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Abstract— This paper proposes MambaST, a plug-and-play
cross-spectral spatial-temporal fusion pipeline for efficient
pedestrian detection. Several challenges exist for pedestrian
detection in autonomous driving applications. First, it is difficult
to perform accurate detection using RGB cameras under dark
or low-light conditions. Cross-spectral systems must be devel-
oped to integrate complementary information from multiple
sensor modalities, such as thermal and visible cameras, to
improve the robustness of the detections. Second, pedestrian
detection models are latency-sensitive. Efficient and easy-to-
scale detection models with fewer parameters are highly de-
sirable for real-time applications such as autonomous driving.
Third, pedestrian video data provides spatial-temporal corre-
lations of pedestrian movement. It is beneficial to incorporate
temporal as well as spatial information to enhance pedestrian
detection. This work leverages recent advances in the state space
model (Mamba) and proposes a novel Multi-head Hierarchical
Patching and Aggregation (MHHPA) structure to extract both
fine-grained and coarse-grained information from both RGB
and thermal imagery. Experimental results show that the
proposed MHHPA is an effective and efficient alternative to
a Transformer model for cross-spectral pedestrian detection.
Our proposed model also achieves superior performance on
small-scale pedestrian detection. The code is available at
https://github.com/XiangboGaoBarry/MambaST

I. INTRODUCTION

Pedestrian detection is an essential task in applications such
as autonomous driving. Precise pedestrian detection helps
ensure pedestrian safety and helps vehicles to plan paths and
avoid collision. Pedestrian detection also has implications in
crowd analysis, traffic monitoring and management, and in-
frastructure planning [1]. In low-illumination scenarios, such
as nighttime, it is difficult for visible (RGB) cameras alone
to detect moving pedestrians. Cross-spectral fusion methods
becomes necessary especially under low-light conditions to
take advantage of the complementary information provided
by both thermal and visible camera data [2]. Furthermore,
pedestrian video data carries sequential movement informa-
tion. It is beneficial to incorporate both spatial and temporal
information from video frames to enhance pedestrian detec-
tion performance [3].

While significant progress has been made in multi-modal
fusion and spatial-temporal modeling, simultaneous cross-
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spectral spatial-temporal fusion still lacks exploration. A
variety of multi-modal fusion methods have been devel-
oped [4]–[8] for single-frame cross-spectral spatial fusion.
However, these methods are not easily adapted to tem-
poral fusion due to their reliance of 2D image inductive
biases—assumptions about spatial relationships and patterns
typical of 2D images. For temporal fusion, 3D convolu-
tions [9]–[12], adaptive 2D convolutions [13], [14], and
transformers [15] have been used. However, these methods
work for RGB videos and cannot handle multi-modal inputs.

This paper proposes a novel fusion pipeline that addresses
spatial-temporal fusion accounting for cross-spectral (RGB
and thermal) sensor inputs. The proposed fusion pipeline,
named MambaST, is based on a state space model (Mamba)
[16]. Mamba is a recent state space model architecture
that rivals the classic Transformers [17] for sequential data
processing and has shown initial promise on computer vision
tasks [18]–[20]. Our proposed MambaST is the first, to
our knowledge, that applies Mamba to cross-spectral fusion
accounting for both spatial and temporal information. Within
MambaST, we propose a novel Multi-head Hierarchical
Patching and Aggregation (MHHPA) module, which extracts
cross-spectral spatial-temporal features across different hier-
archical levels. This module is engineered to balance the
extraction of fine-grained details with the removal of noise
from coarser-grained information. We show that this module
can be easily plug-and-play to perform pedestrian detection
with YOLO model architecture [21] and is an effective
alternative to transformer-based modules. We also leverage
the recurrent capabilities in the visual state space model [22]
to enhance the efficiency for MambaST in the inference
time. We conducted experiments on KAIST, a real-world
multispectral pedestrian detection benchmark [23], and we
present detailed detection performance evaluation and abla-
tion studies on various parameter choices. Our experimental
results show improved pedestrian detection performance and
efficiency (e.g., requiring significantly fewer model parame-
ters compared to transformer-based methods).

