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Abstract— This paper considers collision avoidance for ve-
hicles with first-order nonholonomic constraints maintaining
nonzero forward speeds, moving within dynamic environments.
We leverage the concept of control barrier functions (CBFs) to
synthesize control inputs that prioritize safety, where the safety
criteria are derived from the velocity obstacle principle. Existing
instantiations of CBFs for collision avoidance, e.g., based on
maintaining a minimal distance, can result in control inputs that
make the vehicle stop or even reverse. The proposed formulation
effectively separates speed control from steering, allowing the
vehicle to maintain a forward motion without compromising
safety. This is beneficial for ensuring that the vehicle advances
towards its desired destination, and it is moreover an underlying
requirement for certain vehicles such as marine vessels and
fixed-wing UAVs. Theoretical safety guarantees are provided,
and numerical simulations demonstrate the efficiency of the
strategy in environments containing moving obstacles.

I. INTRODUCTION

With the increasing use of autonomous vehicles for com-

mercial and scientific purposes, ensuring safety formally and

in practice has become ever more pressing. Within robot nav-

igation, an important aspect of safety involves avoiding col-

lision with obstacles that appear in the robot’s surroundings.

In dynamic environments, i.e., containing moving obstacles,

the collision avoidance system must accommodate an unpre-

dictable information picture providing only a limited time to

react to a collision. As a result, the effectiveness of planning-

based algorithms is reduced significantly, highlighting the

need for developing real-time reactive methods that ensure

safety.

Safety can in many applications be framed as the property

of always remaining in a safe set, i.e., forward set invariance.

Control barrier functions (CBFs) [1] present a means to en-

sure safety of dynamical systems, by providing a framework

to enforce the forward invariance property. The controller

synthesis is usually framed as an optimization problem in

which the deviation between the nominal system input and
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safe inputs is minimized [2], allowing for reactive adjust-

ments of the vehicle’s control inputs in a minimally intrusive

manner. Collision avoidance has been studied within the

framework of CBFs, where most previous work consider

static environments and multi-agent systems [2]–[7]. For

double integrator systems, the approach [3] can be applied

to avoid a dynamic obstacle by viewing it as an agent with

zero control inputs. Safety can thus only be concluded if

the obstacle moves at a constant velocity. The same constant

velocity assumption is made in [8], where CBFs are applied

for the control of a fully actuated ASV. Importantly, these

are both holonomic systems where CBFs have found great

success.

This study specifically considers vehicles with unicycle-

kinematics, constituting a first-order nonholonomic con-

straint. Since the rotation rate does not appear through

differentiation of the position, the result is limited control

authority if the barrier function is defined solely from the

position of the vehicle. To bypass this limitation, collision

avoidance may be assured for a point in front the vehicle [4],

[9]. However, this approach has not been studied for dynamic

environments in which the perturbation of the vehicle center

could lead to unwanted behaviour. Noticing that the control

inputs appear through a second differentiation of the position,

the approach taken by [10] uses a high-order barrier func-

tion [11] for controlling a segway to avoid collision. The

approach is illustrated in a dynamic environment, but the

segway is restricted to move on a straight line, thus making

it a holonomic system.

In the context of applying CBFs to UAVs and UGVs, [12]

and [13] formulate a barrier function based on the collision

cone concept. A collision cone refers to the set of relative

velocities between the vehicle and an obstacle resulting in a

future collision [14]–[16], thus offering a predictive notion of

safety that can be exploited to keep the vehicle from colliding

with moving obstacles. The main limitation of this approach

is, however, that the barrier function is not defined when

the relative velocity vector is zero. The equivalent velocity

obstacle (VO) is perhaps more suited for control design,

as it relates an obstacle to the absolute velocities of the

vehicle [16]. The concept has been applied to nonholonomic

systems, but never in the context of CBFs. Moreover, [17]

and [18] adapts the VO to vehicles with car-like kinematics,

however, the control inputs are only guaranteed to be safe

so long as the obstacles continue along their current paths.

