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Abstract
We prove that a subspace of a real JBW∗-triple is an M-summand if and only if it is a weak∗-
closed triple ideal. As a consequence, M-ideals of real JB∗-triples correspond to norm-closed
triple ideals. As in the setting of complex JB∗-triples, a geometric property is characterized
in purely algebraic terms. This is a newfangled treatment of the classical notion of M-ideal in
the real setting, by a completely new approach necessitated by the unfeasibility of the known
arguments from the setting of complex C∗-algebras and JB∗-triples. The results in this note
also provide a full characterization of all M-ideals in real C∗-algebras, real JB∗-algebras and
real TROs.
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1 Introduction

It seems quite a long time since E.M. Alfsen and E.G. Effros introduced in 1972 the notions
of M- and L-summands and M-ideals of an abstract Banach space [2]. However, we must
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admit, fifty years later, that these objects have not been fully described for some non-trivial
(but natural) structures. Let us begin by fixing the central notions in this note.

Let V be a Banach space. A projection P on V is called an L-projection (respectively, an
M-projection) if

‖x‖ = ‖P(x)‖ + ‖(I d − P)(x)‖, for all x ∈ V

(respectively, ‖v‖ = max{‖Pv‖, ‖(I d − P)(v)‖}, ∀v ∈ V ). The image of an L-projection
(respectively, an M-projection) on V is called an L-summand (respectively, an M-summand).
A closed subspace M of a Banach space V is said to be an M-ideal if its polar, M◦ := {ϕ ∈
V ∗ : ϕ|M ≡ 0}, is an L-summand of V ∗, that is, there is an L-projection Q on V ∗
whose image is M◦. In such a case N := (I d − Q)(V ∗) is a closed subspace of V ∗ with

V ∗ = M◦ �1⊕ N .Moreover, there exists a closed subspace J ofV ∗∗ such thatV ∗∗ = J
�∞⊕ M∗∗,

the direct sum of J and M∗∗ with the �∞-norm, where we identify M∗∗ with the weak∗-
closure of M in V ∗∗. The undoubted attraction of these notions in Banach space theory,
and close disciplines such as approximation theory, has motivated an intensive study of M-
and L-summands in several classes of Banach spaces. M-ideals are, undoubtedly, one of the
most important tools in the isometric theory of Banach spaces. The book by P. Harmand,
D. Werner, and W. Werner [36] is widely mentioned as the reference source on the general
M-ideal theory and their applications, despite the appearance of subsequent works on this
topic.

Though Alfsen and Effros’ original aim was to employ the theory of M-ideals in the
setting of C∗-algebras, ordered Banach spaces and L1-preduals, they defined the central
notions only in terms of the geometry of the Banach space without any algebraic or order
theoretic structure. However, in the case of C∗-algebras, JB∗-algebras and JB∗-triples, M-
ideals can be characterized in purely algebraic terms. More concretely, R.R. Smith and J.D.
Ward showed in [53] that M-ideals in a Banach algebra with identity are subalgebras, which
are in fact ideals if the algebra is commutative, and the M-ideals of a C∗-algebra are precisely
the closed two-sided ideals (see also the historical comments in [36, §V.7]). It is due to Alfsen
and Effros that if Asa is the self-adjoint part of a C∗-algebra A, then the M-ideals in Asa

are just the subspaces of the form I ∩ Asa, with I being a uniformly closed two-sided ideal
in A (see [2, Proposiiton 6.18]). A result by R. Payá, F.J. Pérez and Á. Rodríguez-Palacios
asserts that the weak∗-closed ideals in a JBW∗-algebra correspond to its M-summands, and
consequently, the closed ideals in a JB∗-algebra are in one-to-one correspondence with its
M-ideals (see [46]). In thewider setting of JB∗-triples (see Sect. 2 for detail), G. Horn showed
that every weak∗-closed triple ideal of a JBW∗-triple is an M-summand [37, Theorem 4.2],
while J.T. Barton and R. Timoney concluded in [6, Theorem 3.2] that the closed triple ideals
in a JB∗-triple E are precisely the M-summands of the Banach space E . It is the interplay
between geometric and algebraic structures that increases the interest on these notions.

Attention to real versions of C∗-algebras and JB∗-triples has increased in recent times.
Their importance has grown specially in the study of metrics invariants and properties which
are stable under surjective isometries between certain subsets of these structures, as in Tin-
gley’s problemor in theMazur-Ulamproperty (see, for example, [7, 39, 45, 49]). Surprisingly,
the algebraic characterization of M-ideals in real C∗-algebras and real JB∗-triples as closed
ideals proved resistant until now. Further results towards the development of the theory of
one-sided M-ideals in real structures have been developed by S. Sharma [52, §5]. Recall that
a complete left M-projection on a real operator space (i.e. a closed subspace of B(H), for
some real Hilbert space H ), X , is a projection P on X such that the map νc

P
: X → C2(X),
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x �→
[

P(x)

x − P(x)

]
is a complete isometry. A subspace M of a real operator space X is a right

M-ideal if its bipolar, M◦◦, is the range of a complete left M-projection on X∗∗. A result by
Sharma proves that the right M-ideals in a real C∗-algebra A are precisely the closed right
ideals in A (see [52, Corollary 5.10] and [8] for the result in the setting of C∗-algebras).

The explanation for the lack of a proof in the real setting can be easily understood by
taking a simple look at the tools employed in the complex setting. Let us focus, for example,
on the widest possible setting of complex JB∗-triples. In such a case, for every x in a JB∗-
triple E , the mapping eit L(x,x) (where L(x, x) is the bounded linear operator on E given
by L(x, x)(a) = {x, x, a}) is a surjective linear isometry on E , and hence L(x, x) leaves
invariant each M-ideal in E (cf. [6, Proof of Theorem 3.2] or the arguments in [46, Corollary
4.2] andProposition 3.1 here).However, in the real setting it ismore difficult to find logarithms
of surjective real linear isometries, our available tools reduce to consider exponentials of the
linear operators of the form δ(x, y)(a) = {x, y, a} − {y, x, a} (see Corollary 3.1). There is
another handicap in the real setting. Namely, Kaup’s Banach–Stone theorem, which asserts
that a linear bijection between complex JB∗-triples is a triple isomorphism if and only if it
is an isometry (see [40, Proposition 5.5]), does not necessarily hold for real JB∗-triples (cf.
[16, 19, 25]).

That is, the essential arguments in the setting of complex JB∗-triples are simply unachiev-
able for real JB∗-triples. Quoting K. Goodearl, “The change of coefficient field from C to
R is more than just a cosmetic change.” [34]. It becomes necessary to develop a complete
new strategy to characterize M-ideals in real JB∗-triples. The characterization of M-ideals
for real JB∗-triples is a key result to complete our knowledge on the geometric properties of
these objects, and at the same time, the result opens the path to establish new decompositions
of real JBW∗-triples as the sum of their type I and continuous parts.

This note contains complete new arguments to prove that M-ideals in real C∗-algebras,
real JB∗-algebras (see Corollary 4.1) and real JB∗-triples (cf. Theorem 5.2) are two-sided
ideals and triple ideals, respectively.We actually show in Theorems 4.1 and 5.1 that every M-
summand in a real JBW∗-algebra (respectively, in a real JBW∗-triple) is a weak∗-closed ideal
(respectively, triple ideal). To avoid the inherent difficulties appearing in the setting of real
JB∗-triples, arguments rely on an appropriate application of the algebraic characterization
of the facial structure of the closed unit ball of a real JB∗-triple and the natural connections
with M-decompositions (see Proposition 3.2 and Theorem 3.1). Our efforts to avoid these
obstacles in the real setting have resulted in more-geometric proofs, which in turn could lead
to more general applications. After this note was completed, we also culminated the study of
M-ideals in the case of (possibly non-self-adjoint) real operator algebras and Jordan operator
algebras, where the arguments are necessarily different and complementary (cf. [10]).

2 Preliminaries

According to [40], a complex Banach space E is called a (complex) JB∗-triple when it can be
equipped with a continuous triple product {·, ·, ·} from E × E × E into E , which is conjugate
linear in the middle variable, linear and symmetric in the outer variables and satisfies the
following axioms:

(i) For every x, y, z, a, b ∈ E , we have
{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}};

(Jordan identity)
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(i i) For each a ∈ E , the linear operator x �→ L(a, a)(x) := {a, a, x} is a hermitian operator
on E with non-negative spectrum;

(i i i) ‖{a, a, a}‖ = ‖a‖3 for all a ∈ E . (Gelfand–Naimark axiom)

For all x, y ∈ E , we shall denote by L(x, y) and Q(x, y) the linear and conjugate linear
mappings on E given by

L(x, y)(a) = {x, y, a}, Q(x, y)(a) = {x, a, y} (∀a ∈ E),

respectively. We shall write Q(a) for Q(a, a).
All structures in this note are assumed to be non-trivial. The closed unit ball of a Banach

space X will be denoted by BX .
The theory of JB∗-triples has been developed during the last five decades. Since every

C∗-algebra is a JB∗-triple with triple product

{a, b, c} = 1

2
(ab∗c + cb∗a), (2.1)

many of the basic properties and results in C∗-algebra theory have been pursued in the strictly
wider setting of JB∗-triples. In some cases, the latter setting is more general and complicated
to handle. The class of JB∗-triples also includes all JB∗-algebras with the triple product

{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗. (2.2)

For the basic background on JB∗-algebras the reader is referred to themonographs [3, 15, 35].
Let us recall that every C∗-algebra can be naturally regarded as a JB∗-algebra with respect
to the natural Jordan product defined by a ◦ b := 1

2 (ab + ba).
A JBW∗-triple is a JB∗-triple which is also a dual Banach space. In a clear analogy with

Sakai’s theorem in the case of von Neumann algebras (cf. [51, Theorem 1.7.8]), every JBW∗-
triple admits a unique isometric predual and its triple product is separately weak∗-continuous
(see [6]). The bidual, E∗∗, of each JB∗-triple E is a JBW∗-triple [20].

Y. Friedman and B. Russo proved in [31] that the norm and the triple product of each
JB∗-triple E satisfy the following inequality:

‖{x, y, z}‖ ≤ ‖x‖ ‖y‖ ‖z‖, (x, y, z ∈ E). (2.3)

The result known as Kaup’s Banach–Stone theorem states that a linear bijection between
JB∗-triples is an isometry if and only if it is a triple isomorphism (cf. [40, Proposition 5.5]).

