1 = ±x∗
1 = ±

√
−αcc(

a1 − a2
2/a3

)
(αc/2 − a2/a3)

, (85)

see Fig. 7. Notice that L f h(x, t ) > 0 for all (x, t ) ∈ G. Thus
L f h(x, t ) + αch(x) = 0 holds if and only if h(x) < 0. This im-
plies that x∗

1 ∈ R
2 \ S regardless of αc, thus X can be selected

such that S ⊂ X ⊂ R
2 on which (84) holds. �

C. SEPARATING UNCERTAINTY AND FINDING BOUNDS
We use l (t ) = L + r sin(ωt ), yielding l̇ (t ) = rω cos(ωt ).
Considering the amplitude of the periodic excitation as un-
known, we can use Taylor expansion to separate the uncer-
tainty from the known portion of the model. In particular,

we represent the functions 1
l (t ) , l̇ (t )

l (t ) and 1
l (t )2 using Taylor

expansion around r = 0. Assuming r � L and ignoring the
higher order terms yields

1

l (t )
≈ 1

L
− r

L2
sin(ωt ), (86)

l̇ (t )

l (t )
≈ r

L
ω cos(ωt ), (87)

1

l (t )2
≈ 1

L2
− 2r

L3
sin(ωt ). (88)

Then, the system dynamics become

ẋ =
[

x2

−G
L sin x1

]
︸ ︷︷ ︸

f (x)

+
[

0
1

mL2

]
︸ ︷︷ ︸

g

u

+
[

0
r
L

(
G
L sin(ωt ) sin x1−2ω cos(ωt )x2− 2

mL2 sin(ωt )u
)]

︸ ︷︷ ︸
μ(x,u,t )

.

(89)

Finally, we look for bounds on the uncertainty. Using the
left pseudo-inverse g† = [0 mL2] of g, we can separate the
uncertainty μ as

�(x, u, t ) ≡ 0, (90)

d (x, u, t ) = g†μ(x, u, t )

= r

L

(
mGL sin(ωt ) sin θ − 2mL2ω cos(ωt )θ̇ − 2 sin(ωt )u

)
.

(91)

Our goal is to look for constants d0 and d1 such that (34)
is satisfied for a reasonable range of periodic excitation r ≤ r
and ω ≤ ω. Since | sin(ωt )| ≤ 1 for any ω and t we have

d1 = 2
r

L
. (92)

Next, we look for the bound d0 on x ∈ ∂S , which is a closed
contour of h(x) = 0 in R

2, see Fig. 2. The bound d0 can be
approximated on this contour using θmax and θ̇max, where θmax

and θ̇max denote the maximum values that state variables get
on this contour. This leads to

d0 = r

L

(
mGL sin θmax + 2mL2ωθ̇max

)
, (93)

cf. (91), where

θmax =
√

− 2c

a1 − a2
2/a3

, θ̇max =
√

− 2c

a3 − a2
2/a1

. (94)

Assuming negligible tilt, that is, a2
2 � a1a3, we have

θmax ≈
√

2c
−a1

and θ̇max ≈
√

2c
−a3

. Furthermore, assuming

ω � G sin θmax
2Lθ̇max

, the second term in d becomes more dominant.
Thus, we can get the approximation:

d0 ≈ 2mLrω

√
2c

−a3
. (95)
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