An Integro-Difference Equation Model for
Spatio-Temporal Offshore Wind Forecasting

Feng Ye
Department of Industrial & Systems Engineering
Rutgers University
Piscataway, USA
feng.ye @rutgers.edu

Abstract—Accurate short-term wind forecasts are instrumental
to the optimal operation and management of offshore wind
farms. While there have been significant advancements in data-
science-based modeling for wind forecasting applications, little
attention has been devoted to approaches that adopt the integro-
difference equation (IDE) framework, wherein the time evolution
of a stochastic spatial process (e.g., the hub-height wind field)
is conditioned on its past history through the specification of
an appropriate redistribution kernel. We propose a hierarchical
model, rooted in IDE, wherein key kernel hyperparameters that
bear physical relevance to the wind field dynamics are modeled as
the output of a latent spatio-temporal regression model, thereby
allowing them to change over time in line with the dynamic nature
of local weather patterns. Using hub-height observations from the
offshore wind energy areas in the U.S. Mid-Atlantic where several
large-scale projects are in-development, we demonstrate that the
proposed approach can result in considerable improvements, in
terms of wind resource and power forecasting accuracy, relative
to a representative set of time series and spatio-temporal methods
that are prevalent in short-term wind forecasting applications.

Index Terms—Integro-Difference Equation, Offshore Wind,
Spatio-temporal Forecasting, Wind Energy.

I. INTRODUCTION

The reliable operation of offshore wind farms largely hinges
on accurate short-term forecasts of the offshore wind resource
and generation issued at forecast horizons ranging from few
minutes up to several hours ahead [1]. Those forecasts are reg-
ularly used by grid operators and energy producers to inform
several of their short-term operations, including economic
dispatch and production scheduling [2], [3], asset operations
and management [4], [5], and control [6].

Data-science-based forecasting models—often referred to
collectively as data-driven models—have been widely rec-
ognized in the wind forecasting literature and practice to
possess higher skill at shorter forecast horizons (i.e., few
minutes up to few hours ahead) [7]. Those models primarily
rely on local time series observations, potentially recorded
at multiple sites, to learn and extrapolate historical trends,
patterns, and correlations into the near future. The last couple
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of decades have seen tremendous advancements in the devel-
opment and adoption of data-science-based models in short-
term wind forecasting applications. Examples include but are
not limited to autoregressive-based models [8], [9], kernel- and
tree-based approaches [10], [11], spatio-temporal statistical
methods [12]-[14], and most recently, deep-learning-based
models [15], [16].

This paper is primarily concerned with statistical spatio-
temporal models for short-term wind forecasting, i.e., ap-
proaches that leverage local observations in the form of
time series data recorded simultaneously at multiple prox-
imate locations, in order to make probabilistic short-term
wind resource or power forecasts. Understandably, the spatial
proximity of those time series observations provide a strong
case to a joint modeling approach that can characterize and
leverage the inherent spatial and temporal dependencies for
enhanced learning and forecasting skill [17]. While there
has been an emerging literature on designing effective deep
learning models for spatio-temporal wind forecasting [18],
[19], statistical spatio-temporal methods—which are the focus
of this work—remain a viable and attractive alternative by
virtue of their natural probabilistic characterization, model
interpretability, and fairly low data requirements. Prevalent
statistical approaches for spatio-temporal wind forecasting
often invoke adding exogenous spatial regressors in time series
models [20], spatio-temporal and vector autoregressive mod-
eling [9], [21], and geostatistical approaches with appropriate
covariance structures [22], [23].

An alternative—albeit fairly under-utilized—approach for
spatio-temporal statistical forecasting is the so-called “Integro-
Difference Equation” (IDE) framework. IDEs describe the
evolution of a spatial process over time using a Markovian-
like dependence structure [17], making them well-suited to
model highly dynamical processes like local wind conditions
over a fairly short time horizon. Let Y;(s) be the spatio-
temporal process denoting the hub-height wind speed such that
s € D, and t € Z™" are the spatial location and time index,
respectively, then the key defining aspect in IDE models is the
specification of a “redistribution kernel,” denoted as m(s, ¢, 8),
which broadly governs the evolution of the spatial wind field



over time, as expressed in (1).
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where @ € R? are the kernel parameters and 7;(s) is a spatio-
temporal error term.

Gaussian, squared exponential, Matérn and other off-the-
shelf kernel functions have been popular choices for m(s, ¢, 8).
Those often invoke a “best-fitting” constant value for 6 that
is either time-invariant, or, at best, updated over time in a
rolling window fashion [24], [25]. This assumption, albeit
significantly simplifying the inference of the IDE model
may often be unrealistic for complex physical processes like
wind fields where the dynamics governing wind evolution are
known to change over time and space. Understandably, directly
making 6 temporally and/or spatially varying can significantly
inflate the parameter space for the IDE model. Instead, a viable
alternative is to parameterize 6 as function of time, space,
and/or spatio-temporal covariates [26], [27].

