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Environments using Velocity Obstacles™
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Abstract— This paper considers collision avoidance for ve-
hicles with first-order nonholonomic constraints maintaining
nonzero forward speeds, moving within dynamic environments.
We leverage the concept of control barrier functions (CBFs) to
synthesize control inputs that prioritize safety, where the safety
criteria are derived from the velocity obstacle principle. Existing
instantiations of CBFs for collision avoidance, e.g., based on
maintaining a minimal distance, can result in control inputs that
make the vehicle stop or even reverse. The proposed formulation
effectively separates speed control from steering, allowing the
vehicle to maintain a forward motion without compromising
safety. This is beneficial for ensuring that the vehicle advances
towards its desired destination, and it is moreover an underlying
requirement for certain vehicles such as marine vessels and
fixed-wing UAVs. Theoretical safety guarantees are provided,
and numerical simulations demonstrate the efficiency of the
strategy in environments containing moving obstacles.

I. INTRODUCTION

With the increasing use of autonomous vehicles for com-
mercial and scientific purposes, ensuring safety formally and
in practice has become ever more pressing. Within robot nav-
igation, an important aspect of safety involves avoiding col-
lision with obstacles that appear in the robot’s surroundings.
In dynamic environments, i.e., containing moving obstacles,
the collision avoidance system must accommodate an unpre-
dictable information picture providing only a limited time to
react to a collision. As a result, the effectiveness of planning-
based algorithms is reduced significantly, highlighting the
need for developing real-time reactive methods that ensure
safety.

Safety can in many applications be framed as the property
of always remaining in a safe set, i.e., forward set invariance.
Control barrier functions (CBFs) [1] present a means to en-
sure safety of dynamical systems, by providing a framework
to enforce the forward invariance property. The controller
synthesis is usually framed as an optimization problem in
which the deviation between the nominal system input and
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safe inputs is minimized [2], allowing for reactive adjust-
ments of the vehicle’s control inputs in a minimally intrusive
manner. Collision avoidance has been studied within the
framework of CBFs, where most previous work consider
static environments and multi-agent systems [2]-[7]. For
double integrator systems, the approach [3] can be applied
to avoid a dynamic obstacle by viewing it as an agent with
zero control inputs. Safety can thus only be concluded if
the obstacle moves at a constant velocity. The same constant
velocity assumption is made in [8], where CBFs are applied
for the control of a fully actuated ASV. Importantly, these
are both holonomic systems where CBFs have found great
success.

This study specifically considers vehicles with unicycle-
kinematics, constituting a first-order nonholonomic con-
straint. Since the rotation rate does not appear through
differentiation of the position, the result is limited control
authority if the barrier function is defined solely from the
position of the vehicle. To bypass this limitation, collision
avoidance may be assured for a point in front the vehicle [4],
[9]. However, this approach has not been studied for dynamic
environments in which the perturbation of the vehicle center
could lead to unwanted behaviour. Noticing that the control
inputs appear through a second differentiation of the position,
the approach taken by [10] uses a high-order barrier func-
tion [11] for controlling a segway to avoid collision. The
approach is illustrated in a dynamic environment, but the
segway is restricted to move on a straight line, thus making
it a holonomic system.

In the context of applying CBFs to UAVs and UGVs, [12]
and [13] formulate a barrier function based on the collision
cone concept. A collision cone refers to the set of relative
velocities between the vehicle and an obstacle resulting in a
future collision [14]-[16], thus offering a predictive notion of
safety that can be exploited to keep the vehicle from colliding
with moving obstacles. The main limitation of this approach
is, however, that the barrier function is not defined when
the relative velocity vector is zero. The equivalent velocity
obstacle (VO) is perhaps more suited for control design,
as it relates an obstacle to the absolute velocities of the
vehicle [16]. The concept has been applied to nonholonomic
systems, but never in the context of CBFs. Moreover, [17]
and [18] adapts the VO to vehicles with car-like kinematics,
however, the control inputs are only guaranteed to be safe
so long as the obstacles continue along their current paths.
VO-based strategies have been proposed for marine surface
vessels [19]-[23], underwater vehicles [24], and UAVs [25]-
[27], but there is a general lack of safety guarantees within
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these approaches. While the algorithm [28] is shown to
guarantee safety for unicycle-type vehicles under explicit
conditions, the speed of the vehicle is assumed to be constant.

