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Towards the Optimal Control of an Active Mechanical Motion
Rectifier Power Take-off using Dynamic Programming

Lisheng Yang, Xiaofan Li, and Lei Zuo

Abstract— This paper presents a numerical method to
approximately solve a challenging optimal control problem
arising from a new mechanical power take-off design. The active
mechanical motion rectifier design, while possessing great
potential for converting energy from an oscillating mechanical
structure, poses a complex control problem where the switching
times and control variables need to be optimized simultaneously
subject to implicit constraints from rectification requirements.
A novel method is proposed to approximate the optimal solution
based on dynamic programming (DP) techniques. By
discretizing the state space and the control horizon, a new multi-
step forward dynamic programming scheme is proposed to
efficiently incorporate the switching time decisions into the
conventional optimization of control variables. The proposed
method is flexible enough to accommodate nonlinear dynamics
and complex dynamic constraints. A numerical example
demonstrated the effectiveness of the proposed method by
controlling the active mechanical motion rectifier power take-off
for an ocean wave energy converter.

I. INTRODUCTION

Harvesting energy from vibrational mechanical structures
is a prospering research area with applications to different
fields. Power take-off (PTO) is a critical component for
vibration energy harvesters which refers to the mechanical
mechanism and transducers that convert the source vibration
energy to electricity. For large scale energy harvesters, PTO
generally is comprised of a transmission system and an electric
generator. For example, wave energy converters (WEC) have
used both hydraulic and mechanical transmissions to drive
generators from the oscillatory motion of a wave capture
structure [1,2]. For large generators, experiments show their
efficiency rapidly decreases when their speeds drop below
certain ranges [3]. Since vibrational energy sources such as
ocean waves always induce oscillatory motions of the
harvester structure, generators directly connected to such
structures have to frequently reverse rotational directions and
cross into the low-speed low-efficiency zones. To increase the
generator’s efficiency, motion rectification mechanisms are
designed to keep the generator’s rotation unidirectional above
certain thresholds. The most common rectification
mechanisms are hydraulic rectification circuits, which are
especially suitable for large scale harvesters due to their high
power density [4]. However, employing complex hydraulic
circuits introduces additional losses in the transmission and the
gain on the generator efficiency may be offset. Compared with
hydraulic transmissions, mechanical transmissions involving
only rigid body drivetrains are more efficient.
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Therefore, mechanical motion rectifiers (MMR) are
designed to further increase the PTO’s efficiency. Since the
first prototype of MMR was designed and tested [5], it has
been used in various energy harvesters including regenerative
shock absorbers, backpacks, road pavements, and wave energy
converters.  Although successfully increasing PTO’s
efficiency, MMRs have the drawback of limited
controllability, which hinders their potential for large scale
renewable energy applications where control is often needed
to achieve economic feasibility [6]. Recently, a new generation
of MMR was proposed and designed to enhance the
controllability of the PTO [7]. This active mechanical motion
rectifier (AMMR) design allows bidirectional force
transmission and active rectification switching, eliminating
some constraints posed by previous passive MMR designs.
Still, designing an optimal controller for the AMMR remains
challenging, mainly due to system switching and the inevitable
loss of controllability when the generator is disconnected from
the oscillating structure.

While there have been some works trying to solve optimal
control problems for switching systems [8-11], they assume
the system can be controlled for each switched subsystem. For
systems using the AMMR PTO, control force is a constant
zero when the generator is disconnected. In other words, no
control can be applied during this disconnection period. This
restriction makes it impossible to use global optimal control
necessary conditions such as the methods of [8] and [11].
Alternatively, the AMMR’s optimal control can be formulated
as a mixed integer optimal control problem and solved using
the relaxing method suggested in [9]. However, the resulting
complementarity constraint makes the optimization problem
hard to solve. The convergence of gradient-based optimizers
is not guaranteed for such problems. And it can easily
converge to infeasible points. Therefore, this method is
difficult to be implemented in real-time control.

In this paper, a new numerical method based on dynamic
programming (DP) is proposed to approximately solve the
optimal control of a vibration energy harvester withan AMMR
PTO. Dynamic programming has been used in model
predictive control of wave energy converters and showed
tractable computation complexity [12]. For the AMMR
problem, DP’s discretization of state spaces and time horizon
provides a tractable way to simulate different switching
decisions within a bounded time. A novel multi-step DP
algorithm is proposed to simultaneously optimize switching
times and control forces. The algorithm’s computational time
is bounded by the discretization resolution. Therefore, the
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algorithm is guaranteed to return a solution within specified
time and thus suitable for real-time control implementation.

