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Abstract

Molecular interaction networks are a vital tool for studying biological systems. While many
tools exist that visualize a protein or a pathway within a network, no tool provides the ability
for a researcher to consider a protein’s position in a network in the context of a specific biolog-
ical process or pathway. We developed ProteinWeaver, a web-based tool designed to visualize
and analyze non-human protein interaction networks by integrating known biological functions.
ProteinWeaver provides users with an intuitive interface to situate a user-specified protein in a
user-provided biological context (as a Gene Ontology term) in five model organisms. Protein-
Weaver also reports the presence of physical and regulatory network motifs within the queried
subnetwork and statistics about the protein’s distance to the biological process or pathway
within the network. These insights can help researchers generate testable hypotheses about the
protein’s potential role in the process or pathway under study. Two cell biology case studies
demonstrate ProteinWeaver’s potential to generate hypotheses from the queried subnetworks.
ProteinWeaver is available at https://proteinweaver.reedcompbio.org/.
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1 Introduction

Biological networks are essential tools for modeling and understanding complex biological sys-
tems [1, 2]. Protein-protein interaction (PPI) networks are biological networks that describe all
the proteins and their molecular interactions within a biological system [3]. Species-specific PPI
networks were first built from high-throughput protein interaction detection methods (such as yeast
two-hybrid (Y2H) and affinity purification mass spectrometry (AP/MS) studies) [3] and are now
generated from a diverse array of in vitro, in vivo, and in silico methods [4]. Graphs are powerful
tools for modeling and analyzing the function and interactions of proteins within an organism [5, 6],
and have been used to identify the differences between healthy and disease states in organisms [7].
PPI networks are valuable tools for analyzing molecular interactions across all domains of life, from
viral to human tissue, and PPIs from non-human model organisms can be used to study human
diseases [8].

In addition to PPI networks, gene regulatory networks (GRNs) are graphical representations
of biological systems utilized for studying development, differences between healthy and diseased
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states, and other biological processes that are regulated by transcription factors (TFs) [9]. GRNs
differ slightly from PPI networks in their graphical representation: there are directed interactions
where TFs regulate a gene or gene product rather than undirected physical interactions. Although
many existing tools represent PPI networks or GRNs graphically, many represent one type of
network in isolation or fail to draw clear visual distinctions between the interaction types [10]. In
addition, regulatory interactions and PPIs do not exist in isolation; physical and gene regulatory
interactions coexist, forming intricate patterns or motifs. Physical interactions in these “mixed
motifs” have been found to participate in regulatory interactions [11]. Methods to identify mixed
motifs are lacking but can be useful in discovering clusters of proteins or gene products for further
experimental analysis [10].

Various web tools have been developed to visualize molecular networks. STRING-DB is one
of the most well-known network visualization tools, offering the ability to visualize subnetworks in
different species by querying proteins or biological processes [12]. Other tools have been developed
to visually explore specific pathways [13—15] or focus on individual species [16-19], and some require
user-inputted experimental data or labeled genes [20-22]. See Supplementary Section S1 for more
information about related web tools.

Despite the abundance of web servers for molecular network visualization, one may have a
protein they are currently studying and want to know how it could participate in a particular
pathway or function. To the best of our knowledge, no network visualization web server focuses on
situating a protein of interest within a specific biological function. Tools requiring user input data
make them difficult to use for general hypothesis generation. Additionally, some tools that run
algorithms hide the details from the user, so it is unclear to the researcher how the subnetworks
are selected for visualization. Thus, there is a need for a hypothesis generation tool for non-human
model organisms that answers this simple question.

We present ProteinWeaver, a molecular interaction network visualization tool that generates
subnetworks of physical and regulatory interactions based on a protein and a biological function
of interest for non-human model organisms. Currently, ProteinWeaver supports a prokaryote (the
Gram-positive bacterium Bacillus subtilis subsp. subtilis str. 168), a single-celled eukaryote (the
brewer’s yeast Saccharomyces cerevisiae S288C), two morphologically-distinct invertebrates (the
fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans), and a vertebrate (the
zebrafish Danio rerio). ProteinWeaver characterizes biological functions with the Gene Ontology
(GO), a collection of classifications for protein function (GO terms) [23, 24]. GO terms are a
valuable tool for predicting protein function using PPI networks and can help situate a protein
within a biological context [25]. ProteinWeaver generates a subnetwork that connects a protein of
interest with proteins annotated to the specified biological context. The graphical interface is fast,
visually intuitive, and does not require previous computational experience to use effectively.