A closed JB∗-subtriple I of a JB∗-triple E (i.e. I is a norm-closed subspace of E and
{I, I, I} ⊆ I) is said to be an ideal or a triple ideal of E if {E, E, I} + {E, I, E} ⊆ I. For
example, the triple ideals of a C∗-algebraA are precisely the (two-sided) ideals ofA (see [37,
§4], [6, §3] and [13, Proposition 1.3] for characterizations and additional details). Along this
note, an element p in a C∗-algebra or in a JB∗-algebra is called a projection if p = p2 = p∗.

Real operator algebras, real C∗-algebras and real von Neumann algebras were studied
in the decades of 1980s and 1990s. K. Goodearl emphasizes in [34] that “The change of
coefficient field from C to R is more than just a cosmetic change.” A real C∗-algebra is a real
Banach ∗-algebra A satisfying ‖aa∗‖ = ‖a‖2 and 1 + aa∗ is invertible in the unitization of
A, for all a ∈ A (in the complex case, the second axiom can be relaxed, see [34, 41]). It is
known that A is a real C∗-algebra if and only if any of the following equivalent statements
holds:

• The complexification of A is a C∗-algebra under an appropriate norm.
• There exists a C∗-algebra A and a conjugate-linear ∗-automorphism τ on A such that

A = Aτ = {x ∈ A : τ(x) = x}.
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• A is isometrically ∗-isomorphic to a uniformly closed ∗-subalgebra of B(H) for some
real Hilbert space H .

Real JB∗-tripleswere originally defined as those real norm-closed JB∗-subtriples of (com-
plex) JB∗-triples (see [38]). Therefore the class of real JB∗-triples contains all complex
JB∗-triples, and all real and complex C∗-algebras. As in the case of real C∗-algebras, real
JB∗-triples can be obtained as real forms of JB∗-triples. More concretely, given a real JB∗-
triple E , there exists a unique (complex) JB∗-triple structure on its algebraic complexification
E = E ⊕ i E, and a conjugation (i.e. a conjugate linear isometry of period 2) τ on E such
that

E = Eτ = {z ∈ E : τ(z) = z},
(see [38]). Let us observe that by Kaup’s Banach–Stone theorem, the mapping τ preserves
triple products. In particular, the real Banach space B(H1, H2) of all bounded real linear
operators between two real, complex, or quaternionic Hilbert spaces is also a real JB∗-
triple with the triple product given in (2.1). Real JB∗-algebras (i.e. real norm-closed JB∗-
subalgebras of JB∗-algebras) are also included in the class of JB∗-triples when they are
equipped with the triple product in (2.2) (cf. [4, 47] and [50, §4]). Clearly, real JB∗-triple
satisfies the Jordan identity, and the inequality

‖{x, y, z}‖ ≤ ‖x‖ ‖y‖ ‖z‖ (2.4)

also holds for the norm and the triple product of any real JB∗-triple.
A real JBW∗-triple is a real JB∗-triple which is additionally a dual Banach space. It is

known that, as in the complex case, each real JBW∗-triple admits a unique isometric predual
and its triple product is separately weak∗-continuous [43].

One handicap of real JB∗-triples is that Kaup’s Banach–Stone theorem is no longer, in
general, valid on these structures. That is, there are surjective linear isometries between
real JB∗-triples which are not triple isomorphisms. The best we can, in general, say is
that any such a mapping preserves the symmetrized triple product given by 〈x, y, z〉 =
1
3 ({x, y, z} + {y, z, x} + {z, x, y}) (cf. [38, Theorem 4.8]). Surjective linear isometries
between real JB∗-triples have been intensively studied, and under certain additional hypothe-
ses on the involved real JB∗-triples (for example, when both of them are real JB∗-algebras)
surjective real linear isometries are triple isomorphisms (cf. [16, 19, 25]).

An element e in a real or complex JB∗-triple E is called a tripotent if {e, e, e} = e. The
symbol U(E) will stand for the set of all tripotents in E . Every tripotent e ∈ E gives rise to
the following decompositions of E

E = E0(e) ⊕ E1(e) ⊕ E2(e) = E0(e) ⊕ E1(e) ⊕ E−1(e),

where Ek(e) := {x ∈ E : L(e, e)x = k
2 x} is a subtriple of E and Ek(e) := {x ∈ E :

Q(e)(x) := {e, x, e} = kx} is a real Banach subspace of E (compare [42, Theorem 3.13]).
The natural projections of E onto Ek(e) and Ek(e) will be denoted by Pk(e) and Pk(e),
respectively. The first decomposition is known as the Peirce decomposition of E relative to e,
and the corresponding summands are called thePeirce-k subspaces. The canonical projection
of E onto Ek(e) is called the Peirce k-projection of E for k = 0, 1, 2. Triple products among
elements in the Peirce subspaces obey certain patterns known as Peirce rules:

{Ei (e), E j (e), Ek(e)} ⊆ Ei− j+k(e), if i, j, k ∈ {0, 1, 2} wi th i + j + k ∈ {0, 1, 2},
and {Ei (e), E j (e),Ek(e)} = {0}, for i − j + k �= 0, 1, 2.

{E0(e), E2(e), E} = {E2(e), E0(e), E} = {0}
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The subspaces in the second decomposition satisfy the following rules:

E2(e) = E1(e) ⊕ E−1(e), E1(e) ⊕ E0(e) = E0(e)

{Ei (e), E j (e), Ek(e)} ⊆ Ei jk(e), whenever i jk �= 0.

If E is a (complex) JB∗-triple and e ∈ U(E), the Peirce-2 subspace E2(e) is a JB∗-algebra
with identity e, Jordan product x◦e y := {x, e, y} and involution x∗e = {e, x, e}. Furthermore,
E−1(e) = iE1(e). In case that E is a real JB∗-triple, E2(e) is a unital real JB∗-algebra with
respect to the given operations, and its self-adjoint part, E1(e), is a JB-algebra.

All Peirce projections are contractive (i.e. ‖Pk(e)‖ ≤ 1 for all k = 0, 1, 2, see [30,
Corollary 1.2(a)]). The algebraic expressions defining Peirce projections read as follows:
P2(e) = Q(e)2, P1(e) = 2(L(e, e) − Q(e)2), P0(e) = I d − P1(e) − P2(e) = I d −
2 L(e, e) + Q(e)2.

A tripotent e in a real or complex JB∗-triple E is called complete if E0(e) = {0}. We
shall denote by Uc(E) the set of all complete tripotents in E . Another interesting connection
between the algebraic and geometric properties of JB∗-triples asserts that the extreme points
of the closed unit ball of a real or complex JB∗-triple E (∂e (BE ) in short) are precisely the
complete tripotents in E , that is, ∂e (BE ) = Uc(E) (see [11, Lemma 4.1] and [38, Lemma
3.3]). In particular, by the Krein-Milman theorem, every real JBW∗-triple contains a broad
set of complete tripotents.

Tripotents e, v in a real or complex JB∗-triple E are called compatible if the Peirce
projections associated with e and v commute, that is, Pj (e)Pk(v) = Pk(v)Pj (e) for all
j, k ∈ {0, 1, 2}. It is known that if e ∈ E j (v) for some j ∈ {0, 1, 2}, the tripotents e, v are
compatible (cf. [37, (1.10)]). When e and v are compatible we have a simplified joint Peirce
decomposition associated to the pair e, v given by E =

⊕
j,k=0,1,2

(
E j (e)∩ Ek(v)

)
, where

the natural projection of E onto E j,k = E j (e) ∩ Ek(v) is Pj (e)Pk(v) = Pk(v)Pj (e).

2.1 Orthogonality andM-orthogonality

Let x and y be elements in a real or complex JB∗-triple E .We say that x and y are orthogonal
(x ⊥ y in short) if L(x, y) = 0 (see [14, Lemma 1] for additional characterizations). In
particular, two tripotents e and f in E are orthogonal if and only if e ∈ E0( f ). By employing
the notion of orthogonality we can define a partial ordering on U(E) defined by e ≤ v if
and only if v − e ∈ U(E) with v − e ⊥ e (equivalently, e is a projection in the unital JB∗-
algebra E2(v) [30, Lemma 3.3]). Observe that two projections p, q in a real JB∗-algebra A
are orthogonal if and only if p ◦ q = 0.

It is known that any two orthogonal elements x, y in a real JB∗-triple E are geometrically
M-orthogonal (i.e. ‖x ± y‖ = max{‖x‖, ‖y‖}) (see [30, Lemma 1.3(a)]). Let us note that
the reciprocal implication is not, in general, true.

As in the complex setting, a closed real JB∗-subtriple I of a real JB∗-triple E is said to
be an ideal or a triple ideal of E if {E, E, I } + {E, I , E} ⊆ I . We also recall that a closed
subspace I of a real JB∗-algebra A is a (Jordan) ideal of A if I ◦ A ⊆ I . It is known that
triple ideals of A are precisely the Jordan ideals of A, and they are all self-adjoint (see, for
example, the discussion in [33, page 8]).

The above geometric implications are enough to conclude that every triple ideal in a real
JB∗-triple is an M-ideal.
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Remark 2.1 Let I be a triple ideal of a real JB∗-triple E . It follows from the separate weak∗-
continuity of the triple of E∗∗ [43] that I ∗∗ ∼= I

w∗
is a triple ideal of E∗∗. If E denotes the

complex JB∗-triple obtained by complexifying of E , it is known that E∗∗ identifies with the
complexification of E∗∗ (cf. [38, Proof of Lemma 4.2], more details on the dual spaces will
be given in the next subsection). It is easy to check that the complexification of I , I = I ⊕ i I ,
is a triple ideal of E , whose second dual, I∗∗, identified with its weak∗-closure in E∗∗, is a
weak∗-closed ideal of E∗∗. It follows from [37, Theorem 4.2(4) and Lemma 4.4] that I∗∗ is
an M-summand in E∗∗, and hence I ∗∗ is an M-summand in E∗∗. This assures that I is an
M-ideal of E . We have shown that

Every weak∗-closed triple ideal of a real JBW∗-triple
is an M -summand.

(2.5)

Every triple ideal of a real JB∗-triple is an M -ideal. (2.6)

The next technical result is also related to the notion of orthogonality and partial ordering,
when the latter is understood in a wider setting.

Lemma 2.1 ([30, Lemma 1.6] and [29, Lemma 5.1]) Let E be a real (or complex) JB∗-triple.
Suppose e ∈ E is a tripotent and x ∈ E is a norm-one element such that P2(e)(x) = e. Then
we have

x = P2(e)(x) + P0(e)(x) = e + P0(e)(x).

2.2 Orthogonality in the predual space of a real JBW∗-triple

According to the standard terminology, a functional φ in the predual of a (real or complex)
JBW∗-algebra M is said to be faithful if for each a ≥ 0 in M , φ(a) = 0 implies a = 0.

