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Layered Control Systems Operating
on Multiple Clocks
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Aaron D. Ames"™, Fellow, IEEE, and Richard M. Murray™, Fellow, IEEE

Abstract—Autonomous systems typically leverage lay-
ered control architectures, created by interconnecting
components that operate at multiple timescales, i.e., evolve
under various clocks. To formalize this typically heuristic
procedure, we introduce a new logic, Multiclock Logic
(MCL), that can express the requirements of components
from the point of view of their local clocks, promoting
independent design and component reuse. We then use
assume-guarantee contracts expressed in MCL to prove
global stability properties of a system using the stability
properties of its components. In particular, we consider the
classic layered architecture consisting of model predictive
control (MPC) layered on top of feedback linearization, and
prove overall stability of the systems.

Index Terms—Hierarchical control, networked control
systems, hybrid systems.

|. INTRODUCTION

VER the years, the field of control theory has
developed many tools to design control blocks in
isolation—e.g., PID, feedback linearization (FBL), model
predictive control (MPC) [1], [3], control Lyapunov func-
tions (CLFs) [2], [12], etc. The design of complex control
systems—legged robots, aerial robots, and autonomous vehi-
cles, to name a few—normally involves the combination of
various blocks of control functionality. It is often the case
that designers working independently on each control block
make assumptions on the behaviors of other blocks that are not
communicated or explicitly stated—Ileading to a development
process prone to errors. Moreover, control blocks are normally
implemented at different loop rates, leading to unaccounted
for timing and interfacing issues. The end result is that we
interconnect our control blocks hoping the system will work.
This letter provides a compositional, specification-based
approach to proving control properties of layered systems by
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Fig. 1. A typical layered control architecture, whereby MCL contracts
enable independently designed controllers to meet system-level specifi-
cations.

using the properties of each layer. We introduce a new logic,
Multiclock Logic (MCL), to be able to express properties
from the local point of view of a processor running on its
own clock—capturing the multi-rate nature of layered control
systems. We use MCL to abstract layers into assume-guarantee
contracts, which are formal specifications that capture what a
component guarantees and requires from its environment to
be able to deliver its guarantees [6]. We use the algebra of
contracts to compositionally relate the local stability properties
of control algorithms with the system-level properties of their
interconnection. While multi-rate control architectures were
first studied in [10], the problem of compositionally writing
and analyzing formal specifications for control systems made
from layers that operate on distinct time bases has not been
studied.

This letter is organized as follows. Section II introduces
our motivating example. Section III presents the syntax and
semantics of MCL. Section IV shows how to express contract
specifications for a multilayer controller using MCL, and to
prove system-level stability properties from the properties of
the control layers. An extended version of this letter [7]
contains background on behavioral modeling and contracts.

II. MuLTI-RATE SYSTEM CASE STUDY

To illustrate our compositional analysis of a layered archi-
tecture, we will consider the design of a control strategy for
the pendulum shown in Figure 1. Our objective will be for
the system to satisfy a top-level stability objective expressed
as contract C. We will understand the controller for such as
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system as an architecture consisting of a high-level and a low-
level control layers interconnected by a network. Each control
layer will be assumed to be implemented on a processor
operating on its own clock, as is common in practice. We
will identify contracts CH for the high-level layer, C for
the low-level layer, CEst for state estimation, and CT™8 for the
networking between the layers. As these contracts need to state
formal properties over multiple clocks, they will be expressed
in MCL in Section IV. The property of these contracts is
that their composition is a refinement of the desired stability
contract C. This means that we will be free to independently
implement these aspects of the functionality, and the procedure
will be guaranteed to yield a system that satisfies the system-
level objective C. Afterwards, we will implement each of these
control blocks independently.

We now consider the details of this case study. The config-
uration space of the system is given by # € Q = S!, and the
associated state by x = (6, é) € TQ. We can write the dynam-
ics in control-affine form as x = f(x) + g(x)u, with control
input u € R, continuously differentiable drift vector f : TQ —
R2, and actuation matrix g:TQ — R2. We will be concerned
with the high level task of reaching some neighborhood of the
goal state x, = 0, the unstable upright equilibrium. Low-level
controllers alone struggle to simultaneously enforce state and
input constraints while ensuring progress to the goal is being
made [3]— this motivates the use of a hierarchy for achieving
this control task. Our hierarchy will consist of two layers—a
high-level controller and a low-level controller—running on
different clocks.