ProteinWeaver offers two additional pieces of information to help situate a protein in the context
of a biological process or pathway. It counts five different network motifs (one with PPI edges,
another with regulatory edges, and three with a mix of PPI and regulatory edges) and provides
enrichment scores for users to understand the expected motif count for an organism. ProteinWeaver
also provides a quantitative measure that describes how close a protein is to proteins annotated
to a biological process within the network. These additional features help provide context for the
protein of interest and the surrounding molecular interactions for hypothesis generation.
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Organism Nodes | PPI Edges | GRN Edges | GO Terms | GO Annotations
B. subtilis 3,163 6,441 5,634 3,681 78,015
C. elegans 4,106 13,915 78,223 7,868 202,845
D. melanogaster | 12,823 233,054 17,530 11,774 492,331
D. rerio 16,606 45,003 25,960 8,321 133,619
S. cerevisiae 7,644 164,432 237,315 8,300 328,186

Table 1: Organisms and their associated interaction networks hosted by ProteinWeaver. Nodes
represent proteins and their encoding genes. PPI: protein-protein interaction. GRN: gene regula-
tory network.

2 Design and Implementation

2.1 Interaction Data

Currently, ProteinWeaver supports physical and regulatory interaction data for five non-human
model organisms: B. subtilis, C. elegans, D. melanogaster, D. rerio, and S. cerevisiae (Table 1).
For each organism, we collected experimental, text-mined, and database-validated protein and
genetic interactions, as well as Gene Ontology (GO) annotations (Supplementary Section S2.1).
All protein-protein and regulatory interactions are linked to evidence sources, such as PubMed or
STRING-DB references [12].
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Figure 1: Graph representation of Proteins and Gene Ontology terms. Organism-specific networks
contain protein-protein interaction edges (black solid lines), regulatory edges (red dashed arrows),
and proteins (orange circles). The GO term hierarchy is represented via the blue nodes and directed
blue solid edges. Proteins directly annotated to GO terms are indicated by purple solid arrows,
and purple dashed arrows indicate inferred annotations.

The relationships among proteins and GO terms are represented as a connected graph with two
types of nodes (proteins and GO terms) and three types of edges that capture undirected physical
interactions among proteins, directed regulatory interactions among proteins, and directed GO
term annotations between GO terms and proteins (Figure 1 and Supplementary Section S2.2). We
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add the directly annotated protein-GO Term pairs into the graph and infer annotations between
proteins and more general GO terms (purple edges in Figure 1). ProteinWeaver uses the Neo4j
Graph Database to store and query the graph. See Supplementary Section S2.3 for more information
about Neo4j and Supplementary Section S2.5 for information about the ProteinWeaver development
stack.

2.2 Queried Subnetworks

The fundamental feature of ProteinWeaver is the ability for a user to enter a query protein s and
a GO term t and visualize the connections from s to proteins annotated to t (Figure 3A). Users
specify the size of the subnetwork returned by selecting a small integer k& (which typically ranges
between 5 and 25). ProteinWeaver generates these subnetworks in two different ways: in “K Unique
Paths” we calculate the k-shortest paths from s to nodes annotated to ¢ using Yen’s k-shortest paths
algorithm [26], and in “K Unique Nodes” we calculate the k£ nodes annotated to ¢ that are the closest
to s using a breadth-first search from s to reachable nodes annotated to t. For both algorithms,
increasing the value of k increases the size of the visualized network. More information about the
algorithms used for subnetwork generation can be found in the supplementary Section S2.4. When
we visualize the subnetwork, we do not include the GO term ¢, thus ending the path at the proteins
annotated to ¢ (e.g., the blue nodes in Figure 2).

