
 

 

 

1 

 



 

     

 
  

  
  

  
    

 

 

    

  

 
 

    
  

 

 

 

  

 
 

 

Journal of Biogeography 

RESEARCH ARTICLE OPEN ACCESS 

Origin and Biogeography of the Colourful Sap-Sucking Sea 
Slugs Genus Thuridilla Bergh, 1872 (Mollusca, Gastropoda, 
Heterobranchia) 
M. Rosario Martín-Hervás1,2,3 | Leila Carmona2,3 | Patrick J. Krug4 | Terence Gosliner5 | J. Lucas Cervera2,3 | 
Manuel António E. Malaquias6,7 

1Centro de Investigación en Biodiversidad y Cambio global (CIBC-UAM), Departamento de Biología (Zoología), Facultad de Ciencias, Universidad 
Autónoma de Madrid, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain | 2Departamento de Biología, Facultad de Ciencias del Mar y 
Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Spain | 3Instituto Universitario de Investigación 
Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Spain | 4Department of Biological 
Sciences, California State University, Los Angeles, Los Angeles, California, USA | 5Department of Invertebrate Zoology, California Academy of Sciences, 
San Francisco, California, USA | 6Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway | 7University of 
the Azores, Institute of Marine Sciences - OKEANOS, Horta, Portugal 

Correspondence: M. Rosario Martín-Hervás (maria.martinhervas@uca.es) 

Received: 26 August 2024 | Revised: 18 April 2025 | Accepted: 5 May 2025 

Funding: This research received support from several projects (CGL2010-17187, Spanish Ministry of Science, Innovation and Universities; PR2018-039, 
University of Cadiz) to J. Lucas Cervera; the Meltzer Research Fund, University of Bergen (Norway) for awarding funding to Manuel António E. Malaquias 
for fieldwork in Taiwan and Mozambique; U.S. National Science Foundation grant DEB 1355190 and LaKretz Endowment for Environmental Biology at 
Cal State L.A. to Patrick J. Krug; NSF-DEB 1257630 grant to Terrence Gosliner, Kent Carpenter, Richard Mooi, Luiz Rocha and Gary Williams. M. Rosario 
Martín-Hervás was supported by a PhD Grant from the Spanish Ministry of Education, Culture, and Sports (FPU14/03029). The specimens from the 
Philippines were collected under Gratuitous Permits (GP-0077-14, GP-0085-15) from the shallow waters of the municipalities of Mabini, Tingloy, Calatagan, 
Romblon and Puerto Galera. This is part of the joint Department of Agriculture-NFRDI-California Academy of Sciences Memorandum of Agreement for 
the ongoing implementation of the National Science Foundation-funded biodiversity expedition in the Verde Island Passage. The specimens were collected 
in accordance with the terms and conditions of the gratuitous permit and under the supervision of our partners from BFAR Fisheries Regulatory and 
Quarantine Division and NFRDI. 

Keywords: ancestral area reconstruction | dispersal | historical biogeography | phylogeny | Sacoglossa | speciation | vicariance 

ABSTRACT 
Aim: Thuridilla Bergh, 1872, is a lineage of herbivorous sea slugs externally distinguished by bright colours and distinctive pat­
terns of lines and spots. Recent work revealed an exceptionally rapid, cryptic radiation of 13 species in the Indo-Pacific, raising 
questions about mechanisms of speciation in this group. Here, we (i) study the diversification and historical biogeography of 
Thuridilla in a phylogenetic context and (ii) assess the role of dispersal and vicariance as the predominant mode of speciation in 
the genus. 
Location: Tropical and temperate regions of the Atlantic and Indo-Pacific. 
Major Taxa Studies: Gastropoda, Sacoglossa. 
Methods: A nearly complete taxon set with 28 out of 32 recognised species of Thuridilla was used, in a total sample of 172 
specimens, together with sacoglossan outgroups. Phylogenetic relationships were determined using a multi-locus approach com­
bining two mitochondrial (COI and 16S) and one nuclear gene (H3). Species relationships, diversification times, and ancestral 
geographical ranges were inferred using relaxed-clock methods together with Bayesian discrete phylogeographic methods under 
three calibration scenarios using the oldest known fossil of Sacoglossa, Berthelinia elegans Crosse, 1875, and tectonic events. 
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Results: Thuridilla species branched off into four major clades in all calibration scenarios: two groups from the Atlantic plus 
Indo-West Pacific (5 and 6 species) and two clades from the Indo-West Pacific (4 and 17 species). The highest diversity of the genus 
is in the Western Pacific (14 spp.) with a peak in the East Indies Triangle (18 spp.), whereas the Atlantic is depauperate with only 
four species occurring in this ocean basin. Divergence between Atlantic and Indo-West Pacific lineages occurred in two main 
temporal periods: the Miocene and the Pliocene. Speciation events within the 13 cryptic species-complex fell mostly within Plio-
Pleistocene times. 
Main Conclusions: The best supported hypothesis was an Indo-West Pacific origin of Thuridilla between 28 and 18 
Mya during the Early Miocene. In the western Pacific, speciation likely occurred during transient allopatry during Plio-
Pleistocene sea-level fluctuations. Under the three tested calibration scenarios, the limited diversity of the Atlantic Ocean 
is hypothesized to be derived from Miocene vicariant events associated with the closure of the Tethys Sea, dispersal across 
southern Africa, or long-distance dispersal across the East Pacific Barrier prior to the uplift of the Isthmus of Panama. 
Thuridilla is absent in the Eastern Pacific, potentially resulting from the extinction of ancestral lineages following the uplift 
of the Isthmus of Panama. Near-complete sampling of diversity and reconstruction of historical biogeography thus yielded 
new insight into the relative contributions of dispersal versus vicariance during speciation over the history of this widely 
distributed, colourful genus. 

1 | Introduction 

Historical speciation and extinction processes determine the 
current geographic distribution of biodiversity, but the origin 
of marine species has long remained a topic of debate. The 
Darwinian view favours speciation by natural selection in 
sympatry resulting from ecological or sexual pressures, with 
subsequent long-distance dispersal from a central point of ori­
gin (Darwin 1859). Nearly a century later, the prevailing view 
changed, favouring the idea that reproductive isolation predom­
inantly evolves between geographically isolated populations 
(Mayr 1954, 1963), conferring a dominant role to allopatric 
speciation. However, the processes generating the stagger­
ing diversity of the Indo-West Pacific and, in particular, of the 
East Indies Triangle (EIT), a region encompassing the waters 
and islands between Indonesia, the Philippines, East Timor, 
Papua New Guinea and the Solomon Islands (Briggs  2000; 
Halas and Winterbottom 2009), have been a long-standing mat­
ter of debate. Most studies agree that this high diversity is the 
result of a plurality of processes, with species originating both 
in the central region of the EIT and peripheral areas over dif­
ferent time scales, with the high proportion of suitable habitat 
being critical for the survivorship of species in this area (e.g., 
Briggs 1999, 2005; Williams and Reid 2004; Barber et al. 2006; 
Williams and Duda 2008; Bellwood and Meyer 2009; Drew and 
Barber 2009; Halas and Winterbottom 2009; Bowen et al. 2013; 
Copus et al. 2022). 

Patterns of marine speciation certainly depend on com­
plex interactions between geography, life history and 
ecology (Krug  2011). For example, the planktonic larval de­
velopment of many marine species, together with the limited 
geographic barriers to gene flow, enhances the dispersal po­
tential of benthic species, creating opportunities for isola­
tion (Palumbi  1994; Rocha et  al.  2007; Krug  2011; Miglietta 
et al. 2011; Goetze et al. 2017). Species may also disperse far 
from their centre of origin, resulting in wide distributions for 
taxa with limited movement as adults. 

The morphological diversity of molluscs and their eco­
logical disparities make them an ideal group for 

evolutionary comparative studies (Krug  2011; Haszprunar 
and Wanninger 2012; Vinther  2015; Wanninger and 
Wollesen 2015). Among the Mollusca, gastropods are one of the 
most heterogeneous taxa, yet across several distinct groups, it 
was observed that sister species tend to have allopatric distri­
butions (Williams and Reid 2004; Malaquias and Reid 2009; 
Claremont et al. 2011; Eilertsen and Malaquias 2015; Ekimova 
et  al.  2019). The Sacoglossa constitute a group of small and 
mainly greenish, herbivorous sea slugs that are often asso­
ciated with species-specific host algae (Jensen  1989; Poore 
et al. 2008; Trowbridge et al. 2008; Baumgartner et al. 2009). 
Given their level of habitat specialisation, reproductive strat­
egies, and shifts in larval dispersal ability, sacoglossans are 
an emerging model system for the study of speciation mech­
anisms in the sea (e.g., Krug et al. 2015, 2018; Rodriguez and 
Krug 2022; Moreno et al. 2023). 

