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Abstract—In general, antivirus software has heavily
relied on signature-based detection methods. These an-
tivirus products usually reference a database of known
malicious signatures, making them naturally susceptible
to previously unseen malware samples. One of the easiest
ways for malware authors to produce these new malware
samples is by applying various obfuscation techniques to
the previously existing malware. This paper will survey
a newer approach to malware detection through neural
networks by gathering results from recent journal arti-
cles and conference papers published in various online
databases. These artificial intelligence-oriented solutions
show promise in resilience to unfamiliar malware variants.
Explicitly focusing on obfuscated malware, it will com-
pare detection rates between signature-based and neural
network-based malware detection systems and organize
results using various NN models and training features.
Overall, the survey finds that signature-based methods
detect between 50 and 80 percent of obfuscated malware
samples, while all but one of the neural network methods
detect between 90 and 99 percent. This considerable in-
crease in performance suggests that neural networks might
provide an effective alternate or supplemental detection
method for antivirus products.

Index Terms—neural networks, malware detection, ob-
fuscation, artificial intelligence, antivirus

1. INTRODUCTION

The word “malware” is a combination of the
words malicious (mal-) and software (-ware) and is
used as a broad category to refer to any unwanted
or ill-intending computer program. Malware has
existed for almost as long as computers have. Se-
curity professionals and malware authors constantly
battle as they invent new ways to hide or disguise
their malware. The traditional approach to malware
detection has been through signature-based detec-
tion, usually employing some hashing algorithm and
a signature database. The biggest issue with this

approach, which malware authors have been keen
to exploit, is its vulnerability to obfuscation. In
short, creating several obfuscated program versions
that look entirely different on a binary level and,
therefore, have different signatures is simple.

There are several different methods for obfus-
cation, which are well-summarized by Elsersy et
al. [1]. There are two main categories of obfusca-
tion: polymorphism and metamorphism. Polymor-
phic code contains a primary payload packed or
encrypted with a variable key and decrypts upon
execution. Metamorphic malware is a much larger
category that includes more subtle transformations
such as code reordering, dead code insertion, and
other techniques that preserve the semantics of the
execution but result in new signatures on each
generation.

As artificial intelligence has continued to im-
prove, significant research has been done to apply
this field to malware analysis. The flexibility of-
fered by Al models has vast potential to provide
a better solution than signature-based detection for
obfuscated malware. As explained by Gibert et al.
[2], deep learning and neural networks are at the
forefront of Al research and have the potential to
offer greater freedom than other machine learning
algorithms when it comes to input parameters for
malware detection. This survey will focus on deep
learning and its performance in malware detection
compared to signature-based methods. It will also
seek to identify the most promising training fea-
tures for maximizing the accuracy of these neural
networks.

Section II will discuss the survey design and
objectives. Section III will present the survey results
and their implications. Finally, Section IV concludes
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the survey and suggests future work based on gaps
in existing literature.

II. REseArRcH DESIGN AND METHOD

The procedures followed by this survey are sum-
marized in the following subsections to ensure repli-
cability.

A. Planning the Review

1. Research Question:
When attempting to detect obfuscated malware (P),
how do neural networks trained on various static
or dynamic features (I) affect detection rates (O) in
comparison to traditional signature-based methods
(O)?

2. Inclusion/Exclusion Criteria:
The following outlines the criteria used to select
literature for the survey.

Paper is included if:

o It was a peer-reviewed conference paper or
journal article.

o It was written in English.

« It was published after 2014 (NN-focused litera-
ture). Publications on signature-based methods
may be older.

o It contained results relevant to the research
question.

o It included numerical detection rate results for
neural network systems, or it contained either
numerical or qualitative results for signature-
based systems.

Paper is excluded if:

o It did not address either detection rates in
signature-base or neural network detection of
obfuscated malware.

« It was published before 2014 (for NN-focused
literature).

« It did not cite an open-source or comprehensive
dataset of obfuscated malware (for NN-focused
literature).

o It did not cite a transparent malware dataset
(signature-focused literature).

3. Data Collection and Analysis
The following is a list of the data points collected
from each study to answer the research question.

o Malware target (Android, PE, IoT)
o Malware source

« obfuscation type/tool

» Neural Network type (if applicable)
» Training Features (if applicable)

» Detection Rate

B. Conducting the Review

This survey primarily gathered literature from
IEEE Xplore and ACM Digital Library, as well as
other online databases. The goal was to find studies
that included numerical detection rates so that this
survey could provide concrete numbers to answer
the research question. The searches were targeted
by using different combinations of the following
keywords:

o Malware

« Obfuscation

o Neural Network or RNN or CNN or ANN

o Hash-based Detection or Signature-based De-
tection

One of the challenges that arose in conducting the
research was ensuring the relevancy of the studies.
In particular, despite the ‘“obfuscation” keyword
in the searches, several studies initially found on
neural networks did not perform their experiments
on an obfuscated malware dataset, which was not
immediately apparent from the abstracts of these
papers, as some of them even mentioned malware
obfuscation, but ultimately did not further address
this issue in the content of the study.

