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Rectified Control Barrier Functions for
High-Order Safety Constraints
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Abstract—This letter presents a novel approach for
synthesizing control barrier functions (CBFs) from high rel-
ative degree safety constraints: Rectified CBFs (ReCBFs).
We begin by discussing the limitations of existing High-
Order CBF approaches and how these can be overcome
by incorporating an activation function into the CBF
construction. We then provide a comparative analysis
of our approach with related methods, such as CBF
backstepping. Our results are presented first for safety
constraints with relative degree two, then for mixed-input
relative degree constraints, and finally for higher rela-
tive degrees. The theoretical developments are illustrated
through simple running examples and an aircraft control
problem.

Index Terms—Constrained control, Lyapunov methods,
nonlinear systems, safety-critical control.

|. INTRODUCTION

ONTROL barrier functions (CBFs) [1], [2] are a useful

tool for safety-critical control systems, providing a way
to synthesize controllers enforcing state constraints. One of
the main advantages of CBFs is the ease of control synthesis
using methods such as quadratic programming [1], safety fil-
ters [3], or closed-form solutions [4], [5]. Moreover, there exist
numerous extensions of CBFs that address properties beyond
safety such as robustness and stability [6]. Nevertheless, these
controller design techniques assume that a CBF is already
given for the safety constraint considered.

Constructing CBFs can be challenging, especially when
dealing with safety constraints with higher relative degrees.
The most popular approach for addressing this issue is
High-Order CBFs (HOCBFs) [7], [8], [9], [10], [11]. While
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effective in some cases, HOCBFs are not traditional CBFs.
Many standard results associated with CBFs, such as robust-
ness and stability, do not readily transfer to HOCBFs,
and extending these results to HOCBFs is often nontrivial
(8], [12], [13].

Another approach to constructing CBFs is backstep-
ping [14], [15], which produces CBFs rather than HOCBFs.
This method requires systems to be in strict feedback form,
or transformable into strict feedback form via output coor-
dinates [16]. Backstepping involves designing a sequence
of smooth virtual controllers for a sequence of auxiliary
systems, which increases the complexity of control design
compared to HOCBFs. While recent advancements [5], [17]
have made the design of these virtual controllers sys-
tematic, the requirements on the system’s structure may
preclude the application of backstepping to more complex
systems.

An advantage of backstepping includes its ability to handle
constraints with mixed-input relative degrees, in the sense of
independent inputs appearing at different orders of derivatives.
In the context of HOCBFs, [18] addresses this issue using inte-
gral control [19] to dynamically extend inputs, materializing
them at different relative degrees. While this enables con-
troller synthesis, it obscures the original inputs in the design
process, making it difficult to analyze or minimize control
effort.

The main contribution of this letter is the development
of a method for constructing CBFs from safety constraints
with higher relative degrees. Our approach extends HOCBF
ideas by introducing activation functions that consider HOCBF
constraints only when necessary. The result is a Rectified
Control Barrier Function (ReCBF), rather than a HOCBF,
that inherits existing properties of CBFs such as stability and
robustness. In addition, our approach generate true CBFs from
existing HOCBFs, and it is better suited for handling safety
constraints with a weak relative degree where the HOCBF
approach may struggle. We discuss our method by focusing
first on safety constraints with relative degree two, and then we
move on to mixed-input and higher relative degree constraints.
Moreover, we provide a comparative analysis of ReCBFs with
other methods such as HOCBF and backstepping, and illustrate
how the main ideas presented herein may also be adapted to
these approaches. Finally, we apply our method to a fixed-wing
aircraft control problem.
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II. PRELIMINARIES AND PROBLEM FORMULATION
A. Control Barrier Functions
Consider a nonlinear control affine system':

x = f(x) + gx)u, (D

with state x € R” and input u € R™, where f : R" —
R" and g : R* — R™ are smooth functions. Given a
locally Lipschitz feedback controller k : R" — R for (1),
the closed-loop system with u = k(x) and initial condition
X0 € R" admits a unique continuously differentiable trajectory
x : I(xg) — R”" defined on a maximal interval of existence
I(x0) € R>p. Our main objective in this letter is to design
feedback controllers k such that the closed-loop system satis-
fies state constraints x(#) € C along trajectories, where C C R”
is a state constraint set. This is linked to the concept of forward
invariance: a set S C R” is said to be forward invariant for
the closed-loop system if for each initial condition xg € S,
the resulting trajectory satisfies x(f) € S for all 1 € I(xp).
While we may wish to design controllers that render the state
constraint set C forward invariant, such a controller may not
exist, and one must instead search for a subset S C C that
can be rendered forward invariant. A popular approach to
designing controllers enforcing forward invariance of such sets
is through CBFs.