VO-based strategies have been proposed for marine surface

vessels [19]–[23], underwater vehicles [24], and UAVs [25]–

[27], but there is a general lack of safety guarantees within

2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

979-8-3503-8265-5/$31.00 ©2024 AACC 3152

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2025 at 21:43:12 UTC from IEEE Xplore.  Restrictions apply. 



these approaches. While the algorithm [28] is shown to

guarantee safety for unicycle-type vehicles under explicit

conditions, the speed of the vehicle is assumed to be constant.

Inspired by the concept of velocity cones, we propose a

novel strategy using CBFs for nonholonomic vehicles where

it is beneficial to maintain a positive speed while avoiding

obstacles. The basis of the safety condition is drawn from

the velocity obstacle cone rather than the collision cone, thus

circumventing the issues related to the latter formulation. As

opposed to most other collision avoidance strategies formed

on CBFs, we decouple the control of the speed from the

steering. An inherent advantage of this formulation is that

the avoidance strategy is less invasive with respect to the

nominal vehicle speed, which makes it better suited for

vehicles with speed requirements, such as underactuated

marine vehicles and fixed-wing UAVs. While more con-

ventional CBFs result in vanishing control authority when

the vehicle must maintain a nonzero forward speed [7], the

proposed strategy preserves the relative degree at all times,

thus maintaining safety of the vehicle in any configuration.

Safety guarantees are analytically derived, and the resulting

performance is demonstrated in simulations with multiple

dynamic obstacles.

The paper is organized as follows. Section II provides a

brief introduction to CBFs. Section III details the problem

and presents the velocity obstacle as a means to encode

collisions between moving objects in the velocity space. The

concept is leveraged in Section IV to formulate CBFs that

modify the inputs of the vehicle to preserve safety, where

theoretical guarantees of safety are provided. Simulations are

presented in Section V, and concluding remarks are given in

Section VI.

II. MATHEMATICAL FRAMEWORK

The control strategy proposed in this paper builds upon

the notion of barrier functions. This section establishes the

notation and theoretical foundation of this framework. More-

over, it briefly discusses controller synthesis using barrier

functions. For the intuition behind, and the mathematical

proofs of the theory presented here, the reader is referred

to [1], [29].

Definition 1 (Extended class-K function). A continuous

function α : (−c, d) → (−c,∞) for c, d > 0 is said to

belong to extended class-K, denoted as α ∈ Ke, if it is

strictly increasing and α(0) = 0.

We consider a nonlinear system

ẋ = f(x), (1)

for x ∈ D, where D ⊆ R
n is open and connected, and

the mapping f : D → R
n is locally Lipschitz continuous

on D. Given an initial condition x(t0) ∈ D, let I(x(t0)) =
[t0, τmax) denote the maximum interval of existence for the

unique solution x(t) of (1).

Definition 2. A set S ⊆ D is forward invariant w.r.t. (1) if

x(t0) ∈ S =⇒ x(t) ∈ S, ∀t ∈ I(x(t0)). (2)

Definition 3. A set S ⊆ D is a 0-superlevel set of a

continuously differentiable function h : D → R when

S = {x ∈ D : h(x) ≥ 0}, (3a)

∂S = {x ∈ D : h(x) = 0}, (3b)

Int(S) = {x ∈ D : h(x) > 0}. (3c)

Safety can in many contexts be defined as the property of

evolving inside a 0-superlevel set. Accordingly, the control

objective reduces to ensuring forward invariance of the set.

A convenient condition for this property is given as follows.

Lemma 1. Given a set S as in (3), if

ḣ(x) ≥ α(h(x)), ∀x ∈ D, α ∈ Ke, (4)

then S is forward invariant w.r.t. (1).

A function h satisfying (4) is commonly referred to as a

barrier function for (1).

Consider now (1) in control affine form

ẋ = f(x) + g(x)u, (5)

with x ∈ D and f defined as before, g : D → R
n×m is

locally Lipschitz continuous on D, and u ∈ U ⊆ R
m is

Lipschitz continuous, where U is the set of admissible inputs.