ProteinWeaver can return subnetworks consisting of physical, regulatory, or mixed physical and
regulatory interactions. The same query run with different interaction types produces different
subnetworks (Figure 2). All three subnetworks included common GO-annotated proteins, such
as sgh, but each also identified unique GO-annotated proteins, offering different contexts for the
source protein based on interaction type. Researchers can thus choose to query specific networks of
interest or combine different interaction types and query modes to explore their protein of interest
in a broader biological context.
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Figure 2: ProteinWeaver results from a “K Unique Nodes” query connecting flapwing (flw) to k=4
nodes annotated to“myosin binding” (GO:0017022) D. melanogaster with (A) physical interactions,
(B) regulatory interactions, and (C) both physical and regulatory interactions. Dashed directed
edges indicate regulatory relationships, solid edges indicate undirected physical relationships; see
Fig 3B for a full legend describing node and edge types.
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2.3 ProteinWeaver Interface

ProteinWeaver allows users to explore networks for non-human model organisms by inputting a
protein, GO term, and a size parameter (k), specifying whether to traverse a protein-protein inter-
action (PPI) network, gene regulatory network (GRN), or a mix of both (Figure 3A). The induced
subnetwork gives users a detailed view of how nodes are interconnected within the organism (Fig-
ure 3B). Users can navigate the network by selecting GO terms from the hierarchy or changing the
queried protein to any protein within the subnetwork, fostering hypothesis generation based on the
species’ interactome (Figure 3D).

For each query, ProteinWeaver provides comprehensive details, including annotation links for
the queried protein and GO term, GO term definitions, and links to organism-specific databases
(Figure 3C & Figure 3E). The tool also includes a statistics section showing graph statistics, GO
term annotation confidence scores, and mixed motif data (Figure 3C, Figure 3E, & Figure 3G). To
support reproducibility, queries can be saved as hyperlinks or exported as PNGs, JSON files, or
Cytoscape objects for further analysis.

3 Results

3.1 Mixed Motif Enrichment

Many biological processes involve both regulatory and physical interactions. Consequently, rep-
resenting these networks separately can obscure the complete functional context of a protein of
interest [10]. Physical interactions involving transcription factors (TFs) have also been shown to
effectively predict long-range enhancer-promoter interactions [11]. Therefore, a method for identi-
fying mixed regulatory-physical interaction clusters, or “mixed motifs,” is valuable for researchers
seeking a comprehensive understanding of the regulation of specific proteins or processes.

ProteinWeaver displays statistics for five network motifs that were found to be significantly over-
represented in a S. cerevisiae mixed PPI-Regulatory network [10]. These 3-node motifs consist of
three mixed motifs and two network-specific motifs enriched in the yeast interactome and carry
explainable biological significance. The PPI-specific motif, “protein clique” (Figure 4A), often
represents three proteins working together in a multi-protein structural or functional unit. The
other network-specific motif, “feed-forward loop” (Figure 4B), consists of two TFs, one of which
regulates the other, regulating a third protein or gene and is a canonical regulatory motif [27] found
to be enriched in S. cerevisiae, E. coli, and C. elegans transcriptional networks [28-30].

In addition to recognizing well-known PPI and gene regulatory motifs, ProteinWeaver can iden-
tify mixed network motifs. The first, “interacting coregulators” (Figure 4C), represents two proteins
that physically interact and regulate the same gene. The second mixed motif, “coregulated inter-
actors” (Figure 4D), represents two physically interacting proteins that the same TF regulates.
The final mixed motif, the “mixed feedback loop” (Figure 4E), consists of a feed-forward loop
where the two TF's physically interact. Physical interactions between TFs can be regulatory active
themselves [11]. Thus, identifying these motifs is valuable for researchers exploring the regulatory
implications of physical binding events. Additionally, proteins that work together are often coreg-
ulated. Therefore, proteins identified in a coregulated interactor motif may be more likely to have
functional impacts on each other [10]. It is important to note that only by using a mixed network
can ProteinWeaver capture these last three motifs accurately, as a purely regulatory network would
incorrectly classify a mixed feedback loop as a feed-forward loop.

