ON THE TOTAL PERIMETER OF PAIRWISE DISJOINT CONVEX
BODIES

ARSENIY AKOPYAN AND ALEXEY GLAZYRIN

ABSTRACT. In this note we introduce a pseudometric on closed convex planar curves
based on distances between normal lines and show its basic properties. Then we use
this pseudometric to give a shorter proof of the theorem by Pinchasi that the sum of
perimeters of k convex planar bodies with disjoint interiors contained in a convex body
of perimeter p and diameter d is not greater than p 4+ 2(k — 1)d.

1. INTRODUCTION

For a convex body C, we denote its perimeter by per(C') and its diameter by diam(C').
Given a convex body C, it is natural to find the maximal total perimeter of &k disjoint
convex bodies confined to C. Glazyrin and Mori¢ studied this problem in [6] and con-
jectured that the upper bound is always per(C) + 2(k — 1)diam(C'). They proved this
bound for some particular cases and made partial progress towards the general conjecture
by showing the upper bound 1.22195per(C') + 2(k — 1)diam(C'). In [10], Pinchasi proved
the general conjecture.

Theorem 1.1 (Pinchasi). If convex planar bodies C;, 1 < i < k, with disjoint interiors
are contained in a convex planar body C', then

D per(Ci) < per(C) + 2k — 1) diam(C).

In this note we provide a shorter and (almost) self-contained proof of Theorem 1.1 us-
ing the construction of a pseudometric on convex curves (see Section 2). Apart from the
proof, we find this pseudometric and its properties inherently interesting. The constructed
pseudometric is particularly nice for curves of constant width, that is, closed planar con-
vex curves whose width (distance between parallel supporting lines) is the same for all
directions. As a simplest nontrivial example, we mention the Reuleaux triangle formed
by the intersection of three circular disks, each having a center on the boundary of the
other two.

The proof of Theorem 1.1 in the paper is based on the general idea of Pinchasi. However,
it deviates from the proof of Pinchasi quite significantly in tools and details. The proofs
coincide only for partitioning a disk and differ already for the general partitioning case.
The proof of Pinchasi is combinatorial in nature and uses halving lines for discrete sets
of points. Our proof generalizes the case of a disk in a different direction and, essentially,
uses ideas from differential geometry by utilizing curves of constant width. This is a
very natural direction for extension because curves of constant width possess many of
the properties of a disk and any convex curve can be extended to a curve of constant
width of the same diameter. In particular, this approach allows us to obtain a short and
transparent proof of the partitioning case that works in the same clear manner as the
proof of Pinchasi for disks (see the end of Section 3). The proof of the general case is
more involved and requires several technical steps and ideas, different from those used by

Pinchasi. These are covered in Lemma 4.1 and presented in Section 4.
1
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For the sake of simplicity, some statements will be formulated for strictly convex curves,
that is, curves that have exactly one common point with each supporting line. In particu-
lar, all curves of constant widths are strictly convex curves (see, for instance, [9, Theorem
3.1.1]). All statements are true for general convex curves as well, with minor modifi-
cations. Throughout the whole paper by convex curves we always mean closed convex
curves and use the term almost interchangeably with convex bodies. We will say that
a point is inside a convex curve if it belongs to the interior of the corresponding convex
body and it is outside a convex curve if it does not belong to the convex body.

2. PSEUDOMETRIC ON CONVEX CURVES

In this section we define the pseudometric on the set of convex planar curves and
adjacent notions. We fix a unit vector ug in the plane and by uy, 6 € [0, 27|, define a unit
vector that is obtained by rotating ug by angle 6 counterclockwise. Given a convex curve
C', each supporting line of C' partitions the plane into two half-planes, one containing the
interior of C' and one having no interior points of C'. We choose the half-plane containing
C and consider a unit vector u orthogonal to the supporting line such that the chosen
half-plane is in the direction of the vector with respect to the supporting line. For a
common point v of the supporting line and C'; we then say that u is an inward normal
vector to C' at v. Note that for each unit vector u, there is always a unique corresponding
supporting line but « may be an inward normal vector at many points in the boundary
of C'if C'is not strictly convex. Alternatively, a unit vector u is an inward normal vector
to C' at the boundary point v if and only if the linear functional u - x, x € C, attains its
minimum at v, where - is the standard dot product in the plane.