Inspired by the concept of velocity cones, we propose a
novel strategy using CBFs for nonholonomic vehicles where
it is beneficial to maintain a positive speed while avoiding
obstacles. The basis of the safety condition is drawn from
the velocity obstacle cone rather than the collision cone, thus
circumventing the issues related to the latter formulation. As
opposed to most other collision avoidance strategies formed
on CBFs, we decouple the control of the speed from the
steering. An inherent advantage of this formulation is that
the avoidance strategy is less invasive with respect to the
nominal vehicle speed, which makes it better suited for
vehicles with speed requirements, such as underactuated
marine vehicles and fixed-wing UAVs. While more con-
ventional CBFs result in vanishing control authority when
the vehicle must maintain a nonzero forward speed [7], the
proposed strategy preserves the relative degree at all times,
thus maintaining safety of the vehicle in any configuration.
Safety guarantees are analytically derived, and the resulting
performance is demonstrated in simulations with multiple
dynamic obstacles.

The paper is organized as follows. Section II provides a
brief introduction to CBFs. Section III details the problem
and presents the velocity obstacle as a means to encode
collisions between moving objects in the velocity space. The
concept is leveraged in Section IV to formulate CBFs that
modify the inputs of the vehicle to preserve safety, where
theoretical guarantees of safety are provided. Simulations are
presented in Section V, and concluding remarks are given in
Section VI.

II. MATHEMATICAL FRAMEWORK

The control strategy proposed in this paper builds upon
the notion of barrier functions. This section establishes the
notation and theoretical foundation of this framework. More-
over, it briefly discusses controller synthesis using barrier
functions. For the intuition behind, and the mathematical
proofs of the theory presented here, the reader is referred
to [1], [29].

Definition 1 (Extended class-KC function). A continuous
function o : (—¢,d) — (—c¢,00) for ¢,d > 0 is said to
belong to extended class-/C, denoted as a € IC., if it is
strictly increasing and «(0) = 0.

We consider a nonlinear system

x = f(x), (D

for x € D, where D C R” is open and connected, and
the mapping f : D — R" is locally Lipschitz continuous
on D. Given an initial condition x(to) € D, let I(x(tg)) =
[to, Tmax) denote the maximum interval of existence for the
unique solution x(¢) of (1).

Definition 2. A set S C D is forward invariant w.r.t. (1) if

x(tg) € § = x(t) € S, vt e I(x(tg)). (2

Definition 3. A set S C D is a O-superlevel set of a
continuously differentiable function h : D — R when

S={xe€D:h(x) >0}, (3a)
8S = {x € D : h(x) = 0}, (3b)
Int(S) = {x € D: h(x) > 0}. (3c¢)

Safety can in many contexts be defined as the property of
evolving inside a O-superlevel set. Accordingly, the control
objective reduces to ensuring forward invariance of the set.
A convenient condition for this property is given as follows.

Lemma 1. Given a set S as in (3), if

Vx € D,

h(x) = a(h(x)), a € Ke, C)

then S is forward invariant w.r.t. (1).

A function h satisfying (4) is commonly referred to as a
barrier function for (1).
Consider now (1) in control affine form

k= f(x) + g, (5)

with x € D and f defined as before, g : D — R™ "™ is
locally Lipschitz continuous on D, and u € Y/ C R™ is
Lipschitz continuous, where U/ is the set of admissible inputs.
We desire a control input u that forces the system to evolve
inside some safe set S. This motivates the introduction of
control barrier functions (CBFs):

Definition 4. Given a set S as in (3), h is a CBF for (5) if
there exists an extended class-/C function « such that

sup Vh(x)(f(x) + g(x)u) +a(h(x)) >0, Vxe€S. (6)
h(x,u)

Theorem 1. If h is a CBF for (5) associated with a set S (3),
then any Lipschitz continuous controller u = k(X) satisfying

Vh(x)(f(x) + g(x)k(x)) + a(h(x)) >0, vxeS, (7)

renders S forward invariant, i.e., it ensures x(tg) € S =
x(t) € S, vVt € I(x(tg)).