The paper is organized as follows. Section 2 describes the
AMMR model and formulates the optimal control problem.
Section 3 presents the new DP method to solve the problem.
Section 4 shows a numerical example to demonstrate the
proposed method’s effectiveness and Section 5 concludes the

paper.

II. PROBLEM FORMULATION

A. AMMR PTO Modelling with an Energy Harvester

The AMMR PTO, in its simplest form, comprises two
controllable clutches and a generator. A vibration energy
harvester can have translational or rotational oscillatory
motions, but both can be transformed to the rotational motion
of the generator shaft through some gear transmissions.
Therefore, a generic and simplified model of the AMMR
energy harvester is presented in Fig. 1 for the formulation of
the control problem.

The main component of a vibration energy harvester is an
oscillator subject to external excitations. This oscillator’s
states generally include its position and velocity, and its
dynamics can be represented as:

X =f(x,w) M

where x is the state of the oscillator including its position 4 and
velocity w, and w is the external force acting on the oscillator.
Physically there are three operation statuses of the AMMR
PTO as shown in Fig. 1. When positively engaged, the
generator’s velocity equals the oscillator’s velocity, while the
polarity is reversed when negatively engaged. Essentially,
during these two statuses the generator and the oscillator move
together as a rigid body, and the harvested power equals —wu,
where u is the electromagnetic force controlled by the
generator. Note that since both u and w reverse polarity during
negative engaging, the power expression remains unchanged.
Therefore, the same dynamics equation can be used for both
engaging statuses when optimizing the power:

X =fen(X5f;7u) (2)

where f, is the external excitation force acting on the oscillator
and is the main source injecting energy into the system. At
disengaging status, the oscillator and the generator become
two separate systems. The oscillator’s motion is only driven
by the external excitation as:

X = fde(xs f;) (3)

The generator continues to rotate and generate power that
equals —wgent. The generator’s dynamics in its simplest form
is just a first order inertia under control, but it can also consider
more realistic scenarios accounting for mechanical losses such
as gears’ damping and bearings’ friction. Since the generator’s
rotation is mostly unidirectional, only its velocity is of concern
in its dynamics:
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Figure . AMMR PTO modelling with a vibration energy harvester

B. Energy Maximization Problem with Prediction

Assuming f.(t) is known for the time horizon [0,T], the
optimal control problem is formulated in (6)-(10). Here, s is
the switching time vector of the clutches. The admissible set
of s is defined as:

_ n+2
A |S=[8085058,,,]€R

S= &)

s,=0,5, ,<s.,s ., =T,i=1...,n+1
max J(s,u) = Y| j ~@,,, (Ou(t)dt 6)

seS,u(t)eluy u, ] =0

st. x=f_(x,f,u), tels,s,), i1=0,2,4.. (7

x=f,(x, 1), tels,s,), i=135.. (8)
By = Jfon(@post), LE[S,,8,,), 1=13,5.. (9
@,,, 2w, (10)

Note that for this problem the rectification constraint is
explicitly enforced in (10) and wy is the minimum speed
threshold for the generator. Equation (7)-(9) assumes that the
AMMR is in engaging status at time 0. If in disengaging status
at time 0, the indexes of s need to be swapped between (7) and

(8)(9).

Remark 1: When the AMMR’s status transitions from
disengaging to engaging, an impact will occur to synchronize
the speeds at the two sides of the clutch. This impact will cause
state jump which needs to be described by separate dynamics.
To reduce complications, it’s assumed the generator is always
controlled to be at the same speed as the oscillator before
clutch engaging. Avoiding impacts is also beneficial to the
device’s reliability.