Definition 1 [1]: A continuously differentiable function
h: R" — R defining a set S as:

S ={xeR": hx) >0}, 2)

is said to be a CBF for (1) on § € R”" if there exists o« € K¢
and an open set £ O S such that for all x € &:

sup {Lgh(x) + Lgh(x)u} > —a(h(x)). (3)

ueR}ﬂ
The main utility of CBFs is that any locally Lipschitz
controller k(-) satisfying (3) enforces forward invariance of
S [1]. In this letter, we focus on constraint sets of the form:

C={xeR": y(x) =0}, 4)

where ¥ : R" — R is smooth, and seek CBFs with corre-
sponding zero superlevel sets contained within C D S. The
following lemma outlines conditions for verifying CBFs.

Lemma 1 [20]: A continuously differentiable function
h:R" — Ris a CBF for (1) on a set S as in (2) if and only
if there exists « € K¢ and an open set £ D S such that:

Loh(x) =0 = Leh(x) > —a(h(x)), Vxef&. (5)

B. High-Order Control Barrier Functions

While Lemma 1 provides a simple condition for verifying
a candidate CBF, proposing such a function in the first place
is non-trivial for high-dimensional systems where inputs may

LA continuous function « : (—a,b) — R, a,b € R., is said to be an
extended class K function (o € K¢) if «(0) = 0 and « is strictly increasing.
If a =b =00 and lim,— +0 a(r) = o0 then « is said to be an extended
class Koo function (¢ € K%). For a continuously differentiable function
a: R — R, we define &/ (r) := %(r). With an abuse of terminology, we say
that a function is smooth if it is differentiable as many times as necessary.
For a smooth function 4 : R” — R? and vector field f : R” — R we define
Leh(x) = %(x)f(x) as the Lie derivative of / along f with higher order Lie

i—1
L n ).

derivatives denoted by Léh(x) = 5

not directly affect the safety constraint. A popular way to
overcome this challenge is via HOCBFs [7], [8] wherein a
candidate CBF is dynamically extended to a new function
that may serve as a certificate of safety. The success of this
technique relies on the notion of relative degree.

Definition 2: A smooth function ¥ : R" — R is said to
have relative degree r € N for (1) at x € R” if:

1) LeLiy(x) =0, Vie{0,...,r—2}

2) LeLi 'y (x) #0.
Similarly, ¥ is said to have relative degree r on a set £ C R”
if it has relative degree for all x € .

To define HOCBFs, consider a state constraint set C C R”
as in (4) defined by a smooth function ¢ : R” — R. Assuming
that v has relative degree r > 2 on C, define:

Vi1 (X) = Leyi(x) + i (Yi(x)),  Vie{0,...,r—2}, (6)

where «; € K¢ are smooth, with ¥y(x) := ¥ (x). This collec-
tion of functions produces a collection of sets:

Ci={xeR":yix) >0}, Vie{0,....r—1}. (1)

These sets are used to define a candidate safe set as:
r—1
S=[)GcC. ®)
i=0
which is a subset of the original constraint set C = Cp. The
controlled invariance of this safe set can then be ensured
through the existence of a HOCBF.
Definition 3 [8]: A smooth function ¢ : R” — R defining
a constraint set C C R" as in (4) is said to be a HOCBEF for (1)
on a set S C C as in (8) if there exists an open set £ D S and
o € K¢ such that for all x € &:
sup {Levr—1(X) 4+ Lg,—1(0u} > —a(¥,—1(x). (9

ucRm

The main result with regard to HOCBFs is that any locally
Lipschitz controller satisfying the above condition renders the
set S forward invariant [7], [8]. Since & C C, this ensures
that trajectories remain within the constraint set C so long as
they are defined. The original definition of a HOCBF [7] does
not explicitly require v to have relative degree r; however,
since Lgr,—1(X) = Lng‘IW(x), if ¢ has relative degree r on
&€ O &S then ¥ is a HOCBF since Lg,—1(x) # 0 forall x € £.
The relative degree requirements of a HOCBF are formalized
in [8] using the notion of a weak relative degree.