Species in the sacoglossan genus Thuridilla Bergh, 1872, stand 
out because of their external bright colours (Gosliner  1995; 
Martín-Hervás et al. 2021) instead of the more cryptic, green­
ish colouration of their relatives. Unlike most sacoglossans, 
Thuridilla spp. are not typically associated with a host alga, 
which may limit opportunities for ecological speciation. A re­
cent systematic revision, based on morphological and molec­
ular analyses, recognised 32 species worldwide in temperate 
and tropical waters (Figure 1; Martín-Hervás et al. 2021), but 
the genus is notably absent in the eastern Pacific (Cobb and 
Willan 2006; Valdés et al. 2006; Gosliner et al. 2018). A strik­
ing finding was the rapid radiation of 13 pseudocryptic species 
that form the so-called T. gracilis complex (Martín-Hervás 
et al. 2021). Species in this clade were distinguished by subtle 
external and internal anatomical differences following mo­
lecular species delimitation and phylogenetic analyses, but a 
full analysis of their distributions was not performed (Martín-
Hervás et al. 2021). 

The recognition of a cryptic radiation comprising > 40% of 
species diversity in Thuridilla warranted further attention to 
mechanisms of speciation in this group. The broad distribu­
tion of Thuridilla also makes it a good model to study global 
processes of marine biogeography. The higher diversity in 
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the Indo-West Pacific Ocean suggests a possible origin of the 
group in this marine realm; however, the lack of fossil record 
and data on larval development makes it difficult to date and 
locate the origin of Thuridilla. The main goal of this paper 
is to study the diversification and historical biogeography of 
Thuridilla in a phylogenetic context and assess the role of dis­
persal and vicariance as the predominant mode of speciation 
in the genus. 

2 | Materials and Methods 

2.1 | Taxon Sampling 

The taxon set used for this study was taken from Martín-Hervás 
et al. (2021) based on 172 specimens representing nearly the en­
tire diversity of the genus Thuridilla: 32 nominal species includ­
ing 10 unnamed lineages considered candidate species based on 
species delimitation analyses. The full dataset comprised 155 
sequences of the mitochondrial genes cytochrome oxidase c sub­
unit I (COI) and large ribosomal subunit rRNA (16S), and 139 of 
the nuclear gene histone H3 (H3). Only three accepted species 
were not sampled: T. coerulea (Kelaart 1858), T. haingsisiana 
(Bergh 1905) and T. multimarginata Gosliner 1995. In addition, 
12 species of Elysia Risso, 1818, and 10 species of Plakobranchus 
van Hasselt, 1824, were used as outgroup taxa, and one repre­
sentative of Bosellia Trinchese, 1891, was included to root the 
tree. For details of the taxon set (voucher numbers, collection 
sites and GenBank accession numbers), see Martín-Hervás 
et al. (2021, Table 1). 

2.2 | Phylogenetic Analyses and Estimate 
of Divergence Times 

Sequences of Thuridilla and outgroups were aligned by gene 
with the multiple sequence alignment programme MAFFT 
v.7.402 server (Katoh and Standley  2013), using the L-INS-i 
iterative refinement algorithm via the CIPRES Portal Science 
Gateway (Miller et al. 2010). Hypervariable regions of the 16S 
gene were removed using the least stringent criteria in Gblocks 
v.0.91b (Castresana 2000). The COI and H3 protein-coding 
genes were translated into amino acids to test for the pres­
ence of stop-codons, and the level of saturation for the first, 
second, and third codon positions of these genes was investi­
gated using MEGA v.7.0.18 (Kumar et al. 2016) by plotting the 
observed transitions (Ts) and transversions (Tv) against the 
inferred uncorrected p-distances. Best-fit models of evolution 
for each gene were selected with JModelTest 2.1.10 (Darriba 
et al. 2012) based on the Akaike criterion (AIC) (Akaike 1998), 
rendering the GTR + Γ + I for both COI and 16S genes and the 
GTR + Γ for the H3 gene. Final alignments contained 658 
base pairs for the COI gene, 435 for the 16S, 328 for H3 and a 
total of 1421 for the concatenated all-genes combined dataset 
(H3 + COI + 16S). 

Thuridilla is not represented in the fossil record to the best of 
our knowledge. Given the lack of direct information about its 
region and timing of origin, we used an indirect method to esti­
mate the age of the most recent common ancestor of the genus. 
We used a subset of taxa from a phylogeny of Sacoglossa (Krug 
et al. 2015) and the same three-gene dataset (see Table 1). The 

FIGURE 1 | Global patterns of Thuridilla diversity. Species richness is indicated numerically for each considered biogeographic unit (see Table 2). 
Shared species numbers between the IWP and EIT and between the EIT and WP are depicted in the overlapping areas of the correspondent circles. 
EA, Eastern Atlantic including the Mediterranean Sea; EI, Eastern Indian Ocean; EIT, East Indies Triangle; IWP, Indo-West Pacific; RS, Red Sea; 
WA, Western Atlantic; WI, Western Indian Ocean; WP, Western Pacific. 
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tree was calibrated with the oldest fossil assigned to Sacoglossa, 
Berthelinia elegans Crosse, 1875 from the Middle Eocene (37.8– 
47.8 Mya) of the Paris Basin (Keen and Smith 1961), belonging 

to the family Oxynooidea. The calibration node chosen was the 
one defining the clade containing representatives of Oxynooidea 
(underlined in Table 1). 

TABLE 1 | List of Sacoglossa specimens used in our analyses from dataset of Krug et al. (2015). 

Species Sample code COI 16S H3 

Alderiopsis nigra Al_nig_09Rus01 KM086342 KM204183 KM040788 

Aplysiopsis enteromorphae Ap_ent_04SD01 KM086344 GU191053 KM040789 

Ascobulla fragilis As_fra_NCBI AY345022 AY345022 — 

Berthelinia caribbea Ber_car_10Swe01 KM086349 KM204188 KM040794 

Bosellia mimetica Bmim_06Ber01 KM086351 KM204190 KM040796 

Caliphylla mediterranea Ca_med_09Cur01 KM086352 GU191041 KM040798 

Costasiella formicaria Cfor_08Jap03 KJ610068 KJ610028 KJ610055 

‘Costasiella’ nonatoi Cnon_04Pan01 KJ610069 KJ610029 KJ610056 

Costasiella ocellifera (P) Coce_06Ber05P KF438672 KF438670 KF438674 

Cyerce antillensis Cy_ant_04Pan01 GU191072 KM204192 KM040800 

Cyerce nigra Cy_nig_09Gua01 KM086354 KM204194 KM040802 

Cylindrobulla beauii Cylin_bea_09FL01 KM086358 KM204198 KM040806 

Elysia chlorotica Echl_06Mas01 KM086377 KM204226 JN819183 

Elysia crispata Ecri_06FL01 JN819090 JN819139 KM040828 

Elysia papillosa Epap_06Jam06 JQ914617 JQ914620 KM040841 

Elysia rufescens Eruf_08Jap01 KC573688 KM204247 KC597152 

Ercolania coerulea Er_cae_USVI_01 KM086389 KM204238 KM040856 

Ercolania subviridis Er_sub_10Jap01 KM086395 KM204244 KM040865 

Gascoignella aprica Ga_apr_11HK01 KM086404 KM204255 KM040868 

Hermaea bifida Hbif_05Ire01 KM086407 GU191043 KM040871 

Julia zebra Jzeb_10Mor01 KM086410 KM204259 KM040874 

Limapontia capitata Lcap_03UK01 KM086411 KM204260 KM040875 

Lobiger viridis Lvir_11How01 KM086415 KM204264 KM040879 

Oxynoe azuropunctata Oxy_sp4_07Gei01 KM086425 KM204274 KM040888 

Placida cremoniana Pl_cre_03Jap01 KM086427 KM204286 KM040896 

Placida verticilata Pl_ver_07SSal01 GU191064 GU191045 KM040900 

Plakobranchus sp. 1 Pk_sp1_07Sul01 KC573732 KM204281 KC597163 

Platyhedyle denudata Plty_den_NCBI JF828035 — — 

Polybranchia viridis Po_vir_04Cur01 KM086434 GU191052 KM040901 

Siphonaria pectinata Siph_pectinata HQ386633 HQ386656 AY377780 

‘Stiliger’ smaragdinus St_sma_11Syd01 KM086441 KM204300 KM040914 

Thuridilla gracilis Tgra_09Gua01 KM086444 KM204304 KM040917 

Thuridilla hopei Thop_07Ity01 KC573743 KM204305 KC597170 

Thuridilla livida Tliv_07Mal01 KC573745 KM204307 KC597172 

Thuridilla picta Tpic_10Nex01 KC573748 KM204309 KM040919 

Volvatella viridis Vo_vir_NCBI HQ168451 HQ168413 — 

Note: Underlined species belong to the Oxynooidea superfamily. 
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The divergence times of genera were estimated in the software 
package BEAST v1.10.4 (Suchard et al. 2018). BEAUti v.1.10.4 was 
used to import the concatenated dataset partitioned by gene, using 
linked substitution models, clock models and tree priors. The best-
fitting models of evolution (inferred with the AIC in JModelTest 
2.1.10) were specified as GTR +Γ + I for COI and 16S partitions and 
GTR+Γ for the H3 gene. We implemented an uncorrelated relaxed 
lognormal molecular clock and a Yule speciation-process tree 
prior, which is considered statistically sound for species-level phy­
logenies (Drummond et al. 2006). The species from Oxynooidea 
were set as a monophyletic group and time-calibrated with the fos­
sil B. elegans, applying an untruncated lognormal distribution [ini­
tial value=1; mean=42.8; stdev=3.17; quantiles=5.0%–95.0%]. 
Two independent analyses were run for 15 million generations, 
with a sampling frequency set to 1000. 