The contributions of this paper are summarized as follows.

• We propose MambaST, a novel cross-spectral spatial-
temporal fuser for effective and efficient pedestrian
detection. MambaST produces superior detection results
while requiring less model parameters and GFLOPs.

• We propose a novel plug-and-play MHHPA module for
hierarchical spatial-temporal feature extraction.

• We show detailed detection performance evaluation and
ablation studies on real-world pedestrian dataset.
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II. RELATED WORK

A. Preliminary on Mamba and Vision Mamba

Mamba [16] is a recent state space model (SSM) proposed
for sequence modeling. It maps input x(t) ∈ R to output
y(t) ∈ R through the following translation formulation

h′(t) = Ah(t) +Bx(t),

y(t) = Wh′(t),
(1)

where h(t) ∈ RN is the hidden state. A ∈ RN×N is the
evolution parameter. B ∈ RN×1 and W ∈ R1×N are
projection parameters. Originally, Mamba was only used
for 1-D sequences. Liu et al.[22] and Zhu et al.[18] later
adapted the SSM-based model to accommodate 2D image
data with two slightly different approaches (named VMamba
and Vision Mamba models). Liu et al.[22] unfolded image
patches into sequences along four distinct traversal paths,
processing each patch sequence through Mamba, and then
merged their outputs. Zhu et al.[18] aligned their model
architecture with the transformer [17] architecture and added
a positional embedding to each image patch. Both work show
the potential of using mamba architecture to extract image
features. Dong et al.[24], Li et al.[25], and Peng et al.[26]
use Mamba for multi-modal fusion but only address single-
frame fusion and does not yet generalize to multi-temporal
sequences. VideoMamba[27] focuses on temporal fusion but
does not address multi-modal spatial fusion. In this work,
we build a novel vision mamba-based pipeline for cross-
spectral (RGB and thermal) inputs, accounting for spatial
and temporal information in video sequences.

B. Cross-Modality Fusion Methods

Multi-modality sensor data provides complementary infor-
mation. RGB-Thermal [2], [28], [29], RGB-LiDAR [30]–
[32], and RGB-Depth [33], [34] are common cross-modality
sensor pairings for pedestrian detection in autonomous driv-
ing settings. Thermal cameras, in particular, provide finely
detailed grayscale images in a variety of lighting and en-
vironmental conditions, and are useful sensor sources for
fusion, especially in nighttime and low-light scenarios. A
variety of cross-modality (RGB-thermal) fusion methods
have been developed based on convolution neural networks
[5], [35], [36], probabilistic ensembling methods [37], and
transformers [38]–[41]. Feature fusion has also been used for
cross-modality pedestrian detection. For example, Network-
in-Network (NIN) [4] was used to fuse features from differ-
ent modalities and reduce feature dimensions; INSANet [42]
used intra- and inter-spectral attention blocks to learn mutual
spectral relationships; and Guided Attentive Feature Fusion
(GAFF) [7] guided the cross-modal feature fusion with an
auxiliary pedestrian mask.

C. Temporal Fusion for Video Understanding

Fusion methods including 3D convolutions[9]–[12], adaptive
2D convolutions [13], [14], and Transformers [15] have been
specifically designed for temporal fusion only, but these tem-
poral fusion methods lack the capability of utilizing multi-
modal inputs. Other approaches [4]–[8] focus on single-

frame cross-spectral spatial fusion and cannot directly adapt
to temporal fusion. In this work, we propose to extend a
Mamba architecture to account for temporal sequences by
recurrently connecting patched feature values across frames.

III. METHODOLOGY

We propose a novel Mamba-based Spatial Temporal Fuser
named MambaST for cross-spectral pedestrian detection. The
inputs of MambaST are (weakly aligned) multispectral (RGB
color and thermal) image pairs containing traffic scenes, in-
cluding pedestrians. The outputs of MambaST are bounding
box detections of pedestrians in each frame.