ITI. REesuLTs, DIscUsSSION, AND IMPLICATIONS

Table I contains the list of studies testing signature-
based detection methods against obfuscated malware.
Table II lists the studies that detail detection rates of
various neural networks trained against obfuscated
malware. Both tables are sorted by malware type,
listing Android-focused and PE-focused studies.

A. Signature-based Detection Results

Examining the signature-based detection results,
we see many datasets and obfuscation tools used to
perform the various studies. We do, however, see
the “Drebin Project” and the “Contagio” Android
malware datasets referenced a couple of times by
Nawaz et al., Chua et al., and Canfora et al., though
with different obfuscation tools used [4] [5] [6].
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TABLE I
SIGNATURE-BASED DETECTION

Study Malware Dataset Source  Obfuscation Tools Detection Rate  Conclusion
Target
Hammad et al. [3] Android AndroZoo, An-  Allatori, 67% obfuscation de-
droid Malware ProGuard, ADAM, creases detec-
Genome, Con- DroidChameleon, tion rate
tagio, etc. DashO,  Apktool,
Jarsigner
Nawaz et al. [4] Android Drebin Project ~ Apktool Mostly between  Obfuscation de-
60% and 80% creases detec-
(depends on tion rate
obfuscation
applied)
Chua et al. [5] Android Drebin Project, Custom 51.3% Obfuscation de-
Contagio creases detec-
tion rate
Canfora et al. [6] Android Drebin Project ~ Apktool All but three Obfuscationde-
antivirus creases detec-
products tion rate
detect fewer
samples  post-
obfuscation
Christodorescu et al. [7] PE Custom Custom False negative  Obfuscation de-
rateover 50%in  creases detec-
almost all cases  tion rate
Wong et al. [8] PE Assorted NGVCK, G2, Averageof 55%  Obfuscation
sources VCL32, MPCGEN decreases
metamorphic virus detection rate,
generators and  creating
metamorphic
malware is
difficult
Murad et al. [9] PE N/A Custom N/A Obfuscation
techniques
can easily
alter malware
signature
Holm et al. [10] PE Meterpreter 16 different obfus- 54% Evading
backdoor and cation tools were antimalware
benign payload  tested scans is simple

Typically, the selected studies follow the same flow,
starting with a set of malware and applying a list of
obfuscations separately or in different combinations.
For the studies involving Android malware, the
malware must first be decompiled before applying
obfuscation; usually, this is completed by Apktool.
After obfuscations have been used, the malware is
passed through a set of antivirus programs. The
obfuscation type and the individual antivirus software
detection rates often organize the results in these stud-

ies. Overall, the average detection rate of obfuscated
samples appears to lie somewhere between 55% and
65%. Figure 1 shows the four studies providing final
cumulative results.

Nawaz et al. report the highest detection rates
by far, with some obfuscation techniques such as
repacking and reassembling yielding an average
detection rate across antiviruses of around 90 percent.
This study reports average detection rates closer to 65
percent when more than one obfuscation technique is
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Fig. 1. Signature-based Performance

applied to the same sample. Interestingly, the most
effective combinations were the same repacking and
reassembling techniques accompanied by encryption,
averaging a 39.5% detection rate [4].

B. Neural Network Detection Results

Moving to the neural network-focused studies, we
see a much more condensed set of results, although
the datasets and experiment setups are still reasonably
scattered. Despite using different types of neural
networks, three types of input parameters appear the
most throughout the selected literature. The first of
these three are image-based inputs. These studies
convert each malware sample into a grayscale or RGB
image based on either binary data as with D. K. A. et
al. [11] and Shukla et al. [20] or on system call traces
as with Mercaldo et al. [12]. The other two neural
networks are those trained on the malware samples’
opcodes as with P. Xu et al. [13] and K. Xu et al. [16]
and those trained on API calls as with Hou et al. [14],
Millar et al. [17], and Namani et al. [19].

Figure 2 organizes the research displayed in Table
II by feature type. These features can be further cate-
gorized as either statically or dynamically collected.

Statically collected features can be obtained from
the sample by examining the binary. Within Table
II, the statically collected features in the literature

set are found in the studies that use images, op-
codes/bytecodes, and API calls. The only exception
may be in Namani et al., which obtains the API calls
through symbolic execution and could fall somewhere
between static and dynamic analysis [19].

The rest of the features (syscall traces, network
data, and memory dumps) fall under dynamic anal-
ysis, as these features are obtained by executing the
potential malware sample in question. Both studies
which train neural networks on memory dump data
use the same PE malware dataset, CIC-MalMem-
20221, which contains pre-collected memory dumps
rather than whole malware samples [18] [21].