Along those lines, we propose a hierarchical IDE-based
model with a physically meaningful kernel, for which key
parameters in 0 are modeled as the output of a latent spatio-
temporal regression model, enabling them to smoothly change
over time as function of the local wind conditions, and hence
are denoted as 0;(s). We show, through real-world experi-
ments, that the proposed IDE model with a state-dependent
kernel leads to improved forecasting accuracy, across both the
wind speed and power domains. Our central focus is on a test
case from the rising U.S. offshore wind energy sector in the
U.S. Mid-Atlantic where several Gigawatt-scale wind farms
are either planned or under-development. We make use of
recently collected hub-height measurements from the offshore
wind energy areas in this geographical region to evaluate the
forecasting performance of our proposed approach against a
representative set of time series and spatio-temporal methods
that are prevalent in short-term wind forecasting applications.

The remainder of this paper is organized as follows. Section
II describes the real-world data and test case that motivates this
work. In Section III, we introduce our proposed IDE-based
forecasting approach, which is then followed by Section IV
where the experimental results are presented and discussed.
Finally, Section V concludes the paper.

II. DATA DESCRIPTION AND PROCESSING

This work is motivated by the ongoing large-scale offshore
wind developments in the U.S. Mid -Atlantic and Northeastern
U.S., and in particular, the New York/New Jersey (NY/NJ)
Bight, which is set to host multiple Gigawatt-scale offshore
wind projects [28]. In order to collect fine-resolution, hub-
height wind data that are relevant for wind energy assessment
and forecasting in this geographical region, the New York State
Energy Research and Development Authority (NYSERDA)
has deployed two floating Lidar buoys, referred to hereinafter
as EO05 and EO06, respectively [29], The buoys are approxi-
mately 77 Km apart and their exact coordinates, co-located
with the active offshore wind energy lease areas shown in

Figure 1(a), are 39°58’10”N and 72°43°00”W for EOS5, and
39°32’50”N and 73°25°45”W for E06 [30].

Of relevance to this work are the 10-minute wind speed
observations, recorded at a height of 140 meters, which is
the closest altitude to the hub height of several modern-day
offshore wind turbine designs [31]. The dataset used in this
study span the winter months of November and December
2019, which experience strong wind speeds, with an average
of 10.86 m/s. To pre-process the data and better align it
with downstream modeling assumptions, we transform the
raw data using a Box-Cox transformation with a time-varying
parameter, );, that is updated over time for each forecasting
roll. Forecasts are then transformed back to their original
domain using an inverse Box-Cox transformation. Figure 1(b)
shows the time series of the hub-height wind speeds at E05
and E06 (shown in blue and red colors, respectively) which
clearly show strong signs of spatial dependencies due to their
geographical proximity, motivating a joint spatio-temporal
modeling and forecasting approach, as proposed in this paper.
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Fig. 1. (a) Locations of NYSERDA'’s EO5 and E06 floating Lidar buoys on top
of the active offshore wind energy lease areas in the U.S. Mid-Atlantic. The
background map is generated using the Northeast Ocean Data Portal [30]. (b)
Time series of the hub-height wind speeds (at 140-m altitude) at EO5 (blue)
and EO06 (red), showing strong signs of spatial dependence.

III. AN IDE-BASED APPROACH WITH A LATENT
SPATIO-TEMPORAL REGRESSION MODEL

Integro-difference equation (IDE) models describe the evo-
Iution of a spatial process over time by modeling the condi-
tional dependence of the spatial process at the present time on
its recent history. This is often modeled within a hierarchical
framework comprising a data model (often referred to as the
observation model) and a process model [17]. In this work,
we assume the following structure for the data model:

Z; =H;Y; + €, 2



where Z; = [Zi(s1), ..., Z¢(sm)]T is an observation vector,
such that Z;(s) is the wind speed measurement at location
s and time ¢. Similarly, we have Y; = [Y;(s1), ..., Yi(s,)]%,
such that Y;(s) is the underlying state process of interest at
location s and time ¢. The matrix H; is an m X n measurement
operator matrix, whereas €, is the zero-mean Gaussian random
variable denoting measurement error with variance o2.
Considering the spatio-temporal process in continuous space
and discrete time, {Y;(:)}, the correspondent IDE process
model with time-varying kernel parameters can be written as:

Yi(s) = /D m(s,%: 0(8))Y_1 ()dx + m(s),  (3)

s

where m(s, x; 0;(s)) is the so-called “redistribution kernel”
defining the weighted contribution of the process at location
x € D, at time ¢ — 1 in determining Y;(s). The kernel is
described by the parameter vector 6;(s), which are treated in
this work as spatio-temporal functional parameters (more on
that in the sequel). We further assume 7;(s) ~ N'(0,07).