A. Overview of MambaST Model Architecture

Fig. 1 illustrates the backbone and object detection pipeline
within MambaST. We use YOLOv5 backbone, feature pyra-
mid network (FPN) layer, pyramid attention network (PAN)
layer [43], and detector for single-frame RGB and thermal
object detection. The RGB and thermal backbone produces
T × 5 × 2 feature maps. Here, T represents the temporal
duration, with each modality input yielding five layers of
feature maps, and the numeral 2 signifies the two modalities–
RGB and thermal. For spatial fusion, let I(Wi×Hi×Ci)

R and
I
(Wi×Hi×Ci)
T denote the third, fourth, and fifth layers of RGB

and thermal feature maps, respectively, where (Wi, Hi, Ci) ∈
{(80, 80, 4D), (40, 40, 8D), (20, 20, 16D)} are selected and
input into the MHHPA (denoted as F1, F2, F3, respectively).
Here, D is the multiplication factor for channel size; W,H,C
represent the feature map width, height, and channel size,
respectively. The output from this module is then added
back to the original feature maps, enhancing the fused
spatial representation. For notation simplicity, we do not
differentiate the notations of feature maps between different
fusion layers and use W,H,C to notate the width, height,
and channel size for each fusion layer. After the last fusion
layer, each feature map is passed into the YOLOv5 FPN
layer, PAN layer, and detector for final detection outputs.

B. Input Embedding

Consider the RGB feature maps IR ∈ RT×W×H×C , and
the thermal feature maps IT ∈ RT×W×H×C . We add a
positional embedding Epos to each feature map to encode
the position information of each feature pixel. We also add
thermal embedding ET and RGB embedding ER for the
spectra information of thermal spectrum and RGB spectrum,
respectively. All embedding are learnable during training.

C. Multi-head Hierarchical Patching and Aggregation

We propose a novel Multi-head Hierarchical Patching and
Aggregation (MHHPA) structure to extract both fine-grained
and coarse-grained information from both RGB and thermal
feature maps. Previous work such as VMamba [22] and
vision Mamba [18], as well as vision transformer [44], patch
and tokenize the feature maps before flattening features,
which reduces spatial resolution. This resolution reduction
can effectively reduce the time complexity, but can also cause
potential information loss and weaken the models’ ability to
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2 0 2 9

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi c hi g a n Li br ar y. D o w nl o a d e d o n A u g u st 0 1, 2 0 2 5 at 0 7: 2 9: 5 7 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



Algorithm 1 Multi-head Hierarchical Patching and Aggre-
gation (MHHPA)

1: for k = 1 to K do
2: IkRt

← Patchingk(IRt
)

3: IkTt
← Patchingk(ITt)

4: zkt ← OCF(IkRt
, IkTt

)
5: xk

t ← zktWk

6: hk
t ←⃝N

i MambaBlocki(xk
t )

7: xk
t
′ ← Linear(hk

t )

8: ˜IkRt

′
, ˜IkTt

′
← ReshapeSplit(xk

t
′
)

9: IkRt

′
= IkRt

+ ˜IkRt

′

10: IkTt

′
= IkTt

+ ˜IkTt

′

11: end for
12: ITt

′ =
⊕

k Upsamplek(I
k
Tt

′
)

13: IRt

′ =
⊕

k Upsamplek(I
k
Rt

′
)

14: Output ITt

′, IRt

′, h1:K
t

Algorithm 2 Recurrent Structure for Temporal Fusion
1: Initialize t = 1, h0 = 0
2: while IRt and ITt exist do
3: I ′Rt

, I ′Tt
, h1:K

t = Alg. 1(IRt , ITt , h̃
1:K
t−1)

4: h̃1:K
t = Last(h1:K

t )
5: end while

is the number of patch sizes. For each frame at time t and
patch size index k, let IkRt