Remark 2: To fulfill the rectification requirement, the
generator needs to be at least disengaged every time before the
oscillator’s velocity crosses zero. The number of velocity zero
crossings in the optimization horizon depends on the excitation
force and the applied control, and thus is not known in
advance. Switching number n in (5) is chosen as an upper
bound of possible switches in the optimization horizon. It’s
anticipated that if fewer switches are better, some components

d)gen = fg o (a)gen . u) (4)  ofthe optimal switching time vector s will turn out to have the
same values.
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III. METHODOLOGY

A. Problem Discretization

Due to the need to simultaneously optimize switching time
s and generator control u, the optimal control problem (6)-(10)
is hard to solve analytically and some numerical methods have
to be taken. Therefore, first a discretization of the original
problem is presented in (11)-(16). The time horizon [0,T] is
discretized by a time resolution of At, with NAt=T. The
excitation and control are discretized in a zero-order hold way
with k denoting the time index such that ti=kAt. The
discretization resolution should be at least an order of
magnitude higher than the highest dominant frequency of the
excitation signal to be representative of the original problem.

max J(s,,u) =

| ——
sq €Sy u(k)eluy u,,l

n 5?171
> Ao, (k) + o, (k+Du()At/2 (1)
i=0 k=sf1
st x(k+1) =12 (x(k), £, (k),u(k))
kels,,s'), i=0,2,4.. (12)
x(k +1) = £, (x(k), £,(k))
kels,,s"), i=13,5.. (13)
Oy (k+1) = [ (@, (K),u(k))
kels,,sih), i=13,5.. (14)
@,,, (k) > o, (15)
5,2 s, =[s,5,,..,s0" e 7" 6

0 i-1 i n+l .
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B. Multi-step Dynamic Programming Algorithm

Dynamic programming is a powerful tool for solving
sequential optimization problems which include discrete
optimal control problems. The essence of the method is to
discretize the state space of the system at each time step and
optimize the cost of each discretized state at each step in a step-
by-step recursive way. The recursive process can start from the
initial time moving forward or from the end time moving
backward. For the energy maximization optimal control
problem, since there are no terminal constraints for states at
the end time, and the state at the initial time is given, a forward
dynamic programming process is more suitable.

First, a special case of the problem is considered to
illustrate the conventional DP process. When n=0 and sa =
[0,N], there is no clutch switching for the entire optimization
horizon. In such a case only the generator control u needs to
be optimized for each time step. The DP recursive relation is
then governed by the Bellman equation (17), where J,(x) is the
maximal energy that can be obtained when the oscillator
moves from the initial state xo at time step 0 to the state x at
step g. Note that since the generator is always engaged for this
case, ween = . Z belongs to the set of states at step k-1 that can
reach the state x via an admissible control. L; is the single step

energy obtained when applying that control. @w. and wx are the
velocity components of states z and x. Knowing the optimal
energy as a function of states at the current step, the optimal
energy at the next step can be solved as a single step optimal
control problem. In practice, when analytical derivation of the
optimal control is hard to solve from (17), an efficient
recursive numerical method can be applied using states and
control discretization.

J,(x)=

max (L (z,u(q—-1))+ Jo (z))
u(g—Deluy u,,;]

s.t. Xx= f;(zaf;(q_l)au(q_l))
L (z,u(q-1) =, +oJu(¢g-DAt/2 (17
Let the state space be discretized as a grid set Xa={xq',
Xd%,..., XM}, and the control be discretized as the set Ua={u4',

ud®,..., ud®} with uq'=us and ug®=u,,. The recursive algorithm
is summarized in Algorithm 1.

Algorithm 1: Forward Optimization (Single step)

1 For k=0 to N-1

2 For every index m in R(k)

3 Eaccu = Emap(m,k);

4 For every uq in Ug

5 xe = funl (X" fuk)u0); Add [x] to R(kcH1);
6 Energy = Ly(x4",uq)+Eaccu;

7 If Energy > Emap([x.].k+1)

8 Emap([x.].k+1) = Energy;

9 Tracemap([x.].k+1)=m; Umap([x.],.k+1)=ug;
10 Endif

11 Endfor

12 Endfor

13 Endfor

The process moves from step 0 to step N-1 and the
intermediary optimization results are stored in four maps for
resolving the optimal control later on. The reachability map R
stores the indexes of the reachable states at each step. The
optimal energy map Emap stores the optimal energy associated
with each state at each step. The trace map Tracemap stores
the index of the state at the last step leading to the optimal
energy of a state at the current step. The control map Umap
stores the optimal control leading to a state at the current step.
At each time step, each feasible control is applied to each
reachable state through the dynamics on line 5 in Algorithm 1.
The resulting state xe at the next step is quantized to a discrete
state and its index [xe] is stored as a reachable state.
Meanwhile, the accumulated energy of applying this control is
compared to the maximal energy stored in the energy map. If
it exceeds the existing maximum, the energy, trace, and control
maps are updated to record the new optimum. After the
forward process finishes and all the storage maps are
propagated, the optimal trajectories can be easily resolved
from a backward tracing process shown in Algorithm 2.