Since the constraint (7) is affine in u, it can be incorporated
into a quadratic optimization problem: Given a desired
control input kg : D — U, we synthesize a safe control
input k : D — U by solving

k(x) = argmin |ju — kq(x)|?
ueld (8)
subj. to A(x,u) > —a(h(x)),

in which the nominal control input is modified in a point-
wise optimal fashion.

The CBF framework was extended to systems of arbitrary
relative degree in [11], while [30] introduced nonsmooth
barrier functions relaxing the requirement of continuous
differentiability. Environmental CBFs [10] present a general-
ization to systems acting upon a time-varying environment.
To conserve space, a function will in the following parts
be denoted without explicit reference to its inputs, thereby
differing from the notation used in this section.
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III. PROBLEM AND MOTIVATION

We consider a nonholonomic vehicle described by

F=vcosty, y=vsing, Y=u, V=us, (9
where p £ [z,y]" are the Cartesian coordinates of the
vehicle, v = p is the linear velocity, ¥ € (—m, 7] is the

orientation, and v € R is the speed. The turning rate r £ )
and acceleration a £ ¢ are controlled through the inputs
u = [ug,uz]" € U. The space of admissible inputs is defined
by
U={uecR?:|r| < rmax |a] < amax}, (10)

where 7pax, Gmax > 0 represent the maximum rotation rate
and acceleration, respectively. We remark that this system
can be expressed in the control affine form (5) with x £
p",¢,v]T €Dandg=[0 I]T, where 0,1 € R?*2 denote
the zero and identity matrices, respectively.

In this study, we consider vehicles that not only are
nonholonomic, but additionally need to maintain nonzero and
bounded forward speeds:

Assumption 1. The vehicle speed is bounded by

v € (0, Vmax]- (1n

This assumption implies that the vehicle cannot stop or
move backwards to avoid collision, which applies to a variety
of real systems. While for some vehicles it may not be strictly
necessary to maintain a positive speed, preventing reversal
can be advantageous because the design of the vehicle shape
or its propulsion system makes it more energy efficient to
move forwards than in reverse. In addition, forward motion
can serve as a means to facilitate future progress towards a
desired destination.

A. Control Objectives

We consider the case where the vehicle nominally moves
towards a target position p, € R?. Note, however, that a wide
range of nominal behaviors are allowed within the proposed
approach. The task is completed once the vehicle reaches
within an acceptable distance, d,.. > 0, of the target. This
corresponds to the nominal control objective

tliglo Hp(t) - ptH < dace- (12)
The vehicle is expected to navigate in an obstacle-filled
environment whilst executing the nominal task. Let the
position and velocity of an obstacle be defined as p;, v; € R?,
where 7 € Z,, C Z represents the index of this obstacle.
The control objective corresponding to this task consists of
keeping a large enough distance to each obstacle:

P —pill = dwmin,i, Vi€ Lon, Vit > to, (13)

where din,; > 0 specifies the minimum distance the vehicle
must keep to obstacle ¢, and £y > 0 is some initial time.

vehicle
(a) (b)

Fig. 1: (a) demonstrates the collision cone principle; since the
relative velocity is pointing outside of the cone, the vehicle
is not headed towards a collision. (b) provides a geometric
representation of the collision cone condition.

B. The Velocity Obstacle

Velocity cones are a useful tool to predict and prevent fu-
ture collisions between moving objects. Consider Figure 1la;
the relative movement of the vehicle with respect to an
obstacle is dictated by the (relative) velocity vector v, ; £
v — v;. If this vector is directed within a distance dpin;
of the obstacle center, then the vehicle will move towards a
collision, and eventually it will collide with the obstacle. This
condition corresponds to a cone-shaped set in the velocity
space, indicated in yellow, known as the collision cone [15],
[16]. As illustrated in Figure 1b, the half-angle of the cone
can be found as

dmin,i )
d; ’

where d; £ ||r;|| and r; = p, — p is the vector starting at the
vehicle origin, p, connecting to the center of obstacle i. The
requirement for a future collision can now be expressed

B; £ arcsin ( (14)

Ai < B, (15)
where the angle between v, ; and r; is defined as
\; £ arccos <VrTlrz> . (16)
[veillds