Tracer v1.7.1 (Rambaut et al. 2018) was used to inspect the effec­
tive sample size (ESS, >200) for each parameter and assess the 
convergence of runs by plotting the likelihood against the number 
of steps in the chain. The log tree files from each analysis were 
combined in LogCombiner v1.10.4 (Suchard et  al.  2018) with a 
burn-in set for each run of 20%. TreeAnnotator v1.10.4 (Suchard 
et al. 2018) was then used to summarise the trees onto a single 
target tree, posterior probability limit set to 0.5, maximum clade 
credibility tree and mean node heights. The resulting tree was 
converted to graphics in FigTree v1.4.4 (Rambaut 2018) and final 
adjustments were made in Adobe Illustrator CC 2018 (Figure 2). 

The time of speciation and rates of evolution of Thuridilla lin­
eages were tested for three possible scenarios of evolution. In 
scenario 1 (S1), the age range of the most recent common ances­
tor of Thuridilla (estimated using the method described above) 
was used to calibrate the root of the Thuridilla tree resulting 
from our own concatenated dataset. The dataset was partitioned 
by gene in BEAUti v.1.10.4 and set up using unlinked substitu­
tion models and linked clock models and tree priors. Nucleotide 
substitution models previously obtained with JModelTest 2.1.10 
were specified for each gene. 

The ingroup (all species of Thuridilla) was defined to be mono­
phyletic and calibrated with a uniform prior distribution and 
minimum (12.4 Mya) and maximum (24.46 Mya) ages (‘hard 
bounds’) estimated for the origin of Thuridilla in our first anal­
ysis (Figure 2). Markov Chain Monte Carlo (MCMC) analyses 
consisted of two independent runs of 100 million generations 
each sampled every 10,000 generations. Because the initial ran­
dom tree generated by BEAST v.1.10.4 was repeatedly in con­
flict with the set calibration priors, it was necessary to specify a 
starting tree that satisfied the calibration constraints. This was 
achieved by replacing in BEAUti v.1.10.4 the original uniform 
calibration prior with a normal prior with mean = 18 and stan­
dard deviation = 0.1, thus forcing the age of the Thuridilla node 
to be close to 18 My, which is close to the mean age estimated for 
the origin of Thuridilla (Figure 2). This analysis was performed 
in BEAST for 100,000 MCMC steps sampling every 1000 gen­
erations. The last tree of the output tree files was then selected 
and pasted in the original xml file generated with BEAUti with 
a uniform prior distribution and the hard bounds defined above. 

To validate the divergence times inferred in scenario 1 (S1), we 
repeated the analysis considering two additional calibration 

hypotheses. In scenario S2, we assumed the origin of Thuridilla 
to be related to processes resulting from the closure of the Tethys 
Sea (18–12 Mya)—a significant geotectonic event that separated 
the Atlantic from the Indo-Pacific Ocean. In scenario S3, we cali­
brated node 2, which includes splits between Atlantic (T. mazda, 
T. malaquita) and Indo-Western Pacific taxa (T. flavomaculata, 
T. kathae, T. carlsoni, T. hoffae), to coincide with the closure of 
the Tethys Sea. 

As described in detail above, convergence was assessed using the 
software Tracer, log tree files were combined in LogCombiner, 
TreeAnnotator was used to summarise the trees onto a single 
target tree, and the resulting tree was converted to graphics in 
FigTree v1.4.4 with final adjustments made in Adobe Illustrator 
CC 2018. 

2.3 | Historical Biogeographical Analysis 

Based on the geographical distributions known for the species 
of Thuridilla (Table 2), each lineage was coded as belonging to 
one of the following nine areas: Western Atlantic (WA); Eastern 
Atlantic including the Mediterranean Sea (EA); Atlantic Ocean 
(ATL), for species present on both sides of the Atlantic Ocean; 
Red Sea endemic (RS); Western Indian Ocean (WIO); Eastern 
Indian Ocean (EIO); Indian Ocean (IO), for species present on 
both sides of the Indian Ocean; or IWP and Western Pacific 
Ocean (WP). Ancestral geographical ranges were reconstructed 
using the symmetrical substitution phylogeographic model im­
plemented in BEAST v.1.10.4, treating distributions as discrete 
traits and reconstructing states at all ancestral nodes (Lemey 
et al. 2009). The concatenated dataset was partitioned by gene in 
BEAUti v.1.10.4, and an additional partition was included refer­
ring to the geographical distribution trait (Table 2). Parameters 
of gene partitions were configured following the settings of the 
calibration scenarios described in the previous section, and the 
geographical distribution trait was evaluated under a strict clock 
model (i.e., no rate shifts). 

3 | Results 

3.1 | Phylogenetic Relationships 

The topology and node support of the maximum clade credibil­
ity trees recovered for the three evolutionary scenarios all sup­
ported the monophyly of Thuridilla (PP = 1) and were largely 
congruent with the Bayesian tree obtained by Martín-Hervás 
et al. (2021). The exceptions were the position of some lineages 
within the T. gracilis complex that vary slightly between calibra­
tion scenarios, probably due to relatively low genetic divergence 
among lineages in this complex. 

Thuridilla species branched off into four major clades in all 
calibration scenarios (S1 is shown in Figure  3; S2 and S3 are 
shown in Figures  S1.1 and S1.2, respectively). Clade A is 
weakly supported in S1 (PP = 0.85) and S2 (PP = 0.88) but re­
ceived maximum support in S3 (PP = 1). This clade includes the 
amphi-Atlantic (T. mazda) and western Atlantic (T. malaquita 
Ortea and Buske  2014) plus a clade of Indo-West Pacific spe­
cies with T. hoffae, T. flavomaculata (Gosliner 1995), T. carlsoni 
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FIGURE 2 | Chronogram representing the ages (in million years) of the nodes estimated in BEAST from a subset of taxa from Krug et al. (2015) 
calibrated with the oldest fossil assigned to the Sacoglossa (Berthelinia elegans) consisting of the concatenated dataset H3, COI and16S rRNA genes 
under the relaxed-clock analysis using a GTR + Γ + I substitution model. Values in bold show node ages, and blue bars represent 95% highest posterior 
density (HPD) intervals. 
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TABLE 2 | Global distributions of Thuridilla species sensu Martín-Hervás et al. (2021). 

Species Distribution Biogeographical code 

Thuridilla albopustulosa Eastern coast of Australia (Cobb and Willan 2006), South Africa 
(Gosliner 1987 as Elysia sp.2), Aldabra Atoll (Gosliner 1995), Papua 
New Guinea (Gosliner 1995), Indonesia (Gosliner 1995; Eisenbarth 

et al. 2018; Papu et al. 2020; Martín-Hervás et al. 2021), The 
Philippines (Gosliner 1995; Martín-Hervás et al. 2021), Japan (Gosliner 

et al. 2008; Nakano 2018), Taiwan (Martín-Hervás et al. 2021) 

IWP 

Thuridilla bayeri Guam (Carlson and Hoff 1978; Jensen 1992; Bass 2006; Krug 
et al. 2015 as T. gracilis; Carlson and Hoff 2000; Burdick 2018; 
Martín-Hervás et al. 2021), Northern Mariana Is. (Carlson and 

Hoff 1978), Saipan (Northern Mariana Is.) (Fraser 2010; Martín-
Hervás et al. 2021), Marshall Is. (Marcus 1965; Johnson 2007), 

Maldives (Yonow 1994), Baa Atoll, Maldives (J. Anderson 2016), 
Madang, Papua New Guinea (Gosliner 1995), Maug and Sarigan Is., 
Palau (Carlson and Hoff 1978), Mahe Is., Seychelles (Holley 1992), 

Raroia Atoll, French Polynesia (Levy 2012) and Flinders Reef, 
Moreton Is., Queensland, Australia (Mullins and Cobb 2009) 

WP 

Thuridilla carlsoni Eastern coast of Australia (Cobb and Willan 2006), Western coast of 
Australia (Wells and Bryce 1993 as Thuridilla sp. 2), Lizard Is., Australia 
(Händeler et al. 2009), Lord Howe Is., Australia (Krug et al. 2013), Papua 
New Guinea (Gosliner 1995), Indonesia (Gosliner 1995), The Philippines 
(Martín-Hervás et al. 2021), Malaysia (Krug et al. 2013), Vanuatu (Krug 

et al. 2013), Saipan, Northern Mariana Is. (Krug et al. 2013), Japan 
(Ono 2004; Nakano 2018), Guam (Gosliner 1995), New Caledonia 

(Rudman 2000), Hawai’ian Is (Gosliner 1995; Bass 2006), Marshall Is. 
(Gosliner et al. 2008), Penghu Is., Taiwan (Martín-Hervás et al. 2021) 

IWP 

Thuridilla coerulea* Sri Lanka (Kelaart 1858 as Elysia caerulea), southern coast 
of India (Eliot 1906 as Elysia caerulea; Edward et al. 2022), 

Andaman and Nicobar Is., India (Shaktivel et al. 2014) 

EI 

Thuridilla decorata Red Sea (Heller and Thompson 1983 as Elysia decorata; Yonow 2008; 
Gosliner et al. 2008, 2015, 2018; Martín-Hervás et al. 2021) 

RS 

Thuridilla flavomaculata Luzon I., The Philippines (Gosliner 1995; Martín-Hervás et al. 2021), 
Tingloy Is., The Philippines (Martín-Hervás et al. 2021), Marshall Is. 