Algorithm 2: Backward Tracing (Single step)
1 Find idx = argmax,, Emap(m,N); k=N;

2  Whilek>0

3 xopm(k) = x4'%;

4 uopm(k-1) = Umap(idx,k);
5 idx = Tracemap(idx,k);

6 k=k-1;

7 End
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The primary distinction of the general problem (11)-(16)
from the always engaging case is the added option of another
control action at each step, i.e. disengaging the generator. If
continuing to use the single step DP in (17), three troublesome
issues will arise. First, a separate state is required to describe
the generator speed as it will not equal the oscillator velocity.
Second, the number of controls at each step will double due to
the binary option of engaging/disengaging. These two issues
will significantly increase computation time especially if the
discretization resolution is high. Another issue is that there will
be no restrictions on the length of interval between switching.
The switching frequency can get as high as 1/At and may add
unnecessary burden to the clutches for marginal energy
increase. For these reasons, a modified multi-step DP relation
is proposed in (18).

J,(x)=

max
u(k)elupy iy,

MAX | max (L, (2.3)+ J, (2).k < g1

st. x= f::l (z, f,(k),u(k)),
X, = f; (z, f,(k—1)), and

Xk+l :f;e(xk’ﬂ(k))"":xZf:e(xkﬂf;(q_l)) (18)

For this modified equation, one state can be reached from
either the last step or multiple steps back. When it is reached
from the last step, the current status remains engaging and the
optimal energy is computed in the same way as the single step
DP. When it is reached from an earlier step, the current status
changes from disengaging to engaging. The optimal energy
during the multistep disengaging span is represented as Lm.
The optimal trajectory for an oscillator state is chosen from all
the previous steps T(x,q) that can reach that state. The key
insight that leads to this method is that Lm can be expressed
analytically. During disengagement, the generator is a first
order inertia converting its kinetic energy to electricity. When
assuming reengaging at the same speed with the oscillator, the
maximal energy recovered during disengagement is simply the
kinetic energy drop of the generator inertia. When the
generator’s losses are considered, Lm can still be explicitly
expressed either by solving an optimal control for a generator
model or adding an efficiency coefficient.

(L(zu(k)+J (2).k=q-1

k=qg-1
k<qg-1

Fig. 2 illustrates how the multistep DP works and
compares it with the single step DP. For multistep DP, not all
the states have the option of disengaging at any time, instead a
set of disengaging rules dictates which states can disengage.
This allows restrictions to be placed on the switching pattern
and reduces computation loads. When executing the
disengaging action, a forward simulation is performed until
reengaging conditions are met. The reengaging conditions are
set such that rectification constraints are satisfied. Energy is
directly computed for the disengaging steps without the need
of step by step control optimization, keeping the computation
tractable.

Essentially, the multistep DP process allows some
switching rules to be enforced within the DP framework.
These rules reduce exploration spaces and promote more
practical switching patterns. More strict rules lead to less
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Figure 2. Illustrations of single step and multistep dynamic programming

computation time and more predictable switching patterns,
while looser rules more closely approximate the true energy
optimum at the cost of more computation time and less
favorable switching patterns. In this work, a set of rules based
on the oscillator’s velocity is proposed as an example. The
corresponding multistep DP algorithm is presented in
Algorithm 3. In the pseudocode g(x) is a function outputting
the oscillator’s velocity from its state. Compared with
Algorithm 1, the main difference of Algorithm 3 is the added
branch of disengaging action from line 17-40. The disengaging
rules are set based on several discrete speed thresholds (only
two are showed in the pseudocode). Basically, the generator
can be disengaged when its speed drops below a threshold if
its peak speed exceeds the threshold before. This is to ensure
that disengaging happens when the oscillator’s speed
decreases and is about to reverse direction. An additional
Peakmap storage is needed to record the peak speed during
the engaging status. From line 19-39, the oscillator’s states are
continuously simulated until either its speed exceeds the
maximal reengaging speed Vre2 or the prediction horizon
ends. During this simulation, reengaging is allowed after the
oscillator’s velocity crosses zero and exceeds the minimal
reengaging speed Vrel. The state after reengaging is marked
as a reachable state and the associated storage maps are
updated. Note a new Tmap is introduced to record the time
step leading to the reengaging state, which will be used in the
multistep backward tracing. The rules chosen in this algorithm
restrict the switching to happen just for rectification
(disengaging at velocity zero crossing). By setting Vrel> wy
and Vth2>Vth1>w,, the minimal generator speed constraint
(15) is also satisfied. After the forward optimization finishes,
the optimal control sa and uopm can be resolved in a backward
tracing process shown in Algorithm 4.
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Algorithm 3: Forward Optimization (Multistep)