, IkTt
∈ RH/Sk×W/Sk×CS2

k denote
the feature maps for RGB and thermal spectra, respectively.
Each pixel within these maps is indexed by its row i and
column j. A pixel at position (i, j) in the RGB and thermal
maps is denoted as IkRt,(i,j)

and IkTt,(i,j)
. The OCF constructs

a feature vector xk
t for the tth frame by interleaving pixels

from both feature maps, written as
xk
t =

⊕
i

[Jk
even,t(i), J

k
odd,t(i)]

where Jk
even,t(i) =

⊕
j is even

[IkRt,(i,j), I
k
Tt,(i,j)]

Jk
odd,t(i) =

⊕
j is odd

[IkRt,(i,W/Sk−j), I
k
Tt,(i,H/Sk−j)]

(2)

Here,
⊕

represents the concatenation operation over all
pixel indices (i, j). This approach ensures that the structural
integrity and the spatial relationships of the multi-spectral
data are maintained in the flattened representation.

E. Recurrent Structure for Temporal Fusion

The structured state space sequential model states that the
Mamba translation function (1) resembles a recurrent neural
network structure with an input-variant translation function
[16]. To perform temporal fusion, we model recurrent con-
nections between temporal frames on top of the MHHPA
module. Suppose our MambaST performed fusion for the
first t frames and produced hidden vector ht ∈ RWH×C .
We take the last hidden output, h̃t ∈ R1×C , concatenate it
with the flattened feature map of the t+ 1th frame xt+1, and
input them into N layers of MambaBlock. This results in the
updated outputs I ′Tt+1

and I ′Rt+1
by Alg. 1, with h̃t+1 ready

to concatenate to the order-aware flattened feature map of
the (t+2)th frame. The procedure is depicted in Fig. 2, and
formulated in Alg. 2.

IV. EXPERIMENTAL RESULTS

A. Dataset and Evaluation Metric

We evaluate our proposed MambaST approach on the KAIST
Multispectral Pedestrian Detection Benchmark dataset [23].
For training, the sanitized annotations provided by Li. et.
al. [5] which includes 41 video series with 7,601 images
pairs are used. While testing is performed on 25 video series
with 2,252 images featuring (nearly) aligned thermal-RGB
pairs that capture traffic scenes in both day and night/low-
light environments.

We provide evaluation results on two settings from the
KAIST benchmark, reasonable and reasonable small. The
“reasonable” setting includes non-occluded and partially-
occluded pedestrians taller than 55 pixels, and the “reason-
able small” setting includes pedestrians between 50 to 75
pixels in height. Both settings use the log-average miss rate
(LAMR) over the range of [10−2, 100] false positives per
image (FPPI). Lower LAMR corresponds to better perfor-
mance. We also report recall values, where higher recall
is desirable (reduces false negative rate). Additionally, to
evaluate the efficiency of the algorithm, we report the number
of parameters and giga floating point operations (GFLOPs)
during inference, where lower number of parameters and
lower GFLOPs correspond to smaller number of parameters
and floating point operations required for processing the
image sequences (lower is regarded as more efficient).

B. Implementation Details

The Multi-head Hierarchical Patching and Aggregation
(MHHPA) module employs patch sizes S

(1)
1:4 = {1, 2, 4, 8}

for the first MHHPA block and omits patching for the sub-
sequent blocks. Patch sizes are constrained to powers of two
for dimensional consistency. The number of MambaBlock
layer N = 8. For the backbone, we follow the standard
YOLOv5L setting and set D = 64. The number of frames
(temporal duration) T = 3, unless otherwise specified (in
ablation studies). The KAIST images are of size 640× 512,
and we pad it to 640 × 640 (i.e., H = W = 640) during
training. The original KAIST dataset was captured at 20Hz.
To avoid redundancy from consecutive frames, we applied a
temporal stride of three, i.e., skipping every two frames. Our
proposed network was implemented using Python 3.10.13
and Pytorch 2.1.2, and executed on NVIDIA A100 GPUs.