Given a non-zero functional ϕ in the predual of a JBW∗-tripleW and a tripotent e ∈ W , it
is known that ϕ = ϕP2(e) if and only if ‖ϕ‖ = ‖ϕ|W2(e)‖ [30, Proposition 1]). Furthermore,
by [30, Proposition 2], there exists a unique tripotent e = s(ϕ) ∈ W (called the support
tripotent of ϕ, and denoted by s(ϕ)) satisfying ϕ = ϕP2(e), and ϕ|W2(e) is a faithful normal
positive functional on the (complex) JBW∗-algebra W2(e).

Given φ and ψ in W∗, we say that φ and ψ are orthogonal (φ ⊥ ψ) if their support
tripotents are orthogonal. Elements x, y in a Banach space X are said to be L-orthogonal
(x⊥L y in short) if ‖x ± y‖ = ‖x‖ + ‖y‖. Given two subsets S1 and S2 we write S1 ⊥L S2
if and only if x ⊥L y for all x ∈ S1 and y ∈ S2.

In the predual of a complex JBW∗-tripleW (algebraic) orthogonality is equivalent to geo-
metric L-orthogonality, that is, for any ϕ, φ ∈ W∗ we have φ⊥Lψ if and only if s(φ)⊥s(ψ)

(see [32, Lemma 2.3] and [24, Theorem 5.4 and Lemma 5.5]).
The setting of real JBW∗-triples deserves an independent treatment. First, suppose that W

is a real JBW∗-triple regarded as a real form of a complex JBW∗-tripleW , that is, W = Wτ ,
where τ is a period-2 conjugate linear isometry onW . Since τ must beweak∗-continuous (see
[43, Proposition 2.3]), the assignment ϕ �→ τ 
, with τ 
(ϕ)(x) := ϕ(τ(x)) defines another
period-2 conjugate linear isometry on W∗. For each φ ∈ (W∗)τ



we have φ(W ) ⊆ R. It

is easy to see that the mapping φ ∈ (W∗)τ

 → φ|W ∈ W∗ is a surjective linear isometry

between the corresponding spaces (cf. [23, 43]).
Given φ in W∗ and a tripotent e ∈ W such that φ(e) = 1 = ‖φ‖ = 1, then φ = φP1(e)

(see [48, Lemma 2.7]). Furthermore, since φ|W2(e) is a normal state of the real JBW∗-algebra
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W2(e) we also have

φ(x) = φP2(e)(x) = φP1(e)(x) = φ{e, x, e} = φ
(
P2(e)(x)∗e

)
, (2.7)

for all x ∈ W . Actually, if we regardφ as a τ 
-symmetric functional inW∗, it follows from the
uniqueness of the support tripotent of φ in W that τ(s(φ)) = s(φ) ∈ W = Wτ . Therefore,
s(φ) will be called the support tripotent of φ in W . Actually s(φ) is the unique tripotent in
W such that φ = φP1(e) and φ|W 1(e) is a faithful normal state on W 1(e).

Since the second dual of a real JB∗-triple is a real JBW∗-triple [38, Lemma 4.2], all the
previous considerations hold for the dual space of every real JB∗-triple.

The next lemma is stated in [5] for functionals in the dual space of a real JB∗-triple but
the arguments remain valid for predual spaces of real JBW∗-triples.

Lemma 2.2 [5, Lemma 3.6] Let φ,ψ be normal functionals in the predual of a real JBW∗-
triple W . Then φ and ψ are L-orthogonal if and only if they are orthogonal in W∗, that is,
φ⊥Lψ if and only if s(φ)⊥s(ψ).

2.3 Facial structure of the closed unit ball

Let F and C be convex subsets of a real or complex Banach space X with F ⊆ C . We say
that F is a face of C if for any x1, x2 ∈ C and t ∈ (0, 1), the condition (t x1 + (1− t)x2) ∈ F
implies that x1, x2 ∈ F . An interesting case appears when C is the closed unit ball of X .
According to this notation, a point x0 ∈ BX is an extreme point of BX if and only if the set
{x0} is a face of BX . The facial structure of the closed unit ball of certain Banach spaces has
been intensively studied and completely described in the following cases:

• Weak∗-closed faces of the closed unit ball of a JBW∗-triple and norm-closed faces of
the closed unit ball of its (isometrically unique) predual space (C.M. Edwards and G.T.
Rüttimann [22]).

• Norm-closed faces of the closed unit ball of a C∗-algebra and weak∗-closed faces of
the closed unit ball of its dual space (C.A. Akemann and G.K. Pedersen [1]). They also
rediscovered the result of C.M. Edwards and G.T. Rüttimann in the case of von Neumann
algebras, which are particular examples of JBW∗-triples.

• Norm-closed faces of the closed unit ball of a JB∗-triple (C.M. Edwards, F.J. Fernández-
Polo, C. Hoskin, and A.M. Peralta [21]), and weak∗-closed faces of the closed unit ball
of its dual space (F.J. Fernández-Polo and A.M. Peralta [28]).

• Weak∗-closed faces of the closed unit ball of a real JBW∗-triple and norm-closed faces of
the closed unit ball of its (isometrically unique) predual space (C.M. Edwards and G.T.
Rüttimann [23]).

• Weak∗-closed faces of the closed unit ball of a JBW-algebra and norm-closed faces of
the closed unit ball of its (isometrically unique) predual space (M. Neal [44]).

• Norm-closed faces of the closed unit ball of a real JB∗-triple and weak∗-closed faces of
the closed unit ball of its dual space (M. Cueto and A.M. Peralta [17]).

The usefulness of the previous studies relies on the characterization of norm-closed faces
of the closed unit ball (a purely geometric property) in algebraic terms thanks to the tripotent
elements in the associated real or complex JB∗-triple. For our purposes in this note we recall
the concrete statement in the case of norm-closed faces of the closed unit ball of the predual
of a real JBW∗-triple.
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Let us first fix some of the standard notation (see [17, 21–23]). Let V be a Banach space.
For each couple of subsets A ⊆ BV and B ⊆ BV ∗ , we set

A′ = {ϕ ∈ BV ∗ : ϕ(x) = 1 ∀x ∈ A}, B′ = {x ∈ BV : ϕ(x) = 1 ∀ϕ ∈ B}.
Obviously, A′ is a norm-closed face of BV ∗ and B′ is a weak∗-closed face of BV . We say that
F is a norm-semi-exposed face of BV (respectively, G is a weak∗-semi-exposed face of BV ∗ )
if F = (F ′)′ (respectively, G = (G ′)′). It is known that the mappings F �→ F ′ and G �→ G ′
are anti-order isomorphisms between the complete lattices Sn(BV ), of norm-semi-exposed
faces of BV , and Sw∗(BV ∗), of weak∗-semi-exposed faces of BV ∗ , and are inverses of each
other.

WhenW is a real JBW∗-triplewith predualW∗, the norm-closed faces inBW∗ are described
in the following result due to Edwards and Rüttimann.

Theorem 2.1 [23, Theorem 3.7] Let W be a real JBW∗-triple. Then every norm-closed proper
face of BW∗ is norm-semi-exposed, and the mapping u �→ {u}′ is an order isomorphism from
the set U(W )\{0} of all non-zero tripotents in W onto the complete lattice Fn(BW∗) of
norm-closed proper faces of BW∗ .

We state next some results related to the facial structure of the closed unit ball of a real
JBW∗-triple.

Lemma 2.3 Let W be a real JB∗-triple. Suppose x ∈ W with ‖x‖ = 1 and v is a tripotent in
W such that P1(v)(x) = v. Then x = v+ P0(v)(x). Consequently, if W is a real JBW∗-triple
and {v}′ ⊆ {x}′ , then we also have x = v + P0(v)(x).

Proof We can clearly assume that v is non-zero. Suppose first that v = P1(v)(x). Let W
denote the (complex) JBW∗-triple obtained by complexifying W . ClearlyW2(v) is a JBW∗-
algebra with unit v and contains the element x2 := P2(v)(x), whose self-adjoint part is
1
2 (x2 + x∗v

2 ) = P1(v)(x) = v. Clearly, x2 has norm-one. Since, by the Shirshov-Cohn
theorem [35, Theorem 2.4.14], the JB∗-subalgebra of W2(v) generated by x2 and v, as the
unit element ofW2(v), is a JB∗-subalgebra of a C∗-algebra A (we can further assume that v
is the unit of A), we can suppose that x2 is a norm-one element in the unital C∗-algebra A
whose self-adjoint part is 1. The product of A is denoted by juxtaposition and the involution
by ∗. If we write x2 = 1 + ik, with k self-adjoint, we have

1 = ‖x2‖2 = ‖x2x∗
2‖ = ‖1 + k2‖,

which implies that k = 0, and hence P2(v)(x) = x2 = 1 = v. Lemma 2.1 implies that
x = v + P0(v)(x).

For the second statement, we observe that W 1(v) is a real JBW-algebra (just apply that,
by the separate weak∗-continuity of the triple product of W , the projections Pj (v) and Pk(v)

are weak∗-continuous). Observe that {v}′ is nothing but the set of all normal states of this
JBW-algebra. By assumptions and [48, Lemma 2.7], for each ϕ ∈ {v}′ we have

ϕ(v − P1(v)(x)) = ϕP1(v)(v − x) = ϕ(v − x) = 0.

Since the normal states of a JBW-algebra separate the points [35, §4], we derive that v =
P1(v)(x). It follows from the first part of the proof that x = v + P0(v)(x). ��

We shall also need for later purposes the next version of [24, Lemma 5.5] in the setting
of real JBW∗-triples.
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Lemma 2.4 Let v and w be tripotents in a real JBW∗-triple W . Then v ⊥ w if and only if
{v}′ ⊥L {w}′ in W∗.

Proof Assume first that v ⊥ w, then it clearly follows that for each φ ∈ {v}′ and ψ ∈ {w}′ ,
by the definition of support tripotents we have s(φ) ≤ v and s(ψ) ≤ w. Since v and w are
orthogonal, it follows from the properties of the partial order that s(φ) ⊥ s(ψ), and thus
φ ⊥L ψ by Lemma 2.2.

Suppose now that {v}′ = {v}W∗
′ ⊥L {w}′ = {w}W∗

′ in W∗. As we commented before, if W
is a complex JBW∗-triple the conclusion was obtained in [24, Lemma 5.5]. LetW denote the
complexification of W , and let τ be a conjugate linear isometry of period-2 onW satisfying
W = Wτ and W∗ = (W∗)τ



(see the explanation in page 8).