We desire a control input u that forces the system to evolve

inside some safe set S . This motivates the introduction of

control barrier functions (CBFs):

Definition 4. Given a set S as in (3), h is a CBF for (5) if

there exists an extended class-K function α such that

sup
u∈U

∇h(x)(f(x) + g(x)u)︸ ︷︷ ︸
ḣ(x,u)

+α(h(x)) ≥ 0, ∀x ∈ S. (6)

Theorem 1. If h is a CBF for (5) associated with a set S (3),
then any Lipschitz continuous controller u = k(x) satisfying

∇h(x)(f(x) + g(x)k(x)) + α(h(x)) ≥ 0, ∀x ∈ S, (7)

renders S forward invariant, i.e., it ensures x(t0) ∈ S =⇒
x(t) ∈ S, ∀t ∈ I(x(t0)).

Since the constraint (7) is affine in u, it can be incorporated

into a quadratic optimization problem: Given a desired

control input kd : D → U , we synthesize a safe control

input k : D → U by solving

k(x) = argmin
u∈U

‖u − kd(x)‖2

subj. to ḣ(x, u) ≥ −α(h(x)),
(8)

in which the nominal control input is modified in a point-

wise optimal fashion.

The CBF framework was extended to systems of arbitrary

relative degree in [11], while [30] introduced nonsmooth

barrier functions relaxing the requirement of continuous

differentiability. Environmental CBFs [10] present a general-

ization to systems acting upon a time-varying environment.

To conserve space, a function will in the following parts

be denoted without explicit reference to its inputs, thereby

differing from the notation used in this section.
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III. PROBLEM AND MOTIVATION

We consider a nonholonomic vehicle described by

ẋ = v cosψ, ẏ = v sinψ, ψ̇ = u1, v̇ = u2, (9)

where p � [x, y]� are the Cartesian coordinates of the

vehicle, v � ṗ is the linear velocity, ψ ∈ (−π, π] is the

orientation, and v ∈ R is the speed. The turning rate r � ψ̇
and acceleration a � v̇ are controlled through the inputs

u � [u1, u2]
� ∈ U . The space of admissible inputs is defined

by

U = {u ∈ R
2 : |r| ≤ rmax, |a| ≤ amax}, (10)

where rmax, amax > 0 represent the maximum rotation rate

and acceleration, respectively. We remark that this system

can be expressed in the control affine form (5) with x �
[p�, ψ, v]� ∈ D and g =

[
0 I

]�
, where 0, I ∈ R

2×2 denote

the zero and identity matrices, respectively.

In this study, we consider vehicles that not only are

nonholonomic, but additionally need to maintain nonzero and

bounded forward speeds:

Assumption 1. The vehicle speed is bounded by

v ∈ (0, vmax]. (11)

This assumption implies that the vehicle cannot stop or

move backwards to avoid collision, which applies to a variety

of real systems. While for some vehicles it may not be strictly

necessary to maintain a positive speed, preventing reversal

can be advantageous because the design of the vehicle shape

or its propulsion system makes it more energy efficient to

move forwards than in reverse. In addition, forward motion

can serve as a means to facilitate future progress towards a

desired destination.

A. Control Objectives

We consider the case where the vehicle nominally moves

towards a target position pt ∈ R
2. Note, however, that a wide

range of nominal behaviors are allowed within the proposed

approach. The task is completed once the vehicle reaches

within an acceptable distance, dacc > 0, of the target. This

corresponds to the nominal control objective

lim
t→∞ ‖p(t)− pt‖ ≤ dacc. (12)

The vehicle is expected to navigate in an obstacle-filled

environment whilst executing the nominal task. Let the

position and velocity of an obstacle be defined as pi, vi ∈ R
2,

where i ∈ Iob ⊆ Z represents the index of this obstacle.

The control objective corresponding to this task consists of

keeping a large enough distance to each obstacle:

‖p − pi‖ ≥ dmin,i, ∀i ∈ Iob, ∀t ≥ t0, (13)

where dmin,i > 0 specifies the minimum distance the vehicle

must keep to obstacle i, and t0 ≥ 0 is some initial time.