Let v be a point in the boundary of C' with the inward normal vector uy. By a normal
line ¢»(C') we denote the line through v in the direction of ug. Normal lines are uniquely
defined for all # when C' is strictly convex. For general convex curves, ¢y are uniquely
defined for all but countably many values of 6 (this follows, for instance, from the result
in [3]). Therefore, the integrals in the definitions below are properly defined for all pairs
of convex curves.

Definition 2.1. For two convex curves C and Cs, we define
2

1
pdiSt(Cl, CQ) = 5 /dlSt(gg(Cl),gg(Cg))de,
0
where dist is the standard Euclidean distance between parallel lines.

Remark 2.2. It is easy to show that if instead of dist we take the signed distance between
lines, then the integral in the right hand side is zero.

In the following proposition we will show that pdist is a pseudometric on the space of
convex planar curves. In other words, it is a non-negative real function defined on pairs of
curves and satisfying 1) the triangle inequality, 2) the symmetry condition pdist(Cy, Cy) =
pdist(Cy, C1), 3) the condition pdist(C,C) = 0.

Proposition 2.3. The space of all convex curves equipped with the distance from Def-
mition 2.1 is a pseudometric space. Moreover, the distance is conver with respect to
Minkowski addition, that 1s,

pdist(tCy + (1 — t)Cy, D) < t pdist(Cy, D) + (1 — t) pdist(Cs, D),

for all convex curves Cy, Cy, D and for any t € [0,1]. The equality for t € (0,1) holds
only if Ly(Cy) and Le(Cs) are on the same side of Ly(D) for all 6.
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Proof. The triangle inequality follows immediately from the one-dimensional triangle in-
equality for each 6, that is, from

dist (€5(Ch), £o(Cy)) < dist(£e(Ch), Lo(Ca)) + dist(£g(C), Lo(Ch)).

The remaining conditions of a pseudometric follow trivially from the definition.

For convexity, consider € such that all three normal lines £y(C4), £o(C3), and £4(tC +
(1 — t)Cy) are uniquely defined (as mentioned above, there are only countably many
values of 6 when it is not true). Note that if the linear functional uy - z attains its unique
minimum on C] at v; and on Cy at vy, then its unique minimum on tC; + (1 — t)Cs is
clearly attained at tv; + (1 — t)vy. This immediately implies that the normal line of a
Minkowski sum is the Minkowski sum of normal lines of the summands:

Co(tCy + (1 — 1)Cy) = the(CY) + (1 — £)Ey(Ch).

Now it remains to use the fact that for each 6 the distance to a given line ¢4(D) is a
convex function (in other terms, for a fixed real a, the real function |x — a| is convex).
If ¢y(Cy) and £y(Cy) are in different open half-planes bounded by ¢»(D) then, due to
continuity, there is an interval of 6 where this holds and the inequality must be strict. [

A single point can be considered a degenerate strictly convex curve. Definition 2.1
and Proposition 2.3 work in this case just the same. Moreover, for two points v; and v,,
pdist(vy, v2) coincides with the regular Euclidean distance multiplied by 2.

The distance from Definition 2.1 does not define a metric because there are curves that
are different but have the same normal line bundles, for example, concentric circles.

Similarly, we can generalize a perimeter of a convex curve.

Definition 2.4. For convex curves C' and D,

2w

pperp(C) = % / (dist(£5(C), £o(D)) + dist(£)(C), £y(D)))do,

0

where £5(C) and ¢,(C') are supporting lines to C' parallel to ug.

Note that the standard perimeter (curve length) per(C') can be obtained by a similar
formula with dist(¢5(C), ¢5(C)) under the integral. This is essentially a version of the
Crofton formula [12, Section 1.5] in the case of a convex closed curve.

Lemma 2.5 (Crofton formula). For a convez curve C,

2w

pen(C) = % / dist((5(C), £5(C))db,

where 05(C) and €5(C) are supporting lines to C' parallel to ug.

The Crofton formula immediately implies the monotonicity of perimeters for nested
convex curves: if a convex curve C' is in inside a convex curve C’; then per(C') < per(C").
We will use this property throughout the paper. We have to note though that a similar
property does generally not work for pper, that is, pper,(C') may be larger than pper,(C”)
for some convex curve D.