If v �⊥ w in W , then v �⊥ w in W (actually both statements are equivalent). By applying
[24, Lemma 5.5] we deduce that {v}W∗

′ �⊥L {w}W∗
′ . Therefore, there exist ϕ1 ∈ {v}W∗

′ and

ϕ2 ∈ {w}W∗
′ such that ‖ϕ1 + σϕ2‖ < 2 for some σ ∈ {±1}. Since τ(v) = v and τ(w) = w,

it is not hard to see that τ 
(ϕ1) ∈ {v}W∗
′ and τ 
(ϕ2) ∈ {w}W∗

′ , and thus ϕ1+τ 
(ϕ1)
2 ∈ {v}W∗

′

and ϕ2+τ 
(ϕ2)
2 ∈ {w}W∗

′ . We can also check that

∥∥∥∥ϕ1 + τ 
(ϕ1)

2
+ σ

ϕ2 + τ 
(ϕ2)

2

∥∥∥∥ ≤
∥∥∥∥ϕ1 + σϕ2

2

∥∥∥∥ +
∥∥∥∥τ 


(
ϕ1 + σϕ2

2

)∥∥∥∥ < 2,

which contradicts that {v}W∗
′ ⊥L {w}W∗

′ . ��

3 Facial structure in connection withM-summands of real JBW∗-triples

We begin with a general technical result which is probably part of the folklore on M-ideals
in Banach spaces, but we do not know an explicit proof in the setting of real Banach spaces.

Henceforth, given a subspace M of a Banach space V , we shall write M◦ for its polar in
V ∗, that is, M◦ = {ϕ ∈ V ∗ : ϕ|M ≡ 0}. If Y is a subspace of V ∗, the symbol Y◦ will stand
for its prepolar in V given by Y◦ = {x ∈ V : ϕ(x) = 0, ∀ϕ ∈ Y }.

Proposition 3.1 Let V and X be real (or complex) Banach spaces. Suppose M̃ and Ñ are
closed subspaces of X such that X = M̃ ⊕�1 Ñ . Let R : X → X be a bounded linear operator
satisfying that the mapping et R : X → X is a surjective linear isometry for all t ∈ R.

Then R
(

M̃
)

⊆ M̃, R
(

Ñ
)

⊆ Ñ , R∗
(

M̃◦
)

⊆ M̃◦ and R∗
(

Ñ ◦
)

⊆ Ñ ◦. Consequently, if

D : V → V is a bounded linear operator such that et D : V → V is a surjective linear
isometry for all t ∈ R and M ⊆ V is an M-ideal, we have D(M) ⊆ M.

Proof Let Q denote the L-projection of X onto M̃ . It follows from this fact and the assump-
tions that et R Qe−t R is also an L-projection on X . A classical result by Cunningham (see
[18, Lemma 2.2]) proves that all L-projections commute, and thus we have

[et R Qe−t R, Q] = 0.

By considering the coefficient of t in the power series of the left hand side term, we obtain
RQ − Q RQ − Q RQ + Q R = [RQ − Q R, Q] = 0, equivalently,

RQ + Q R = 2Q RQ.
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Multiplying by Q on the right and left hand side of this equation, respectively, we obtain

RQ = Q RQ = Q R,

which, in particular, implies that R(M̃) ⊆ M̃, R(Ñ ) ⊆ Ñ , R∗
(

M̃◦
)

⊆ M̃◦ and R∗
(

Ñ ◦
)

⊆
Ñ ◦.

For thefinal statement suppose that M is an M-ideal ofV . Then there exists an L-projection
Q on V ∗ such that Q(V ∗) = M◦ and

V ∗ = M◦ ⊕�1 (I d − Q)(V ∗).

The transpose of D, D∗, is a linear and continuous map on V ∗ with et D∗ = (
et D

)∗
being

a surjective linear isometry on V ∗. The conclusion in the first statement with R = D∗ and
X = V ∗ assures that D∗(M◦) ⊆ M◦, D∗∗(M◦◦) ⊆ M◦◦, and thus D(M) ⊆ M . ��
Remark 3.1 Suppose W is a real JBW∗-triple and M and N are two M-summands of W
with W = M ⊕�∞ N . Then M and N are weak∗-closed. Indeed, let Q denote the projection
of W onto M . Then, by the hypotheses, the mapping x �→ T (x) := Q(x) − (I d − Q)(x)

(x ∈ W ) is a surjective real linear isometry on W . Proposition 2.3 in [43] implies that T is
weak∗-continuous, and hence the statement is clear.

For any two elements a, b in a real JB∗-triple E , the symbol δ(a, b) will stand for the
(bounded) linear operator on E defined by δ(a, b) = L(a, b) − L(b, a).

Corollary 3.1 Let E be a real or complex JB∗-triple. Suppose M is an M-ideal of E. Then

δ(a, b)(M) ⊆ M for every a, b ∈ E . (3.1)

In particular, if M is an M-summand of a real JBW∗-triple W , we have δ(a, b)(M) ⊆ M for
all a, b ∈ W .

Proof It is known, and easily deduced from the Jordan identity and the continuity of the
triple product (2.3), that, for any a, b ∈ E, the mapping δ(a, b) = L(a, b) − L(b, a) is a
continuous triple derivation. This assures that etδ is a surjective linear isometry for all t ∈ R

(cf. [38, Corollary 4.8]). Proposition 3.1 gives the desired statement. ��
The geometric core of our arguments is presented in the next result.

Proposition 3.2 Let e be a tripotent in a real JBW∗-triple W . Suppose additionally that M
and N are two M-summands of W with W = M ⊕�∞ N. Then the sets

F M
e = M◦ ∩ {e}′ and F N

e = N◦ ∩ {e}′

are two norm-closed faces of BW∗ satisfying:

(a) F M
e ⊥L F N

e .
(b) conv(F M

e ∪ F N
e ) = {e}′ .

(c) There exist two unique tripotents v and w in W satisfying v ⊥ w, F N
e = N◦ ∩{e}′ = {v}′

and F M
e = M◦ ∩ {e}′ = {w}′ .

Proof Under the hypotheses of the proposition M and N are weak∗-closed and W∗ = M◦⊕�1

N◦ (cf. Remark 3.1). We can clearly assume that all the involved summands are non-zero.
Let Q denote the natural L-projection of W∗ onto M◦.
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We shall first show that F M
e and F N

e are two norm-closed faces of BW∗ . We shall only
prove the desired statement for F M

e , the case of F N
e follows by similar arguments. Take

φ1, φ2 ∈ BW∗ and t ∈ (0, 1) such that tφ1 + (1− t)φ2 = ϕ ∈ F M
e . Obviously, φ1, φ2 ∈ {e}′

since {e}′ is a face of BW∗ . By applying the projection Q we get

tφ1 + (1 − t)φ2 = ϕ = Q(tφ1 + (1 − t)φ2) = t Q(φ1) + (1 − t)Q(φ2).

Evaluating the previous identity at the point e we deduce that

tφ1(e) + (1 − t)φ2(e) = 1 = t Q(φ1)(e) + (1 − t)Q(φ2)(e).

Hence, Q(φ j )(e) = ‖Q(φ j )‖ = 1, for all j = 1, 2. Note that

1 = ‖φ j‖ = ‖Q(φ j )‖ + ‖(I d − Q)(φ j )‖ = 1 + ‖(I d − Q)(φ j )‖ (∀ j = 1, 2).

Thus φ1, φ2 ∈ F M
e . F M

e is norm-closed because it is the intersection of two norm-closed
sets.

Take now ψ ∈ {e}′ . Observe that ψ = Q(ψ) + (I d − Q)(ψ), where Q(ψ) ∈ M◦ and
(I d − Q)(ψ) ∈ N◦. To avoid trivialities we can assume that both functionals, Q(ψ) and
(I d − Q)(ψ) are non-zero. Since Q is an L-projection, we have

1 = ‖ψ‖ = ‖Q(ψ)‖ + ‖(I d − Q)(ψ)‖.
Set ψ1 = ‖Q(ψ)‖−1Q(ψ) and ψ2 = ‖(I d − Q)(ψ)‖−1(I d − Q)(ψ), then,

ψ = ‖Q(ψ)‖ψ1 + ‖(I d − Q)(ψ)‖ψ2.

Therefore, 1 = ψ(e) = ‖Q(ψ)‖ψ1(e)+‖(I d − Q)(ψ)‖ψ2(e) with 1 = ‖Q(ψ)‖+‖(I d −
Q)(ψ)‖, which implies that ψ1(e) = ψ2(e) = 1. Thus, ψ1 ∈ M◦ ∩ {e}′ = F M

e and
ψ2 ∈ N◦ ∩ {e}′ = F N

e , and we have further shown that conv(F M
e ∪ F N

e ) = {e}′ .
Statement (a) follows straightforwardly from the facts F M

e ⊆ M◦, F N
e ⊆ N◦, and

W∗ = M◦ ⊕�1 N◦.
Finally, if we apply Theorem 2.1 (cf. [23, Theorem 3.7]) to the norm-closed faces F M

e
and F N

e , we deduce the existence of two tripotents v and w in W satisfying F M
e = {v}′ and

F N
e = {w}′ . Since by (a), F M

e = {v}′ ⊥L F N
e = {w}′ , Lemma 2.4 implies that v ⊥ w. ��

Let v be a non-zero tripotent in a real JBW∗-triple W . Since F = Rv is a JBW∗-subtriple
of W and we can easily find a norm-one functional φ ∈ F∗ with φ(v) = 1, [12, Corollary]
assures the existence of a norm-preserving extension of φ to a functional in W∗. Well, by
employing this property, or by Theorem 2.1 we have {v}′ �= ∅.

Recall that the complete tripotents in a real JB∗-triple E coincide with the extreme points
of its closed unit ball BE , that is, Uc(E) = ∂e(BE ) (see [38, Lemma 3.3]).

Theorem 3.1 Let W be a real JBW∗-triple. Suppose additionally that M and N are two non-
zero M-summands of W with W = M ⊕�∞ N, and let P denote the natural projection of
W onto M. Then for each complete tripotent (equivalently, each extreme point of the closed
unit ball of W ) e in W , the elements P(e) and (I d − P)(e) are two orthogonal non-zero
tripotents in W . Moreover, P(e) = v ∈ ∂e (BM ) and (I d − P)(e) = w ∈ ∂e (BN ) .

Proof Observe that e = P(e)+(I d − P)(e)with P(e) ⊥M (I d − P)(e). Let v andw denote
the tripotents given by Proposition 3.2(c). Since M and N are non-trivial, e ∈ ∂e (BW ) and
W = M ⊕�∞ N it follows that ‖P(e)‖ = ‖(I d − P)(e)‖ = 1.