(a) (b)

Fig. 1: (a) demonstrates the collision cone principle; since the

relative velocity is pointing outside of the cone, the vehicle

is not headed towards a collision. (b) provides a geometric

representation of the collision cone condition.

B. The Velocity Obstacle

Velocity cones are a useful tool to predict and prevent fu-

ture collisions between moving objects. Consider Figure 1a;

the relative movement of the vehicle with respect to an

obstacle is dictated by the (relative) velocity vector vr,i �
v − vi. If this vector is directed within a distance dmin,i

of the obstacle center, then the vehicle will move towards a

collision, and eventually it will collide with the obstacle. This

condition corresponds to a cone-shaped set in the velocity

space, indicated in yellow, known as the collision cone [15],

[16]. As illustrated in Figure 1b, the half-angle of the cone

can be found as

βi � arcsin

(
dmin,i

di

)
, (14)

where di � ‖ri‖ and ri � pi−p is the vector starting at the

vehicle origin, p, connecting to the center of obstacle i. The

requirement for a future collision can now be expressed

λi < βi, (15)

where the angle between vr,i and ri is defined as

λi � arccos

(
v�r,iri

‖vr,i‖di

)
. (16)

Similar to [31, Lemma 1] we can show that (15) is a

necessary condition for collision:

Lemma 2. Given that the vehicle is not in a collision with
obstacle i at time τ ≥ 0, if, for all vr,i �= 0,

λi(t) ≥ βi(t), ∀t ≥ τ, (17)

then the vehicle will avoid a collision with the obstacle, i.e.,

di(t) ≥ dmin,i, ∀t ≥ τ. (18)

Proof. The time-derivative of the distance, di, is given by

ḋi = −r�i
di

vr,i. (19)
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(a) (b)

Fig. 2: The velocity obstacle (VO) is obtained by translating

the collision cone (CC) by the obstacle velocity in (a). (b)

illustrates the derivation of the intersection angle ψ−
vo,i.

Hence, if vr,i = 0, a collision cannot occur since ḋi = 0. If

vr,i �= 0, we use that (17) is equivalent to

cosλi ≤ cosβi. (20)

With
r�i
di

vr,i = ‖vr,i‖ cosλi and cosβi =

√
d2
i−d2

min,i

di
by (14)

and (16), we thus have

ḋi ≥ −‖vr,i‖
di

√
d2i − d2min,i. (21)

Since ḋi ≥ 0 for di = dmin,i by (21), it follows that di(τ) ≥
dmin,i =⇒ di(t) ≥ dmin,i, ∀t ≥ τ .

For generating avoidance maneuvers, this measure is not

immediately useful. Moreover, the analytical condition (15)

becomes undefined when the relative velocity is zero. This

situation can indeed occur in practical scenarios and may

give rise to numerical challenges when using (15) as the

basis for computing avoidance maneuvers as in [12], [13].

The cone can more conveniently be described in terms of the

absolute vehicle velocity by adding the obstacle velocity to

each velocity in the collision cone set. This transformation

was proposed in [16] as the velocity obstacle set, illustrated

in Figure 2a. According to Figure 2b, the angles at which

the vehicle velocity, v, intersects the velocity obstacle cone

are

ψ±
vo,i = ψ±

cc,i + ϑ±
i , (22)

where ψ±
cc,i � ∠ri ± βi and

ϑ±
i � arcsin

(vi
v
sin

(
ϕ±
i

))
, ϕ±

i � π − ψi + ψ±
cc,i, (23)

with vi � ‖vi‖ and ψi � ∠vi defined for conciseness.

Note that the angles (23) can be undefined if the speed

of the vehicle is below a certain magnitude dependent on

the obstacle speed, which means that the vehicle’s velocity

vector does not intersect the edges of the velocity obstacle

cone at any angle. To guarantee the existence of a safe

direction, this condition thus provides a useful metric to

determine the necessary speed changes.