1) Low-Level Controller Design: To actuate the system, we
use a feedback controller which is able to track a desired
trajectory xy;. We begin by defining an output y : X — R
as y(x) = 6, whereby we can construct error coordinates
ew.n) = [y Ly®]" = [yea®) $ea)]T, with Lyy(x)
denoting the Lie derivative of y with respect to f. Then, a
feedback control law can be created to stabilize the outputs.
For example, the control law can be the feedback linearizing
controller

k(6 1) = Lly (0" (~LEy(0) + 5(ea() — Ke(x, 1),

which exponentially stabilizes the output coordinates for ele-
mentwise positive vector K € R2. Given bounded additive
disturbances to the dynamics, there exists a robust invariant
set £ C R”" such that applying kg results in bounded tracking
error, i.e., x(t) € xy(t) & £ [4].

2) High-Level Controller Design: This controller will be
concerned with producing the pieces of trajectories x; which
make progress towards the goal x, for the low-level controller
to track. In order to do so, we set up the following MPC
program:

T
min / h(xg(t), ug(t))dt 1)
xa(O,uq(®) Jo
s.t. Xg(1) = f*(xa (1) + g (xa (D) ua (),
xq(0) ex®E, xq(T) =0,
x(1) € X, u(t) eU,

with X C R? a state constraint set, / C R an input constraint
set, h : X x U — Rsp a convex stage cost, f¢ and g¢ linear
approximations of the dynamics, ¥ € X an estimate of the
system state, £ C R” a robust invariant set of the low level

controller, and x(7) and u(#) the continuous-time state and input
of the low-level system.

Combining MPC with a low-level controller is a popular
technique which is extensible to stabilizing complex nonlin-
ear systems [5], [10]. When deploying such an architecture,
however, the underlying approximations of convexification and
discretization are often not explicitly reasoned about, leaving
practitioners hoping rather than knowing that the closed-
loop system will work. Common assumptions include: i) the
estimate of the state x is “close enough” to the true state
x; ii) the MPC runs “fast enough” and produces solutions
which are “close enough” to the system dynamics; and iii) the
low-level controller runs “fast enough” and can track “well
enough.” The aim of this letter is to construct a pipeline
whereby these assumptions are made explicit, with an eye
towards automating the system verification process for layered
control systems.

IIl. MULTICLOCK LOGIC

In this section, we introduce Multiclock Logic (MCL),
a framework to reason about layered control operating on
multiple clocks. First we define the behaviors over which
the logic makes predicates, then introduce the logic. MCL
will allow us to express properties from the local point of
view of each control block in our design without burdening
the syntax with synchronization over the multiple clocks
present in the system. While some of these properties can be
expressed intuitively, MCL is a formal language and so can
be manipulated by a machine. This is necessary in order to
automate formal system-level design.

1) System-Level Behaviors: The fundamental notion of
system-modeling is the variable. We understand a variable as
a tuple (v, &,, D,), where v is the name for the variable, &, is
the value space (a topological space where the variable takes
values), and D, is a totally-ordered Abelian group called the
clock, giving a notion of a progression of values. Whether a
variable is discrete/continuous/constant depends on the clock
that we assign to it: R/N/{e}, respectively. We model clocks
as totally-ordered Abelian groups because we need order to
compare values of a clock and define intervals, and the group
structure to add and subtract these values.

Suppose we have a set € of clocks and that a set Vars of
variables shares clock ¢ € €. The joint behaviors of these
variables will be given by maps ¢ — [],cvars Xv» as in the
tagged signal model [9]. In order to isolate the value of a
variable u € Vars from those of the other variables in the
same clock, we will use the projection maps that come with
the definition of the product, i.e., m, : [[,cvars Xv = Xu-

Stating certain predicates may require us to use a clock
to read the values of variables belonging to another clock.
Suppose ¢, d € €. To read the value of a d-variable in the
clock ¢, we will assume the existence of a map tf cc—d.
The t maps, which we may call synchronization maps,
determine the index of the target clock that is used when
reading variables from a given clock. e.g., to read the value of
a variable x clocked by d from the clock c at time ¢ € ¢, we
would get the value of x at time r,f’ (t). The synchronization
maps capture the amount of delay incurred by reading data
from a clock from which the data does not originate.