Defining m(s, x; 6,(s)) is essential for IDE models. In this
work, we adopt a Lagrangian kernel that coincides with the
physical feature of advection (often known as the transport
effect) of wind fields [32], [33], as in (4).

m(s,x;04(s)) = oy, exp(—[ls —x = ¢, (8)l]), 4

where 0;(s) := {02,,¢,(s)} such that 02, is the marginal
variance of the kernel, while ¢,(s) € R? is an advection
parameter that captures the transport effect of the wind field,
allowing along-wind dependence to be stronger than opposite-
wind dependence. In contrast to directly learning a best-fitting
constant value for ¢;(s) and ¢?(s), we model each of them
as the output of a latent spatio-temporal regression model that
depends on the local wind conditions at previous time steps
and multiple locations, as in (5).
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where af and {a?c’ J}kK:Tl j—1 are unknown sets of regression
coefficients. By making 0;(s) depend on Y;(s), we inherently
make the IDE kernel state-dependent.

Given © = {Bt(')}?:l» Zl:T = [Zl,...,ZT], where T is
the present time after which forecasts are to be made, then
the likelihood function £(Z;.7|®) can be generally written
as in (6). The estimation can then proceed using standard
Kalman Filter machinery in order to obtain the forecast
and filtering distributions [17]. Figure 2 illustrates how the
proposed IDE model is trained and used to make forecasts
once the parameters have been learned.

T
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Fig. 2. Illustration of the proposed hierarchical IDE-based framework,
including the training (left) and forecasting (right) phases.

IV. REAL-WORLD CASE STUDY

We evaluate the proposed IDE-based approach using a
rolling forecasting scheme, for forecast horizons, h &
{1,...,6} hours in 10-minute increments, that is, we have a
total of 36 forecasts per spatial location. The rolling window
is six hours. For each forecasting roll, we re-train the model
by updating its parameters, make future spatio-temporal fore-
casts, then roll by another six hours, and repeat the whole
training/forecasting process. This leads to a total of 220 rolls.
For the training process, we find that five days of historical
data is a reasonable training data size to balance goodness of
fit and computational efficiency.

A. Wind Speed Forecasting Results

We dub our approach as IDE-STR which stands for Integro-
Difference Equation with Latent Spatio-Temporal Regression.
We compare the wind speed forecasts obtained from IDE-STR
against the following set of representative methods that are
commonly used for spatio-temporal or time series modeling
in short-term wind forecasting:

e GP: A spatio-temporal Gaussian Process model with a
squared exponential covariance function for which the
hyperparameters are learnt and updated at each forecast-
ing roll using maximum likelihood estimation (MLE).

o ARIMA(p,q,d): An autoregressive integrated moving
average model trained separately for each location.
Bayesian information criterion (BIC) and MLE are used
to dynamically update the model order parameters, and
model coefficients, respectively, for each forecasting roll.

o IDE-CNT: This is the base version of the IDE model
with the best-fitting constant value for the kernel pa-
rameters, which we update for each forecasting roll.
The key difference between IDE-STR and IDE-CNT is
that the latter does not invoke the latent spatio-temporal
regression (STR) model in (5).

Table I shows the mean absolute error (MAE) values for
the wind speed forecasts of all competing models at various
forecast horizons. Looking at Table I, we can draw few key
insights. First, it is clear that, on average, IDE-STR achieves
the lowest average MAE with percentage improvements rang-
ing from 1.93% relative to spatio-temporal GPs and up to



2.56% relative to IDE-CNT (the base version of IDE with
time-invariant kernel parameters). Second, we note that the
improvement of IDE-based models (IDE-STR and IDE-CNT)
increases as the forecast horizon gets longer (h > 3). For
example, the improvements of IDE-STR over ARIMA reaches
up to 3.6% at h = 6 hours ahead. In contrast, the ARIMA
model appears to perform fairly well for ultra short-term
forecasting (h < 2 hours ahead). The trend is reversed
for longer horizons, where the spatial neighborhood effect
appears to play a noticeable role as evident by how spatio-
temporal models (IDE-STR, IDE-CNT, and GP) significantly
outperform the ARIMA model at h > 2 hours ahead, with
increasing percentage improvements as h is longer. Third, we
find that the improvement of IDE-STR over its base version,
IDE-CNT, appears to be more amplified at longer horizons
(h > 2). This showcases that, albeit a constant value for
6, might be acceptable for shorter time scales, capturing
the temporally- and spatially-varying nature of the advection
parameters through our proposed STR approach brings in
significant value when the wind dynamics in the forecast
horizon start departing from those at the time of forecast.