The background distribution of motifs in the B. subtilis, D. melanogaster, and D. rerio graphs
are relatively similar, with all of them having a large number of Protein Cliques relative to the other
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Figure 3: The ProteinWeaver interface. A) Users enter their protein and GO term of interest, a
small integer k, and the species in the top panel and click “Search”. B) The subnetwork is shown
via react-cytoscapejs’s plugin. The legend section details the different node and edge types. C)
The sidebar includes links to protein and GO term data, basic network statistics, and the ability
to export the session. D) The graph exploration section lets users rearrange the network layout
and update the query by selecting a new query node or traversing the gene ontology. E-G) The
tabbed window shows information about the user-selected protein (including the protein’s rank
relative to the GO term), information about the user-selected interaction, and the motifs found in
the subnetwork.



bioRxiv preprint doi: https://doi.org/10.1101/2024.10.24.620032; this version posted November 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Protein Clique Feed-Forward Loop Interacting Coregulators Coregulated Interactors Mixed Feedback Loop
A B C D E
Q\ /Q Q\ ,Q /’.‘\ !\H""‘.:Q
\ s

g g : )
0 S— 0

Figure 4: Mixed network motifs identified by ProteinWeaver; adapted from Yeger-Lotem et al. [10].
Black lines indicate physical interactions. Red arrows indicate regulatory interactions. Motifs can
contain multiple protein types.

four motifs (Figure 5). C. elegans has a much larger relative proportion of Feed-Forward Loops
than the other species and has more evenly distributed motifs than B. subtilis, D. melanogaster,
and D. rerio. S. cerevisiae has the most uniformly distributed network, with many instances of all
five motifs being found at a relatively high rate. S. cerevisiae being the most uniformly distributed
may reflect a bias since the motifs identified here are based on motifs found enriched in a yeast
network [10]. For a queried subnetwork, ProteinWeaver counts the number of each type of motif
in the network (Figure 3G). Enrichment scores, Z-scores, and p-values are calculated compared to
the species-specific background graph; see Supplementary Section S3.1 for more information.
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Figure 5: Proportion of motifs by species in ProteinWeaver. For a detailed breakdown of the motifs
by species, see Supplementary Section S3.2

3.2 GO Term Annotation prediction

In a typical ProteinWeaver query, the query protein s is not associated with the queried GO term
t, and the goal is to connect the query s to proteins annotated to t. Sometimes, the queried protein
should be considered part of the GO term, but there is not yet evidence in the Gene Ontology to
properly annotate the protein. To provide the user additional context about whether the query is
likely to be associated with the GO term of interest, we used a random walk approach to assign
a confidence score about whether a query protein s is “near” GO-term annotated proteins. The
random walk scoring function runs personalized PageRank [31], restarting from proteins annotated
to the GO term t with a damping factor v = 0.7.

We rank the query node s according to the final visitation probabilities of the random walk; see
Section S4 for more details.

We first compare the random walk approach (which we call RandomWalk) to three other
prediction scores based on neighbor overlaps in the graph:
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Degree: Rank s by its degree in the original graph G (larger is better). This approach does not
account for the GO term ¢, and it is used to assess degree bias in our evaluation.

One-Hop GO Overlap: Rank s by the number of s’s neighbors that are annotated to GO term
t (larger is better).

Hypergeometric Distribution: Rank s by the hypergeometric distribution p-value of observing
the number of s’s neighbors annotated to GO term ¢, adjusted by the size of the GO term ¢ and
the degree of s (smaller is better).

See Supplementary Section S4.1 for more details about these comparator methods.

We assessed the four methods by generating a dataset of 1,000 positives, which were selected
by randomly choosing a protein-GO term edge and modifying GG to remove that specific edge. We
expect these nodes to have high confidence in their membership with the GO term. For every
positive (protein-GO Term pair), we selected 100 negative proteins by identifying proteins that are
(1) near the positive protein when considering PPI and regulatory edges only, (2) are not connected
to the positive GO term, and (2) have approximately the same degree as the positive node. See
Section S4.2 for more information about positive and negative sampling and the evaluation pipeline.
We generated these datasets for each species and plotted precision-recall and ROC curves (Figures 6
and S7).
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Figure 6: Precision-Recall curves of four annotation prediction methods across all species with
inferred networks. Examples were sampled at a 1:100 positive-to-negative ratio.