Similar to [31, Lemma 1] we can show that (15) is a
necessary condition for collision:

Lemma 2. Given that the vehicle is not in a collision with
obstacle i at time T > 0, if, for all v, ; # 0,

Ai(t) = Bi(t),

then the vehicle will avoid a collision with the obstacle, i.e.,

V> T, (17)

di(t) 2 dmini, V=T (18)

Proof. The time-derivative of the distance, d;, is given by

di = ——v ;. (19)
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(d)

Fig. 2: The velocity obstacle (VO) is obtained by translating
the collision cone (CC) by the obstacle velocity in (a). (b)
illustrates the derivation of the intersection angle v

vo,i*

Hence, if v, ; = 0, a collision cannot occur since di =0.If
vy, 7 0, we use that (17) is equivalent to

cos \; < cos f3;. (20)

T JE—E
With %-v, ; = ||V, ;]| cos A; and cos 8; = % by (14)

i 7

and (16), we thus have

> Ml fm "

(2

Since d; > 0 for d; = dwin,i by (21), it follows that d;(7) >
dmin; = d;i(t) > dminyi, V6 > T. 0

21

For generating avoidance maneuvers, this measure is not
immediately useful. Moreover, the analytical condition (15)
becomes undefined when the relative velocity is zero. This
situation can indeed occur in practical scenarios and may
give rise to numerical challenges when using (15) as the
basis for computing avoidance maneuvers as in [12], [13].
The cone can more conveniently be described in terms of the
absolute vehicle velocity by adding the obstacle velocity to
each velocity in the collision cone set. This transformation
was proposed in [16] as the velocity obstacle set, illustrated
in Figure 2a. According to Figure 2b, the angles at which
the vehicle velocity, v, intersects the velocity obstacle cone
are

L i=vi, +9F, (22)

vo,i cc,i

where wi £ /r;+ f; and

¥F £ arcsin (ﬂ sin (%i)) LR A r T, (23)
v ,

with v; = |v;|| and +; = Zv; defined for conciseness.
Note that the angles (23) can be undefined if the speed
of the vehicle is below a certain magnitude dependent on
the obstacle speed, which means that the vehicle’s velocity
vector does not intersect the edges of the velocity obstacle
cone at any angle. To guarantee the existence of a safe
direction, this condition thus provides a useful metric to
determine the necessary speed changes.

While many vehicles exhibit limited or even complete
absence of reversing capabilities, it is noteworthy that most

collision avoidance methods formulated within the frame-
work outlined in Section II necessitate the presence of these
abilities to ensure safety. By leveraging the above introduced
velocity obstacle concept, we formulate in the next section a
strategy that instead allows the vehicle to move forward when
attempting to avoid collisions and moreover stays defined for
Vi = 0.

IV. SAFETY-CRITICAL CONTROL USING
VELOCITY OBSTACLES

This section proposes a control barrier function (CBF)-
based strategy for computing the control inputs of the vehi-
cle, consisting of the turning rate %, and forward acceleration
ug, for maintaining vehicle safety within dynamic environ-
ments. In Section IV-A, we define the desired inputs of the
vehicle for completing the nominal task of reaching a target.
Next, in Section IV-B, we formulate a barrier function for
adjusting the speed of the vehicle such that the directions (22)
corresponding to the velocity obstacle cone are well-defined.
The required modification of the acceleration input takes
place once an obstacle is within a certain proximity of the
vehicle. In Section IV-C, we establish a barrier function for
steering the vehicle in a collision-free direction, derived from
the velocity obstacle cone. This controller is activated if the
distance to the obstacle is even further reduced, indicating
that a collision is approaching. We derive explicit conditions
for safety under the above-outlined strategy in Section I'V-D.

