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We use Bayesian statistics to infer the breakdown scale of pionless e↵ective field theory in its
standard power counting and with renormalization of observables carried out using the power-
divergence subtraction scheme and cuto↵ regularization. We condition our inference on predictions
of the total neutron-proton scattering cross section up next-to-next-to leading order. We quantify a
median breakdown scale of approximately 1.4 m⇡. The 68% degree of belief interval is [0.96, 1.69]m⇡.
This result confirms the canonical expectation that the pion mass is a relevant scale in low-energy
nuclear physics.

Introduction – E↵ective field theories (EFTs) [1]
have emerged as important tools in nearly all areas of
physics. They facilitate precise and systematic descrip-
tions of observables without requiring a complete under-
standing of an underlying theory by focusing on the rel-
evant degrees of freedom. A requirement for the appli-
cability of an EFT is the existence of a su�ciently large
separation of scales inherent to the system under study,
as only then does the ratio of these scales provide a useful
expansion parameter.

One type of EFT, the short-range EFT [2–4], has found
wide application in particle, nuclear, and atomic physics.
This non-relativistic EFT is built solely from contact in-
teractions and is applicable when the two-body scattering
length, a, is much larger than the range, R, of the inter-
action. In atomic physics, short-range EFT has been
used to analyze three-body recombination in ultra-cold
atomic gases and to relate its loss features to the Efi-
mov e↵ect [5]. In nuclear physics, it has been applied
to describe a wide range of low-energy phenomena in
the positive- and negative-energy spectra of light-mass
nuclear systems [6]. Moreover, this type of EFT has
enabled the calculation of electroweak processes in the
two- and three-nucleon systems and served as a frame-
work for describing electroweak processes involving halo
nuclei, consisting of a few nucleons weakly bound to a
tightly bound core [7]. In particle physics, contact EFT
is a powerful tool to understand the properties of weakly
bound mesonic molecules like the X(3872) [8].

Given that EFTs o↵er a methodical order-by-order
approach, they were heralded as providing reliable un-
certainty estimates. To quantify these uncertainties—
both from truncating the EFT expansion [9] and in pa-
rameter estimation [10]—Bayesian methods were devel-
oped. Recently, it has been recognized that Bayesian
approaches can be used to quantify the breakdown scale,
Mhi, of an EFT [11]. The breakdown scale crucially de-
termines the momentum-scale for which the EFT is ex-
pected to fail, though it is not always straightforward
to quantify. Indeed, until we have quantitative knowl-
edge about the properties of the underlying theory, low-

energy quantum chromodynamics in the case of nucle-
ons, Mhi remains an inferred quantity rather than a pre-
cisely defined one. In the case of pionless EFT (the
short-range EFT for nucleons), the canonical expecta-
tion for the breakdown scale is momenta corresponding
to the pion mass, m⇡ ⇡ 138 MeV. This is because pion
exchange—the longest-range nuclear interaction, as de-
scribed by Yukawa [12]—is omitted from this EFT.

In this work, we use order-by-order predictions of the
the total neutron-proton scattering cross section to quan-
tify Mhi and thereby also critically test the fundamen-
tal underpinnings of pionless EFT. During the prepara-
tion of this manuscript, we became aware of Ref. [13],
which investigates the breakdown scale of a theory con-
structed solely from contact interactions in the context
of nucleon-nucleon scattering. That work follows an
ordering scheme for subleading interactions which dif-
fers from the approach typically used in pionless EFT.
Consequently, its results are not directly comparable to
our findings. The present work highlights the strength
of combining Bayesian methods with an order-by-order
renormalizable EFT to leverage its inferential advan-
tages.
Pionless EFT - This is a field theoretical formu-

lation of e↵ective range theory [14]. It uses a non-
relativistic Lagrangian built from contact interactions
only
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where N denotes the nucleon field and ↵ = 1S0, 3S1 are
the spin-singlet (s) and spin-triplet (t) contributions to
the S-wave two-nucleon scattering channel
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where C↵
0 and C↵

2 are low-energy coupling constants ad-
justed to the e↵ective range parameters [15]. At next-



2

to-next-to-leading order (N2LO), an S- to D-wave oper-
ator is formally required to calculate the scattering am-
plitude, denoted in Eq. (1) as Lsd. However, it does not
contribute to the total cross section up to N2LO.