The triangle inequality implies that pper,(C) > per(C') and the equality holds if and
only if each normal line of D intersects C'. This happens, for instance, when D is a disk
containing C' and the center of D is inside C' so pper is indeed a generalization of the
standard Euclidean perimeter.
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It immediately follows from the definitions that for any point v and any curve D,
pperp(v) = 2pdist(v, D).

For curves of constant width, the definitions above become even more convenient. In
particular, we can substitute 1 fo% by [, both in Definition 2.1 and Definition 2.4 because
ly = gy for each 6 € [0,7]. Let us give a brief explanation for the latter fact (see also
[9, Theorem 3.1.1]).

If D is a curve of constant width, then its width in any direction is equal to the diameter
of D. Now, let £ and ¢’ be parallel supporting lines touching D at v and v’, respectively.
On the one hand, |vv'| > dist(¢,¢') = diam(D). On the other hand, |vv'| < diam(D).
Therefore, |vv'| = dist(¢,¢') and vv’ must be orthogonal to both supporting lines so
vv’ is a normal line both at v and v'. We conclude that ¢y = fy,, for each 6. Since
|vv'| = diam (D), we will call such points v and v" diametrically opposite.

If D is a circle, then pdist(v, D) = 2|vo|, where o is the center of D. Hence all points v
in the circle D satisfy pdist(v, D) = diam(D). The following lemma extends this property
to all curves of constant width.

Lemma 2.6. For a constant width curve D and a point v, pdist(v, D) = diam(D) for
v € D, pdist(v, D) < diam(D) for v inside D, and pdist(v, D) > diam(D) forv outside D.

In order to prove this lemma, we will need the following result about convex curves.
Assume 7 is a strictly convex curve parametrized by inward normal vectors, that is, v(6)
is a point on the curve, where the inward normal vector is ugy (7 is not injective for singular
points of the curve). We do not need a precise form of this parametrization but the mere
fact that v() is almost everywhere differentiable (this follows from [9, Theorem 5.1.1] or
from the theorem of Aleksandrov [2]). For each 6, we define a unit tangent vector wy by
rotating ug by 7/2 clockwise.

Lemma 2.7. For all strictly convexr curves v and for any pair of 01, 05 such that 0 <
0, <0y, < 2m,
02

[26) w0 ds =2(61) - o, = +(62) v,

01
Proof. Differentiating v(0) - ug we get % - ug + v - (—wy) = —v - wy for almost all @ so

92 92

[ wado = [~ w0) a8 =560 10, ~ 2162 v

91 91

O

Remark 2.8. This lemma may be extended to general convex curves by taking into account
line segments in D or carefully approximating D with strictly convex curves.

We also note that all curves of constant width are naturally characterized by their
parametrizations using the support function [7], [8], [9, Theorem 5.3.5].

The dot product (6) - wy is precisely the distance from the origin 0 to the normal line
ly taken with a sign. The integral calculated in Lemma 2.7 can be used to calculate a
part of pdist(0,v) as |y(01) - us, — 7(02) - ug,| when the origin lies on the same side of all
normal lines ¢y for all § € [Ay,605]. This is exactly what we are going to do in the proof of
Lemma 2.6.
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Proof of Lemma 2.6. Let v € D and assume that wug, is the inward normal vector to D
at v. Without loss of generality, v = 0 and 6; = 0. Parametrizing the curve as above,
v =7(0). Let v/ = (). Note that v" is diametrically opposite to v on D.

Clearly, v lies on the same side of all ¢y for § € (0,7) (v may belong to an infinite set
of these lines if it is a singular point of the curve). By Lemma 2.7,

™

pdist(v, D) = /dist(v,ﬁg) df = [v(0) - ug — y(7) - uz| = |y(7)| = diam(D).