Definition 4: A smooth function ¢ : R" — R is said to
have weak relative degree r € N for (1) on a set £ C R" if it
has relative degree r for at least one x € £ and LgLéw x) =
0,Vie{0,...,r— 1} for all other x € £.

If ¥ has a weak relative degree, Lemma 1 may be
used to verify HOCBFs: ¢ is an HOCBF if Lyy,_1(x) >
—a(Yr—1(x)) when Lgi_1(x) = 0. Unfortunately, when
has a relative degree that is weak, it is often not a HOCBFE.

Example 1 [2]]: Consider a double integrator with state
X = (x, ¥) € R? subject to the following safety constraint:

i=[kul’, Y@ =1-x">0.
By computing LgL¢yr (X) = —2x, we have that ¢ has relative
degree r = 2 everywhere except when x = 0. The auxiliary
function as in (6) is:

V1 (x) = —2xx + ao(1 — x2).
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Fig. 1.  Left: Safe set & induced by the HOCBF candidate from
Example 1, where the dashed black lines denote the boundary of
the constraint set C, the solid red curves denote the boundary of
the safe set S, the arrows denote the closed-loop vector field under
the resulting quadratic programming-based controller (lighter arrows
correspond to larger magnitude), the gray curves illustrate example
closed-loop trajectories, and the gray dots denote the initial conditions
of such trajectories. Right: Input generated by the resulting HOCBF
controller for fixed values of x as x is varied.

For i to be a HOCBF, condition (9) requires Ly (X)
—a(y(x)) for all points x € S whenever Lgiri(x)
LgLgy (x) = —2x = 0, which gives:

v

—2i% = 2a(1 — xH)xk = —or( — 2xk + (1 — x%))
—2%% > —a(ap(1)).

Since S = {x € R?| ¥ (x) > 0, ¥1(x) >0}, & may take any
value when x = 0 (see Fig. 1), so we require the inequality
above to hold for all (0, x) € R?. Because the right-hand side
is constant, there is no o € K¢ satisfying the inequality for
all (0,x) € S, which implies that v is not a HOCBE. In
particular, when x = 0 and |x| > /a(ao(1))/2, there exists no
input satisfying (9), and, as a result, controllers synthesized
using this candidate HOCBF will be ill-defined. For instance,
the resulting quadratic programming-based controller (cf. [7])
tends to infinity as x — O for x large enough (see Fig. 1, right),
causing the closed-loop dynamics to exhibit finite escape times
(see Fig. 1, left).

Even when i can be verified as a HOCBF, it does not
qualify as a CBF in the usual sense. Specifically, the safe set
is the zero superlevel set of neither ¢ nor v,_; but the set
intersection defined by (8). A limitation of this paradigm is
that results for CBFs (e.g., stability and robustness) do not
trivially transfer to HOCBFs. In what follows, we present
a procedure similar to HOCBFs for constructing CBFs that
overcomes these aforementioned limitations.

[1l. RECTIFIED CONTROL BARRIER FUNCTIONS
A. Weak Relative Degree Two

The core idea of our approach lies in an activation strategy
for HOCBFs. To simplify the discussion and facilitate com-
parison with other methods, we restrict ourselves to safety
constraints ¢ with (weak) relative degree r = 2 in this
section. HOCBFs aim to indirectly render ¥ positive along
the trajectory by ensuring that ¥ (x) = Ly (X) + o (¢ (x)) > 0
along the trajectory, which is achieved by enforcing a CBF-
like condition (9) on . While such an approach uses the
input even when ¥(x) > 0, our approach will only invoke
the input if necessary, when ¥1(x) < 0.