C. Comparison with Other Cross-Modal Fusion Methods

We evaluate our proposed MambaST fusion module against
the fusion sources (RGB only and Thermal only), as well
as a basic feature addition strategy and an advanced Cross-
Modality Fusion Transformer (CFT) [38]. In the basic feature
addition approach, the RGB and thermal features were sim-
ply added and the resulting feature maps were broadcasted
across modalities. This serves as a baseline comparison.
For a more advanced cross-modality fusion approach, we
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TABLE I
PEDESTRIAN DETECTION RESULTS ON THE KAIST DATASET (FULL AND SMALL).

LAMR(%)↓ Recall(%)↑ LAMR(%)↓ Recall(%)↑
Fusion Method All Day Night All All-Small Day-Small Night-Small All-Small
RGB only 13.96 16.72 12.47 99.61 18.11 18.48 19.31 99.01
Thermal only 15.54 19.64 8.28 99.52 20.67 22.19 18.59 99.20
Feat. Add. 12.47 15.31 7.48 99.18 16.61 19.02 11.80 98.01
CFT [38] 11.34 13.37 7.26 98.42 16.76 18.88 12.43 96.87
T-CFT 10.38 12.16 7.15 97.73 16.11 17.68 12.06 96.49
D-CFT 8.68 11.45 4.53 98.69 15.21 16.51 12.97 96.59
MambaST (Ours) 6.67 8.67 3.12 99.86 11.37 13.56 7.32 99.34

TABLE II
EFFICIENCY COMPARISON BETWEEN OUR MAMBAST AND CFT VARIANTS ON THE KAIST DATASET.

Param.(M)↓ GFLOPs↓ Latency (ms)↓
F1 F2 F3 Total F1 F2 F3 Total F1 F2 F3 Total

CFT [38] 5.12 25.29 100.89 131.3 4.86 19.35 77.37 101.61 8.7 8.2 8.8 25.6
T-CFT 6.42 25.41 101.17 133.01 4.87 19.37 77.39 101.63 8.9 8.3 8.8 26.0
T-CFT (w/o DS) 16.15 30.13 103.23 149.51 2907.72 2903.4 2901.24 8712.36 570.0 532.0 562.8 1664.8
D-CFT 2.86 9.62 34.94 47.42 90.6 84.93 82.1 257.63 20.9 20.7 20.4 62.0
MambaST (Ours) 3.07 3.80 15.64 22.52 1.83 1.82 1.79 5.43 25.8 6.8 6.5 39.1

TABLE III
ABLATION STUDY ON THE KAIST DATASET WHEN VARYING K (DIFFERENT PATCH SIZES), OCF, AND THE NUMBER OF

FRAMES T IN TRAINING. THE MEDIAN, MAX, AND MIN VALUES OF MISS RATE WERE REPORTED ACROSS FIVE RUNS.
K OCF T LAMR (Reasonable) ↓ LAMR (Reasonable small) ↓ Para. (M) ↓ GFLOPs ↓

F1 F2 F3 median max min median max min F1 F2 F3 total F1 F2 F3 total
1 1 1 3 7.22 7.86 6.85 12.5 13.08 12.19 8.5 16.3 55.6 80.4 2.12 1.90 1.79 5.81
2 1 1 3 7.30 7.70 7.10 13.68 14.3 12.68 5.1 16.3 55.6 77.0 1.96 1.90 1.79 5.65
2 2 1 3 7.19 7.54 7.06 12.39 12.61 12.02 5.1 9.2 55.6 69.9 1.96 1.82 1.79 5.57
4 1 1 3 6.78 6.95 6.6 11.94 12.84 11.3 4.1 16.3 55.6 75.9 1.84 1.90 1.79 5.53
4 2 1 3 6.87 7.58 6.8 12.8 13.15 11.68 4.1 9.2 55.6 68.9 1.84 1.82 1.79 5.45
4 2 2 3 7.48 7.88 7.14 13.72 14.13 13.38 4.1 9.2 30.5 43.8 1.84 1.82 1.75 5.40
4 4 2 3 7.81 8.16 7.38 14.21 14.61 13.48 4.1 10.1 30.5 44.7 1.84 1.76 1.75 5.34
4 1 1 ✓ 1 7.44 7.82 6.89 11.87 13.02 11.60 4.1 16.3 55.6 75.9 1.84 1.90 1.79 5.53
4 1 1 ✓ 3 6.73 7.2 6.62 11.37 12.33 10.92 4.1 16.3 55.6 75.9 1.84 1.90 1.79 5.53
4 1 1 ✓ 7 6.32 6.82 6.20 11.11 11.68 10.25 4.1 16.3 55.6 75.9 1.84 1.90 1.79 5.53