While many vehicles exhibit limited or even complete

absence of reversing capabilities, it is noteworthy that most

collision avoidance methods formulated within the frame-

work outlined in Section II necessitate the presence of these

abilities to ensure safety. By leveraging the above introduced

velocity obstacle concept, we formulate in the next section a

strategy that instead allows the vehicle to move forward when

attempting to avoid collisions and moreover stays defined for

vr,i = 0.

IV. SAFETY-CRITICAL CONTROL USING

VELOCITY OBSTACLES

This section proposes a control barrier function (CBF)-

based strategy for computing the control inputs of the vehi-

cle, consisting of the turning rate u1 and forward acceleration

u2, for maintaining vehicle safety within dynamic environ-

ments. In Section IV-A, we define the desired inputs of the

vehicle for completing the nominal task of reaching a target.

Next, in Section IV-B, we formulate a barrier function for

adjusting the speed of the vehicle such that the directions (22)

corresponding to the velocity obstacle cone are well-defined.

The required modification of the acceleration input takes

place once an obstacle is within a certain proximity of the

vehicle. In Section IV-C, we establish a barrier function for

steering the vehicle in a collision-free direction, derived from

the velocity obstacle cone. This controller is activated if the

distance to the obstacle is even further reduced, indicating

that a collision is approaching. We derive explicit conditions

for safety under the above-outlined strategy in Section IV-D.

A. Nominal Control Laws

The vehicle is to move towards a target position at some

specified forward speed vd ∈ (0, vmax]. The desired heading

is chosen as [32]

ψd = atan2(yt − y, xt − x), (24)

such that the vehicle takes the shortest path to pt � [xt, yt]
�.

The desired acceleration and heading rate of the vehicle are

chosen to keep the desired speed and heading as

rd = −Kr(ψ − ψd), ad = −Ka(v − vd), (25)

where the angular difference is mapped to (−π, π], and

Kr,Ka > 0 are control gains.

B. Speed Adjustments

Upon examination of (23), it becomes evident that the

vehicle must maintain a sufficiently high speed compared to

that of the obstacle to enable the existence of an evasive

direction. The requirement can be summarized as

v ≥ vi| sin(ϕj
i )|, ∀j ∈ {±}. (26)

Based on this condition, we define a candidate CBF for

adjusting the speed relative to obstacle i as

hv,i = min
j,k

hk,j
v,i − κmin, (27)

where j, k ∈ {±} and we define h±,j
v,i � v ± vi sin(ϕ

j).
Moreover, since the angle (23) is non-differentiable at v =
vi sin(ϕ

j
i ), we add a margin κmin > 0 ensuring that the
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derivative is well-defined when hv,i ≥ 0. The parameter is

also useful for control design; by increasing κmin, it enforces

a swifter evasion by effectively raising the speed kept relative

to the obstacle speed.

While hv,i is not continuously differentiable, it is defined

by the minimum of the smooth functions hk,j
v,i . Hence, con-

troller synthesis can be enabled by the framework proposed

in [4] for the class of nonsmooth barrier functions (NBFs). To

reduce conservatism, the speed is adjusted only for obstacles

that are within a distance dv,i > 0 of the vehicle. As such,

the acceleration input is given by

u2 =

{
k2 if Iv,ob �= ∅,
ad otherwise,

(28)

where Iv,ob � {i ∈ Iob : di ≤ dv,i} contains the indices of

the obstacles that are closer than the required distances and

k2 represents the modified acceleration, computed via

k2 = argmin
a∈U

‖a− ad‖2

subj. to ḣk,j
v,i ≥ −α(hv,i), ∀(j, k) ∈ Iεv,i, ∀i ∈ Iv,ob.

(29)

Moreover, Iεv,i � {(j, k) : |hk,j
v,i −hv,i| ≤ εv} is the almost-

active set for the candidate control NBF (CNBF) of obstacle

i, with εv > 0. The constraint can be computed analytically

ḣ±,j
v,i = a± v̇i sin(ϕ

j
i )± vi cos(ϕ

j
i )
(
−ψ̇i + ψ̇j

cc,i

)
, (30)

where the expressions for ψ̇±
cc,i are found in [31].