Claim 1: e = v + w.
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Indeed, if v = 0, we have F N
e = N◦ ∩ {e}′ = {v}′ = ∅, and hence {w}′ = F M

e =
M◦ ∩ {e}′ = {e}′ . Theorem 2.1 proves that e = w. Similarly, if w = 0 we get e = v.
We can therefore assume that v,w �= 0, and hence the norm-closed faces {v}′ and {w}′ are
non-trivial.

On the one hand, since {v}′ = F N
e ⊆ {e}′ and {w}′ = F M

e ⊆ {e}′ , it follows that v ≤ e
and w ≤ e (cf. Theorem 2.1), and thus v + w ≤ e.

On the other hand, thanks to Proposition 3.2(b), {e}′ = conv(F N
e ∪ F M

e ) = conv({v}′ ∪
{w}′ ). Givenψ ∈ {e}′ , there exist a real number t ∈ [0, 1], φ1 ∈ F N

e = {v}′ and φ2 ∈ F M
e =

{w}′ such that ψ = tφ1 + (1− t)φ2. Hence, ψ(v +w) = tφ1(v +w)+ (1− t)φ2(v +w) =
tφ1(v)+ (1− t)φ2(w) = 1, where we applied that v and w are orthogonal. The arbitrariness
of ψ ∈ {e}′ implies that {e}′ ⊆ {v + w}′ , and thus e ≤ v + w. Therefore e = v + w.

Claim 2: P(e) = v and (I d − P)(e) = w.
For each φ ∈ {w}′ = {e}′ ∩ M◦, we have φ |M≡ 0 and ‖φ‖ = 1 = φ(w) = φ(e).

It then follows that φ((I d − P)(e)) = φ(e) = 1 as P(e) ∈ M . This proves that {w}′ ⊆
{(I d − P)(e)}′ . It follows from Lemma 2.3 that

(I d − P)(e) = w + x0

with x0 = P0(w)((I d − P)(e)) ∈ W0(w).
Similarly, from {v}′ = {e}′ ∩ N◦, we get {v}′ ⊆ {P(e)}′ and Lemma 2.3 proves that

P(e) = v + y0

with y0 = P0(v)(P(e)) ∈ W0(v). Combining the previous two identities we conclude that

e = v + w = P(e) + (I d − P)(e) = v + y0 + w + x0.

Since e is complete, W0(e) = {0} and W = W2(e) ⊕ W1(e). We know from Claim 1 that
v+w = e = v+y0+w+x0, and hence x0+y0 = 0with x0 ∈ W0(w) and y0 ∈ W0(v). Since
v ⊥ w, the Peirce projections associated with v and w commute, and hence, Pj (v)Pk(w) =
Pk(w)Pj (v) for all j, k ∈ {0, 1, 2}. Then, by applying P0(w) at both sides, and noting that
P0(w)(y0) = P0(w)P0(v)P(e) = P0(v)P0(w)P(e) ∈ W0(w)∩W0(v) ⊆ W0(v+w) = {0},
we deduce that

P0(w)(x0) + P0(w)(y0) = x0 + 0 = 0.

We have therefore shown that x0 = y0 = 0, and thus P(e) = v and (I d − P)(e) = w are
two orthogonal tripotents in W .

Claim 3: P(e) = v ∈ ∂e(BM ) and (I d − P)(e) = w ∈ ∂e(BN ).
We shall only prove that P(e) ∈ ∂e(BM ), the other statement follows by analogous

arguments. Suppose, on the contrary, that there are two different elements x, y ∈ BM and
t ∈ (0, 1) such that P(e) = t x + (1 − t)y. Clearly, x + (I d − P)(e) = x + w and
y + (I d − P)(e) = y + w both lie in BW because (I d − P)(e) = w has norm-one and
W = M ⊕�∞ N . The identity

t(x + (I d − P)(e)) + (1 − t)(y + (I d − P)(e)) = e,

contradicts that e is a complete tripotent in W . ��

The previous proposition admits the following interesting corollary which proves an alge-
braic property of the extreme points of the closed unit balls of any non-trivial M-summands
in a real JBW∗-triple.
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Corollary 3.2 Let W be a real JBW∗-triple. Suppose additionally that M and N are two
non-trivial M-summands of W with W = M ⊕�∞ N. Suppose we take v ∈ ∂e(BM ) and
w ∈ ∂e(BN ), then v and w are two orthogonal tripotents in W and v ± w is a complete
tripotent in W .

Proof It is well known that v + w ∈ ∂e(BW ) = ∂e(BM )
�∞⊕ ∂e(BN ). It immediately follows

fromTheorem 3.1 that P(v+w) = v and (I d− P)(v+w) = w are two orthogonal tripotents
in W . ��

The next observation will also play a key role in our arguments.

Corollary 3.3 Let W be a real JBW∗-triple. Suppose additionally that M and N are two
M-summands of W with W = M ⊕�∞ N, and let P denote the natural projection of W onto
M. Let e ∈ W be a complete tripotent (equivalently, an extreme point of the closed unit ball
of W ). Then P(e) = 0 implies that M = {0} and (I d − P)(e) = 0 implies N = {0}.
Proof If M, N �= {0}, Theorem 3.1 implies that ‖P(e)‖ = ‖(I d − P)(e)‖ = 1, which
contradicts the corresponding assumption. ��

4 Characterization ofM-ideals in real JB∗-algebras

The setting of real JB∗-algebras offers some more favourable conditions to understand M-
ideals, and it is worth to be considered by itself. Recall that every real JB∗-algebra is a real
JB∗-triple with respect to the triple product defined in (2.2). In particular all results in the
previous section apply in this setting.More concretely, let A be a real JBW∗-algebra with unit
denoted by 1, and denote by Askew and Asa , the set of all skew and self-adjoint elements in
A, respectively. Suppose that M and N are two M-summands of A with A = M ⊕�∞ N (note
that M and N must be weak∗-closed, see Remark 3.1). Let P stand for the natural projection
of A onto M . Since 1 is a complete tripotent in A, by Proposition 3.2 and Theorem 3.1, P(1)
and (I d − P)(1) are two orthogonal tripotents in A and

{1}′ = conv
({P(1)}′ ∪ {(I d − P)(1)}′

)
.

The particular meaning of the partial ordering among tripotents in A implies that p = P(1)
and q = (I d − P)(1) are in fact projections in A with p + q = 1.

Recall that the set of all normal states of A is precisely the set

{1}′ = {ϕ ∈ A∗ : ϕ ≥ 0, ‖ϕ‖ = 1} = {ϕ ∈ A∗ : ϕ(1) = ‖ϕ‖ = 1},
which coincides with the set of all normal states of the JBW-algebra Asa . Contrary to the
complex case, the set {1}′ does not separate the points of A, however it is a norming set for
Asa , because the latter is a JBW-algebra (cf. [3, Corollary 2.17]).

According to the usual notation in Jordan algebras, for every x, a, b ∈ A, we denote by
Ua,b the linear mapping on A given by Ua,b(x) = {a, x∗, b}, we simply write Ua for Ua,a .

Proposition 4.1 Let A be a real JBW∗-algebra with unit 1. Suppose that M and N are two
M-summands of A with A = M ⊕�∞ N. Let P be the projection from A onto M, and let
p and q denote the orthogonal projections P(1) and (I d − P)(1), respectively. Then the
following statements hold:

(a) k ◦ M ⊆ M and k ◦ N ⊆ N for every k ∈ Askew.
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(b) p ◦ m+m∗
2 = m+m∗

2 and q ◦ m+m∗
2 = 0 for every m ∈ M.

(c) q ◦ n+n∗
2 = n+n∗

2 and p ◦ n+n∗
2 = 0 for every n ∈ N.

Proof (a) Note that by Corollary 3.1, for any a, b ∈ A, we have δ(a, b)(M) ⊆ M and
δ(a, b)(N ) ⊆ N , where δ(a, b) = L(a, b)− L(b, a). Consequently, for any k ∈ Askew (i.e.,
k = −k∗) and m ∈ M we get

M � δ(k, 1)(m) = {k, 1, m} − {1, k, m} = 2(k ◦ 1) ◦ m = 2k ◦ m,

which implies that k ◦ m = δ(k, 1)
( 1
2m

) ∈ M . Similarly, k ◦ n ∈ N for every n ∈ N .
(b) We claim that for x ∈ A, the condition φ(x) = 0 for every φ ∈ {q}′ implies p ◦ (x +

x∗) = (x + x∗).
Fix an arbitrary ψ ∈ {p}′ . Note that for every z ∈ A, Up(z) = {p, z∗, p} = 2(p ◦ z) ◦

p − p ◦ z. Since ψ ∈ {p}′ , ψ = ψ P1(p) = ψ P2(p) = ψ L(p, p) = ψ L(p, 1) = ψ Q(1)
(cf. [48, Lemma 2.7]), we have

ψ(z) = ψ(p ◦ z) = ψ(Up(z)) = ψ

(
Up

(
z + z∗

2

))

= ψ

(
p ◦ z + z∗

2

)
= ψ

(
z + z∗

2

)
,

for all z ∈ A. This implies, in particular, that

ψ(q ◦ (z + z∗)) = ψ(Up(q ◦ (z + z∗)))
= ψ{p, {q, q, z + z∗}, p} = 0, for all z ∈ A, ψ ∈ {p}′ ,

(4.1)

where to deduce the last equalitywe applied that the (self-adjoint) element {q, q, z+z∗} lies in
A2(q)⊕A1(q), and since p ⊥ q , we derive fromPeirce arithmetic that {p, {q, q, z+z∗}, p} ∈
A0−2+0(q) ⊕ A0−1+0(q) = {0}.

Take now x ∈ A satisfying φ(x) = 0 for every φ ∈ {q}′ . For any ϕ ∈ {1}′ = conv({p}′ ∪
{q}′ ), there exist a real number t ∈ [0, 1], φ ∈ {q}′ andψ ∈ {p}′ such that ϕ = tφ+(1− t)ψ
and hence

ϕ(q ◦ (x + x∗)) = tφ(q ◦ (x + x∗)) + (1 − t)ψ(q ◦ (x + x∗)) = 0,

since, by assumptions, φ(q ◦ (x + x∗)) = φ(x + x∗) = 0, and by (4.1), ψ(q ◦ (x + x∗)) = 0.
Therefore, ϕ((1 − p) ◦ (x + x∗)) = ϕ(q ◦ (x + x∗)) = 0 for all ϕ ∈ {1}′ . Since the normal
states in A (i.e. functionals in {1})′ ) separate the points in Asa , we get (1− p)◦ (x + x∗) = 0,
equivalently p ◦ (x + x∗) = x + x∗. This finishes the proof of the claim.

Take now m ∈ M . By hypotheses, φ(m) = 0 for all φ ∈ {q}′ . Therefore the claims gives
the statement in (b).