A. Nominal Control Laws

The vehicle is to move towards a target position at some
specified forward speed vg € (0, Umax|. The desired heading
is chosen as [32]

thq = atan2(y, — y, vy — ), (24)

such that the vehicle takes the shortest path to p, = [z, 4] "
The desired acceleration and heading rate of the vehicle are

chosen to keep the desired speed and heading as

Tda = _Kr(w - 1/)d)a

where the angular difference is mapped to (—m, 7], and
K,, K, > 0 are control gains.

ag = —Kq,(v—uvq), (25

B. Speed Adjustments

Upon examination of (23), it becomes evident that the
vehicle must maintain a sufficiently high speed compared to
that of the obstacle to enable the existence of an evasive
direction. The requirement can be summarized as

v>vlsin(p])], Ve {+}. (26)

Based on this condition, we define a candidate CBF for
adjusting the speed relative to obstacle 7 as

27)

i = min h? — Kunin,
where j,k € {£} and we define hy/ £ v = v;sin(¢?).
Moreover, since the angle (23) is non-differentiable at v =
v;sin(p]), we add a margin Ky, > 0 ensuring that the
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derivative is well-defined when h,,; > 0. The parameter is
also useful for control design; by increasing k< ,in, it enforces
a swifter evasion by effectively raising the speed kept relative
to the obstacle speed.

While h, ; is not continuously differentiable it is defined
by the minimum of the smooth functions h ’J . Hence, con-
troller synthesis can be enabled by the framework proposed
in [4] for the class of nonsmooth barrier functions (NBFs). To
reduce conservatism, the speed is adjusted only for obstacles
that are within a distance d,,; > 0 of the vehicle. As such,
the acceleration input is given by

{b if Ty on # 0,
U =
ad

otherwise,
where Z,, o1, = {i € Iop : d; < d,;} contains the indices of
the obstacles that are closer than the required distances and
ko represents the modified acceleration, computed via

(28)

ky = argmin |la — ag||?
(lGZ/{I (29)
subj. to hl? > —a(hy), V(5. k) € I, 4, Vi € Ty op-
Moreover, Z., ; = {(j, k) : |h5{ —hyi| < €} is the almost-
active set for the candidate control NBF (CNBF) of obstacle
1, with €, > 0. The constraint can be computed analytically

it = a bisin(e]) & vicos(el) (< +0L,) . G0)

where the expressions for 1/) are found in [31].

cc,i

C. Obstacle Avoidance

If the distance to an obstacle is further reduced to a
distance dy; < d,,, we modify the turning input u;
with respect to the velocity obstacle cone through a second
optimization. Define the angular distances to the left and
right edge of the velocity obstacle cone, respectively,

0F & 2y F by, 4,

are defined in (22). The angles are wrapped into
€ (—2m, 2m) such that the distance

€1V

where wvo i
the domain (5i

57° & argmin |d;], (32)

s;e{6) .6, }
is negative when the vehicle velocity v lies within the
velocity obstacle set and positive otherwise. Thus, the barrier
function
ha i = 0;° — (33)

5min7

encapsulates that the vehicle should keep a velocity outside
of the velocity obstacle cone, with at least an angle 6,y €
[0, 7) to the closest edge. Note that hy ; is not continuously

drfferentrable however, the component functions hﬂE =

5? — Omin are smooth. Hence, the desired heading rate is
modified according to

ki = argmin |[|r — rd||2
reld (34)

subj. to 7, ; > —a(hy.), Vj € e, i, Vi € Ty ob,

)

where Z,, ; £ {j : \hfw — hyi| < ey} is the almost-active
set for (33), with €y > 0, Zyop = {i € Top : di < dyi}s
and
e g S S S S L C.r B
i ce,i i ceyi W 35)
sin(p})

F(vi; — viug)

v2—v? sin?(p; )
Notice that the acceleration input, wuo, is involved in the
computation of k; through (35). Furthermore, the turning
input is chosen as

I ki if Ty on # 0,
! rq otherwise.

D. Safety Guarantees

(36)

Since the relative degree is consistently defined, the func-
tions hy; and h,; serve as valid CNBFs for (9) with no
input limitations (i.e., with & = R?). To extend this validity
to them being CNBFs under input constraints, the behavior of
an obstacle must be confined within similar physical bounds:

Assumption 2. The dynamics of an obstacle are bounded:

‘U1| S arnax,ia W)z‘ S Tmax,h (% S Urnax,i Vt Z th (37)

Where Gmax, i, "max,i; Umax,i = 0 are constant parameters.