C. Obstacle Avoidance

If the distance to an obstacle is further reduced to a

distance dψ,i < dv,i, we modify the turning input u1

with respect to the velocity obstacle cone through a second

optimization. Define the angular distances to the left and

right edge of the velocity obstacle cone, respectively,

δ±i � ±ψ ∓ ψ±
vo,i, (31)

where ψ±
vo,i are defined in (22). The angles are wrapped into

the domain δ±i ∈ (−2π, 2π) such that the distance

δvoi � argmin
δi∈{δ+i ,δ−i }

|δi|, (32)

is negative when the vehicle velocity v lies within the

velocity obstacle set and positive otherwise. Thus, the barrier

function

hψ,i = δvoi − δmin, (33)

encapsulates that the vehicle should keep a velocity outside

of the velocity obstacle cone, with at least an angle δmin ∈
[0, π

2 ) to the closest edge. Note that hψ,i is not continuously

differentiable, however, the component functions h±
ψ,i �

δ±i − δmin are smooth. Hence, the desired heading rate is

modified according to

k1 = argmin
r∈U

‖r − rd‖2

subj. to ḣj
ψ,i ≥ −α(hψ,i), ∀j ∈ Iεψ,i, ∀i ∈ Iψ,ob,

(34)

where Iεψ,i � {j : |hj
ψ,i − hψ,i| ≤ εψ} is the almost-active

set for (33), with εψ > 0, Iψ,ob � {i ∈ Iob : di ≤ dψ,i},

and

ḣ±
ψ,i = ±r ∓ ψ̇±

cc,i ∓ (−ψ̇i + ψ̇±
cc,i)

vi cos(ϕ
±
i )√

v2−v2
i sin2(ϕ±

i )

∓(vv̇i − viu2)
sin(ϕ±

i )

v
√

v2−v2
i sin2(ϕ±

i )
.

(35)

Notice that the acceleration input, u2, is involved in the

computation of k1 through (35). Furthermore, the turning

input is chosen as

u1 =

{
k1 if Iψ,ob �= ∅,
rd otherwise.

(36)

D. Safety Guarantees
Since the relative degree is consistently defined, the func-

tions hψ,i and hv,i serve as valid CNBFs for (9) with no

input limitations (i.e., with U = R
2). To extend this validity

to them being CNBFs under input constraints, the behavior of

an obstacle must be confined within similar physical bounds:

Assumption 2. The dynamics of an obstacle are bounded:

|v̇i| ≤ amax,i, |ψ̇i| ≤ rmax,i, vi ≤ vmax,i ∀t ≥ t0, (37)

where amax,i, rmax,i, vmax,i ≥ 0 are constant parameters.

Given that every dynamic object is subject to certain

physical constraints, Assumption 2 is justified. In the final

theorem, we outline sufficient conditions, namely explicit

lower bounds on the vehicle’s speed and input limits, that

under the proposed strategy guarantee forward invariance of

the safe set Sv,i ∩ Sψ,i, with

Sv,i � {x ∈ D :hv,i ≥ 0}, Sψ,i � {x ∈ D :hψ,i ≥ 0}. (38)

Theorem 2. Consider a vehicle (9) and let Assumption 1 and
2 hold. If the maximum vehicle speed exceeds the maximum
speed of obstacle i such that vmax ≥ vmax,i + κmin and

amax ≥ amax,i, (39)

rmax ≥ rmax,i +
amax,i + amax

κmin
, (40)

then the control inputs (29) and (34) render the set Sv,i∩Sψ,i

forward invariant, i.e.,

x(t0) ∈ Sv,i ∩ Sψ,i =⇒ x(t) ∈ Sv,i ∩ Sψ,i, ∀t ≥ t0. (41)

Proof. Consider first the acceleration input given by (29). It

is evident from (26) that the existence of a safe speed relative

to obstacle i requires that the vehicle’s maximum speed is

greater than or equal to the maximum speed of the obstacle.