Suppose that we build a system that comprises a set of
variables Vars and a set of clocks €. For each variable v, we
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let C(v) be the clock corresponding to v € Vars. The inverse
of this map, C~'(¢), yields the set of variables corresponding
to clock ¢ € €.

Definition 1: A system-level behavior is an object B =
(bg)gee X (tf)c,deg, where the elements by € (d —
[lyec-1(q) X&) carry the behaviors of the variables clocked
by d, while the rcd € (¢ — d) indicate how to read values of
d-variables using the clock c.

Components, as usual, are defined as sets of behaviors. The
following definition will be useful to give semantics to the
eventual modality ¢ of the logic.

Definition 2: Let B = (bg)gee X (Tg/)d,d'ee be a system
behavior. Given r € ¢ € €&, we define the (c, t)-execution

BLoas Bl = (baace x GD)gace, where 4 (x) =
rf’(x—l—t) d=c
¢ (x) d#c

The only difference between 8 and g is that in B! the clock
c is anticipated by ¢ units.

2) MCL Syntax: Assume we have access to a set Vars of
variables, a set € of clocks, and a set § of formulas of various
arities. We let 3 be the set of symbols dd/, where d and d’
denote clocks. The syntax of MCL is

pr=pc.®|~pldAY
Q= P(t1), ..oy An(@) |~ @ | @AY Oy 1P | Oy P,

where c € €, ; € VarsUBUC, 1, € ¢, and P € § is an n-ary
formula.

We think of the formulas ¢ as the global syntax of MCL,
and of the ® formulas as the local syntax that applies to
a clock. The global syntax supports propositional logic. The
syntax ¢ = pc. ® indicates that a global formula ¢ is created
by binding a local formula @ to the clock c. The local syntax
supports propositional logic and the eventual modality. It
also supports the enunciation of predicates involving multiple
variables evaluated at the indicated times #; € ¢. The syntax
also supports the enunciation of predicates on clocks ¢ € €
and on clock pairs ¢? € 9. The use of clocks and clock pairs
¢ € P in formulas allows us to express timing constraints
in our systems. Observe that the logic leaves abstract the
formulas § used to define the predicates. The formulas are
functions that evaluate to Boolean values.

3) MCL Semantics: The semantics of an MCL formula
apply to a system behavior. Let 8 = (bg)gee X (Tg/)dyd/ee be
a system behavior. We have the following global semantics:

e BEpc. ®iff B =, @

« BE-GIf B

e BEOAYVItBE¢and B =Y
Formulas at the global level are either created by Boolean
connectives, or they are local formulas that are assigned to a
clock in the system. The symbol “k=.” stands for satisfaction
in the local semantics of MCL, defined as follows:

o B Ec P((t),..., () iff P(Interp(d;, )i,

where

Ty O bc(,,) o ‘ECC(V) (t;) A; = v € Vars
() ri=dec€

¢ o td (1) ri=d? ePandd £ ¢

B l=c —® iff f e, @
Bl ®AVIff B = ® and B =, W

B Ec Ol @ iff 3. (1) <t <102) A (BL = D)
B e On®iff 3. (1 < 1) A (BL e @)

Interp(A;, tj) =

L] L] L] L]

In addition to the formation of local formulas using Boolean
connectives and the eventual modality ¢, MCL local formulas
can be formed by making a predicate over a set of symbols A;
and a set of values #; of the clock c. In general, the meaning
of the formula P(A (t1), ..., A,(t,;)) is the evaluation of the
n-ary formula P for the values that each symbol }; takes when
the value of the clock ¢ is t{(#;). For example, the predicate
pc. ||x(0)|| > 2 for a variable x means that we will evaluate
the value of x when ¢ = t£(0). If x is clocked by ¢, we simply
extract the value of x at time t(0); if it is clocked by d # c,
we would return its value at time rf (0). We recall that the local
semantics can anticipate the value of ¢ by ¢ time units—see
Definition 2.

The formula pc. d(0) — K > T for d € € and constants
T, K € d has the semantics ‘L'f.l(()) — K > T. This statement
is true at ticks of clock ¢ for which the index of clock d that
c uses to read the data of d is larger than K + 7. This type
of predicate can be used as a precondition that ensures that
the clock d has issued sufficient ticks. The semantics of a
formula of the form pc. r(0) —d"(0) < T for clocks ¢, d, r, is
t(0) — 50 td(0) < T. It states that the difference in r time
units between a tick of ¢ and the tick of d from which ¢ reads
the data of d must be less than 7. This kind of statement is
useful to bound the maximum allowed time for data to have
existed in its local clock d before it is read by another clock c.