(c) The proof of this statement is similar to the one given for (b). ��
For each elementa in a Jordan algebraJ ,we shall denote by Ma the (Jordan)multiplication

operator by a defined by

Ma(x) = a ◦ x, (x ∈ J ).

Elements a and b in J are said to operator commute in J if the multiplication operators Ma

and Mb commute in B(J ), i.e.,

(a ◦ x) ◦ b = a ◦ (x ◦ b), for all x in J .
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The centre of J , Z(J ), is the set of all elements z in J such that z and b operator commute
for every b in J .

We can now establish our main conclusion concerning M-summands of real JBW∗-
algebras.

Theorem 4.1 Let A be a real JBW∗-algebra, and let M be a closed subspace of A. Then M is
an M-summand in A if and only if it is a weak∗-closed (Jordan) ideal of A. Moreover, every
M-summand in A can be written in the form A ◦ p for a unique central projection p in A.

Proof It is known that every weak∗-closed Jordan ideal of a real JBW∗-algebra is an M-
summand (see Remark 2.1 and the comments prior to it).

To prove the necessary condition, let A be a real JBW∗-algebra with unit 1, and let M be an
M-summand in Awhich is the imageof an M-projection P on A. Setting N := (I d−P)(A), it
follows that M and N are weak∗-closed (see Remark 3.1) and A = M ⊕�∞ N . Let us denote
p = P(1) ∈ M and q = (I d − P)(1) ∈ N . We know that p and q are two orthogonal
projections in A satisfying p + q = 1, {1}′ = conv({p}′ ∪ {q}′ ) (see Proposition 3.2 and
Theorem 3.1).
We shall first prove that

p and q are central projections in A. (4.2)

To simplify the notation, fix arbitrarym ∈ M , n ∈ N and denotem = 1
2 (m+m∗)+ 1

2 (m−
m∗) = h + k, n = 1

2 (n + n∗) + 1
2 (n − n∗) = h̃ + k̃, where h, h̃ ∈ Asa and k, k̃ ∈ Askew.

Observe that

p ◦ k = (p ◦ k) ◦ 1 = (p ◦ k) ◦ q + (p ◦ k) ◦ p, (4.3)

and the decomposition is unique. Clearly p ◦ k, k ∈ Askew, and hence it follows from
Proposition 4.1(a) that p ◦k ∈ M , (p ◦k)◦q ∈ N and (p ◦k)◦ p ∈ M . We therefore deduce
from the identity in (4.3) that (p ◦ k) ◦ q = 0. We can similarly obtain (q ◦ k) ◦ p = 0. By
combining this conclusion with Proposition 4.1(b) and (c) we get

(p ◦ m) ◦ q = (p ◦ (h + k)) ◦ q = (p ◦ h) ◦ q + (p ◦ k) ◦ q

= 0 + k ◦ q = 0,

(q ◦ m) ◦ p = (q ◦ h) ◦ p + (q ◦ k) ◦ p = 0, for all m ∈ M .

(4.4)

If in the above arguments we replace m ∈ M with n ∈ N we obtain

(p ◦ n) ◦ q = (q ◦ n) ◦ p = 0, for all n ∈ N . (4.5)

Now, by combining (4.4), (4.5) and A = M ⊕�∞ N we deduce that

(p ◦ a) ◦ q = (q ◦ a) ◦ p = 0, equivalently, Up,q(a) = 0, (4.6)

for all a ∈ A. This implies that

A = U1(A) = Up+q(A) = Up(A) ⊕ Up,q(A) ⊕ Uq(A) = Up(A)
�∞⊕ Uq(A),

and consequently p and q are central projections in A. It is perhaps worth to note that in the

last equality we wrote “
�∞⊕” because p ⊥ q .

Since p and q are central orthogonal projections in A with

A = Up(A)
�∞⊕ Uq(A) = A2(p)

�∞⊕ A2(q),
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the predual of A decomposes in the form

A∗ = (A2(p))∗
�1⊕(A2(q))∗,

that is, P2(p)∗ and P2(q)∗ (i.e. the transposedmaps of the corresponding Pierce 2-projections
associated with p and q restricted to A∗) are L-projections on A∗. Since L-projections on a
real or complex Banach space commute (cf. [18, Lemma 2.2]), we have [P∗, P2(p)∗] = 0 =
[P∗, P2(q)∗] where P∗ is the transposed of P restricted to A∗, and hence

[P, P2(p)] = 0 = [P2(q), P]. (4.7)

In this case, since p and q are central projections, we also have P2(p)(a) = p ◦ a and
P2(q)(a) = q ◦ a, for all a ∈ A. So, it follows from (4.7) that

M � P(p ◦ a) = P P2(p)(a) = P2(p)P(a) = p ◦ P(a) = p ◦ m,

for all a = m + n ∈ A = M ⊕ N . If we we combine this conclusion with Proposition 4.1(a)

and (b) we obtain

M � p ◦ m = p ◦ m + m∗

2
+ p ◦ m − m∗

2
, and p ◦ m − m∗

2
∈ M,

and thus m+m∗
2 = p ◦ m+m∗

2 ∈ M for all m ∈ M . By observing that (by Proposition 4.1(a)

and (b))

M � m = (p + q) ◦ m

= p ◦ m + m∗

2
+ p ◦ m − m∗

2
+ q ◦ m + m∗

2
+ q ◦ m − m∗

2

= p ◦ m + m∗

2
+ p ◦ m − m∗

2
+ 0 + q ◦ m − m∗

2

with p ◦ m+m∗
2 + p ◦ m−m∗

2 ∈ M and q ◦ m−m∗
2 ∈ N , we conclude that q ◦ m−m∗

2 = 0, and
thus q ◦ m = 0 for all m ∈ M . We similarly get p ◦ N = {0}. Both equalities show that

M = p ◦ M = P2(p)(M) ⊆ P2(p)(A) = p ◦ A = p ◦ M + p ◦ N = p ◦ M,

and

N = q ◦ N = P2(q)(M) ⊆ P2(q)(A) = q ◦ A = q ◦ M + q ◦ N = p ◦ N ,

that is M = p ◦ A = P2(p)(A) and N = q ◦ A = P2(q)(A) are two (Jordan) ideals of A.
The uniqueness of p is clear. ��

The description of all M-ideals of a real JB∗-algebra can be now obtained as a corollary.

Corollary 4.1 Let M be a subspace of a real JB∗-algebra A. Then M is an M-ideal of A if
and only if it is a (Jordan) ideal of A.

Proof Suppose M is an M-ideal of A. In this case, there exists an L-projection Q on A∗ whose
image is M◦, and A∗ = M◦ ⊕�1 (I d − P)(A∗). It is known that Q∗ is an M-projection on

A∗∗ and A∗∗ = Q∗(A∗∗) ⊕�∞ (I d − Q)∗(A∗∗) = M
w∗ ⊕�∞ (I d − Q)∗(A∗∗), where M

w∗

denotes the weak∗-closure of M in A∗∗. Theorem 4.1 asserts that M
w∗

is a weak∗-closed
ideal of A∗∗, and in particular, M is an ideal of A.

Finally, every Jordan ideal of A is an M-ideal by Remark 2.1 and the comments prior to
it. ��
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The description of all M-ideals in an arbitrary real C∗-algebra is just a straightforward
consequence of the previous Corollary 4.1 by just observing that every Jordan ideal of a real
C∗-algebra is a two-sided ideal.

Corollary 4.2 Let M be a subspace of a real C∗-algebra A. Then M is an M-ideal of A if
and only if it is a two-sided ideal of A.

5 Main results: characterization ofM-ideals in real JB∗-triples

The goal of this section is to study M-summands of real JBW∗-triples, and as a consequence
to characterize the M-ideals of all real JB∗-triples.

In this section W will be a real JBW∗-triple, M will be an M-summand of W , that is,
W = M ⊕�∞ N , where N is another closed subspace of W (both M and N are automatically
weak∗-closed, see Remark 3.1). We can clearly assume that M and N are both non-trivial.
The symbol P will stand for the M-projection on W whose image is M , and we shall fix
a complete tripotent e in W . By Theorem 3.1 (and Proposition 3.2) the elements v = P(e)
and w = (I d − P)(e) are two orthogonal non-zero tripotents in W with e = v + w,
N◦ ∩ {e}′ = {v}′ ⊥L M◦ ∩ {e}′ = {w}′ , and conv({v}′ ∪ {w}′ ) = {e}′ . Clearly, v and w are
projections in the real JBW∗-algebra W2(e) (and in the JBW-algebra W 1(e)).

For every m ∈ M∗∗ with Peirce decomposition m = P1(e)(m) + P2(e)(m) and
P2(e)(m) = P1(e)(m) + P−1(e)(m), where P1(e)(m) ∈ (W2(e))sa we know that k ∈
(W2(e))skew . A similar decomposition holds for elements in N . We keep this notation in the
rest of this section.

Our first goal is an appropriate extension of Proposition 4.1 and Theorem 4.1.

Lemma 5.1 Let e be a tripotent in a real JB∗-triple E. Then for each k in E−1(e) (i.e. k∗e =
{e, k, e} = −k) we have L(e, k) = −L(k, e) and hence δ(e, k) = 2L(e, k) = −2L(k, e).

Proof Consider any x ∈ E with x = P0(e)(x) + P1(e)(x) + P2(e)(x). By linearity, it
suffices to prove that L(e, k)(Pj (e)(x)) = −L(k, e)(Pj (e)(x)) for all j ∈ {0, 1, 2}. Since
e, k ∈ E2(e) ⊥ E0(e), it follows that L(e, k)(P0(e)(x)) = 0 = −L(k, e)(P0(e)(x)).

Having in mind that e, k, P2(e)(x) ∈ E2(e), and the triple product on E2(e) is uniquely
determined by the Jordan product ◦e and the involution ∗e of the unital real JB∗-algebra
E2(e), we get

L(e, k)(P2(e)(x)) = {e, k, P2(e)(x)} = (e ◦e k∗e ) ◦e P2(e)(x)

+ (P2(e)(x) ◦e k∗e ) ◦e e − (e ◦e P2(e)(x)) ◦e k∗e

= −(e ◦e k) ◦e P2(e)(x) − (P2(e)(x) ◦e k) ◦e e

+ (e ◦e P2(e)(x)) ◦e k

= −(e∗e ◦e k) ◦e P2(e)(x) − (P2(e)(x) ◦e k) ◦e e∗e

+ (e∗e ◦e P2(e)(x)) ◦e k

= −L(k, e)(P2(e)(x)).
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We consider next the Peirce-1 subspace. By the Jordan identity and Peirce arithmetic, we
have

1

2
L(e, k)(P1(e)(x)) = L(e, k){e, e, P1(e)(x)}

= {L(e, k)(e), e, P1(e)(x)} − {e, L(k, e)(e), P1(e)(x)}
+ {e, e, L(e, k)(P1(e)(x))}

= {L(e, k)(e), e, P1(e)(x)} − {e, k, P1(e)(x)}
+ 1

2
L(e, k)(P1(e)(x)).

Since L(e, k)(e) = k∗e = −k = −L(k, e)(e), the above identity shows that

L(e, k)(P1(e)(x)) = −{k, e, P1(e)(x)} = −L(k, e)(P1(e)(x)),

which concludes the proof. ��
Proposition 5.1 Under the assumptions stated at the beginning of this section we have:

(a) L(e, k)(M) = −L(k, e)(M) ⊆ M and L(e, k)(N ) = −L(k, e)(N ) ⊆ N , for every
k ∈ W −1(e).