compare to CFT [38], a top-ranking cross modality fuser
for pedestrian detection. Note that the original (vanilla) CFT
model only works for a single frame. To account for temporal
fusion, we implemented three variations of CFT for com-
prehensive comparison. 1) CFT model, where the original
CFT was applied frame-to-frame; 2) T-CFT model, where
the temporal information was integrated by concatenating
feature maps from all timesteps, written as

x′
i,k = xi,k + CFT(ConcatNi (xi,k)); (3)

and 3) D-CFT model, a deformable variant that replaces
standard self-attention in the transformers with deformable
attention [46] to handle temporal data more efficiently,
written as

x′
i,k = xi,k + DCFT(ConcatNi (xi,k)). (4)

Table I shows the pedestrian detection results on the
KAIST dataset. Overall, the fusion methods outperform the
single-modality sources (first two rows), which indicates the
necessity of cross-spectral fusion. Thermal-only produced
lower miss rate at Night than RGB-only, while RGB-only
performed better during the Day. Among the CFT variants,
D-CFT (CFT with deformable attention) performed the best
compared with temporal concatenation (T-CFT) and origi-
nal CFT. Our proposed MambaST outperforms the single-
modality baselines as well as all other cross-modal fusion

models for both day and night settings on the KAIST dataset,
with the lowest log-average miss rate of 6.67% overall,
8.67% during the day, 3.12% at night, and a highest 99.86%
recall.

D. Evaluation on Small Object Detection

Following the KAIST benchmark settings, pedestrians bete-
ween 50 to 75 pixels in height are considered small-sized
objects. The last four columns in Table I reports the detection
results specifically the small-scaled pedestrians. As shown,
the CFT and T-CFT, which use arithmetic addition as a
fusion strategy, performed poorly. This is likely due to
resolution reduction via average pooling, which removed
the fine-grained information for small-scaled objects. Our
MambaST kept full resolution before the fusion step and
produced superior performance across all settings, with a
LAMR of 11.37% overall, 13.56% during the day, and 7.32%
at night, and achieving the highest recall rate of 99.56%. This
demonstrates the effectiveness of our MambaST approach in
detecting small-scale pedestrians.

E. Efficiency Evaluation

Table II reports the number of parameters, gigafloating point
operations (GFLOPs), and latency (ms) during inference.
Note that in our T-CFT experiments, the feature maps were
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Fig. 3. Visual examples of detection results on the KAIST dataset. All bounding boxes are filtered by confidence ≥ 0.5.

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART OF THE
KAIST DATASET WITH “SANITIZED” ANNOTATION.
BEST; SECOND BEST IN MAMBAST PERFORMANCE.

Method LAMR(%↓)
All Day Night

MSDS-RCNN [5] 7.49 8.09 5.92
GAFF [7] 6.48 8.35 3.46
MS-DETR [40] 6.13 7.78 3.18
CFR [47] 6.13 7.68 3.19
MambaST (1 frame) 7.44 9.65 3.42
MambaST (3 frames) 6.67 8.67 3.12
MambaST (7 frames) 6.32 8.22 2.88

first downsampled to 8 × 8 before fusion. This reduces the
number of parameters and produced better results empiri-
cally. The T-CFT module, without downsampling (w/o DS),
has 149.51M parameters and very high GFLOPs (8712.36).
The downscaled T-CFT and the original CFT had signif-
icantly lower GFLOPs (101.63 and 33.87, respectively).
The deformable variant of CFT (D-CFT) requires fewer
parameters but has high GFLOPs. In contrast, our MambaST
was able to achieve superior detection performance while
requiring the lowest number of parameters (22.52M) and
GFLOPs (5.43). Our MambaST also has a relatively low
inference latency (less than 40ms).