The notion of satisfaction is extended from system behaviors
to components as follows: we say that a component M satisfies
an MCL formula ¢ if g = ¢ for all g € M.

We extend the given syntax and semantics in the standard
way to support all Boolean connectives and the modality [,
or “globally.” Finally, when stating a formula of the form
pc. P(Ai(t;))i, we will sometimes omit the #; arguments. In
that case, the parameter should be understood as 0.

IV. VERIFYING THE MULTI-RATE CASE STUDY

We now continue the analysis of the archetypal layered
architecture described in Section II. Our goal is to specify
the high-level and low-level control blocks independently and
carry out system-level analysis using these specifications. The
objective of our system-level analysis is to show that the
system reaches and remains inside a neighborhood of the goal
state x,. To do so, we assume we have a cost function V that
maps the state x of the system to a well-ordered set. The value
of V is zero in a neighborhood of x,. The function V will
be further specified when we consider the implementations of
component contracts in Section IV-C. As a well-order does
not have infinite descending chains, the fact that the codomain
of V is a well-order means that any process that decreases the
cost V will eventually reach the minimum cost V(x) =0 in a
finite number of iterations.

The system has three clocks: 7z = N, which runs the
high-level block; ¢ = N, which runs the low-level and
estimation blocks; and » = R, the physical time. The system
state is denoted by the variable (x, X, ), i.e., its behaviors
are functions from the physical clock to the state space X.
The high-level block outputs a variable (xgz, X”, 72), which
contains the trajectory in the state space that the system is
to follow. Observe that the behaviors of this variable are
functions from 72z to functions from 7 to X. Thus, at any
tick of the clock 7z, the high-level controller will provide a
function for the low-level controller. This means that x; will be
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doubly-indexed in our formulas. The first index corresponds to
the clock evaluation, and the second to the time argument of
the trajectory. For example, the £ formula pf. ||xz(0)(T)| < K
evaluates to [lx;(z;*(0))(T)|| < K. Finally, an estimation block
running on clock £ will output a state estimate (x, X, £). Our
system’s objective is pf. OCJ(V(x) = 0), i.e., our cost will
stabilize at zero.

A. Specifying the System

We consider the contracts for each layer in the system.

1) High-Level Controller: We consider the specification of
the high-level controller running on a dedicated processor with
clock 7z. The high layer has an input X, the state estimate
coming from another control layer, and a single output x4,
which is a trajectory that the low-level controller has to follow.

On a given tick of the clock 72, the high-level block will
assume that the state estimate is an accurate approximation
of the state. The high-level controller uses this to compute a
trajectory in the next tick of 7. Finally, the high layer will
guarantee that the trajectories it generates either decrease the
cost V or keep it equal to zero. We can represent the high-level
controller contract L = (AL GHL) as follows:

HL . HL
A ¢A _init d’nmzng ¢sensor bound_var
¢ _init * L pr7e. Close(x Xis SA inil)

(17, < (1) = < T A
¢ttmmg p77e. D( "

(7/ — " < Tf’f;h)

oHL . prm.OClose(%, x; 88 )

> rsensor

¢,’;10Lwd var: P72. (BoundedvVariation(x; Dy)

HL . HL
G ¢G init /\ ¢rsp dyn A ¢dynamzcs A ¢tra/' bound_var A ¢ progress

¢G init * P77 Close(xd(O)(O) Xis 66 zmt)

qﬁgp dyn ' P77 [(JRespectDynamics(xg)

¢dynamtcs p77e. DClose<xd(0)( avg) xq(1)(0); 8dynamws>
(btmj_h(mnd_wr: prn. Boundedvariation(xg; Dg)