(b) {P1(e)(m), e, v} = P1(e)(m) and {P1(e)(m), e, w} = 0, for every element m ∈ M.
(c) {P1(e)(n), e, w} = P1(e)(n) and {P1(e)(n), e, v} = 0, for every n ∈ N.
(d) v and w are central projections in W2(e), equivalently,

W1(v) ∩ W1(w) = {0}, or W2(e) = W2(v) ⊕�∞ W2(w).

Proof (a) By combining Lemma 5.1, Corollary 3.1 and the fact that M and N are M-
summands of W , we get

2L(e, k)(M) = −2L(k, e)(M) = δ(e, k)(M) ⊆ M,

2L(e, k)(N ) = −2L(k, e)(N ) = δ(e, k)(M) ⊆ N

(b) Inspired by the arguments we employed in the proof of Proposition 4.1(b), for any
ψ ∈ {w}′ , we define a real linear functional ψw ∈ W∗ given by ψw(x) := ψ{w, e, x} for
any x ∈ W . By observing that

1 = ‖ψ(w)‖ ≤ ‖ψw‖ ≤ ‖ψ‖ = 1,

we have ψw ∈ {w}′ = {e}′ ∩ M◦ and ψw(m) = 0 since m ∈ M . Then,

ψ{w, e, P1(e)(m)} + ψ{w, e, P2(e)(m)} = ψ{w, e, m} = ψw(m) = 0

for all ψ ∈ {w}′ . It follows from ψ ∈ {w}′ ⊆ {e}′ , that ψ = ψ P2(e) = ψ P1(e) (cf. [48,
Lemma 2.7]). Since, by Peirce arithmetic, {w, e, P1(e)(m)} ∈ W1(e), we conclude from the
previous identity that ψ{w, e, P1(e)(m)} = 0. Therefore,

0 = ψw(m) = ψw(P2(e)(m)) = ψw(P1(e)(m))

= ψ(P1(e)(m)) (∀m ∈ M, ψ ∈ {w}′ ),
(5.1)

where the firsrt equalities we applied that ψw ∈ {e}′ and hence ψw = ψw P1(e) = ψw P2(e)
(see [48, Lemma 2.7]). We compute next the values of ψ at an element of the form
{P1(e)(m), v, v}. Concretely, having in mind that ψ ∈ {w}′ we deduce from (2.7) that

ψ{P1(e)(m), v, v} = ψ{w, {P1(e)(m), v, v}, w} = 0, (5.2)
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because, by Peirce arithmetic and the fact that that w ⊥ v and hence w ∈ W0(v), we derive
that

{w, {P1(e)(m), v, v}, w} ∈ {W0(v), W1(v) ⊕ W2(v), W0(v)} = {0}.
Take now φ ∈ {v}′ ⊆ {e}′ . Since φ = φP1(e) = φP2(e) and e = v + w with w ⊥ v, we

derive that

φ{P1(e)(m), e, v} = φ{P1(e)(m), e, e}
= φ

(
P2(e) + 1

2
P1(e)

)
P1(e)(m)

= φP1(e)(m) = φ(m).

(5.3)

Let us recall that {e}′ = conv({v}′ ∪ {w}′ ) (see Theorem 3.1). So, for any ϕ ∈ {e}′ =
conv({v}′ ∪ {w}′ ), there exist a real number t ∈ [0, 1], φ ∈ {v}′ and ψ ∈ {w}′ such that

ϕ = tφ + (1 − t)ψ.

It then follows from (5.3), (5.1), and (5.2) that

ϕ({P1(e)(m), e, v} − P1(e)(m)) = tφ({P1(e)(m), e, v} − P1(e)(m))

+ (1 − t)ψ({P1(e)(m), e, v} − P1(e)(m)})
= (1 − t)ψ{P1(e)(m), e, v}
= (1 − t)ψ{P1(e)(m), v, v} = 0.

By the arbitrariness of ϕ ∈ {e}′ in the previous identity combined with the fact
that {P1(e)(m), e, v} − P1(e)(m) is a self-adjoint elements in W2(e), we conclude
that {P1(e)(m), e, v} − P1(e)(m) = 0. Therefore, {P1(e)(m), e, v} = P1(e)(m), and
{P1(e)(m), e, w} = 0 as desired.

The proof of (c) follows by similar arguments.
(d) Having in mind that P−1(e)(m), {P−1(e)(m), e, v} ∈ W −1(e), the conclusion in

statements (a) and (b) give

M � {P−1(e)(m), e, v} = {{P−1(e)(m), e, v}, e, e}

=
∈M︷ ︸︸ ︷

{{P−1(e)(m), e, v}, e, v} +
∈N︷ ︸︸ ︷

{{P−1(e)(m), e, v}, e, w}
,

which implies that

0 = {{v, e, P−1(e)(m)}, e, w} = (
P−1(e)(m) ◦e v

) ◦e w. (5.4)

We can similarly obtain that
(
P−1(e)(m) ◦e w

) ◦e v = {{w, e, P−1(e)(m)}, e, v} = 0. (5.5)

Similar identities hold when m ∈ M is replaced by any n ∈ N .
The desired conclusion in (d)will follow if we prove that {v, W , w} = {v, W2(e), w} = 0

(the first equality follows from Peirce arithmetic). Since W = M ⊕�∞ N , it suffices to show
that {v, M, w} = {v, N , w} = 0. For m ∈ M we have

{v, m, w} = {v, P1(e)(m), w} + {v, P1(e)(m), w} + {v, P−1(e)(m), w}, (5.6)
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with {v, P1(e)(m), w} = 0 by Peirce arithmetic. Note that v,w, P1(e)(m) and P−1(e)(m)

all lie in the real JBW∗-algebra W2(e), and hence by (b), v ⊥ w, (5.4) and (5.5) we arrive at

{v, P1(e)(m), w} + {v, P−1(e)(m), w} = (v ◦e P1(e)(m)) ◦e w

+ (w ◦e P1(e)(m)) ◦e v − (v ◦e w) ◦ P1(e)(m) − (v ◦e P−1(e)(m)) ◦e w

− (w ◦e P−1(e)(m)) ◦e v + (v ◦e w) ◦e P−1(e)(m) = 0.

Therefore, back to (5.6), we conclude that {v, m, w} = 0 for every m ∈ M . The proof of
{v, N , w} = 0 follows by very close arguments.

Wehave therefore shown that {v, W , w} = {0},which in particular implies that Q(v,w) =
0. Recall that w and v are two orthogonal projections in W2(e) with v + w = e (and hence
two compatible tripotents in W ) and the well known decomposition

W2(e) = W2(v) ⊕ W2(w) ⊕
(

W1(v) ∩ W1(w)
)
,

with W2(v) ⊆ W0(w) and W2(w) ⊆ W0(v). Since

P2(e) = Q(e)2 = Q(v + w)2 = (Q(v) + Q(w) + 2Q(v,w))2 = (Q(v) + Q(w))2

= Q(v)2 + Q(w)2 + Q(v)Q(w) + Q(w)Q(v)

= P2(v) + P2(w),

we obtain W1(v) ∩ W1(w) = {0} and W2(e) = W2(v) ⊕�∞ W2(w). ��
In our last technical step we shall prove that v andw actually induce an M-decomposition

of the whole W .

Proposition 5.2 Under the assumptions stated at the beginning of this section the subspaces
W1,0 = W1(v) ∩ W0(w) and W0,1 = W0(v) ∩ W1(w) are orthogonal in W , and

W = (W1(v) ⊕ W2(v))
�∞⊕ (W1(w) ⊕ W2(w)) .

Moreover, that (P1(v) + P2(v)) and (P1(w) + P2(w)) are two M-projections on W whose
images are the M-summands W1(v)⊕W2(v) and W1(w)⊕W2(w), respectively. Furthermore,
if P denotes the M-projection of W onto the M-summand M, the projections P, (I d − P),

(P1(v) + P2(v)) and (P1(w) + P2(w)) are pairwise commuting.

Proof Let us begin byproving thefirst statement.ByProposition 5.1(d),W2(e) = W2(v)⊕�∞

W2(w) (in particularW1(v)∩W1(w) = {0}). Fixa ∈ W1,0 andb ∈ W0,1.ByPeirce arithmetic

{a, a, b} ∈ W1−1+0(v) ∩ W0−0+1(w) = W0(v) ∩ W1(w) = W0,1, (5.7)

and

{w, b, a} ∈ W0−0+1(v) ∩ W2−1+0(w) = W1(v) ∩ W1(w) = {0}. (5.8)

By assumptions b = 2{w,w, b}, and hence by applying that a ⊥ w, (5.8) and Peirce
arithmetic we arrive at

{a, a, b} = 2{a, a, {w,w, b}} = 2{a, a, L(b, w)(w)}
= 2(L(b, w){a, a, b} − {L(b, w)a, a, b} + {a, L(w, b)a, b})
= 2(L(b, w){a, a, b} − 0 + 0)

= 2L(b, w){a, a, b},
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where by (5.7)

L(b, w){a, a, b} ∈ W0−0+0(v) ∩ W1−2+1(w) = W0(v) ∩ W0(w)

⊆ W0(v + w) = W0(e) = {0}.
Therefore, {a, a, b} = 0, or equivalently a ⊥ b for every a ∈ W1,0 and b ∈ W0,1, that is,
W1,0 ⊥ W0,1.