We calibrate the coupling constants of this Lagrangian
to reproduce the e↵ective range parameters determined
by the Nijmegen partial wave analysis [16, 17]. To do
this, we expand around the pole in the triplet channel

k cot �t = ��t +
⇢t
2

(k2 + �2
t ) + . . . , (3)

where k is the relative momentum between the two nu-
cleons, � =

p
mBd is the binding momentum associated

with the binding energy Bd of the deuteron. In the sin-
glet channel, we expand around the scattering threshold

k cot �s = �
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Pionless EFT requires a re-summation of the contact op-
erators at leading order to reproduce the analytic struc-
ture of the S-matrix that generates the low-energy bound
state (the deuteron) in the triplet channel and a virtual
state in the singlet channel. The two-body spin-singlet
t-matrix ts containing the e↵ective range parameters is
therefore expanded in the small length scale rs
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A similar expansion is carried out in the triplet channel
for the triplet t-matrix tt where (3) is used. The first
term in the expansion in Eq. (5) is reproduced in the pi-
onless EFT by summing all diagrams that contain only
vertices arising from the first term in Eq. (2) and cali-

brating the low-energy constant C
1S0
0 accordingly. The

remaining terms are reproduced by including the sub-
leading operators in Eq. (2) in perturbation theory. In
this way, the low-energy constants become functions of
the parameters in the e↵ective range expansions [15]

as = �23.714 fm, rs = 2.678 fm, (6)

��1 = 4.318946 fm, ⇢t = 1.765 fm , (7)

and we calculate the total cross section as
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The calculation of the scattering amplitude includes loop
diagrams that are power-divergent. Therefore, a regular-
ization scheme has to be employed before renormaliza-
tion to the physical parameters in Eq. (6). The so-called
power-divergence subtraction (pds) scheme [4] is a reg-
ularization approach that replaces any power divergence

with a single power of the renormalization scale µ. Af-
ter renormalization in the pds scheme, the on-shell two-
nucleon t-matrix reproduces the e↵ective range expansion
up the order of the EFT expansion exactly, i.e., it does
not exhibit any residual regulator dependence. Alterna-
tively, the loop integrals can employ a hard momentum
space cuto↵ ⇤. When this is done, the amplitude will
display residual regulator dependence that is one order
higher than the one considered. In this work, we primar-
ily use pds regularization, but we also explore the e↵ects
of cuto↵ regularization on our inferences [18].
Inferring the breakdown scale – Having estab-

lished the theoretical framework for pionless EFT, we
now turn to the application of Bayesian inference to
quantify the breakdown scale Mhi. We express the n-
th order EFT prediction of the total cross � section, at
relative on-shell momentum k, as a series expansion, i.e.,
we formally write

�(n)(k) = �ref(k)
nX

i=0

ci(k)[Q(k)]i . (9)

The expected systematicity of pionless EFT manifests in
the dimensionless ratio Q(k) = f(k)/Mhi and an expecta-
tion of natural values for the EFT expansion coe�cients
ci. We assume a functional form f(k) that smoothly in-
terpolates over the soft scale ⇠ 1/at, where at = 5.42 fm,
as

f(k; r) =
kr + (1/at)r

kr�1 + (1/at)r�1
, r = 6 (10)

This function is roughly constant for kat < 1 and
smoothly matches to a linearly increasing function
k/Mhi. In accordance with our expectation of naturally
sized expansion coe�cients ci, i.e., ci ⇡ O(1), we employ
a normally distributed prior density[19]

ci|c̄
2 iid
⇠ N (0, c̄2) (11)

c̄2|naturalness ⇠ ��2(⌫0 = 2, ⌧2
0 = 1), (12)

with a hyperprior for the variance c̄2 following an inverse
�2 distribution with degrees of freedom ⌫0 = 2 and scale
parameter ⌧0 = 1, equivalent to an inverse gamma distri-
bution IG(a0 = 1, b0 = 1), see Fig. 1. For this choice of
prior we have P(c̄2 2 [1/3, 3]) ⇡ 0.67, i.e. a majority of
the probability for the variance remains natural.