B o o YOO > VDO
Porogress* P72 D(V(Inflate(lm(xd) (Spmg,m)) = 0)
q>HL

sensor captures the requirement that the sensor produces
values that are close to the real state x at the time when
m ticks. The predicate Close(v,V';§) indicates that two
symbols v, V' are evaluated to quantities that are close up to a
parameter § for some notion of distance (taken to be ¢; for the
case study). ®HL assumes that the state x has bounded

variation. &

bound,ar
requires the clock period of 77 to lie between

tlml}’l
Tr’fﬁn and T7.; (We also assume that the nominal 7z period
T77, lies between these bounds); the assumption also requires

the difference in physical time between a tick of 7z and the

tick of £ from which 7z reads £’s data to be less than Tfmh

This means that the data from ¢ that is read from 7z cannot
be too old. ®4". . requires x to be close to a value x; at the
beginning of the system execution.
With respect to guarantees, <I>GL”m means that the first
trajectory output by the high-level block will start close to
Xi. CD'Zé dyn is a predicate stating that the high-level controller
will always generate trajectories x; that should be within the

competence of the low-level block to follow. In the context

of this letter, we require that the produced trajectories are
dynamically feasible, i.e., there exists a feedback controller
which is able to track the generated trajectories. CDS;LH amics
states that the beginning of every new trajectory provided
by the high-level block has to be close to the value of the
previous trajectory at time 777,. CIngjb ound,qr 1S @ promise that
the trajectories provided by the high-level controller will have
bounded variation.

Finally, in order to be able to promise that the system will
make progress towards its objective, the high-level block will
make use of the cost function V. The high-level controller
makes a guarantee <I>II;IrI;,grm which says that either the cost
at the beginning of a trajectory x; is larger than the cost at
the beginning of the next trajectory x4, or that all points that
are close to the trajectory have a cost of zero. The function
Inflate(A, §) takes a set A and returns the set of all points
that are §-close to any point of A. That is, each trajectory
either improves the cost or stays fixed at cost equal to zero.

2) Low-Level Controller: The low-level controller takes as
inputs trajectories x4 that the system’s state x has to follow and
promises that it can make the system follow these trajectories
with a given accuracy. We have the following contract Ctt =

(ALL | GLLY for the low-level controller:

¢nmmg ¢rsp dyn ¢dvnamus ¢bound var
0
LL . 0.0 (Tmtn = 1}(1) —7= Tmax)
‘ptiming' pL. r—m < T
fresh

¢rLA§7dyn : pt. [JRespectDynamics(xy)

(m # m(=1)) A (72 = 0) >

0.0
¢d)namus p (—) Close(xd(O)(O) X; 5dmamm)

qb,[;é‘und var - pL. JBoundedvariation(x; Dy)

: ¢)L¢pd A ¢nackmg

oL pe. O if (72 # m(—1)) A (72 = 0) then
upd * . (upd = ¢) else (upd = upd(—1))

L (¢ —upd >0) —
¢tracking: o ¢. 1 0 0 —
Close(x, x4(0) mg( upd) ); tmkmg
The assumptions of this contract are as follows. ¢”mmg
assumes that ¢’s period is bounded below and above, and that
the data read from clock 72 is not too old. quL dyn requires
trajectorles received from 7 to respect certain pﬁyswal limits,
, that they satisfy the state and input constraints used in
the analysis of the low level controller. ¢dyn amics makes sure
that when ¢ detects the generation of a new trajectory x; from
e, then the starting point of that trajectory should be close
to the value pf .the state. qbéoLun d,ar TeQuires the state x to have
bounded variation.

Regarding guarantees, ¢>,f -, 1s a helper statement that defines
the variable upd. This varlable contains the last value of
¢ when a new trajectory was received from 72. d)tmckm "
guarantees that the low-level controller will make the system
follow the given trajectory x;. Observe that q)tr acking is enforced
for all values of the trajectory x4, except its first point. For the
first point of the trajectory, the low level controller makes the
assumption ¢§yLn amics ON the state. Tavg is the nominal period

of £ and respects the bounds of ¢nmmg
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3) Estimator: The estimator will guarantee that the state
estimates are always accurate on the clock ticks of ¢, yielding
the contract CE' = (AES' GES"), where AFS': pf. True and
GEst: pEst  with ¢ESt - pe. OClose(k, x; 8ES ).

4) Timing Design: We understand the timing component of
the system as “network design” in the sense that enforcing
timing constraints is implemented by applying networking and
clock synchronization technologies. This component will have
the following contract CT"8 = (AT"8 GT™ms):

AT . by True
G ¢42T mﬁmmg ¢Z;’zn§timing
. D(((T’if < :‘(1) — 7 < Thg)A )
fresh
gt o0 (5 55T
fresh

B. System-Level Analysis

We have component-level contracts for all layers in our
system. The following result connects these specifications with
the desired top-level stability objective.