To this end, we propose the following CBF candidate:

h®) =¥ (x) — ReLU( = y (Lt (%) + @ (¥ (x)) ). (10)

with ReLU(r) := max{0, r} the Rectified Linear Unit, con-
tinuously differentiable y € K¢, y'(s) =0 <= s=0, and
continuously differentiable o € K¢. Note that one may verify
that ®(s) := ReLU(—y (s)) is continuously differentiable. The
motivation behind (10) is that when the unforced dynamics
of (1) are safe with L (x) > —a (¥ (x)), the second term
in (10) is “deactivated” since it is not required to enforce
safety, yielding h(x) = ¥ (x). We thus refer to (10) as a
rectified CBF (ReCBF) as higher order terms required to
enforce safety are only activated when 1(x) is negative.
The following theorem states that, under certain assumptions,
ReCBFs are valid CBFs.

Theorem 1: Consider system (1), a constraint set C C R”
defined by a smooth ¢ : R” — R as in (4), and a set S C C
as in (2) defined by & : R” — R from (10). If there exists an
open set £ O S such that ¢ has weak relative degree r = 2
on & and:

Leliy (x) =0 = Ly (x) = —a (¥ (X)),

for all x € £, then the ReCBF £ is a CBF for (1) on S.
Proof: We will leverage Lemma 1 to show that 4 is a CBE.
We begin by computing the derivative of 4 along (1):

h= Ly (x) — O (Ley (X) + a (Y (X))
< (Lg ¥ (%) + LeLeyr (x)u + o' (¥ (%)) Ler (X))
where ®(s) := ReLU(—y(s)). From above, we identify:
Leh(x) = Ly (x) — O/ (Leyr (%) + (¥ () Lg ¥ (X)
— O (L (x) + (¥ ()’ (¥ (X)) Ler (x)
Lgh(x) = —O'(Lyyr (x) + a (Y (%)) LgLg ) (x).
Thus, Lgh(x) = 0 if and only if:
O (Lt (x) + (¥ (%)) =0 Vv LgLgyr(x) = 0.
However, since (11) holds and:

0 ifs>0
—y/'(s) if s <0,

(11)

O'(s) = {
we also have:
Lelgy(x) =0 = Ly (x) > —a (¥ (x))
= Oy () +a((x)) =0,
which implies that:
Leh(x) =0 < O'(Liyy(x) + a (¥ (x))) =0
— LYy = —a(y(x).

Thus, for all x € £ such that Lgh(x) = 0, we have Lgyr (x) >
—a (¥ (x)), while the expressions of 4 and Lgh yield h(x) =
¥ (x) and Leh(x) = Lgy (x), which leads to:

Leh(x) = Ly (x) = —a (¥ (X)) = —a(h(x)),

and implies that / is a CBF for (1) on § by Lemma 1. |
An immediate corollary to the above is that if ¢ has relative
degree two on a set £ O S, then the ReCBF £ in (10) is a CBE.
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Fig. 2.

Left: Safe set induced by ReCBF (10) for Example 2 (blue
curve), where all other plot elements share the same interpretation as
those in Fig. 1 Right: Safe set induced by the CBF (12) for Example 3
(green curve).

On the other hand, when the relative degree is weak, condi-
tion (11) must hold, which is a requirement on the constraint
function v rather than the auxiliary function yr; for HOCBFs.
The controlled invariant set S produced by the ReCBF in
Theorem 1 is contained within the original constraint set
C because ® is nonnegative and h(x) >0 — ¥ (x) > 0.
Thus, any controller rendering S forward invariant ensures that
x(t) € C for all + € I(x9). We conclude this subsection by
showcasing the properties of these CBFs compared to other
CBF constructions.

Example 2 (Comparison to HOCBFs [7]): We  consider
the same scenario as in Example 1 but now attempt to
construct a ReCBF using Theorem 1. Recall that LgLgr (x) =
—2x and note that Ly (X) = —2xx so that Lelgy(x) = 0
implies x = 0, Lgyy(x) = 0, and a(Y(x)) = «a(l). For h
in (10) to be a CBF, (11) must hold, and it does indeed hold
since:

Lelgy (x) =0 = Ly (x) + (Y (%)) = (1) = 0.

The safe set corresponding to the ReCBF in (10) defined with
y (r) = rlr| is plotted with a few example trajectories in Fig. 2
(left), showing safety in accordance with Theorem 1.