(Gosliner 1995), Indonesia (Gosliner 1995; Eisenbarth et al. 2018; Papu 
et al. 2020; Martín-Hervás et al. 2021), Japan (Ono 2004; Nakano 2018), 

Taiwan (Martín-Hervás et al. 2021), Guam (Gosliner 1995; Gosliner 
et al. 2008), Saipan, Northern Mariana Is. (Urasawa 2006), Lord Howe 

Is., Australia (Nimbs and Smith 2018), Reunion Is. (Cadet 2010a) 

IWP 

Thuridilla gracilis New Caledonia (Risbec 1928; Durbano 2015), Guam, Pagan and Maug, 
Mariana Is. (Carlson and Hoff 1978), Lizard Is., Australia (Wollscheid-
Lengeling et al. 2001 as T. ratna; Händeler and Wägele 2007; Händeler 

et al. 2009; Wägele et al. 2011; Martín-Hervás et al. 2021), North 
Sulawesi, Indonesia (Eisenbarth et al. 2018), Tulamben, Bali, Indonesia 

(Yonow and Jensen 2018), Luzon I., The Philippines (Femia 2016) 

WP 

Thuridilla hoffae Papua New Guinea (Gosliner 1995; Debelius 2001), 
Vanuatu (Stenhouse 2000), Japan (Gosliner 1995; Ono 2004; 
Nakano 2018), Guam (Debelius 2001; Bass 2006), Marshall 
Is. (Debelius 2001; Gosliner et al. 2008), Indonesia (Yonow 

and Jensen 2018), Luzon I., The Philippines (Martín-Hervás 
et al. 2021), Western Australia (Debelius 2001), Samoa 

(Händeler and Wägele 2007), Mayotte (Poddubetskaia 2003), 
Reunion Is. (Cadet 2010b), Madagascar (Rassat 2016) 

IWP 

(Continues) 
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Species Distribution Biogeographical code 

Thuridilla hopei Eastern coast of Spain (Händeler and Wägele 2007; Carmona 
et al. 2011), Menorca, Spain (Carmona et al. 2011), Western Andalucia, 

Spain (Carmona et al. 2011), Southern coast of France (Vérany 1853 
as Actaeon hopei; Carmona et al. 2011), Yugoslavia (Jensen 1992), 
Italy (Jensen 1992; Krug et al. 2013; Furfaro et al. 2014), Croatia 

(Martín-Hervás et al. 2021), Greece (Manousis 2021); Azores 
(Carmona et al. 2011), Madeira (Carmona et al. 2011), Cape Verde 

(Martín-Hervás et al. 2021), Canary Is. (Carmona et al. 2011) 

EA 

Thuridilla indopacifica Mozambique (Martín-Hervás et al. 2021), South Africa (Gosliner 1987 
as Elysia sp.1; Gosliner 1995; Debelius 2001), Aldabra Atoll, Seychelles 

(Gosliner 1995), Western Australia (Wells and Bryce 1993; Debelius 2001; 
Gosliner et al. 2008; Martín-Hervás et al. 2021), Kenya (Amar 2015), 

Madagascar (Rassat, Rassat, n.d.), Mayotte (Bidgrain 2010a), Reunion 
Is. (Bidgrain 2010a), Omán (Mayes 2008), Tanzania (Rudman 2005) 

IO 

Thuridilla kathae Indonesia (Gosliner 1995), The Philippines (Gosliner 1995), Japan 
(Ono 2004; Nakano 2018), Hawai’ian Is (Gosliner et al. 2008; 
Krug et al. 2013), Taiwan (Martín-Hervás et al. 2021), Lizard 

Is., Australia (Händeler and Wägele 2007), Madagascar 
(Gosliner 1995; Gosliner et al. 2008), Reunion Is. (Cadet 2009a) 

IWP 

Thuridilla lineolata Indonesia (Bergh 1905; Gosliner 1995; Debelius 2001; Händeler and 
Wägele 2007; Gosliner et al. 2008, 2015, 2018; Eisenbarth et al. 2018; 

Papu et al. 2020; Martín-Hervás et al. 2021), The Philippines (Gosliner 
et al. 2008, 2015, 2018; Martín-Hervás et al. 2021), Japan (Nakano 2018) 

WP 

Thuridilla livida Aldabra Atoll (Gosliner 1987 as Elysia livida; Gosliner 
et al. 2008), Japan (Ono 2004; Gosliner et al. 2008; Nakano 2018), 

Guam (Bass 2006; Gosliner et al. 2008), Indonesia (Gosliner 
et al. 2008; Eisenbarth et al. 2018; Papu et al. 2020), Mariana Is. 

(Urasawa 2005), Malaysia (Krug et al. 2013), The Philippines 
(Gosliner et al. 2008), Marshall Is. (Gosliner et al. 2008), Taiwan 

(Martín-Hervás et al. 2021), Eastern Australia (Cobb 2007a), 
South Africa (Gosliner et al. 2008), Mayotte (Bidgrain 2010b), 

Reunion Is. (Cadet 2010c), Seychelles (Gosliner et al. 2008) 

IWP 

Thuridilla malaquita Costa Rica (Camacho-García et al. 2014 as Thuridilla sp.), Colombia 
(Valdés et al. 2006 as Thuridilla sp.), Grenada (Valdés et al. 2006 as 
Thuridilla sp.), Florida (Valdés et al. 2006 as Thuridilla sp.; Martín-

Hervás et al. 2021), Martinique (Lesser Antilles) (Ortea and Buske 2014), 
Venezuela (Delgado et al. 2022), Brazil (Delgado et al. 2022) 

WA 

Thuridilla 
multimarginata* 

Maui and Midway Atoll, Hawai’ian Is. (Gosliner 1995), South Africa 
(Gosliner 1987 as Elysia sp.3; Gosliner et al. 2008, 2015, 2018), Reunion 
Is. (Cadet 2009b), Mauritius (Summers 2015), Lizard Is. (Anthes 2004) 

IWP 

Thuridilla mazda Bahamas (Redfern 2001 as T. picta; Valdés et al. 2006), Guadeloupe 
(Ortea et al. 2012), Costa Rica (Ortea and Espinosa 2000; Valdés 
et al. 2006; Rosenberg et al. 2009; Miloslavich et al. 2010), Cuba 

(Ortea and Espinosa 2000; Valdés et al. 2006; Rosenberg et al. 2009; 
Miloslavich et al. 2010), Mexico (Carmona et al. 2011), Florida 
(Martín-Hervás et al. 2021), São Miguel Is., Azores (Malaquias 
et al. 2012), Tenerife, Canary Is. (Ortea et al. 2015), Granada, 

Spain (Orfanidis et al. 2021), Sicily, Italy (Lombardo 2023) 

ATL 

(Continues) 
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Species Distribution Biogeographical code 

Thuridilla moebii Andaman and Nicobar Is., India (Sreeraj 2010), Mauritius 
(Bergh 1888), Reunion Is. (Gosliner 1987 as Elysia moebii), Comoro 
Ids., Mayotte (Gosliner et al. 2008), Madagascar (Bini, Bini, n.d.), 

South Africa (Gosliner 1987 as Elysia moebii; Gosliner et al. 2008), 
Abrolhos Ids., Western Australia (Wells and Bryce 1993) 

IO 

Thuridilla neona Eastern coast of Australia (Cobb and Willan 2006), Lizard Is., 
Australia (Burghardt 2005), Lord Howe Is., Australia (Krug 

et al. 2013), Midway Atoll (Gosliner 1995), Northwest and main 
Hawai’ian Is (Debelius 2001; Gosliner et al. 2008, 2015, 2018) 

WP 

Thuridilla picta Gulf of Mexico (De la Cruz-Francisco et al. 2017), Florida (Valdés 
et al. 2006), Bermuda (Valdés et al. 2006; Rosenberg et al. 2009; Carmona 
et al. 2011), Cuba (Miloslavich et al. 2010; Carmona et al. 2011), Bahamas 

(Valdés et al. 2006; Krug et al. 2013), Curaçao (Valdés et al. 2006), 
Jamaica (Valdés et al. 2006; Miloslavich et al. 2010), Lesser Antilles 

(Rosenberg et al. 2009), Costa Rica (Camacho-García et al. 2014), 
Colombia (Carmona et al. 2011), Brazil (Martín-Hervás et al. 2021) 

WA 

Thuridilla ratna The Philippines (Bass 2006; Martín-Hervás et al. 2021), Guam 
(Carlson and Hoff 1978; Bass 2006; Martín-Hervás et al. 2021), 

Saipan, Northern Mariana Is. (Martín-Hervás et al. 2021), Taiwan 
(Martín-Hervás et al. 2021), Palau (Marcus 1965; Carlson and 