Denote v′ � v − κmin. The property x ∈ Sv,i remains

satisfied whenever v′ ≥ vi, in which case the vehicle’s ability

to remain in Sv,i is guaranteed if amax exceeds the magnitude

of v̇i. For speeds v′ < vi, we evaluate hv,i ≡ hk,j
v,i on the

boundary ∂Sv,i = {x ∈ D : hk,j
v,i = 0}, with j, k ∈ {±}

given by (27). We then have ϕj
i = k arcsin( v

′
vi
), and

viϕ̇
j
i cos(ϕ

j
i ) = k

(
a− v̇i

v′

vi

)
, v̇i sin(ϕ

j
i ) = kv̇i

v′

vi
.

(42)
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Fig. 3: (a) shows the trajectory of the vehicle as it maneuvers between four obstacles to the target position, where the vehicle

and the target are both marked in blue. The red, dashed circles indicate the distances dmin,i that should be kept between the

center of the vehicle and the center of an obstacle. The corresponding forward speed, turning rate, and forward acceleration

of the vehicle, and the distance between the vehicle and each obstacle, are displayed in (b).

Insertion of (42) in (30) yields

ḣk,j
v,i = a+ v̇i

v′

vi
+

(
a− v̇i

v′

vi

)
= 2a. (43)

Hence, a ≥ 0 enforces ḣk,j
v,i ≥ 0 in this case. Thus, forward

invariance of Sv,i is assured under the condition (39).

Having established that the speed is lower bounded by

v ≥ vi| sin(ϕj
i )|+κmin for all j ∈ {±}, we must now show

that the vehicle can maintain hψ,i ≥ 0 through the input (34).

With j now defined by (32), forward invariance of Sψ,i holds

if ḣj
ψ,i ≥ 0 on the boundary ∂Sψ,i = {x ∈ D : hj

ψ,i = 0}.

Within Sψ,i, it holds that ∓ψ̇±
cc ≥ 0, which can be verified

geometrically [28], [33]. Thus,

ḣ±
ψ,i ≥ ±r ± ψ̇i ∓ (vv̇i−via) sin(ϕ

±
i )

v
√

v2−v2
i sin2(ϕ±

i )
, (44)

where we use that
vi cos(ϕ

±
i )√

v2−v2
i sin2(ϕ±

i )
∈ [−1, 1]. Hence, under

Assumption 2, the condition (40) guarantees ḣj
ψ,i ≥ 0,

implying forward invariance of Sv,i ∩ Sψ,i.

Notably, when x ∈ Sv,i ∩ Sψ,i, collision avoidance of

obstacle i is guaranteed by Lemma 2. Under the conditions

outlined in Theorem 2, the proposed controller ensures the

vehicle’s safety in encounters with a single obstacle, given

that the parameters dv,i and dψ,i are sufficiently large to

facilitate convergence to Sv,i ∩ Sψ,i prior to any potential

collision. In scenarios involving multiple obstacles, the vehi-

cle’s safety depends on whether the independent avoidance

maneuvers are compatible, in which case safety is upheld.

Remark 1. Note that (40) is a conservative bound, as

the forward acceleration generally opposes the obstacle’s

acceleration, resulting in a reduction of the final term in

(44). Hence, the parameter κmin can be selected considerably

lower than what is required by this condition as demonstrated

in the simulations presented next.

V. SIMULATIONS

Now, we demonstrate the proposed collision avoidance

strategy in simulations of a vehicle with the unicycle kine-

matics (9), navigating among moving obstacles to a target

position pt = [185, 0]� m. We used rmax = 0.5 rad/s and

amax = 0.25 m/s2 as input constraints and a maximum

forward speed of vmax = 0.7 m/s. The radius of the vehicle

was selected as R = 5 m giving a minimum distance between

the centers of the vehicle and obstacle i as dmin,i = R+Ri,

Ri > 0 being the radius of the obstacle. In practice, this

parameter can be increased above the combined radii to keep

some space between the object boundaries. Furthermore,

we employed distances dψ,i = 30 + dmin,i m and dv,i =
dψ,i + 5 m. In the computation of hv,i and hψ,i, we used

the parameters εψ = εv = κmin = δmin = 0.05. We used a

linear class-K function α(h) = −γh, γ = 0.5 in both cases.