Example 3 (Comparison to [10]): In [10] it is shown that
under conditions similar to Theorem 1, the function:

¥ (x) if Leyr (x) > 0
¥ (x) — Ly ()2 if Ly (x) < 0,

is a CBF. A comparison between the zero superlevel sets of the
ReCBF # from (10) and CBF from (12) are shown in Fig. 2,
where the sets are almost identical. However, under controllers
generated by the ReCBF in (10), the set S is not only
forward invariant but also asymptotically stable, as the CBF
condition (3) holds not only on S but also outside” of S [1].
In contrast, one may show that the CBF condition (3) for (12)
does not necessarily hold outside of S, leading to failure of
convergence back to S. This phenomenon is illustrated in
Fig. 2, where trajectories under ReCBF controllers from (10)
stabilize S while those corresponding to (12) do not.
Example 4 (Comparison to Backstepping [14]): Another

approach to constructing CBFs is via backstepping [14], [16].
Here, one considers a safety constraint ¥ as in (4) with weak
relative degree r > 2, designs a smooth CBF controller [17]
under the assumption that ¥ is a CBF for a single integrator,

h(x) = { (12)

2In particular, (3) holds for (10) outside of S so long as v has relative
degree r = 2 outside of S. On the other hand, even if ¥ has relative degree
r = 2 outside of S, one may show that (3) is violated for (12) at points
satisfying Lgyr (x) = 0.

Fig. 3. Left: Safe set induced by the CBF (13) for Example 4 (purple
curve), where all other plot elements share the same interpretation as
those in Fig. 1. Right: Safe set induced by the CBF (14) for Example 4.

and then “backsteps” through this smooth controller to
construct a CBF for the original system. More details are
available in [14], [16], [21], but for the scenario in Example 1,
this backstepping CBF is:

h(x) = ¥ (x) — 5 (F — k(x))*,

where k : R — R satisfies %(x)k(x) > —a (¥ (x)). The safe
set resulting from this CBF is illustrated in Fig. 3 (left) and is
shown to be more conservative than the safe set corresponding
to the ReCBF from (10) in Fig. 2 (left). However, under
appropriate assumptions, the high-level approach in this letter
may also be extended to backstepping via taking:

13)

hx) = Y (x) — ReLU( — y(%(x)(}c —k®))). (4

with ReLU as in (10). The safe set corresponding to this CBF
is illustrated in Fig. 3 (right) and is shown to be similar to
that obtained from (10). While the results in this letter may be
extended to backstepping, this would require one to assume (1)
is in strict feedback form [14] or that i is a function of an
output with a valid relative degree [16], whereas the current
formulation does not require these assumptions.

Remark 1: It is often useful to define CBFs (3) with a strict
inequality to establish continuity of optimization-based con-
trollers [20]. The construction in Theorem 1 can be modified
to produce a CBF satisfying (3) strictly by redefining (10) with
ReLU(—y (s — ¢)) for ¢ > 0, provided (11) is changed to:

Lelgy (x) =0 = Ly (x) = —a (Y (X)) +&.

B. Mixed-Input Relative Degrees

ReCBFs also enable the use of control inputs that appear in
higher derivatives of i beyond their (weak) relative degree.
For example, v is a CBF if it has weak relative degree one
and (5) is satisfied:

Ley(x) =0 = (%) = Ly (%) + (¥ (x)) = 0.

When this condition does not hold, the control input may still
appear in higher order derivatives of ¥, and, unlike HOCBFs,
ReCBFs permit the use of such higher order Lie derivatives
despite that fact that Lgir(x) # 0.

Theorem 2: Consider system (1), a constraint set C C R”
defined by a smooth ¥ : R” — R as in (4), and a set S C C
as in (2) defined by & : R” — R from (10). If there exists an
open set £ O S such that Ly (x) and LgLgr(x) are linearly
independent whenever they are nonzero on £ and:

Ley (x) = Lelgy (x) = 0 = Ly (x) = —a(¥ (X)),
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for all x € £, then the ReCBF £ is a CBF for (1) on S.