Hoff 1978; Medina et al. 2011 as T. gracilis; Martín-Hervás et al. 2021), 
Pohnpei, Eastern Caroline Islands (Carlson and Hoff 1978), Bil 

Bil Is. and Sek Is., Papua New Guinea (Martín-Hervás et al. 2021), 
Maldives (Martín-Hervás et al. 2021), Pulau Hantu, Singapore 

(Jensen 2009), Okinawa, Japan (Takano et al. 2013 as T. gracilis; 
Imagawa 2015; Martín-Hervás et al. 2021), Bangka Archipelago, 

North Sulawesi, Indonesia (Papu et al. 2020 as T. gracilis). 
Based on online images, see references in Martín-Hervás et al. 2021 

WP 

Thuridilla splendens Japan (Baba 1949; Gosliner 1995; Gosliner et al. 2015, 2018; 
Takano et al. 2013; Krug et al. 2015; Nakano 2018; Martín-Hervás 
et al. 2021), New Taipei City, Taiwan (Martín-Hervás et al. 2021) 

WP 

Thuridilla undula Maldives (Yonow 1994; Debelius 2001), Salomon Is. (Gosliner 
et al. 2008), Papua New Guinea (Gosliner 1995), The Philippines 

(Gosliner 1995; Bass 2006), Guam (Gosliner 1995), Palau (Debelius 2001; 
Gosliner 1995; Gosliner et al. 2008), Indonesia (Eisenbarth 

et al. 2018; Papu et al. 2020), Japan (Ono 2004; Nakano 2018) 

IWP 

Thuridilla vataae Eastern Australia (Cobb 2007b), New Caledonia (Risbec 1928 as 
Elysia vataae), Guam (Carlson and Hoff 1978; Bass 2006; Gosliner 

et al. 2008), Vanuatu (Gosliner et al. 2008), Papua New Guinea 
(Gosliner 1995), Indonesia (Gosliner 1995; Eisenbarth et al. 2018; Papu 

et al. 2020), The Philippines (Gosliner 1995), Japan (Ono 2004; Gosliner 
et al. 2008; Nakano 2018), Palau (Carlson and Hoff 1978; Gosliner 

et al. 2008), Marshall Islands (Gosliner et al. 2008), French Polynesia 
(Krug et al. 2015), Maug (Carlson and Hoff 1978), Western Australia 
(Jensen 1992), Taiwan (Martín-Hervás et al. 2021), Samoa (Händeler 
and Wägele 2007), Maldives (Yonow 2012), Mayotte (Bidgrain 2010c), 

South Africa (Gosliner 1987 as Elysia vatae), Aldabra Atoll 
(Gosliner 1995), Reunion Is. (Gosliner 1995), Laccadive Is. (Apte 2009) 

IWP 

Thuridilla virgata Mauritius (Bergh 1888), Madagascar (Martín-Hervás et al. 2021), 
South Africa (Gosliner 1987 as Elysia virgata), Tanzania (Gosliner 

et al. 2008), Reunion Is. (Eby 2005), Mayotte (Fontaine 2008), 
Nuarro, Mozambique (Martín-Hervás et al. 2021) 

WI 

(Continues) 
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(Gosliner 1995), and T. kathae (Gosliner 1995). Clade B (PP = 1 
in all three calibration scenarios) includes the Indo-West Pacific 
species T. albopustulosa (Gosliner 1995), T. virgata (Bergh 1888), 
Thuridilla sp. 1 and T. vataae (Risbec 1928). Clade C (PP = 1 in 
all three calibration scenarios) comprised of a clade with the 
Atlantic species T. picta (A. E. Verrill 1901) and T. hopei and 
the Indo-West Pacific species T. livida (Baba 1955), T. indopa­
cifica (Gosliner 1995), and T. neona (Gosliner 1995). Finally, 
clade D (PP = 1 in S1 and S3; PP = 0.99 in S2) contained the Indo-
West Pacific species T. decorata (Heller and Thompson 1983), 
T. moebii (Bergh 1888), T. undula (Gosliner 1995), T. lineolata 
(Bergh 1905) and the T. gracilis species-complex (Figure 3). 

3.2 | Divergence Times and Rates of Evolution 

All estimates for the origin of Thuridilla across the three sce­
narios were similar (±3 My): mean divergence time estimates 
since the last common ancestor were 16.62 Mya (S1), 14.38 
Mya (S2) and 17.08 Mya (S3), all during the Burdigalian and 
Langhian stages of the Miocene (Figure  3, Table  3). By all 
three methods, clade A was estimated to be older than clades 
B–D, which were all estimated to originate 8–10 Mya (Table 4). 
In the three proposed scenarios, the most recent divergence 
times estimated were obtained in S2, followed by S1 and S3, 
respectively. 

Divergence between Atlantic and Indo-West Pacific lineages 
occurred in two main temporal periods. Mean height estimates 
were centred in the Miocene for T. mazda (ATL) and its sister 
group, consisting of five taxa from the IWP, ranging between 
20.19–8.18 Mya (S1) (Table 4: node 2); as well as the group con­
sisting of T. neona (WP) and the sister pair T. picta (WA) and 
T. hopei (EA) between 10.35–3.31 Mya (S1) (Table 4: node 11). 
The mean height was centred in the Pliocene for the sister pair 

T. carlsoni (IWP) and T. malaquita (WA), between 7.66–2.02 
Mya (S1) (Table 4: node 4). Under the two other scenarios tested, 
the results were largely consistent, varying only by ±1 My and 
±2 My; except in the split between T. mazda and its sister group 
with higher differences in the maximum value of the range to 
±5 My. 

Speciation events within the T. gracilis species-complex, with its 
13 Indo-West Pacific lineages, fell mostly within Plio-Pleistocene 
times ranging between 0.83 and 7.15 Mya (S1), 0.75 and 5.81 Mya 
(S2) and 0.85 and 7.23 Mya (S3) (Table 4: nodes 16, 19). 

The average rates of evolution for the COI gene in Thuridilla 
across the three scenarios were 1.22% Myr−1 (S1), 1.39% Myr−1 

(S2) and 1.42% Myr−1 (S3). This is in line with rates found by 
several authors for other gastropods using similar calibra­
tion approaches (Marko 2002; Frey and Vermeij  2008; Wilke 
et al. 2009; Marko et al. 2014). 

3.3 | Biogeographical Patterns and Geographical 
Distribution 

Phylogeographic analyses of Thuridilla conducted on the three 
distinct evolutionary scenarios yielded similar results. The geo­
graphical distributions of relevant Thuridilla clades are shown 
together with their phylogenetic relationships inferred under 
S1 (Figure  4). The Indo-Pacific holds the highest diversity of 
Thuridilla with 24 species. Ten are distributed across the Indo-
West Pacific, five are restricted to the Indian Ocean, and two 
species are only known from the Western Indian Ocean (T. 
virgata, Thuridilla sp. 9); one species is endemic to the Red Sea 
(T. decorata), and T. coerulea occurs only in the Eastern Indian 
Ocean. Fourteen species are present in the Western Pacific, 
while the most specious region is the EIT with 18 species, 

Species Distribution Biogeographical code 

Thuridilla sp. 1 Guam (Martín-Hervás et al. 2021) WP 

Thuridilla sp. 2 Browse Is. and Ashmore Reef, Australia (Martín-Hervás et al. 2021), 
Cobrador Is. and Lubang Is, The Philippines (Martín-Hervás et al. 2021) 

WP 

Thuridilla sp. 3 Indonesia (Martín-Hervás et al. 2021) WP 

Thuridilla sp. 4 Kananam, Madang Province (Martín-Hervás et al. 2021), 
Tab Is., Papua New Guinea (Martín-Hervás et al. 2021) 

WP 

Thuridilla sp. 5 Adele Is. and Long Reef, Western Australia (Martín-Hervás et al. 2021) WP 

Thuridilla sp. 6 Pemba Bay, Nuarro, Vamizi Is. and Memba, Mozambique (Martín-
Hervás et al. 2021), Mangapwani, Tanzania (Martín-Hervás 

et al. 2021), Lubang Is., The Philippines (Martín-Hervás et al. 2021) 

IWP 

Thuridilla sp. 7 Siar Is., Papua New Guinea (Martín-Hervás et al. 2021) WP 

Thuridilla sp. 8 Lubang Is., The Philippines (Martín-Hervás et al. 2021), 
Pingtung County, Taiwan (Martín-Hervás et al. 2021) 

WP 

Thuridilla sp. 9 Memba, Mozambique (Martín-Hervás et al. 2021) WI 

Thuridilla sp. 10 Arkwright Shoal, Queensland, Australia (Martín-Hervás et al. 2021) WP 

Note: Asterisks indicate species that have not been included in the BEAST analysis. 
Abbreviations: ATL, Atlantic Ocean; EA, Eastern Atlantic including the Mediterranean Sea; EI, Eastern Indian Ocean; IO, Indian Ocean; IWP, Indo-West Pacific; RS, 
Red Sea; WA, Western Atlantic; WI, Western Indian Ocean; WP, Western Pacific. 