We found that RandomWalk had a nearly perfect ROC AUC across all species (Figure 6.
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RandomWalk also had the highest precision at varying recall values and it drops off precision at
higher recall values. The rest of the methods performed considerably worse than RandomWalk
in the ROC AUC analysis. Between the methods, their ranks varied in different species analysis
for both the inferred and non-inferred networks. For example, the degree method was ranked
second in the ROC value for C. elegans, however was ranked 4th for the yeast dataset. The
Precision/Recall values for the One-Hop GO Overlap and Degree methods noticed an increase
when using the inferred networks. The significance of this increase varied among the methods
and which species. For example, the degree method noticed the largest Precision/Recall increase
in the C. elegans dataset. The Hypergeometric method, however, did not show any noticeable
difference between the Precision/Recall values across all the species when using the inferred and
non-inferred networks. This could be because adding inferred protein-GO edges did not affect the
overall hypergeometric equation used to calculate their scores. We also ran these methods on the
graphs with only directly-annotated networks; while the relative ordering of the three comparator
methods changed, the random walk approach remained superior (Supplementary Section S4.3).
Furthermore, we tested the performance of RandomWalk on four different background networks
(by selecting different subsets of edge types) and found it had little effect on the ROC and PR
curves (Supplementary Section S4.4).

3.3 Case Studies

To illustrate the potential of ProteinWeaver in generating hypotheses, we describe two case studies
from the recent literature.

D. melanogaster: The protein Ebl is part of a group of the end-binding proteins family respon-
sible for microtubule plus end growth [32]. Microtubules are important polymers in all eukaryotes
that play the role of changing a cell’s shape, division, and transport [33]. Microtubules interact
with microtubule-associated proteins (MAPs) to regulate microtubules in the cell [33]. In a 2021
paper, the gene Ebl, along with Tau and XMAP215/Msps were discovered to cooperate indepen-
dently in the axon of Drosophila to regulate microtubule polymerization and bundle formation [34].
Furthermore, in a 2013 paper, Ebl was noted to be important in apicobasal microtubule bundle
formation and epithelial elongation [35]. However, in the Gene Ontology database, Ebl has not
yet been annotated to microtubule bundle formation in Drosophila. We queried the connections
between Ebl and microtubule bundle formation to generate a visualization of Eb1’s connection to
other microtubule bundle-related proteins (Figure 7A). From the visualization, Ebl is connected to
important microtubule-associated proteins such as Short stop (Shot), which binds actin and micro-
tubules, and Ned, which produces a minus-end-directed kinesin microtubule motor protein [36, 37].
Additionally, ProteinWeaver identifies the protein Smt3, which is linked to microtubule-associated
proteins but lacks direct annotation for microtubule bundle formation. Smt3 is part of the Small
Ubiquitin-like Modifier (SUMO) family, which plays a key role in the post-translational modification
of target proteins through SUMOylation. Notably, proteins involved in mitotic spindle formation
and organization have been reported as substrates for SUMOylation [38]. Among the 12,800 fly
proteins not annotated to microtubule bundle formation, Ebl was ranked 40th according to the
RandomWalk prediction.

D. rerio: Bone morphogenic proteins (BMPs) have been shown to function in a variety of pro-
cesses in animals, including patterning and differentiation of tissues, establishing cell polarity,
maintaining organ homeostasis, and responding to injuries [39]. The BMP pathway in zebrafish
is regulated in part by the Smad family of transcription factors [40]. Further, BMPs have been
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found to regulate Smads through phosphorylation via a receptor complex [39]. Previous work has
shown that knocking out a specific BMP, gdf6a, blocks retinal Smad phosphorylation, indicating
that Gdf6a is involved in regulating Smad proteins in the retina [41]. We wanted to visualize the
connection between the BMP family member, Gdf6a, and other proteins linked to dorsal/ventral
patterning to investigate how Smad transcription factors might integrate BMP with other signaling
pathways to promote D/V pattern formation.