Let v be inside D. Assume v; is the point in D closest to v. Then the line vv is
a normal line of D. Let vy be the second point of intersection of D and vyv. vy and
vy are diametrically opposite points of D. There is a normal line fy(D) such that vy
and vy are in different open half-planes with respect to this line (for example, when uy
is orthogonal to the line v;v9). By the convexity part of Proposition 2.3, pdist(v, D) is
strictly smaller than ¢ pdist(vy, D)+ (1—t) pdist(vy, D) for some ¢ € (0,1). Due to the first
part of the proof, both pdist(vy, D) and pdist(ve, D) are equal to diam(D). Therefore,
t pdist(vy, D) 4+ (1 — t) pdist(ve, D) = diam(D) for some ¢ € (0,1). and, subsequently,
pdist(v, D) is strictly smaller than diam(D).

Let v be outside D. Connect it to any point v; inside D. Let vy be the point of
intersection of vu; and D. Then pdist(ve, D) = diam(D) and pdist(vy, D) < diam(D).
By the convexity part of Proposition 2.3, pdist(vy, D) < t pdist(vy, D)+ (1—1t) pdist(v, D).
We conclude that

1
pdist(v, D) > 17 (pdist(vy, D) — t pdist(vy, D)) > diam(D).

O

In the last lemma of this section, we prove the connection between perimeters of convex
bodies in a partition and distances from vertices of this partition.

Lemma 2.9. If a conver body with boundary C is partitioned into convex bodies with
boundaries C; with all partition vertices v; of degree 3, then for any convex curve D,

Z pperp(C;) = pperp(C) + Z pdist(v;, D).
i J

Proof. There are countably many values of 8 such that C' or one of C; has a supporting
line parallel to uy with more than one common point with it. It is, therefore, sufficient
to check that for all other 6, the integrand is the same in both sides of the suggested
equality. Integrands in both sides contain distances from lines parallel to uy to ¢4(D).
We just need to carefully check that the lines are the same in the right and the left hand
sides.

First, we take into account lines that do not go through vertices of the partition. They
show up as supporting lines of C' in the right hand side and then they show up in the left
hand side too, as supporting lines of Cj.

All the remaining lines are going through vertices of the partition. There are two
possible scenarios: all partition edges from a vertex v; are on one side with respect to a
line parallel to ugy or three edges are split into two non-empty groups. In the former case,
v; is necessarily in C' and the line through v; contributes to the left hand side twice, in
two pper(C;), and to the right hand side twice, in pper(C') and one pdist(v;). In the latter
case, the line through v; contributes only to one of pper(C;) and to one pdist(v;). O



ON THE TOTAL PERIMETER OF PAIRWISE DISJOINT CONVEX BODIES 6

3. PREPARATORY WORK AND PARTITIONS

In this section, we show preliminary work to reduce the problem to curves of constant
width and provide a short proof of Theorem 1.1 for the case of partitions. For the first
step, we use the structural result from the paper of Pinchasi.

Proposition 3.1. [10] For disjoint convex bodies Cy, Cy,. .., Cy inside the convexr body
D, there exist a partition of D into convex bodies C1, Cj, ..., Cp;, | > 0, such that
C; CCl foralll <i <k, and all C'J’., E+1<j<k+1I, have no common points with
each other and with the boundary of D.

Sets C}, k+1 < j < k+1, are called holes of the partition. This technical result is not
explicitly formulated in [10] but it directly follows from Claim 1 and Claim 2 in [10], which
we refer to for the rigorous proof. Here we provide a quick, and straightforward, idea of
the proof. We consider any maximal by inclusion convex extension of the bodies C; into
convex bodies C!. We need to show, that the holes, connected components of D \ UCY,
are convex. Note that any side of a body cannot be extended inside a hole only if its part
is “blocked” by another body. After a brief analysis, it is easy to see that the boundary of
a hole is formed by bodies that are cyclically bounding each other (see Figure 2). In the
case of a nonconvex hole, there is no blocking at a nonconvex vertex, so the cycle cannot
be formed (see Figure 1). A similar observation shows that holes cannot have common
points with the boundary of D and with each other.

Note that 2% per(C!) > 3% per(C;) so it is sufficient to prove the bound of Theorem 1.1
for the extended case only.

For the next step, we explain how to extend this partition to a partition of a constant
width body D', D C D’'. We will need the following lemma.

Lemma 3.2. [1, Lemma 4| Any finite conver partition of a convexr body in R? can be
extended to a convex partition of R?.