TABLE 2 | (Continued) 
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11 of 27 

FIGURE 3 | Time-calibrated worldwide phylogenetic tree of Thuridilla produced by divergence times using a relaxed uncorrelated lognormal 
molecular clock in BEAST for the concatenated dataset under the calibration scenario S1. Values above branch labels show posterior probabilities, 
blue bars represent 95% highest posterior density (HPD) intervals and values inside the blue bars show median ages of supported nodes. The outgroup 
was pruned from the tree for clarity. Colours of clades are based on geographical distributions. EA, Eastern Atlantic; IWP, Indo-West Pacific; RS, Red 
Sea; WA, Western Atlantic; WI, Western Indian; WP, Western Pacific. 
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resulting from the overlapping of species restricted to the WP 
with species broadly distributed across the IWP (Table 2). The 
Atlantic Ocean is comparatively poorer with only four species: 
T. picta and T. malaquita from the Western Atlantic, T. hopei 
from the Eastern Atlantic including the Mediterranean Sea, and 
T. mazda with an amphi-Atlantic distribution. There are no spe­
cies known from the eastern Pacific (Figure 1). 

Well supported pairs of sister species (PP ≥ 0.90) are all allo­
patric or nearly allopatric, including those in the T. gracilis 

species-complex (Figure 3, Table 2). Thuridilla is hypothesized 
to have originated in the IWP (S1; probability [Pr] = 0.72; Table 5; 
probabilities varied by ±0.02 or less under scenarios S2 and S3). 

In addition, the Indo-West Pacific was supported as the biogeo­
graphic region where the ancestral lineages that led to sister 
relationships between Atlantic and Indo-West Pacific species 
originated (nodes 2, 4, 9, 11; Figure 5). The exception was the sis­
ter pair T. hopei and T. picta (node 12) since the analysis suggests 
that these two species most likely shared an Atlantic ancestor 
either from the EA (Pr = 0.36) or the WA (Pr = 0.27) according to 
S1 (probabilities were the same in S2 and varied by ±0.01 in S3). 

Otherwise, node 13 representing the ancestor of 17 species (T. dec­
orata, T. moebii, T. undula, T. lineonata and T. gracilis complex) 
is inferred to have a WP origin (Pr=0.72 in S1, and±0.01 in the 
other two methods). The same origin was inferred for the ancestor 
of the T. gracilis complex (node 15) and sister lineages within all 
three evolutionary scenarios (see probabilities in Table 5). 

4 | Discussion 

4.1 | Divergence Times on the Origin 
and Evolution of Thuridilla 

During recent years, several molecular phylogenetic stud­
ies have suggested a mostly Cretaceous or Upper Jurassic 
origin of the Sacoglossa (84.8 Mya by Dinapoli and Klussmann-
Kolb 2010; 192.79 Mya by Jörger et  al.  2010; 123.26 Mya by 
Jörger et al. 2014; 147 Mya by Ayyagari and Sreerama 2019). In 
our study, the origin of Sacoglossa is estimated between 70 and 
45 Mya, with a mean age of 52.91 Mya (Figure 2) more or less co­
inciding with the transition between the Mesozoic and Cenozoic 
eras, a period marked by significant extinction and cladogene­
sis processes on Earth (e.g., Signor 1990; Bambach et al. 2004; 
Stanley 2007; Benton 2009; Neubauer 2024). Nevertheless, this 
estimate is almost twice as old as the oldest fossil known of 
Sacoglossa (Berthelinia elegans from the Middle Eocene of the 
Paris Basin between 37.8–47.8 Mya; Keen and Smith 1961), but 
this is not surprising since fossils only provide minimum ages, 
and the fossil record of sacoglossans is most certainly a misrep­
resentation of their ancestral diversity because of the soft-bodied 
nature of these animals and, when present, fragile shells of dif­
ficult fossilisation. 

Jörger et  al.  (2010) suggested an age approximately between 
80 and 25 Mya for the split between the genera Elysia and 
Thuridilla, with a mean age estimate of 27.02 Mya. Our esti­
mates for the origin of Thuridilla across the three evaluated 
scenarios are younger ranging between 23.65 and 10.80 Mya 
with mean age estimates between 17.08 and 14.38 Mya during 
the Early Miocene epoch, a period of tectonic rearrangements 
and warming climate known to have created opportunities 
for diversification (Steinthorsdottir et al. 2021; see below for 
discussion). 

Potential limitations in our methods include dating old splits 
using a phylogeny based on three genes, which makes it hard 
to recover with precision the age of older speciation events 
due to limited data and possible saturation. The use of a single 

TABLE 3 | List of mean divergence times for sister species pairs in 
millions of years ago (Mya) with upper and lower limits of 95% HPD 
obtained in the analyses with BEAST of the genus Thuridilla following 
the three different calibration scenarios specified in Section  2.2 
Phylogenetic analyses and estimate of divergence times. 

Sister pair Scenario 

Mean 
height 
(Mya) 

HPD 95% 
(Mya) 

Min Max 

T. carlsoni–T. malaquita 1 4.59 2.07 7.66 

2 4.03 1.82 6.61 

3 4.72 2.25 7.55 

T. livida–T. indopacifica 1 5.93 2.70 9.73 

2 5.18 2.62 7.99 

3 6.12 2.90 9.91 

T. hopei–T. picta 1 5.06 2.40 8.09 

2 4.36 2.34 6.68 

3 5.18 2.63 8.26 

T. gracilis–Thuridilla 
sp. 9 

1 2.94 1.01 5.29 

2 2.59 0.96 4.52 

3 3.08 1.09 5.42 

Thuridilla sp. 7– 
Thuridilla sp. 6 

1 2.30 0.83 4.14 

2 2.23 0.80 3.95 

3 2.61 0.91 4.63 

Thuridilla sp. 3– 
Thuridilla sp. 2 

1 2.88 1.01 5.14 

2 — — — 

3 — — — 

T. ratna–Thuridilla sp. 5 1 4.18 1.91 6.88 

2 3.55 1.86 5.51 

3 4.23 2.01 6.78 

T. moebii–T. undula 1 3.62 1.11 6.61 

2 3.13 1.07 5.58 

3 3.69 1.27 6.70 

T. 
albopustulosa–T. virgata 

1 3.17 1.21 5.58 

2 2.75 1.13 4.61 

3 3.27 1.27 5.64 
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TABLE 4 | List of mean divergence times for outstanding nodes 1, 2, 11, 15 and sister species pairs in millions of years ago (Mya) with upper and 
lower limits of 95% HPD and posterior probability based on the three different calibration scenarios specified in Section 2.2 Phylogenetic analyses 
and estimate of divergence times. 

Node number (see 
Figure 4) Sister pair Scenario 

Posterior 
probability Mean height (Mya) 

HPD 95% 
(Mya) 

Min Max 

1 Origin of Thuridilla 1 1.00 16.62 12.40 22.90 

2 1.00 14.38 10.80 17.91 

3 1.00 17.08 11.34 23.65 

2 -----­ 1 0.85 13.59 8.18 20.19 

2 0.88 11.46 7.17 15.63 

3 1.00 14.11 10.40 17.68 

4 T. carlsoni–T. malaquita 1 1.00 4.59 2.02 7.66 

2 0.99 4.03 1.82 6.61 

3 1.00 4.72 2.25 7.55 

5 -----­ 1 1.00 9.52 4.94 14.83 

2 1.00 8.06 4.55 13.73 

3 1.00 9.85 4.94 15.13 

7 T. albopustulosa–T. virgata 1 1.00 3.17 1.21 5.58 

2 0.99 2.75 1.13 4.61 

3 1.00 3.27 1.27 5.64 

9 -----­ 1 1.00 9.63 5.51 14.52 

2 1.00 8.39 5.26 11.57 

3 1.00 10.04 5.54 14.68 

10 T. livida–T. indopacifica 1 1.00 5.93 2.70 9.73 

2 1.00 5.18 2.62 7.99 

3 1.00 6.12 2.90 9.91 

11 -----­ 1 1.00 6.53 3.31 10.35 

2 1.00 5.64 3.14 8.36 

3 1.00 6.74 3.40 10.43 

12 T. hopei–T. picta 1 0.87 5.06 2.40 8.09 

2 0.87 4.36 2.34 6.68 

3 0.89 5.18 2.63 8.26 

13 -----­ 1 1.00 9.88 5.91 14.70 

2 0.99 8.51 5.53 11.67 

3 1.00 9.98 5.92 14.38 

14 T. moebii–T. undula 1 1.00 3.62 1.11 6.61 

2 1.00 3.13 1.07 5.58 

3 1.00 3.69 1.27 6.70 

(Continues) 
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calibration point may also lead to misestimates of rates and ages, 
as well as outgroup selection. Nonetheless, the estimates for the 
ages of clades appear reasonable and consistent with expecta­
tions. The fact that the various methods used yield similar esti­
mates suggests robustness and reliability in our results. 