TABLE I
WIND SPEED FORECASTING RESULTS. GREY-COLORED CELLS REPRESENT
RESULTS AT E06. AV. AND % DENOTE AVERAGE PERFORMANCE AND
PERCENTAGE IMPROVEMENT OF IDE-STR OVER ALL MODELS,
RESPECTIVELY. BOLD-FACED VALUES DENOTE BEST PERFORMANCE.

IDE-STR IDE-CNT ARIMA(p,q,d) GP
EO5 E06 EO05 E06 EO5 E06 EO05 E06
1 0.76 | 0.69 | 0.76 | 0.71 | 0.77 0.66 0.78 | 0.69
2 1.31 | 1.18 | 1.31 | 1.26 | 1.32 1.18 1.33 | 1.18
3 1.72 | 1.66 | 1.72 | 1.76 | 1.74 1.67 1.75 | 1.69
4 2.07 | 2.09 | 2.09 | 2.21 | 2.13 2.11 2.12 | 2.14
5 231 | 240 | 232 | 2.51 | 241 2.45 2.37 | 2.46
6 261 | 2.85 | 262 | 2.95 | 2.74 2.92 2.67 | 291
Av. 1.80 1.85 1.84 1.84
% - 2.56% 1.97% 1.93%

Figure 3 shows the normalized values of the estimates of
0, from IDE-STR versus that from IDE-CNT, showing how
the latent STR model adequately captures the spatio-temporal
variation of the advection parameters that may be motivated
by evolving wind dynamics. In contrast, a rolling window
update of a single value for 8, as in IDE-CNT appears to
be rigid and offers far less modeling flexibility. Figure 4
shows probabilistic forecasts issued using IDE-STR which
suggest faithful agreement with the actual measurements. This
inherently probabilistic nature of IDE-based models make
them well-suited to inform subsequent operational decision-
making under uncertainty [34], [35].

B. Wind Power Forecasting Results

To further demonstrate the value of IDE-STR to offshore
wind operations, we transform its wind speed forecasts into
wind power predictions using statistically constructed power
curves obtained using the standard method of bins [36]-[38]
applied to actual SCADA data from an operational wind farm
in the US [39]. We scale the power output to the [0, 1] interval,
wherein a value of 1 denotes the rated capacity. The power
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Fig. 3. Normalized values for 6; for IDE-STR versus those from IDE-
CNT (updated on a rolling window fashion), clearly showing the modeling
flexibility of the former in capturing the spatially- and temporally- varying
advection dynamics relative to the latter.

Fig. 4. Probabilistic forecasts from IDE-STR on top of the actual wind speed
measurements (95% forecast intervals shown).

curves are then used as “look-up tables” to convert both the
true wind speeds and their correspondent forecasts for all
competing methods into wind power predictions. We then
evaluate the power predictions from all methods using the
power curve error (PCE) loss [40], which is defined as in

).
g |:PT+}L(S) - ﬁT+h(S)}
if Zrsn(s) < Zin(s),
(1= 9) [Pron(s) = Pron(s)]
if Zrin(s) > Zryn(s),

PCE(P,P) = 7)

where Pryp(s) and Pryp(s) are the normalized power ob-
servations and forecasts at location s at time 1" + h, whereas
g is the under-estimation weight, which is typically set at
values higher than 0.5 [40]. Table II, shows the average PCE
values across all horizons for values of g ranging between
0.5 and 0.8 with 0.1 increment. Again, IDE-STR is shown to
outperform all of its competitors, further confirming the merit
of the proposed IDE-based framework in offshore wind power
forecasting applications.

V. CONCLUSIONS

In this work, we proposed a hierarchical approach for
short-term wind speed and power forecasting based on the
integro-difference equation modeling framework wherein the
kernel parameters are modeled as the output of a latent

TABLE I
WIND POWER FORECASTING RESULTS FOR ALL BENCHAMRKS.
BOLD-FACED VALUES DENOTE THE BEST PERFORMANCE.

g IDE-TSR IDE-CNT ARIMA GP

0.5 | 0.0593 0.0613 0.0597  0.0599
0.6 | 0.0567 0.0584 0.0570  0.0575
0.7 | 0.0542 0.0555 0.0544  0.0551
0.8 | 0.0516 0.0526 0.0518  0.0528




spatio-temporal regression model. Tested on actual hub-height
measurements, the proposed approach is shown to provide
considerable improvements relative to time series and spatio-
temporal modeling approaches that are prevalent in the short-
term wind forecasting literature. Future research will explore
more advanced modeling structures for the latent model within
the IDE framework, as well as the integration of exogenous
weather information in order to extend the forecasting skill
beyond few hours ahead.
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