All dimensionful factors are collected in a reference
scale �ref which renders the expansion coe�cients ci di-
mensionless. Our statistical analysis will be conditioned
on leading order (LO,n = 0), next-to-leading order (NLO
n = 1), and next-to-next-to-leading order (N2LO, n = 2)
predictions for the total cross section at a finite number
of momenta k. Information about the breakdown scale
flows through the momentum-dependent order-by-order
di↵erences of predictions �(j) and �(j�1) via the corre-
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FIG. 1. Inverse-�2 prior for the variance of the normally
distributed prior we place on the EFT expansion coe�cients
ci defined in Eq. (9).

sponding expansion coe�cients

cj(k) =
�(j)(k)� �(j�1)(k)

�ref[Q(k)]j
. (13)

We utilize the leading-order pionless EFT prediction as
the reference scale and therefore have that c0 = 1. A col-
lection of order-by-order predictions at K di↵erent mo-
menta is denoted by a boldface symbol; �. Up to N2LO,
we can extract N = 2 informative coe�cients c1(k) and
c2(k) at momenta (k1, k2, . . . , kK). Using Bayes’ rule, we
express the posterior probability for Mhi, given � and
additional assumptions I, specified above and below, as

p(Mhi|�, I) / p(�|Mhi, I)p(Mhi|I). (14)

To avoid overly correlated samples, which would contra-
dict our iid assumption for the expansion coe�cients, we
computed cross sections at K = 3 di↵erent laboratory
scattering energies (10,40,and 70 MeV) corresponding to
relative momenta k = (68.5, 137.0, 181.2) MeV [20]. Be-
low we analyze the robustness of our inference with re-
spect to this choice of scattering energies.

p(�|Mhi, I) =
KY

i=1

p(�i|Mhi, I). (15)

Following Melendez et al. [11] we can make a variable
transformation and express the data likelihood at each
momentum ki as a joint distribution for the correspond-
ing expansion coe�cients. Moreover, having placed a
(conjugate) inverse-�2 prior (with hyperparameters ⌫0 =

0 50 100138 200 300 400

Mhi (MeV)

N2LO

NLO

p(Mhi|�, I)

FIG. 2. Posteriors for the breakdown scale Mhi in pionless
EFT. Thick and thin horizontal bars indicate 68% and 95%
(highest posterior density) DoB intervals, respectively. The
68% (95%) DoB intervals are [61, 216] MeV ([23, 363] MeV)
and [133, 233] MeV ([96, 303] MeV) at NLO and N2LO, re-
spectively. The median values (white dots) for Mhi are 154
and 189 MeV at NLO and N2LO, respectively.

2, and ⌧0 = 1) on the expansion coe�cients yields a closed
form expression for p(�|Mhi, I). We thus have

p(Mhi|�, I) / p(Mhi|I)
KY
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where ⌧i and ⌫i are given by

⌫i = ⌫0 + nc, (17)

and

⌫i⌧
2
i = ⌫0⌧

2
0 + c1(ki)

2 + c2(ki)
2. (18)

and nc = 2 is the number of order-by-order di↵erences
c1(ki) and c2(ki) for each of the K momenta. The
last step before we can evaluate the posterior for the
breakdown scale is to express our prior p(Mhi|I). To
begin with, we adopt scale-invariant log-uniform distri-
bution across a rather large interval of possible values
Mhi 2 (m⇡/40, 40m⇡).
Results – We find posteriors at NLO and N2LO for

the breakdown scale Mhi as shown in Fig. 2. The N2LO
posterior is slightly more precise, as expected. Indeed,
the NLO posterior is conditioned on less data as the
inverse-product over the orders in Eq. 16 is truncated
at n = 1, which also modifies Eqs. 17-18 by nc = 1 and
c2(ki) = 0 for all ki.
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FIG. 3. Pionless EFT predictions for the total cross section
at NLO and N2LO including 68% DoB intervals. Loop dia-
grams are regularized using pds, the coupling constants are
calibrated to reproduce the e↵ective range expansion, and we
employ Mhi = 1.4m⇡. Experimental cross section data is from
the Granada database [21, 22].