4.2 | Global Patterns of Distribution and Diversity 
in Thuridilla 

Thuridilla slugs are distributed in tropical and temperate waters 
around the globe but are notably absent in the eastern Pacific 
coastlines of the American continents. The lack of species of the 
genus in the eastern Pacific is difficult to explain because the 
biotic characteristics of the coastal areas are not so distinct from 
other world temperate and tropical regions with availability of 
algal habitats where it would be expected to find Thuridilla. 
Likely this is the result of extinction of ancestral lineages in con­
nection with processes related to the closure of the Panamanian 
Seaway. Significant faunal extinction associated with the up­
lift of the Panamanian isthmus has been documented in sev­
eral groups of marine invertebrates through fossil records 
(Lessios 2008; Leigh et al. 2013; Medrano et al. 2019). 

The East Pacific is in general depauperate in sacoglossans, 
and the lineages that inhabit the area are recently derived 
from Western Pacific or Hawaiian lineages (Krug et  al.  2016; 
Medrano et  al.  2019). There are several other groups of 

heterobranch slugs with a ‘global’ distribution but absent in 
the eastern Pacific. A few examples are the sacoglossan genera 
Volvatella and Costasiella (Jensen 2007), the headshield slugs 
of the genera Aglaja, Chelidonura, Mariaglaja (Zamora-Silva 
and Malaquias 2018) and the nudibranch genus Hexabranchus 
(Tibiriçá et al. 2023). 

The Western Pacific is home to the greatest diversity of 
Thuridilla species, over three times higher than other world­
wide marine realms, such as the Atlantic Ocean, where only 
four species occur. 

4.3 | Tethyan Vicariance and Dispersal 
Across Oceans 

Neither Atlantic (ATL) nor Indo-West Pacific species assem­
blages were recovered as monophyletic radiations; instead, there 
were three dispersal events between these regions. A similar 
evolutionary pattern was documented for other heterobranch 
taxa (Johnson and Gosliner 2012 for Hypselodoris, Glossodoris, 
Mexichromis and Chromodoris; Krug et  al.  2018 for Placida; 
Medrano et al. 2019 for Polybranchia). 

Our reconstruction of ancestral distributions suggests not only 
an IWP origin of Thuridilla between 22.90 and 12.40 Mya 
around the closure of the Tethyan Sea, but also an IWP origin 
for two ancestral lineages that led to sister relationships between 

Node number (see 
Figure 4) Sister pair Scenario 

Posterior 
probability Mean height (Mya) 

HPD 95% 
(Mya) 

Min Max 

15 -----­ 1 1.00 7.15 4.07 10.90 

2 0.99 6.15 3.86 8.66 

3 1.00 7.28 4.15 10.70 

16 -----­ 1 0.84 4.34 1.95 7.15 

2 0.90 3.70 1.83 5.81 

3 0.88 4.43 2.01 7.23 

17 Thuridilla sp. 3– 
Thuridilla sp. 2 

1 0.95 2.88 1.01 5.14 

2 — — — — 

3 — — — — 

18 T. ratna–Thuridilla sp. 5 1 1.00 4.18 1.91 6.88 

2 1.00 3.55 1.86 5.51 

3 1.00 4.23 2.01 6.78 

19 Thuridilla sp. 7– 
Thuridilla sp. 6 

1 1.00 2.30 0.83 4.14 

2 1.00 1.99 0.75 3.42 

3 1.00 2.31 0.85 4.04 

20 T. gracilis–Thuridilla sp. 9 1 0.99 2.94 1.01 5.29 

2 0.99 2.59 0.96 4.52 

3 0.99 3.08 1.09 5.42 

TABLE 4 | (Continued) 
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ATL and IWP extant species. The first divergence between ATL 
and IWP lineages took place between 20.19 and 8.18 Mya and 
therefore is partially compatible with vicariance associated 
with the closure of the Tethys seaway around 18–12 Mya (Hou 
and Li 2018) that isolated populations in each realm leading to 
speciation (Steeman et  al.  2009; Cowman  2014; Schiffer and 
Herbig 2016). 

The divergence of the ancestral lineage between T. carlsoni and 
T. malaquita occurred more recently after the closure of the 
Tethys seaway between 7.66 and 2.02 Mya. Since ancestral geo­
graphic reconstruction supported an origin in the IWP of the 
most recent common ancestor of these radiations, one hypoth­
esis for the observed phylogenetic pattern is dispersal around 
South Africa, with establishment of lineages in the Atlantic 

FIGURE 4 | Geographical distributions and phylogenetic relationships of Atlantic-Indo-Pacific Thuridilla species. (A) Clade with species T. maz­
da, T. malaquita, T. kathae, T. carlsoni, T. flavomaculata and T. hoffae; (B) clade with species T. picta, T. hopei and T. neona; and (C) clade with species 
of T. gracilis complex. 
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FIGURE 4 |  (Continued) 

Ocean. Alternatively, long-distance dispersal across the eastern 
Pacific Ocean and Central America may have occurred before 
the closure of the Isthmus of Panama, which remained open and 
permitted larval transport until about 3 Mya (O'Dea et al. 2016). 
These hypotheses of dispersal followed by allopatric speciation 
are supported by planktotrophic larval development in some 
Thuridilla species (Jensen 2001; Krug et  al.  2015; Krug, pers. 
comm.), which would allow larvae to travel long distances and 
successfully establish in remote locations. The Benguela cur­
rent off Namibia and South Africa was established around 10 
Mya (Siesser 1980), isolating the tropical fauna of the IWP and 
the Atlantic by creating a thermal barrier for larval dispersal. 
Yet, the Benguela current was disrupted several times during 
warmer periods of the late Pliocene and Pleistocene, creating 

opportunities for inter-oceanic dispersal as documented for 
several molluscs based on the fossil record and morphology 
(Vermeij and Rosenberg 1993) and for fish based on molecular 
data (Rocha et al. 2005; Floeter et al. 2008). 

Speciation between T. neona (WP) and the sister pair T. ho­
pei–T. picta (ATL) between 10.35–3.31 Mya mostly predates the 
closure of the Isthmus of Panama and the Plio-Pleistocene ep­
ochs; this split is therefore more compatible with long-distance 
dispersal of larvae across the Eastern Pacific Barrier and inva­
sion of the Atlantic with subsequent speciation. The Eastern 
Pacific Barrier, the vast span of water between the islands of 
French Polynesia, Hawaii and the American continent, is con­
sidered a nearly insurmountable barrier for dispersal of marine 
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TABLE 5 | Summary of node data probabilities in defined regions estimated with BEAST following the three different calibration scenarios 
specified in Section 2.2. Phylogenetic analyses and estimate of divergence times. 

Node number (see Figure 4) Scenario 

Node data probabilities 

IWP WP WA EA ATL WI IO RS 

1 1 0.72 0.28 0 0 0 0 0 0 

2 0.73 0.27 0 0 0 0 0 0 

3 0.74 0.26 0 0 0 0 0 0 

2 1 0.87 0.12 0 0 0.01 0 0 0 

2 0.88 0.11 0 0 0.01 0 0 0 

3 0.87 0.12 0 0 0.01 0 0 0 

3 1 0.99 0.01 0 0 0 0 0 0 

2 0.99 0.01 0 0 0 0 0 0 

3 0.99 0.01 0 0 0 0 0 0 

4 1 0.99 0 0.01 0 0 0 0 0 

2 0.99 0 0.01 0 0 0 0 0 

3 0.99 0 0.01 0 0 0 0 0 

5 1 0.85 0.15 0 0 0 0 0 0 

2 0.86 0.14 0 0 0 0 0 0 

3 0.86 0.14 0 0 0 0 0 0 

6 1 0.82 0.17 0 0 0 0.01 0 0 

2 0.83 0.16 0 0 0 0.01 0 0 

3 0.83 0.16 0 0 0 0.01 0 0 

7 1 0.89 0.08 0 0 0 0.03 0 0 

2 0.89 0.08 0 0 0 0.03 0 0 

3 0.89 0.08 0 0 0 0.03 0 0 

8 1 0.57 0.43 0 0 0 0 0 0 

2 0.60 0.40 0 0 0 0 0 0 

3 0.61 0.39 0 0 0 0 0 0 

9 1 0.58 0.41 0 0 0 0 0.01 0 

2 0.60 0.39 0 0 0 0 0.01 0 

3 0.61 0.38 0 0 0 0 0.01 0 

10 1 0.75 0.18 0 0 0 0 0.07 0 

2 0.76 0.17 0 0 0 0 0.07 0 

3 0.76 0.17 0 0 0 0 0.07 0 

11 1 0.34 0.54 0.06 0.06 0 0 0 0 

2 0.36 0.52 0.06 0.06 0 0 0 0 

3 0.36 0.51 0.06 0.06 0 0 0.01 0 

12 1 0.16 0.21 0.27 0.36 0 0 0 0 

2 0.17 0.20 0.27 0.36 0 0 0 0 

3 0.17 0.20 0.27 0.35 0 0 0.01 0 

(Continues) 
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benthic invertebrates (Grigg and Hey  1992), but, under spe­
cial circumstances, such as climatic phenomena like El Niño, 
stochastic dispersal is more prone to take place and has been 
documented, for example, in some crustaceans (Hickman and 
Zimmerman 2000), echinoderms (Lessios et al. 1998) and mol­
luscs (Kay 1991; Emerson and Chaney 1995). 