Theorem 1: Consider a two-layer control system formed by
a high-level controller and a low-level controller. If each layer
satisfies contracts CL and CLL, respectively, the estimator
satisfies CES, and their interconnection satisfies C7"8, then
the top-level system will satisfy the top level contract (A, G),
where

G: pt. OOV (x) =0), (2)
provided that the following conditions hold:

¢A _init A ¢bound var

Syomsor + fthx < SS‘Zﬁmr 3)
‘SHLzmt + (SA _init + DxT, fresh — denamtcs (4)
Strbcking T Suhmamics + (Tfresh + Tfresh)Dx + DgAT” < 85 s

)
Sdimamics < Sprogress: 6)

Where ATm _ Tm mln Tf’r’(ish+ reah)J

max avgl-
Proof: Contract composition ylelds the specification formed
by interconnecting the components whose specifications we
have available. Our system-level specification is C% =
CHL||CEL|cEst | cTme, which we compute by applying the
ContractComposition routine of [8]. We now verify how
this composition yields a system satisfying the assumptions of
all components.
a) High-Level Controller: We consider the assumptions:
qbllzlLt is an assumption on the initial state that we need to

conserve at the system-level. gb{f(ﬁm d_ray is also a system-level
assumptlon qbnmmg is satisfied by ¢m Ztiming of our timing
design. ¢/L  needs to be analyzed. We observe that!

sensor

Est

sensor¥ 72— tlintng¢b0und var

pm.Close(x X 8amsor + Trosn )

We need the relation (3) to hold in order to satisfy oL

sensor*

IThis notation means that the formula below the horizontal bar is a valid
deduction from the conjunction of the formulas on top of the bar.

b) Low-Level Controller: d)nmmg is satisfied by ¢ZT§ming

of the timing design. qbbvmd_mr is an assumption on the
dynamics of the physical system and should therefore be a
system-level assumption. ¢rsp d}n is satisfied by the guarantee
d)”p dyn- The satisfaction of ¢t dynamics requires an inductive
argument For the proof that relation (4) is requlred for
¢dynamlcs to hold in the initial case and that qbd - amics olds
inductively when (5) is true, please see Section VI B2 of the
extended version of this letter [7].

c) Progress: Our analysis indicates that the composition
of all contracts so far defined yields a situation in which all
contracts have their assumptions met—provided the system
parameters meet conditions (3), (4), and (5). Now we verify
whether the system makes progress towards its goal. We
observe that the fact that V' takes values in a well order means
that we can carry out the following deductions:

S HL
progress

pm(}E](V(Inflate(Im(xd): ‘S[];}‘I(;gress)) = 0) ¢[I;Il‘%gress¢&l§a‘ptl;ehkingd’é‘)%mmics
pL. 0LV (x) = 0)
provided that (6) holds. |

C. Component-Level Verifications

Theorem 1 shows that if we implement control layers
adhering to the specifications introduced in Section IV-A
and satisfying constraints (3)—(6), the system will satisfy the
desired stability property (2). These constraints impose timing
requirements in the system. For instance, (5) imposes a limit
on the maximum compute time of the high-level controller.
This means that constraints (3)—(6) can be used to increase
the robustness of the design by ensuring that they are satisfied
with margin. Now we verify that each implementation of our
control layers satisfies its own contract.

1) Low-Level Controller: In order to use the methods
presented in [4] which combine a low level controller with (1),
we begin by showing that applying zero order held inputs,
ie., with pf. O = kpi(x, £ — upd)), results in bounded
exogenous disturbance to the error dynamics. For the following
discussion, let x'(r) denote the solution to the system dynamics
with continuous time control applied, and x(¢) the solution
with zero order held inputs. Plugging in the solution to
the differential equation with x'(0) = x(0) and adding and
subtracting g(x'(t))u yields

"d
lx() = X' @ :f E(x(f)—x’(r))dr
o dt

t
S[O(Lf+Lg||ﬁ||)IIX(t)—x/(t)ll+IIg(X’(T))IIIIM(f)—ﬁlldf,
@)

where Ly and L, represent the local Lipschitz constants
of the drift vector and actuation matrix, respectively. From
the perspective of the low level controller, we assume via
¢ Lrsp_dyn that |u(r)|| < U and that x(f) € X, a compact
set. These will be necessary for the analysis, and will be
explicitly enforced in the proposed MPC formulation. From
these constraints, we know that there exists a G > 0 such
that ||g(x'(7))|| < G and that all local Lipschitz constants
are global over X. Combining these facts and using the
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Fig. 2. a) Nominal controller whose design process did not use MCL
contract verification fails to meet system objectives. b) Control blocks
which adhere to MCL contracts satisfy the constraint, despite being
designed in isolation.