Given that every dynamic object is subject to certain
physical constraints, Assumption 2 is justified. In the final
theorem, we outline sufficient conditions, namely explicit
lower bounds on the vehicle’s speed and input limits, that
under the proposed strategy guarantee forward invariance of
the safe set S, ; N Sy 5, with

Spi 2{XED:hy; >0}, Spi 2 {xe€D:hy,; >0} (38)

Theorem 2. Consider a vehicle (9) and let Assumption I and
2 hold. If the maximum vehicle speed exceeds the maximum
speed of obstacle 1 such that Vmax > Umax,i + Kmin and

(39)
(40)

(max Z Gmax,is
Qmax,i T Qma
T'max Z Tmax,i + M?
Kmin
then the control inputs (29) and (34) render the set S, ;NSy i
forward invariant, i.e.,

X(to) € Sv’i N S¢7i - X(t) S Su,i N SW-,Vt >tp. (41)

Proof. Consider first the acceleration input given by (29). It
is evident from (26) that the existence of a safe speed relative
to obstacle ¢ requires that the vehicle’s maximum speed is
greater than or equal to the maximum speed of the obstacle.
Denote v/ £ v — Kyiy. The property X € &, ; remains
satisfied whenever v’ > v;, in which case the vehicle’s ability
to remain in S, ; is guaranteed if a,,,x €xceeds the magnitude
of v;. For speeds v/ < v;, we evaluate h, = hff on the
boundary 9S,; = {x € D : hk’j 0}, with j,k € {+}
given by (27). We then have gai = karcsin(;’—:), and

) ,  U;sin(ep ) k‘vzv

/

vlcpz cos(g ) =k (a — @iv—

Ch

l

"@2)
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Fig. 3: (a) shows the trajectory of the vehicle as it maneuvers between four obstacles to the target position, where the vehicle
and the target are both marked in blue. The red, dashed circles indicate the distances dyin ; that should be kept between the
center of the vehicle and the center of an obstacle. The corresponding forward speed, turning rate, and forward acceleration
of the vehicle, and the distance between the vehicle and each obstacle, are displayed in (b).

Insertion of (42) in (30) yields

. / !
Wl =+ l')iv* + <CL - i’z‘v) = 2a. (43)

Hence, a > 0 enforces hﬁf > 0 in this case. Thus, forward
invariance of S, ; is assured under the condition (39).
Having established that the speed is lower bounded by
v > v sin(@!)| 4+ Kmin for all j € {£}, we must now show
that the vehicle can maintain A, ; > 0 through the input (34).
With j now defined by (32), forward invariance of Swz holds
if hfpz > 0 on the boundary 9Sy; = {x € D : hj, ; = 0}.
Within Sy ;, it holds that ¥z/}i > 0, which can be verified

cCc —

geometrically [28], [33]. Thus,

(v0;—v;a) sin(cp;jt)
vy/v2—v? sin2(tpii) ’

v; COS(Lpii)
v2—v?Zsin?(p;")

Assumption 2, the condition (40) guarantees thz > 0,
implying forward invariance of S, ; NSy ;. O

hy ;> Er 4 T (44)

where we use that € [—1, 1]. Hence, under

Notably, when x € S, ; N Sy, collision avoidance of
obstacle ¢ is guaranteed by Lemma 2. Under the conditions
outlined in Theorem 2, the proposed controller ensures the
vehicle’s safety in encounters with a single obstacle, given
that the parameters d,; and dy; are sufficiently large to
facilitate convergence to S, ; N Sy ; prior to any potential
collision. In scenarios involving multiple obstacles, the vehi-
cle’s safety depends on whether the independent avoidance
maneuvers are compatible, in which case safety is upheld.

Remark 1. Note that (40) is a conservative bound, as
the forward acceleration generally opposes the obstacle’s
acceleration, resulting in a reduction of the final term in
(44). Hence, the parameter ~,i, can be selected considerably
lower than what is required by this condition as demonstrated
in the simulations presented next.