The nominal control gains were set to Ka = Kr = 0.5
and the acceptance distance to dacc = 4 m. The first-order

Euler method was used for the numerical integration with

step-size 0.01 s.
First, the vehicle must navigate past four obstacles1, each

1See a simulation video at: https://youtu.be/phQpTdAGmig.
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Fig. 4: (a) shows the trajectory of the vehicle avoiding eight obstacles moving in a circle. The corresponding forward speed,

turning rate, and forward acceleration of the vehicle, and the distances to the obstacles, are displayed in (b).

with a radius, Ri, of 5 m. The desired speed was fixed at

vd = 0.3 m/s. The obstacles all move parallel to the inertial

y-axis at a speed of vi = 0.5 m/s, going back and forth

between ±50 m (the speeds are changed at an acceleration

of 0.1 m/s2 at the turning points). The vehicle must thus pass

all four obstacles to reach the goal; the overall configuration

of the obstacles is viewed in Figure 3a. The vehicle can

be seen to move towards the closest obstacle, triggering

an increase of the speed, viewed in the top-most plot of

Figure 3b. This is attributed to the fact that the obstacle

keeps a higher speed than the vehicle, and to satisfy (26) the

vehicle must raise the speed correspondingly. We observe

that the safety-critical controller (34) is active as there is

a temporary change of direction, during which the vehicle

passes behind the obstacle. The same behaviour is displayed

as the vehicle encounters more obstacles. Note that, since the

barrier functions hψ,i are not consistently defined, they have

been omitted from the plots. Moreover, collision avoidance

can be verified from the distances to the obstacles which are

always kept above the required minimums.

Next, eight obstacles of varying radii (ranging from 5 to

10 m) must be avoided, see Figure 4a. They are simulated

to move synchronously in a clockwise circle about the point

[80, 0]� m, with speeds vi = 0.525 m/s and turning rates of

0.00875 rad/s. The nominal vehicle speed was selected as

vd = 0.35 m/s. From Figure 4b, we observe that the speed

controller raises the forward speed to an appropriate level as

the vehicle gets closer to the obstacles. The speed maneuver

is accompanied by a slight change of direction, enabling

the vehicle to pass between two obstacles. The vehicle’s

speed returns to the nominal speed before a new maneuver is

generated, taking the vehicle safely past an obstacle, verified

by the bottom-most plot of Figure 4b. The vehicle reaches

the target position shortly after. Importantly, safety of the

vehicle is preserved in both cases without the necessity of

stopping or reversing, while the generated inputs and the

maximum vehicle speed stay within expected bounds.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed an obstacle avoidance strategy for

vehicles with first-order nonholonomic constraints, moving

in dynamic environments. We proposed to regulate the ve-

hicle speed and orientation separately via two control bar-

rier functions (CBFs), with the respective safety conditions

derived from the velocity obstacle principle. Unlike most

other approaches defined within the CBF framework, the

proposed strategy does not require the vehicle to brake or

move backwards to avoid collisions. On the contrary, it

enables the vehicle to maintain a nonzero forward speed by

only adjusting the speed once it falls below the required

level to avoid an obstacle. This can benefit the vehicle’s

progression towards a goal and accommodates systems with

operational requirements that prevent them from reversing.

Meanwhile, the steering controller diligently enforces the

necessary turning maneuvers to avoid potential collisions.

We gave theoretical assurance of safety under explicit con-

ditions. The resulting performance was showcased through

simulations of challenging scenarios with multiple moving

obstacles, displaying adept and secure navigation through

obstacle-filled environments.
In the future, we aim to implement the strategy in ex-

periments on a marine vessel and explore more strategic

utilization of the speed to further enhance the performance.
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