Proof: Due to the linear independence assumption, we have
Ly (x) = 0 if Lgh(x) = 0. By following the proof of
Theorem 1, we get Lgh(x) = 0 if and only if Lgy(x) = 0
and Lgy (x) > —a (¥ (x)), which implies & is a CBF, as in the
proof of Theorem 1. |

Theorem 2 suggests our approach can leverage inputs
present in higher-order Lie derivatives when those appearing
in lower-order Lie derivatives are insufficient to enforce safety.
Similar to backstepping [14], this facilitates the synthesis of
controllers from mixed relative degree constraints, a situation
in which HOCBFs struggle without employing additional
techniques such as integral control [18].

IV. HIGHER RELATIVE DEGREE RECBF

In this section, we extend our results to safety constraints
with weak relative degree greater than two.

Definition 5: Consider a constraint set C C R" defined by
a smooth ¥ as in (4) with weak relative degree r > 2 on
E C R™. With «;(s) > a;_1(s) for all s € R, define iteratively:

Vi) = Lthi—1(X) + ati—1(hi—1 (X)), (15a)
hi(x) = hi—1(x) — ReLU(—;(¥i(x))), (15b)

fori e Z ={1,...,r— 1}, starting with hp(x) := ¥ (x). The
corresponding Rectified CBF (ReCBF) is defined as:

h(x) = hy—1(x) = ¥ (X) — ZRCLU(—J/i(I/fi(X))), (16)
i€
with smooth y; € K¢, a; € K¢, and y/(s) =0 < s=0.

A ReCBEF defines a candidate safe set S as in (2). Similar
to the previous section we have A(x) > 0 = Y (x) >
0 so that rendering S forward invariant ensures satisfaction
of the original state constraint. The following result outlines
conditions for when a ReCBF £ is a valid CBF.

Theorem 3: Consider system (1), a constraint set C C R”
defined by a smooth ¥ : R” — R as in (4), and a set S C C
as in (2) defined by a ReCBF & : R” — R from (16). Provided
there exists an open set £ D S such that i has weak relative
degree r on £ and:

LLi7 'y () =0 = JieZ, y;(x)>0, (17)

for all x € £, then the ReCBF 4 is a CBF for (1) on S.

Proof: Examining the Lie derivative of A; along the control
directions g, with ®;(s) := ReLU(—y;(s)):
Lghi(x) = Lghi—1(x) — ©}(;(X))Lgi(x)
= (1 — aj_ (hi=1(x)))Lghi—1(x)

— O(¢i(x)) LgLthi—1 (%).
A similar result also follows when the Lie derivative is
taken along the vector field f, by replacing g with f. Since
LeL¢yr(x) = 0 for i < r — 1 from the weak relative degree

assumption, we may ignore the first term with lower order Lie
derivative and deduce from repeatedly substituting h;_:

(18)

r—1

Lgh(x) = (1) (1"[ ®;<wi(x>)>LgL;‘1w(x).

i=1

To prove that & is a CBF, we appeal to Lemma 1. Using
a similar argument to that in the proof of Theorem 1, (17)
implies that Lgh(x) = 0 if and only if there exists i € Z such
that @;(Iﬂi(x)) = 0, which occurs when ¥;(x) > 0 for some
i € Z. Moreover, when v;(x) > 0, we have:

Lehi(x) = Lghi—1(x) — ©;(¥;(x)) Ly ()
= Lthi—1(x) = —a;—1(hi—1(x))
= —a;-1(hi-1(X) — O;(¥i(x)))
= —a;—1(hi(x) = —a;(hi(x)),

where the inequalities are from the definition of v; and the
ReCBF construction of «;(s) > «;_1(s). As the above implies
that i1 (x) = Lehi(X) + o;(hi(x)) > 0, we may iteratively
apply the same procedure to deduce that when Lgh(x) = 0, we
have ¥, (x) = Lghy—1(X) + a1 (hy—1(x)) = 0. Since h(x) =
hy—1(x) this implies:

Lgh(x) =0 = Lth(x) = —o,—1 (h(x)) = —a(h(x)),

for any o € K¢ satisfying (s) > «,—1(s), which, by Lemma 1,
implies & is a CBF for (1) on S, as desired. |

Theorem 3 recursively applies a similar methodology to that
in Theorem | to construct a CBF from a safety constraint
with an arbitrary weak relative degree. Since ReCBFs are
CBFs, results on stability and robustness follow under regular
assumptions. Also, similar to Theorem 1, a corollary to the
above result is that (16) is a CBF if ¢ has a relative degree
on some set £ D S.