V. SIMULATIONS

Now, we demonstrate the proposed collision avoidance
strategy in simulations of a vehicle with the unicycle kine-
matics (9), navigating among moving obstacles to a target
position p, = [185,0]T m. We used 7.y = 0.5 rad/s and
max = 0.25 m/s? as input constraints and a maximum
forward speed of vy, = 0.7 m/s. The radius of the vehicle
was selected as R = 5 m giving a minimum distance between
the centers of the vehicle and obstacle 7 as dmin; = R+ R;,
R; > 0 being the radius of the obstacle. In practice, this
parameter can be increased above the combined radii to keep
some space between the object boundaries. Furthermore,
we employed distances dy,; = 30 + dpin,; m and d,; =
dy,; + 5 m. In the computation of h, ; and hy ;, we used
the parameters €y, = €, = Kmin = Omin = 0.05. We used a
linear class-K function a(h) = —vyh,~y = 0.5 in both cases.
The nominal control gains were set to K, = K, = 0.5
and the acceptance distance to d,.. = 4 m. The first-order
Euler method was used for the numerical integration with
step-size 0.01 s.

First, the vehicle must navigate past four obstacles', each

ISee a simulation video at: https://youtu.be/phQpTdAGmig.
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Fig. 4: (a) shows the trajectory of the vehicle avoiding eight obstacles moving in a circle. The corresponding forward speed,
turning rate, and forward acceleration of the vehicle, and the distances to the obstacles, are displayed in (b).

with a radius, R;, of 5 m. The desired speed was fixed at
vg = 0.3 m/s. The obstacles all move parallel to the inertial
y-axis at a speed of v; = 0.5 m/s, going back and forth
between £50 m (the speeds are changed at an acceleration
of 0.1 m/s? at the turning points). The vehicle must thus pass
all four obstacles to reach the goal; the overall configuration
of the obstacles is viewed in Figure 3a. The vehicle can
be seen to move towards the closest obstacle, triggering
an increase of the speed, viewed in the top-most plot of
Figure 3b. This is attributed to the fact that the obstacle
keeps a higher speed than the vehicle, and to satisfy (26) the
vehicle must raise the speed correspondingly. We observe
that the safety-critical controller (34) is active as there is
a temporary change of direction, during which the vehicle
passes behind the obstacle. The same behaviour is displayed
as the vehicle encounters more obstacles. Note that, since the
barrier functions h,; ; are not consistently defined, they have
been omitted from the plots. Moreover, collision avoidance
can be verified from the distances to the obstacles which are
always kept above the required minimums.

Next, eight obstacles of varying radii (ranging from 5 to
10 m) must be avoided, see Figure 4a. They are simulated
to move synchronously in a clockwise circle about the point
[80,0] T m, with speeds v; = 0.525 m/s and turning rates of
0.00875 rad/s. The nominal vehicle speed was selected as
vg = 0.35 m/s. From Figure 4b, we observe that the speed
controller raises the forward speed to an appropriate level as
the vehicle gets closer to the obstacles. The speed maneuver
is accompanied by a slight change of direction, enabling
the vehicle to pass between two obstacles. The vehicle’s
speed returns to the nominal speed before a new maneuver is

generated, taking the vehicle safely past an obstacle, verified
by the bottom-most plot of Figure 4b. The vehicle reaches
the target position shortly after. Importantly, safety of the
vehicle is preserved in both cases without the necessity of
stopping or reversing, while the generated inputs and the
maximum vehicle speed stay within expected bounds.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed an obstacle avoidance strategy for
vehicles with first-order nonholonomic constraints, moving
in dynamic environments. We proposed to regulate the ve-
hicle speed and orientation separately via two control bar-
rier functions (CBFs), with the respective safety conditions
derived from the velocity obstacle principle. Unlike most
other approaches defined within the CBF framework, the
proposed strategy does not require the vehicle to brake or
move backwards to avoid collisions. On the contrary, it
enables the vehicle to maintain a nonzero forward speed by
only adjusting the speed once it falls below the required
level to avoid an obstacle. This can benefit the vehicle’s
progression towards a goal and accommodates systems with
operational requirements that prevent them from reversing.
Meanwhile, the steering controller diligently enforces the
necessary turning maneuvers to avoid potential collisions.
We gave theoretical assurance of safety under explicit con-
ditions. The resulting performance was showcased through
simulations of challenging scenarios with multiple moving
obstacles, displaying adept and secure navigation through
obstacle-filled environments.

In the future, we aim to implement the strategy in ex-
periments on a marine vessel and explore more strategic
utilization of the speed to further enhance the performance.
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