C. Analysis of Research Question

As expected, neural networks perform much better
overall than signature-based detection methods in
detecting obfuscated malware, with an estimated
increase from around 60 percent to as much as 99
percent. As mentioned, the signature-based detection
rates cover a relatively wide range of values. Due to
results within each study often being organized by
the antivirus software used, the results are even more
scattered in the literature. A few of these studies did
not offer a final average rate but presented results

1Dataset available here.
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NEURAL NETWORK DETECTION

TABLE I

Study Malware Dataset Source Obfuscation Tools NN and training feature  Detection Rate
Target type
D.K. A.etal. [11] Android Drebin Obfusapk CNN trained on Markov ~ 99%
Project, CIC- Images generated from
InvesAndMal2019 hex code
Mercaldo et al. [12]  Android Drebin Project Custom? NN trained on images 73%
generated from system
call traces
P. Xu et al. [13] Android Drebin, AMD, PRAGuard dataset GNN trained on vector 99.5%
PRAGuard, already obfuscated  generated from opcodes
AndroZoo
Hou et al. [14] Android Comodo Cloud Se- N/A, dynamically DBN and SAE trained DBN: 96%, SAE:
curity Center collected training on API calls 95%
features
Busch et al. [15] Android CICAndMal2017 N/A GNN trained on net- 99%
work data
K. Xu et al. [16] Android  VirusShare, DroidChameleon LSTM trained on byte-  99.9%
MassVet code
Millar et al. [17] Android Drebin DexProtector DAN trained on 94.8% against all
opcodes, API calls, obfuscations, 97%
and permissions from average on whole
dataset test set
Mezina et al. [18] PE CIC-MalMem- Dataset  contains CNN trained on 99%
2022 obfuscated samples  dataset’s memory
dumps
Namani et al. [19] PE Anderson and N/A ANN trained on API 94.6%
Roth dataset, call sequences
VirusShare,
Malshare, others
Shukla et al. [20] PE VirusTotal Custom? RNN trained on images  90%
generated from samples
Khan [21] PE CIC-MalMem- Dataset  contains ANN trained on 99.7%
2022 obfuscated samples  dataset’s memory
dumps
Javaheri et al. [22] PE Adminus, Dataset already DNN trained on feature  Between 91% and
VirusShare, contains obfuscated set created by genetic 96% depending on

VirusSign, others

samples

algorithm, dynamically
collected features such
as API calls

dataset - average
percentage of
92.8%

organized by antivirus or obfuscation methods. Ex-
amples of this include Nawaz et al. [4], Canfora et
al. [6], and Christodorescu et al. [7]. No matter the
presentation of results, all of the collected studies
agree that signature-based detection performs poorly
against obfuscated malware.

Neural network detection rates, however, are very
high, with one outlying exception in Mercaldo et al.

[12]. As shown in Figure 2, the models with opcodes
and memory dumps as training features performed
the best. Conversely, models trained on API calls
are still reliable but noticeably weaker. The outlier,
which scored 73 percent, is a CNN trained on images
generated on the Android system called traces. This
study is included in its category since these images are
generated from opcodes or n-grams, not dynamically
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Fig. 2. NN Performance by Training Feature Type

collected features.

A few key characteristics did not appear to affect
the outcome of the studies. First, the malware type
in question (Android vs. PE) does not have much
effect on detection rates, which is valid for signature-
based and neural network detection. However, Table
I and Table II are sorted by malware type. The
other characteristic that does not seem to affect the
detection rate is the type of neural network used.
ANNSs, RNNs, DNNs, and LSTMs are variations of
artificial neural networks, but no obvious connection
can be found in their results. One definite limitation
of this survey is that there is little overlap between the
neural networks and training feature types. There is
not a single study that uses the same combination of
NN and training features.

Regardless, the results of this survey suggest
that neural networks contain great potential as an
addition to antivirus software. Especially given the
exceptional performance of the models trained on
statically collected features such as opcodes, it is
easy to envision a model integrated into endpoint
protection tools. In this context, the scalability of
neural networks provides some inherent advantages
to the traditional solution of maintaining a signature

database.

IV. ConcLusioN

This survey has collected a variety of litera-
ture addressing both signature-based detection and
neural network detection of obfuscated malware.
As expected, neural network models perform far
more reliably than signature-based methods. Recent
studies have shown that models trained on malware
opcodes or memory dumps are up-and-coming, with
99 percent or better detection rates.

After reviewing the available literature on this sub-
ject, it was noticed that a couple of areas need further
research. First, research on neural networks trained on
obfuscated PE malware needs much improvement.
There has been plenty of research on unobfuscated
malware detection via deep learning, but the added
challenge of obtaining this more advanced malware
has deterred work in this area. Secondly, more
research is needed on neural networks involving
multiple training features. This survey includes one
example using API calls and opcodes in Millar et
al. [17]. Still, no examples combined statically and
dynamically collected features were found.
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Overall, this survey has clarified that signature-
based detection is not an adequate solution to malware
authors’ more advanced techniques. In recent studies,
neural networks show great potential to solve this
issue and perform substantially better than signature-
based methods.
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