V. NUMERICAL EXAMPLES

We showcase the main ideas developed herein on an aircraft
control problem. We consider simplified pitch dynamics of a
fixed-wing aircraft described by [22]:

) (A —
Lﬂ _ [V,(Az_lzos(e))} n [(1)} ;
== g —=

X (x)
where 6 € (—m, ) is the pitch angle, A, € R is the accelera-
tion along the z-axis, g € R. is the gravitational acceleration,
Vr € R.y is the speed of the aircraft (assumed to be fixed),
and the input # € R denotes the commanded A;, which passes
through a first-order actuator model characterized by the time-
constant T € R.¢. Our objective is to design a controller that
tracks a prescribed pitch trajectory while enforce symmetric
limits on the pitch |6] < Onax, captured by the safety constraint
W (x) = 62, —6%. We verify that this safety constraint satisfies
the conditions of our results by first noting that LgLsy/ (x) =
—TZTgTQ, implying that ¢ has weak relative degree two with
LgLgyr(x) = 0 when 6 = 0. Since Ly (x) = —206 we have
LgLgyr (x) = 0 implies that Lgy (x) = 0 > —a(@ﬁm), implying
that the ReCBF /4 from (10) is a CBF for this system and
safety constraint.

We illustrate the benefits of ReCBFs via comparison to
HOCBFs. To construct a ReCBF we leverage (10) with «(r) =
%r and y (r) = r|r|, incorporating ¢ = 0.1 to ensure continuity
of the resulting controller (cf. Remark 1). This ReCBF is used
to construct a safety filter [3] that modifies a nominal tracking
controller to enforce safety.

g(x)
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Fig. 4. Evolution of the pitch angles for different controllers. The blue
plot is induced by the ReCBF when used as a safety filter on a nominal
control signal that seeks to track the pitch angle shown by the unsafe
dotted green line. The red plot, induced by the HOCBF approach, does
not have a valid solution after approximately 10.9 seconds.
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Fig. 5. Input signals for the ReCBF and HOCBF approach for the

aircraft example. The HOCBF input goes unbounded as LgL¢y (x) — 0.

The results of our ReCBF safety filter in comparison to
an HOCBF safety filter [7] (defined with the same «) are
illustrated in Fig. 4 and Fig. 5. As seen in Fig. 4, the
pitch trajectory generated by ReCBF (blue curve) tracks the
desired trajectory (green curve) when it is safe to do so, and
prevents the pitch from exceeding its prescribed limits when
the desired trajectory leaves the constraint set. The trajectory
generated by the HOCBF controller (red curve) initially safely
tracks the desired trajectory as well; however, solutions of
the closed-loop system fail to exist beyond 10.9 seconds. As
shown in Fig. 5, the control input generated by the HOCBF
controller tends to negative infinity as 6(f) — 0, a point at
which LgLgyr (x) = 0. Similar to Example 1, one may verify
that this i does not satisfy Def. 3 and thus the resulting
HOCBEF controller is not necessarily well-defined. In contrast,
our ReCBF allows trajectories to pass through points where
LgLgyr (x) = 0, leading to a well-defined controller that handles
singularities in LgLgyr (X).

VI. DISCUSSION AND CONCLUSION

This letter introduces Rectified CBFs: a tool for constructing
CBFs for high relative degree constraints that overcomes
limitations posed by traditional techniques, such as HOCBFs.
We provided detailed technical treatments for three scenarios:
(i) relative degree two safety constraints, (ii) constraints
where independent inputs affect derivatives of varying orders
up to two and (iii) higher relative degree constraints. We
presented a comparative analysis of our approach with exist-
ing approaches. While our method offers some theoretical
advantages over HOCBFs by handling constraints with weak
relative degrees, it is not without its own limitations. The
controllers generated by ReCBFs are sensitive to the various
hyperparameters on which they depend, and improper tuning
of these hyperparameters can lead to controllers with large

Lipschitz constants that produce large input. Thus, character-
izing the properties of these controllers in relation to their
hyperparameters is an important direction for future work.
Other future research directions include unifying our results
on mixed and high relative degrees.
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