We extend the partition of D to the partition C, ..., C~’k+l of the plane by Lemma 3.2
and use it to get a partition of D’ into C] = cinD, ..., el = Crs1 N D'. Note that
this extension does not change any convex parts that were strictly inside D including all
holes. Let [y, l5, ..., [, be the lengths of new line segments added to the extended parts
of the partition (see Figure 2). Then

k k n
S per(€)) — per(D) = 3 per(CY) - per(D') — 231,
i=1 i=1 j=1

If D" has the same diameter as D, then it is sufficient to prove the bound for D’. For any
convex body D, there is a constant width body D’ such that D C D’ and diam(D’) =
diam(D) [5, Theorem 54] so it is sufficient for us to prove the bound of Theorem 1.1 for
the case when the large convex body has constant width.

Boundaries of the partition sets form a plane graph. By adding vertices and introducing
degenerate edges and faces we can assume that all vertices in this graph have degree 3.
Here we provide a brief sketch of the explanation that this assumption is valid. In the
first scenario, assume there is a vertex p of the plane graph surrounded by non-holes and
connected to vertices py, ..., p,, consecutively. Then we can introduce a degenerate hole
Py ...p. (all vertices of the hole geometrically coincide with p and are distinguishable as
planar graph vertices only) with degenerate edges p|p), ..., p.p} so that pip), ..., p.p.
are also edges of the plane graph. In the second scenario, assume there is a vertex p of
degree at least 4 on the boundary of the body D or p is a vertex of one of the holes.
Let p be connected to py, ..., p,, consecutively, with pp; and pp, on the boundary of



ON THE TOTAL PERIMETER OF PAIRWISE DISJOINT CONVEX BODIES 7

FiGURE 1. Extension of FIGURE 2. Extending a

a non-convex hole partition of a triangle to
the Reuleaux triangle of
the same diameter

D /hole. Then we can add vertices p), ..., p. (again geometrically coinciding with p) with
degenerate edges p|p), ..., p._,p. lying consecutively on the boundary of D /hole so that
PPy, - .., Dep.. are also edges of the plane graph.

After all reductions, Theorem 1.1 follows from the following theorem.

Theorem 3.3. A constant width body D is partitioned into convex bodies C1, ..., Cy,
Hy, ..., Hy such that all H;, 1 < j <, are pairwise disjoint and have no common points
with the boundary of D and all vertices of the graph defined by the partition have degree
3. Then

Z pper(Cy) < per(D) + 2(k — 1) diam(D).

At the end of this section we give a very short proof of Theorem 3.3 in the case when
the partition of D contains no holes, that is, D is partitioned into convex bodies C1, ..
C}. This proof, in particular, implies Theorem 1.1 for the case when C; partition C.

*)

Proof for the case of partitions. By Euler’s formula, the number of partition vertices is
2(k —1). Then be Lemma 2.9,

k 2(k—-1)
S ppery(Cy) = per(D) + 3 pdist(v;, D)
i=1 j=1

By Lemma 2.6, all pdist(v;, D) < diam(D), so

Z pperp(C;) < per(D) + 2(k — 1)diam(D).

4. PROOF OF THE GENERAL CASE

Before proving Theorem 3.3 we give a proof to a key lemma.
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Lemma 4.1. For any convex polygon P with vertices a;, 1 < i < m, inside a constant
width body D,

Zpdist(ai, D) — pperp(P) < (m — 2)diam(D).

Proof. The proof of this lemma is fairly involved and consists of several steps and ideas
so we first provide a brief plan describing major steps.

(1) By induction, we show that it is sufficient to prove the lemma for m = 3.

(2) In the case of triangle, we reformulate the problem via interjacent lines of the
triangle and show that, due to convexity, the maximum of the left hand side of the
inequality is necessarily attained on a triangle Aajasaz with at least two vertices,
a1 and as, on the boundary of D.

(3) We explain why it is sufficient to prove the bound for smooth curves of constant
width with curvatures bounded from above.

(4) We analyze how the expression under consideration varies when vertices a; and
a, are perturbed by moving them along the smooth curve. A straightforward,
but lengthy, calculus of variations shows that the maximum is possible only for
Aajasas such that the normal lines at a; and as bisect the corresponding interior
angles of the triangle.