Under our assumptions and what we have just proved we get

W1(e) = (W0(v) ∩ W1(w)) ⊕�∞ (W1(v) ∩ W0(w)) = W0,1 ⊕�∞ W1,0

(recall that orthogonality implies M-orthogonality [30, Lemma 1.3(a)]).
Since v and w are orthogonal, and thus compatible, the Peirce projections associated with

v and w commute, which implies that

W1(v) =
(

W1(v) ∩ W2(w)
)

⊕
(

W1(v) ∩ W1(w)
)

⊕
(

W1(v) ∩ W0(w)
)

⊆
(

W1(v) ∩ W0(v)
)

⊕ {0} ⊕
(

W1(v) ∩ W0(w)
)

= W1,0 ⊆ W1(v)
,

and similarly W1(w) = W0,1. The last two identities and the first statement assure that
W2(v) ⊕ W1(v) = W2(v) ⊕ W1,0 ⊥ W2(w) ⊕ W0,1 = W2(w) ⊕ W1(w), and thus W2(v) ⊕
W1(v) and W2(w) ⊕ W1(w) are M-orthogonal.

Summarizing all the previous conclusions we deduce that

W = W2(e) ⊕ W1(e) = W2(v) ⊕ W2(w) ⊕ W1(v) ⊕ W1(w)

= (W1(v) ⊕ W2(v))

⊥,�∞⊕
(W1(w) ⊕ W2(w)).

Observe that W (v) = W1(v) ⊕ W2(v) and W (w) = W1(w) ⊕ W2(w) are two orthogonal
weak∗-closed triple ideals of W , whose direct sum is the whole W , the M-projections of
W onto W (v) and W (w) are (P1(v) + P2(v)) and (P1(w) + P2(w)), respectively. The
corresponding predual spaces, W (v)∗ and W (w)∗, are L-summands of W∗ with associated
L-projections (P1(v) + P2(v))∗ and (P1(w) + P2(w))∗, respectively. We apply once again
the mentioned result by Cunningham (cf. [18, Lemma 2.2]) to conclude that P∗ commutes
with (P1(v)+ P2(v))∗ and (P1(w)+ P2(w))∗, and hence P commutes with (P1(v)+ P2(v))

and (P1(w) + P2(w)). ��
Let us recall that the set of all contractive perturbations of a subset S, of the closed unit

ball, BX , of a Banach space X is defined by

cp(S) = cpX (S) := {x ∈ X : ‖x ± s‖ ≤ 1, for all s ∈ S} ⊆ BX .

For each a ∈ BX we write cp(a) for the set cp({a}). The geometric characterization of
tripotents in real or complex JB∗-triples established in [26, Theorem 2.3] asserts that a norm
one element e in a real JB∗-triple E is a tripotent if, and only if, the sets

D1(e) := {y ∈ E : there exists α > 0 with ‖e ± αy‖ = 1}
and

D′
2(e) := {y ∈ E : ‖x + β y‖ = max{1, ‖β y‖} for all β ∈ R}

coincide. It is actually shown in the proofs of [26, Theorems 2.1 and 2.3] that for each tripotent
e in E we have D1(e) = E0(e), which in terms of the set of all contractive perturbations of
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e it can be restated as follows:

cpE ({e}) ⊆ D1(e) ∩ E1 = BE0(e) = {e}⊥ ∩ BE ⊆ cpE ({e}). (5.9)

Thiswas alreadyobserved in the case of complex JB∗-triples,with almost identical arguments,
in [27, identity (6) in page 360].

We are now in a position to state the main result of this paper.

Theorem 5.1 Let M be a closed subspace of a real JBW∗-triple W . Then M is an M-summand
of W if and only if it is a weak∗-closed triple ideal of W . Moreover, every M-summand in W
can be written in the form W2(v) ⊕ W1(v) for a tripotent v in W satisfying W1(v) ⊥ W0(v).

Proof We have seen in Remark 2.1 that every weak∗-triple ideal is an M-summand.
Suppose that M is an M-summand of W . Let P denote the M-projection of W onto

M , and let N = (I d − P)(W ). Then M is weak∗-closed (cf. Remark 3.1). We can clearly
assume that M is non-trivial. By Theorem 3.1 (and Proposition 3.2) the elements v = P(e)
and w = (I d − P)(e) are two orthogonal non-zero tripotents in W with e = v + w. If
we chain the results in Propositions 5.1 and 5.2, we deduce that the real JBW∗-subtriples
W (v) = W1(v) ⊕ W2(v) and W (w) = W1(w) ⊕ W2(w) are two orthogonal weak∗-closed
triple ideals of W , whose direct sum is the whole W . As before, by Cunningham’s result [18,
Lemma 2.2], the projections P, I d − P, (P1(v) + P2(v)) and (P1(w) + P2(w)) pairwise
commute.

Let us consider the real JBW∗-triple W (v) and the subspaces M1 = W (v)∩ M and N1 =
W (v)∩ N . Since the projections P, I d − P, (P1(v)+ P2(v)) and (P1(w)+ P2(w)) pairwise
commute, it can be easily deduced that W (v) = M1 ⊕�∞ N1, that is, M1 and N1 are two M-
summands of W (v). Furthermore, the corresponding M-projections of W (v) onto M1 and N1

are P̃ = P(P1(v)+ P2(v)) and I d − P̃ = (I d − P)(P1(v)+ P2(v)), respectively. Having in
mind that v is a complete tripotent in W (v) with P̃(v) = P(P1(v) + P2(v))(v) = P(v) = v

and (I d − P̃)(v) = (I d − P)(P1(v) + P2(v))(v) = 0, Corollary 3.3 implies that N1 = {0}.
Consequently, N ⊆ W (w) and W (v) = M1 = W (v) ∩ M ⊆ M . We can similarly obtain
that M ∩ W (w) = {0}, and thus M ⊆ W (v) and N ⊆ W (w). Therefore N = W (w) and
M = W (v), which gives the desired result.

Alternatively, if there exists a non-zero element y ∈ N1 = W (v) ∩ N ⊆ W (u),
which can assumed to have norm-one, by observing that v is a complete tripotent in
W (v) (equivalently, (W (v))0 (v) = {0}), v = P(e) ∈ M , and W = M ⊕�∞ N , we
get ‖y ± v‖ = max{‖y‖, ‖v‖} = 1. By (5.9) (cf. [27, identity (6) in page 360]), we
obtain that y ∈ cp

W (v)
(v) = (W (v))0 (v) = {0}, contradicting that y is non-zero. Similarly,

W (w) ∩ M = {0}.
For the final statement, observe that v is complete in W1(v) ⊆ W (v) = M and W0(v) =

W (w) ⊥ W (v). ��
We have seen that each M-summand M in a real JBW∗-triple W can be written in the form

M = W2(v) ⊕ W1(v) for a tripotent v ∈ W satisfying W1(v) ⊥ W0(v). It should be pointed
out that this tripotent v need not be, in general, unique. Consider, for example, a non-trivial
central projection p in a unital real C∗-algebra A, and a unitary element u in theC∗-subalgebra
p A = p Ap with u �= p. It is easy to see that A2(u) = p A and A = p A ⊕∞ (1 − p)A.

As a consequence of our previous theorem we can now characterize M-ideals of real
JB∗-triples as triple ideals.

Theorem 5.2 Let E be a real JB∗-triple. Then the M-ideals of E are precisely the (triple)
ideals of E.
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Proof We only need to prove that every M-ideal is a triple ideal (cf. Remark 2.1). Suppose
M is an M-ideal of E . We consider M as a closed subspace of the real JBW∗-triple E∗∗.
It is known that under this assumptions, M∗∗ ∼= M

w∗ ∼= (M◦)◦ is an M-summand of E∗∗.
Theorem 5.1 implies that M∗∗ ∼= M

w∗
is a weak∗-closed triple ideal of E∗∗, and hence M

is a triple ideal of E . ��
Corollary 5.1 Let M be a closed subspace of a real JB∗-triple E, and let E denote the JB∗-
triple obtained by complexifying E. Then M is an M-ideal of E if and only if the natural
complexification of M is an M-ideal in E .

Let us recall that a real TRO is a closed linear subspace Z ⊆ B(K , H), for real Hilbert
spaces K and H , satisfying Z Z∗ Z ⊆ Z (see, for example, [9, 52]). Clearly, every real
TRO is a real JB∗-triple, and thus the following corollary is an immediate consequence of
Theorem 5.2.

Corollary 5.2 Let Z be a real TRO. Then the M-ideals of Z coincide with its (triple) ideals.

We can also derive a characterization of the L-summands in the dual space of a real
JB∗-triple in the line explored in [46, Corollary 4.4] and [6, Lemma 3.3]. The conclusion
seems to be new even in the case of complex JB∗-triples. Let us observe that given a real
JBW∗-triple W , it follows from the separate weak∗-continuity of the triple product on W that
L(a, b)∗(W∗), Q(a, b)∗(W∗) ⊆ W∗, for all a, b ∈ W .

Corollary 5.3 Let E be a weak∗-dense real JB∗-subtriple of a real JBW∗-triple W , and let Y
be a closed subspace of W∗. Then Y is an L-summand in W∗ if and only if for each a, b ∈ E
we have L(a, b)∗(Y ), Q(a, b)∗(Y ) ⊆ Y . Moreover, every L-summand of W∗ can be written
in the form P2(v)∗(W∗)⊕ P1(v)∗(W∗), where v is a tripotent in W satisfying W1(e) ⊥ W0(e).
In case that W is a real JBW∗-algebra every L-summand of W∗ can be written in the form
p ◦ W∗ for a unique central projection p in W .

Proof Suppose Y is an L-summand in W∗, and thus Y ◦ is an M-summand in W . Theorem 5.1
assures that Y ◦ is a triple ideal of W , and hence L(a, b)(Y ◦), Q(a, b)(Y ◦) ⊆ Y ◦, for all
a, b ∈ W . Since the triple product of W is separately weak∗-continuous [43], L(a, b)∗(W∗),
Q(a, b)∗(W∗) ⊆ W∗, which in turn implies, via Bipolar theorem, that L(a, b)∗(Y ) ⊆ Y and
Q(a, b)∗(Y ) ⊆ Y (a, b ∈ W ).

Assume now that L(a, b)∗(Y ), Q(a, b)∗(Y ) ⊆ Y . The polar of Y , Y ◦, is a weak∗-closed
subspace of W . It is easy to see from the assumptions that L(a, b)(Y ◦), Q(a, b)(Y ◦) ⊆ Y ◦,
for all a, b ∈ E . Having in mind the separate weak∗-continuity of the triple product of W ,

the weak∗-density of E in W , and the fact that Y ◦ is weak∗-closed, we easily deduce that
L(a, b)(Y ◦), Q(a, b)(Y ◦) ⊆ Y ◦, for all a, b ∈ W , and consequently Y ◦ is a weak∗-closed
triple ideal of W . A new application of Theorem 5.1 implies that Y ◦ is an M-summand of
W , and thus Y = (Y ◦)◦ is an L-summand of W∗.

The final statements are straightforward consequences of Theorems 4.1 and 5.1. ��
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