F. Comparison with State-of-the-art Methods

Table IV shows the comparison results against the state-of-
the-art fusion methods on the KAIST dataset with “sani-
tized” annotations. MSDS-RCNN [5] combines a convolu-
tion neural network-based multispectral proposal network
and a multispectral classification network to perform fu-
sion. GAFF [7] proposes inter- and intra-modality attention
modules to dynamically weigh and fuse the multispectral
features. MS-DETR [40] fuses RGB and thermal features
in a multi-modal Transformer decoder and adaptively learns
the attention weights. CFR [47] cyclically fuses and re-
fines spectral feature from each modality to achieve cross-
spectral complementary/consistency balance. Our MambaST

achieved competitive detection performance compared with
the state-of-the-art methods, and achieves superior detection
performance at Night. As the number of input frames in-
creased, our detection performance also improves, achieving
a low 2.88% LAMR at Night given seven frames as input.

G. Ablation Studies

We conducted multiple sets of ablation studies to evaluate the
effect of parameter choices. To reduce the result variance
and ensure fairness, we trained using the entire set and
selected the checkpoint from the 10th epoch for testing. We
also trained the model five times with different seeds for
each hyperparameter setup and reported the median overall
LAMR.

First, we varied tested different numbers of patch sizes (K)
across MHHPA blocks, as outlined in Table III. The patch
sizes range from one size (K = 1) to four sizes (K = 4)
per block, tailored to maintain powers of two for consistent
embedding dimensions. The first seven rows in Table III
show that the (4,1,1) setting, i.e., using four patch sizes in the
first MHHPA block and omitting patching for the subsequent
blocks, achieves lowest Log-average Miss Rate (LAMR) in
both ”reasonable” and ”reasonable small” settings of the
KAIST dataset without excessive computational overhead.

Second, we evaluated the impact of the Order-aware
Concatenation and Flattening module (OCF). We observed
based on row 4 and row 9 in Table III that incorporating OCF
further enhanced detection performance, reducing the median
LAMR from 6.78% to 6.73% in the ”reasonable” setting and
from 11.94% to 11.37% in the ”reasonable small” setting.

Third, we performed further experiments varying the num-
ber of frames (temporal duration T =1, 3, and 7). The last
three rows in Table III show that our model’s performance
improves with the number of frames used, achieving the
lowest LAMR with seven frames as input. This makes sense
as one of the advantage of a Mamba-based model is its
strength in modeling longer sequences. Future work will
include evaluation on longer sequences and other datasets.
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H. Visual Results

Fig. 3 shows example visual results for pedestrian detection
on the KAIST dataset. We present our proposed MambaST
model results, compared to feature addition, CFT, D-CFT,
and GAFF models. In row (a), we observed that the CFT
model failed to detect some small pedestrians near the
center of the scene, while other methods, including the
naive feature addition strategy was able to correctly detect
more pedestrians. This implies the importance of avoiding
resolution reduction in cross-spectral spatial temporal fusion.
Similarly, in row (b), our MambaST successfully detected the
pedestrians in the scene. Row (c) presents an interesting case,
where some annotations in the KAIST dataset were noisy. It
loosely labeled several pedestrians in the same bounding box.
As shown, our MambaST model was still able to correctly
detect multiple pedestrians in the scene.

V. CONCLUSION

We propose MambaST, a Mamba-based spatial-temporal fu-
sion pipeline for effective and efficient cross-spectral pedes-
trian detection. By utilizing the novel Multi-head Hierarchi-
cal Patching and Aggregation (MHHPA) module, MambaST
efficiently handles the complexities of cross-spectral data
without the excessive computational overhead commonly
associated with similar models. The MHHPA module can
be easily swapped (e.g, with a CFT) and can plug-and-play
with a variety of detectors. Our experiments on the KAIST
dataset show superior detection performance, particularly in
low-light conditions and for small pedestrian detection.
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