The inferred breakdown scale is consistent with the
canonical scale separation that pionless EFT is predi-
cated on. We find median values for Mhi at 1.1m⇡ and
1.4m⇡ at NLO and N2LO, respectively. Moreover, the
order-by-order estimates of Mhi are consistent with each
other as the NLO and N2LO posteriors overlap within
the 68% degree of belief (dob) intervals. This is the main
result of our work.

Our results are largely robust with respect to phys-
ically motivated variations of our prior assumptions.
Modifying the prior for the EFT expansion parameters
such that P(c̄2  1) = 0.62 by setting ⌫0 = 1 and
⌧0 = 1/2, the posterior for Mhi is also shifted to some-
what lower values, and at N2LO we find a 68% DoB
interval [80, 179] MeV and median Mhi = m⇡. The NLO
distribution sits at slightly lower values, as in the pre-
vious case. Regarding the soft-scale function f(k; r) in
Eq. 10, for r > 6 the resulting inference barely changes
at all, as expected from the functional form of f(k; r).
However, for r = 1 we find median values of the break-
down scale at m⇡ for both NLO and N2LO. Using a uni-
form distribution for the prior p(Mhi|I) across the inter-
val [m⇡/2, 2m⇡], we find median values Mhi = 1.5m⇡ at
both NLO and N2LO, with other characteristics of the
distributions remaining largely unchanged. The median
values for the breakdown scale are also robust with re-
spect to the choice of scattering momenta at which we
compute cross sections. Conditioning the inference on
another choice of relative momenta , e.g., k = 10, 80, 50

0 50 100 150

prel (MeV)

�3

�2

�1

0

1

2

3

c1

c2

FIG. 4. EFT expansion coe�cients c1 and c2 as extracted
from the order-by-order predictions in Fig. 3.

MeV only serves to push the median breakdown scale up
to Mhi = 1.5m⇡ and 1.7m⇡ at NLO and N2LO, respec-
tively. However, increasing the number of momentum
values K can lead to artificially narrow posteriors, in-
formed by correlated data, which violate the iid assump-
tion underpinning our likelihood.

We inspect the pionless EFT predictions for the to-
tal cross section and quantify the corresponding trunca-
tion error up to N2LO, assuming Mhi = 1.4 m⇡ and the
prior in Eqs. 11-12. The results are shown in Fig. 3.
There is a clear trend of order-by-order improvement,
and a rather good reproduction of experimental data up
to k = 50(100) MeV for NLO(N2LO). As a representative
example, we also show the corresponding c1(k) and c2(k)
EFT expansion coe�cients in Fig. 4. The resulting ex-
pansion coe�cients are of natural size, in agreement with
our expectations. The resulting EFT truncation error is
also reasonable, and we quantify this using a consistency
plot, see Fig. 5. The procedure for computing a consis-
tency plot of this kind is outlined in detail in Ref. [23].
In brief, we compare the coverage of the NLO trunca-
tion error with the N2LO prediction, and we do so at
15 equally spaced lab scattering energies up to 75 MeV.
The resulting NLO coverage is within the sampling er-
ror, assumed to follow a binomial distribution. For lower
(higher) DoBs the NLO truncation error can be consid-
ered too small (large). This result is a further indication
of a self-consistent and robust statistical analysis.

We carried out the same analysis for pionless EFT with
cuto↵ regularization. We find that the inferred break-
down scale of 1.4m⇡ at NNLO is robust for regulariza-
tion cuto↵ values & 1.5 fm�1, while the NLO results show
somewhat stronger variation with the cuto↵. For lower
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FIG. 5. Consistency plot for 15 NLO predictions at equally
spaced lab scattering energies up to 75 MeV and varying DoB
between 0% and 100%. The shaded bands represent 68% and
95% confidence intervals for the success rates.

values of the cuto↵, the median value of the breakdown
scale increases.