Available data cannot reject either hypothesis. The fact that rela­
tionships between IWP and ATL lineages involve always extant 
species with a WA affinity (T. mazda, T. malaquita, T. picta) could 
favour the idea of eastern Pacific dispersal with establishment of 
viable populations in the proto-Caribbean province. Nevertheless, 
this phylogenetic pattern may be an artefact caused by extinction 
of some marine lineages in the eastern Atlantic after the closure 
of the Tethys seaway, as has been documented in corals, mol­
luscs, and foraminiferans (F. E. Anderson 2000; Harzhauser and 
Piller 2007; Studencka and Jasionowski 2011). Additional possible 

extinction events are also suggested by T. mazda, the only ancient 
lineage from the Atlantic which survived significant environmen­
tal changes. The remaining Atlantic lineages are relatively young, 
which suggests possibly higher extinction and lower speciation 
rates in this ocean. 

Our reconstruction of ancestral distributions did not resolve 
the origin of the clade containing the amphi-Atlantic sister 
species T. hopei (EA) and T. picta (WA). Speciation is inferred 
to have occurred at 8.09–2.40 Mya grossly during the Plio-
Pleistocene and the Messinian (Late Miocene), when the width 
of the Atlantic was similar to the present configuration. Likely 
stochastic dispersal events allowed larvae to travel across the 
Atlantic with consequent founding of viable populations fol­
lowed by speciation. The direction of dispersal is difficult to 
ascertain but based on empirical evidence it is known that trans-
Atlantic dispersal in an eastward direction has increased since 

Node number (see Figure 4) Scenario 

Node data probabilities 

IWP WP WA EA ATL WI IO RS 

13 1 0.28 0.72 0 0 0 0 0 0 

2 0.29 0.71 0 0 0 0 0 0 

3 0.27 0.73 0 0 0 0 0 0 

14 1 0.65 0.20 0 0 0 0 0.14 0.01 

2 0.65 0.20 0 0 0 0 0.14 0.01 

3 0.64 0.20 0 0 0 0 0.15 0.01 

15 1 0 1.00 0 0 0 0 0 0 

2 0 1.00 0 0 0 0 0 0 

3 0 1.00 0 0 0 0 0 0 

16 1 0 1.00 0 0 0 0 0 0 

2 0 1.00 0 0 0 0 0 0 

3 0 1.00 0 0 0 0 0 0 

17 1 0 1.00 0 0 0 0 0 0 

2 0 1.00 0 0 0 0 0 0 

3 0 1.00 0 0 0 0 0 0 

18 1 0 1.00 0 0 0 0 0 0 

2 0 1.00 0 0 0 0 0 0 

3 0 1.00 0 0 0 0 0 0 

19 1 0.05 0.95 0 0 0 0 0 0 

2 0.04 0.96 0 0 0 0 0 0 

3 0.04 0.96 0 0 0 0 0 0 

20 1 0 0.99 0 0 0 0.01 0 0 

2 0 0.99 0 0 0 0.01 0 0 

3 0 0.99 0 0 0 0.01 0 0 

Abbreviations: ATL, Atlantic Ocean; EA, Eastern Atlantic including the Mediterranean Sea; IO, Indian Ocean; IWP, Indo-West Pacific; RS, Red Sea; WA, Western 
Atlantic; WI, Western Indian; WP, Western Pacific. 

TABLE 5 | (Continued) 
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FIGURE 5 | Phylogeographic reconstruction of the ancestral distribution of Thuridilla using a Bayesian approach as implemented in BEAST for 
the concatenated dataset under the scenario 1. Pie charts at nodes represent the most likely distribution areas of the most recent common ancestor 
(MRCA). Colours of the pie charts for the different geographical regions are provided in the figure. Crosses next to species names indicate no pictures 
available. 
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the middle Pliocene, during the final closure of the Panamanian 
Isthmus and strengthening of the Gulf Stream (Vermeij and 
Rosenberg 1993; Briggs 2003; Malaquias and Reid 2009). 

4.4 | Thuridilla gracilis Species-Complex: An 
Example of a Recent Radiation 

The closure of the Tethys seaway not only separated the ATL 
and IWP marine realms but also the closure of the Indonesian 
deep-water flow between Southeast Asia and Australia between 
25 and 22 Mya (Hall 2009) promoting a rapid speciation in the 
IWP (Williams 2007; Frey and Vermeij 2008; Tian et al. 2024). 
Therefore, the spatial pattern of diversity observed in the genus 
can be attributed to a combination of historical biogeographic 
events and ecological factors (e.g., variation in environmen­
tal conditions such as temperature, salinity, food availabil­
ity, etc.) which in the Western Pacific region have provided a 
range of ecological niches for Thuridilla species to evolve and 
diversify over time. Consequently, species have exploited new 
environments, resources, or ecological roles, resulting in in­
creased diversity. Thus, the influence of sea-level changes as­
sociated with Plio-Pleistocene climatic oscillations, particularly 
in the EIT, contributed to high rates of speciation, making this 
area the richest marine biodiversity hotspot in the world (e.g., 
Palumbi 1997; Vermeij  2001; Bellwood and Wainwright  2002; 
Briggs 2003; Kool et al. 2011; Gaither and Rocha 2013). The Plio-
Pleistocene eustatic cycles contributed during colder periods to 
broaden the continental area and to restrict seaways between 
the Indian and Pacific basins, noticeably within the EIT itself, 
promoting opportunities for transient allopatry, isolation and 
speciation (McManus  1985; Hewitt  2000; Wallace et  al.  2000; 
Williams and Reid 2004; Kool et al. 2011). 

The Thuridilla gracilis complex provides several examples of the 
potential role of the Plio-Pleistocene eustatic cycles in diversifi­
cation within the EIT, supporting this region as a centre of ori­
gin. For the radiation formed by Thuridilla sp.2, Thuridilla sp.3 
and Thuridilla sp.4, all three species are only known from the 
EIT. In the sister pair T. ratna and Thuridilla sp.5, both species 
extend their ranges slightly beyond the strict boundaries of the 
EIT. Such extended distributions could result from the south­
wards Indonesian Throughflow (Sprintall  2009) and north­
wards Kuroshio Current (Qiu 2009), which facilitate dispersal of 
larvae to tropical and sub-tropical peripheral regions of the EIT, 
such as Taiwan and southern Japan (e.g., T. ratna) and Adele 
Island Long Reef in northwestern Australia (e.g., Thuridilla 
sp.5). The divergence between Thuridilla sp.6 and Thuridilla 
sp.7 likely took place within the EIT, followed by geographical 
range expansion through dispersal of larvae of Thuridilla sp.6 
to the Western Indian Ocean. In contrast, the sister relationship 
between T. gracilis (EIT and several western Pacific localities) 
and Thuridilla sp.9 (Western Indian Ocean) suggests stochas­
tic long-distance dispersal to the Western Indian Ocean, with 
Indian and Pacific populations speciating allopatrically around 
the Pliocene–Pleistocene transition. 

The remarkable radiation of the T. gracilis species-complex 
seems to be explained by small-scale geographical isolation prob­
ably related to transient allopatry caused by Pleistocene climatic 

oscillations. This micro-allopatry, together with the plethora of 
habitats and oceanographic conditions within the EIT (currents 
and productivity regimes) provided the conditions for popula­
tions to become isolated, leading to divergent evolutionary paths 
and the formation of new species. Additionally, repeated vicar­
iant events driven by long-distance dispersal from the EIT to 
the western Indian Ocean also played an important role. These 
vicariant events caused populations to become geographically 
separated, further promoting diversification and contributing 
to the radiation observed in the complex. This rapid radiation 
of the T. gracilis complex contrasts sharply with the diversifica­
tion observed in remaining species within the genus Thuridilla. 
Thus, the synergy between micro-allopatric speciation and long-
distance dispersal events seemed to have exceptionally acceler­
ated the evolutionary trajectory of this particular complex. 

5 | Concluding Remarks 

Thuridilla is hypothesized to have an Indo-West Pacific ori­
gin between 23.65 and 10.80 Mya during the Early Miocene. 
Presently, these slugs are distributed across tropical and tem­
perate latitudes of the Atlantic Ocean and tropical areas of 
the IWP but are absent in the eastern Pacific coastlines of the 
American continent, likely due to extinction of ancestral lin­
eages related to geological and biological events connected to 
the uplift of the Isthmus of Panama. The EIT (18 spp.) and the 
WP (14 spp.) are the regions of highest diversity, whereas the 
Atlantic is depauperate of species, with only four lineages oc­
curring in this realm. 

In the IWP, speciation events are dominated by allopatric pro­
cesses connected with pulses of transient allopatry associated 
with Plio-Pleistocene sea-level fluctuations, which have been 
particularly relevant in the diversification of species within the 
EIT and peripheral areas, suggesting this region to be a centre of 
origin for these slugs. Long-distance dispersal from the western 
Pacific across the Indian Ocean has also been responsible for 
allopatric speciation in the Western Indian Ocean. 

The diversity of the Atlantic Ocean is hypothesized to be derived 
from Miocene vicariant events associated with the closure of the 
Tethys Sea that left ancestral lineages isolated in this realm and 
with dispersal across South Africa or long-distance dispersal 
across the East Pacific Barrier prior to the uplift of the Isthmus 
of Panama that has fed the Western Atlantic with lineages of 
these slugs. 
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