(5) In the final step we use a geometric lemma of Balitskiy to tackle the case of angle
bisectors as normals.

(1) First, we show by induction that it is sufficient to prove this lemma for triangles.
Indeed, if we already know that the statement holds for all polygons with not more than
m —1 sides, m > 4, then we can partition an m-gon P into an (m —1)-gon P; with the set
of vertices S; and a triangle P, with the set of vertices So. By the inductive hypothesis,

Z pdist(a, D)+ Z pdist(a, D) < pperp(P1)+ (m—3)diam (D) + pperp () +diam(D).
a€Sy a€Ss
By Lemma 2.9,
pperp(Py) + pperp(Ps) = pperp(P) + Z pdist(a, D).
a€S1NS2

Substituting this sum in the inequality above we get the required bound for the m-gon
P.
(2) For a triangle ajasas,

3 ™
(4.1) S pdist(a:, D) — pperp (aras) = / dist (¢, ¢,(DY)db,
1 0

where (7' is the interjacent line of the triangle in direction of wug, that is, ¢3¢ goes
through a vertex and crosses the triangle. If ajasas is a degenerate triangle, one point or
a line segment, the integral above is the same as pdist(a, D) for one of the vertices a so
it is not larger than diam(D) by Lemma 2.6.

For a nondegenerate triangle a;asas, we consider a family of triangles with sides parallel
to the sides of Aajagas. For this family, the integral in (4.1) is convex with respect
to Minkowski sums because expressions under the integral are convex (the argument is
analogous to the one from the proof of Proposition 2.3). Therefore, among all triangles
in the family, the maximum of (4.1) is necessarily attained on a triangle with at least two
vertices on the boundary of D.
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(3) Each curve of constant width can be approximated by a smooth curve of constant
width (see, for instance, [11, 13]) so we assume that D has a smooth boundary. We can
also assume that the curvature of the boundary is bounded from above (for instance, by
approximating D with D+cw, where w is a circle with center at the origin and unit radius).
The function pdist(a;, D)+ pdist(as, D) +pdist(as, D) — pperp(aiazas) is continuous with
respect to ay, as, az € D so it reaches its maximum at some triple of points. We consider
the triple where it is maximal and, using the argument from above, assume a; and a, are
on the boundary of D. We also assume that the boundary of D is parametrized by ~(6).

(4) In this step of the proof, we show that the normal lines through a; and as are
necessarily interior angle bisectors of Aajasas. This is the longest and the most involved
part of the proof so we first provide a quick sketch of the argument.

Assume the normal line at a; is not the angle bisector of Aajasas. The idea of the
proof is to move a; along the curve by a small distance A and show that the integral
can increase with this move. When doing so, all interjacent lines ¢3"® through a; change
linearly in terms of A and we will show that this change entails the linear part of the
change in 4.1. At the same time, the measure of 6 such that lines ¢5¥¢ change a vertex
they pass through is also of linear size in terms of A so in total the change of this kind
gives only an O(A?) error. Overall, the change is linear in A so we can move a; to increase
the integral.

Let us now write this argument in more detail. Denote by ¢5, 3, 3 the lines with
direction of uy through a, ag, ag, respectively. Assume £} is an interjacent line when
0 € [01,05], 3 is an interjacent line when 6 € [0y, 03], and £3 is an interjacent line when
0 € [03,0; + w|. Also assume fy- is a normal line through a; and 6* € (6;,65) but
0* # (01 + 02)/2 (the case when 0* ¢ (6,,05) will be considered later). Under this

notation,

T 0 03 01+
/ dist(£7, ¢5(D))do = / dist(¢}, 65(D))do + / dist(¢2, 65(D))d6 + / dist(¢2, 65(D))do.
0 61 62 03

Now we vary a; by moving it along the boundary of D to a point @} so that |a1a}| = A
and denote by £ a line in direction of uy through a/. At this point our goal is to show
that the change of [ dist(¢;", ¢4(D))df is linear with respect to A. First, we denote new
interjacent lines by £5%? and note that dist(£3%?, ¢4(D)) — dist(€5%?, £(D)) € O(A) for
all 6. Second, we assume that new angles where interjacent lines change are 6}, ¢, and
0% and note that §; — 0, € O(A) for i = 1,2,3. Then