Summary - In this work, we inferred a median value
Mhi ⇡ 1.4 m⇡ for the breakdown scale of pionless EFT
in pds regularization. Our statistical analysis is condi-
tioned on order-by-order predictions for the total cross
section up to N2LO. Our analysis is robust with respect
to variations of our assumptions: natural expansion co-
e�cients, iid cross section predictions, and a log-uniform
prior for Mhi. This result agrees with the canonical as-
sumption that the pion sets the breakdown scale for an
EFT that integrates out this mass scale in the nuclear
interaction. However, it can also be considered some-
what large considering the pion cut at m⇡/2 explicitly
present in the S-wave projected one-pion exchange po-
tential, see, e.g., Ref. [24] for one of many works relat-
ing the e↵ective range expansion and its convergence ra-
dius to the pion cut. Therefore, further study of the
breakdown scale at higher orders of the pionless EFT is
warranted but will come at the cost of additional LECs.
For instance, at third order—one order beyond what was
considered here—the S-wave shape parameter and the P -
wave scattering length enter the calculation of the total
cross section. An operator leading to S to D wave mix-
ing enters the calculation of the total cross section at the
fourth order. However, this would also enable meaning-
ful predictions of spin-polarized cross sections. Extension
to pionless EFT analyses of neutron-deuteron scattering,
where the renormalization of 3-nucleon observables up to
N2LO is well understood and experimental data is abun-
dant, should be straightforward.

The recent analysis by Bub et al. [13] examines a the-
ory employing Weinberg power counting for the nuclear
interaction while neglecting pion exchange contributions.
As such, this approach consists solely of contact interac-
tions, which superficially resembles pionless EFT. How-
ever, the underlying structure is markedly di↵erent. At
order (p/Mhi)4 in their expansion scheme, with di↵erent
scalings of the expansion parameter, Bub et al. consider a
total of 26 low-energy constants and fit these to nucleon-
nucleon scattering data. This has to be compared to the
6 low-energy constants used in our work, which are fitted
to 4 experimental parameters. Bub et al. [13] infer, among
many other model parameters, a posterior probability for
the breakdown scale, obtaining typically ⇤b < 90 MeV,
which is significantly lower than those in our analysis and
expectations based on the excluded pion degree of free-
dom. They interpret this discrepancy as an indication
of the importance of employing a consistent EFT power
counting scheme and highlight the utility of a Bayesian
approach for testing underlying assumptions.

Future work should address the inference sensitivity to
calibrating the low-energy constants to cross-section data
instead of the e↵ective range parameters. The e↵ective
range parameters depend on the choice for the expansion
of k cot � shown Eqs. (3) and (4). Direct calibration of
the LECs to experimental data might deviate from these
expansions and potentially influence the order-by-order
improvement of EFT predictions. It would also be inter-
esting to marginalize over such parametric uncertainties,
as well as the uncertainty in Mhi [13].

As these developments in Bayesian parameter estima-
tion and uncertainty quantification continue, they will
not only enhance uncertainty quantification of pionless
EFT calculations but also facilitate Bayesian model mix-
ing of pionless EFT and pionful EFT [7, 25, 26]. Mix-
ture EFTs, combining the strengths of both EFTs, might
improve the inferences conditioned on these respective
EFTs. This could, e.g., prove useful in cases like proton-
proton fusion, where a unified and improved uncertainty
estimate for the the driving reaction rate in the Sun is
desirable [27]. Finally, we remark that the approach we
have used here can also be extended to the other ar-
eas where short-range EFT has been applied, provided
some experimental data is available for model calibration.
For example, inferring the breakdown scale of halo EFT
would provide new insights into the physics of weakly
bound nuclear systems.

In this work, we used the Python package ’gsum’ [11]
to generate most of the plots. This work was supported
by the Swedish Research Council (Grants No. 2020-
05127), the National Science Foundation (Grant Nos.
PHY-2111426 and PHY-2412612), the O�ce of Nuclear
Physics, and the US Department of Energy (Contract
No. DE-AC05-00OR22725).
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