Bellman-Gronwall Lemma [11] leads to |x(t) — X' (®)] <
UGt 2 15 (1), where p € Koo, a class K infinity
function. Next, let ¢/(f) £ x'(f) — x4(f) denote the error
dynamics with continuous time control applied, whereby the
feedback linearizing controller kg, yields &' (r) = Age’ for Ay
a stable matrix. Taking e(#) = x(f) — x4(¢) to be the error
with zero order held inputs, we have ¢ = w(f) + A, e, where
w(t) = §(x = x) +Aq (¥ —x).

Plugging in the terms developed in (7) results in ||w(?)]| <
IW(TE N < Thur((Ly + 2LeU + [Aal)p(Thyy) + GU) . As
this bound is a composition of class-C functions in time,
for all §,, > O there exists an € > 0 such that T/, < €
results in ||w(#)|| < 8. Fixing an allowable §,, and thereby
upper bounding Tﬁm, by integrating the error dynamics and
using the comparison lemma we have |le(®)|| < [x(0) —
xg(0) || Me™ + T,‘;mx(SW, for some M, . > 0 as determined by
the convergence rate of the low level controller. Therefore, in

order to produce the guarantee of ¢LL we must enforce

tracking’
LL —\TE, ¢ LL
that 8dynamicsM e min + Toaxdw < (Stracking'

2) MPC: Lemma 2 in [4] demonstrates that the trajectories
produced by (1) are dynamically feasible, i.e., able to be
exactly tracked via the feedback linearizing controller kg,
implying satisfaction of ¢,.sp_dynt. As the MPC program
produces solutions to a linear system with bounded state and
control inputs, we have that the resulting desired trajectory x4
will have bounded variation, satisfying q)ff{;j bound var-

Next, we ensure that the above MPC program is recursively
feasible, which requires showing that the enforced set &
is a robust invariant for the system. Choosing £ such that
B(0, (Stl;‘lz;cking) C & results in a set that can be rendered
invariant by the low level controller, even during sampling.
Therefore, we choose £ to meet this condition as well as
the design requirements imposed by the system analysis in
Section IV-B. We then appeal to the results in [4] to prove
recursive feasibility of the MPC algorithm used therein.

Finally, let V: X — R denote the sum of the running and
terminal cost of MPC, often used as a Lyapunov function in
stability proofs. As we have effectively transformed our non-
linear MPC program to a linear one, we can use standard MPC
results [3] to state that pzz. (V(xz(1)(0)) < V(xq(0)(0))).
Since the guarantees of the MPC contract involve )V, which
takes values in a well-order, we can define V' by quantizing
the function V. Then we can choose a vicinity around x, and
define V(p) = 0 for p € £. In that case, V takes values in a
well-order, and the MPC block satisfies ¢HL

progress*

3) Simulation Results: We investigate the use of MCL
contracts as a design tool towards achieving stability and state
constraint satisfaction for an architecture consisting of a high-
level and a low-level control block designed in isolation. In
both cases, the same control architecture and time delay of
Tfl;esh =17 = n’ﬁn was used, i.e., the time delay is equal to
one 772 clock cycle, and the 7z clock does not have jitter. In the
first case shown in Figure 2(a), the MPC and FBL controllers
were independently implemented, but their interconnection
was not verified against formal specifications. Therefore, our
analysis did not yield any guarantees of system behavior, and
indeed we find that our system violates the desired state con-
straints x(f) € X. In Figure 2(b), the margin £ was modified
such that (5) holds with equality. As a result of adhering to
the MCL contracts, the composite control hierarchy maintains
the desired system-level specification in (2) despite having
independently designed components.

V. CONCLUDING REMARKS

We considered an effective way of specifying control layers
running on multiple clocks using MCL. Once the specifications
were expressed, we used MCL contracts to prove system-level
stability properties using the local properties of each layer. Our
framework is extensible to systems with additional layers. We
showed in the case study how to verify that each control block
satisfies its own specification. Our simulation results showed
that a violation of the system-level constraints led to failure.
Future work involves applications to more complex systems,
such as bipedal robots.
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