When querying Gdf6a with the GO term “dorsal/ventral pattern formation,” ProteinWeaver
identified a receptor protein serine/threonine kinase ACVR1 that connects Gdf6a to the proteins
annotated to dorsal/ventral pattern formation (Figure 7B). ACVRI interacts with Gdf6a, Bmp7a,
Bmp2B, and Smad5 and is involved in left/right patterning in mice development [42]. These
proteins interact with more Smad family transcription factors; Smad2 is particularly interesting
because it is not annotated to the queried GO term “dorsal/ventral pattern formation,” and Smad
1/5/9 are usually associated with this patterning in zebrafish [43]. However, Smad2 has been linked
to dorsal mesoderm specification in Xenopus, and mutants have shown that Smad2 is essential in
early embryo patterning events in mice [44]. Among the almost 16,000 nodes not annotated to
“dorsal/ventral pattern formation,” ProteinWeaver ranks Smad2 as the 12th most likely to be
annotated to the GO term.
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Figure 7:  ProteinWeaver showcasing subnetworks from A) Ebl to “microtubule bundle for-
mation” (GO:0001578) in D. melanogaster and B) Gdf6a to “dorsal/ventral pattern formation”
(GO:0009953) in D. rerio. Both queries can be found through these URLS respectively, https:
//tinyurl.com/proteinweaver-study-1 and https://tinyurl.com/proteinweaver-study-2

4 Availability and Future Directions

ProteinWeaver is licensed under GNU General Public License v3.0 and is available at https:
//proteinweaver.reedcompbio.org/. All data, resources, scripts, and website source code are
available at https://github.com/Reed-CompBio/protein-weaver/. Protein Prediction data is
available at https://github.com/Reed-CompBio/protein-function-prediction.

ProteinWeaver is designed to be an efficient, user-friendly, and reproducible tool for GRN and
PPI network analysis. ProteinWeaver provides researchers with novel network querying capabilities
of protein interactions, regulatory interactions, or a combination of interaction types for five species.
Mixed motif identification and GO term annotation predictions serve as additional resources for
hypothesis generation and network exploration in these non-human model organisms.
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We note that our approach to predict GO term annotations is a different problem than that of
determining protein function, which is a longstanding challenge that has seen explosive improve-
ments with structural alignments provided by deep learning models such as AlphaFold [45]. Here,
we aim to use the physical, regulatory, and GO-annotated relationships to assess how “near” a
protein is to a GO term without additional information such as protein sequences, domains, or
structure.

Currently, ProteinWeaver supports five non-human model organisms but plans to expand to
include more. ProteinWeaver wants to incorporate more prokaryotic model organisms such as
E. coli and eukaryotic plant species like Arabidopsis thaliana. Current limitations are related to
the lack of freely available physical and regulatory network data for specific species. We are also
working to provide more context about the local subnetwork structure in relation to the GO-
annotated proteins and other nearby interacting molecules beyond the current basic statistic. This
context will come in the form of expanded network statistics, such as centralities and clustering
coeflicients, modified to account for proteins annotated to the GO term of interest.

In addition, ProteinWeaver aims to improve its querying capabilities by allowing users to search
with multiple proteins of interest or multiple GO terms of interest. This facilitates network explo-
ration for researchers interested in how several proteins interact within a specific biological process
or how multiple biological processes may connect.

ProteinWeaver aims to maintain an intuitive and straightforward user interface while providing
dense information. Striking the right balance between these goals poses a challenge, and further
enhancements are made continually to optimize user experience while maintaining informativeness.
ProteinWeaver invites collaboration with the scientific community for feature development. Open
discussions and feedback sessions will guide the implementation of features aligned with user needs
and advancements in biological research.

In conclusion, ProteinWeaver facilitates the understanding of molecular interactions and their
roles in biological contexts, even for those without computational expertise. Its intuitive interface
and GO term integration address challenges researchers face in situating proteins within a specific
biological context. ProteinWeaver is positioned to be a useful tool for hypothesis generation and
biological interaction exploration for researchers studying non-human model organisms.
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