- 0, A o)+
/ dist(€77 | (y(D))dO = / dist (Y, to(D))do+ / dist (€2, 65(D))d6 + / dist(£3, L4(D))do
0 0 0, 0,
(2 03 O1+m
= / dist(£Y, to(D))do + / dist(£2, (4(D))d6 + / dist(£3, £4(D))d6 + O(A?)
01 62 03

so the linear part of the change may show up only in the first integral.
Using Lemma 2.7 we get

0* ()

/dist(é},,ég(D))dG _ /(a1 —4(6)) - wp dB + /(7(9) 1) wy df

01 01 0*
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= (ar —y(0h)) - ug, — 2(ar — 7(60%)) - ug- + (a1 — 7(62)) - g,
= ay - (up, — 2ug- + ug,) — v(01) - ug, +2v(0%) - up- — y(62) - ugp,.
Assume lp+ is the normal line at af, 0 € (61,0,). Note that 6** — 0* € O(A) because
the curvature of the boundary of D is bounded from above. Then

02 g** 02
[ aisttes ta(D)d0 = [ (@t =20 wodo + [(2(6) ~ )t
01 601 o+
o* )
= [t =26 wado + [(2(6) ~ a1) - wn s + O?)
01 0%
= a - (ug, — 2ug- + ug,) — Y(01) - ug, + 2v(0%) - uge — v(0a) - ug, + O(A?).
0>
= /dist(éé,ﬁg(D))dH + (ay — ay) - (ug, — 2ug- + ug,) + O(A?).
01

Due to the smoothness of the boundary of D, a} — a; = £Awy- + O(A?) so
02 02

/dist(fé,,ég(D))dH — /dist(é}),fg(D))dH = A wp- - (ug, — 2ug- + up,) + O(A?).

01 01
The dot product wys - (ug, — 2ug« +uyg, ) is not zero since 0* # (0, +63)/2 so there is a linear
component in the change of the integral. We choose the direction of the move depending
on the sign of the dot product to ensure that the difference is positive and the integrals
increases. Overall, we conclude the maximal value cannot be attained on a triangle unless
the normal line through a; is the interior angle bisector of Aajasas.

In the case 68* < 6, there is a direction along the boundary of D such that moving
ay in this direction increases all dist(¢5, ¢y(D)) linearly in A. This move entails a linear
increase of the integral from (4.1). The other cases for §* are analogous with additional
O(A?) terms for 6* = 6, or 0, (because 6** may jump inside the interval (6y,65)).

We have showed that the normal line at a; is the angle bisector of the triangle. Anal-
ogously, the normal line at a, must be the interior angle bisector as well.

(5) For the last step of the proof, we will use the following geometric fact by Balitskiy.

Lemma 4.2. [4, Proof of Theorem 4.1| Let points y, and ys be chosen on the interior
angle bisectors of Axyxoxs from xy and xo, respectively. If |z1y1| = |xays| > %per(ﬁxgxg),
then |y1y2| > |7191].

Now we choose the points b; and by in D diametrically opposite to a; and as, respec-
tively. We know that |a1b1| = |agbs| = diam(D) and |b1be| < diam(D). By Lemma 4.2,
per(ajasaz) > 2|aybi| = 2diam(D). Then, as required,

3
Z pdist(a;, D) — pperp(aiasas) < 3diam(D) — per(ajazas) < diam(D).
1

0

Proof of Theorem 3.3. By Euler’s formula, the number of partition vertices is 2(k+1—1).
Then by Lemma 2.9,
2(k-+1—1)

k l
prerD(Ci) = per(D) + Z pdist(v;, D) — prerD(Hi)
i=1 =1

J=1
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Using Lemma 4.1 for all holes we get

prerD(C’i) < per(D) + Z pdist(v;, D) + Z diam(D) — 2[ diam(D)

'UjQUHi vjEUHZ-

Finally, by Lemma 2.6, all pdist(v;, D) < diam(D), so
k
> " pper,(Ci) < per(D) + 2(k + I — 1)diam(D) — 21 diam(D)
i=1

= per(D) + 2(k — 1)diam(D).
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