1 For k=0 to N-1

2 For every index m in R(k)

3 Eaccu = Emap(m,k); Vp = Peakmap(m.,k); Vs = [g(x4")];
4 For every ug in Ug

5 Xe = fen(Xa",fu(k),u0); Add [x] to R(k+1);
6 Energy = Ly(x4",uq)t+Eaccu;

7 If Energy > Emap([x.].k+1)

8 Emap([x.].k+1) = Energy;

9 Tracemap([x.].k+1) = m; Umap([x.].k+1)=ug;
10 newp = max(|g(x.)l,Vp);

11 If newp > Peakmap([x.].k+1)

12 | Peakmap([x,],k+1) =newp;

13 Endif

14 Tmap([x.],k+1) =k;

15 Endif

16 Endfor

17 If (Vp> Vthl & Vs < Vthl) || (Vp > Vth2 & Vs < Vth2)
18 Vs=0; zcro=0; kk=k; x&=x4";

19 While (Vs < Vre2 || zcro ==0) & kk <N

20 Xe = Faed(Xs, fu(kK)); Vs =|g(xe)[;

21 If zcro=0

22 If sign(g(x.)) ~= sign(g(xs))

23 | zcro == 1;

24 Endif

25 Elseif zcro==

26 If Vs> Vrel

27 Add [x.] to R(kk+1);

28 Energy = Li(x4™,Xe)+Eaccu;

29 If Energy > Emap([x,],kk+1)

30 Emap([x.],kk+1) = Energy;
31 Tracemap([x.],.kk+1) =m;
32 Umap([x.],kk+1) = 0;

33 Peakmap([x.].kk+1) = [g(x.)|;
34 Tmap([x.],kk+1) =k;

35 End

36 Endif

37 Endif

38 Xs = Xo; kk =kk+1;

39 Endwhile

40 Endif

41 Endfor

42 Endfor

Algorithm 4: Backward Tracing (Multistep)

1 Find idx = argmax,,, Emap(m,N);
2 k=N; sq=0; ks =n+2; sq(ks)=N;
3 While k >0

4 ke =k; xopm(kc) = x4;

5 uopm(ke-1) = Umap(idx,kc);
6 idx = Tracemap(idx,kc);

7 k = Tmap(idx,kc);

8 If k<ke-1

9 ks = ks-1; sa(ks) = kc;

10 ks =ks-1; sq(ks) =k;

11 Endif

12 End

IV. RESULTS

The proposed control method is tested on a simplified
wave energy converter model with the AMMR PTO. The
WEC’s wave capture structure typically has the same
dynamics as a spring-mass-damper (SMD) system under
harmonic wave excitations. With panchromatic irregular
waves, the oscillating capture structure’s dynamics is more
complex, generally needing to be approximated by a higher
order model. For this study, a second order SMD model is used
to represent the WEC oscillator’s dynamics. Second order
model can match the WEC dynamics within a frequency
range. Since the wave excitation spectrum typically has a
narrow band, a second order model can be tuned to match the
WEC dynamics at the frequency range where the wave power
is concentrated. The parameters chosen for the model in this
paper roughly match an oscillating surge device around its
resonant frequency [13]. The buoyancy spring coefficient is
300 Nm/rad. The physical mass and added mass combined are
70 Kgm?. The radiation damping is 60 Nms/rad. The device
parameter is then scaled up 5 times using the Froude law. The
AMMR model assumes perfect clutches where
engaging/disengaging  happens  instantaneously.  The
mechanical friction and damping are lumped to 140 Nms/rad,
adding to the radiation damping. The generator’s inertia is 50
Kgm? after equivalized with the gear ratio. The generator
torque range after multiplied by the gear ratio is from -2000
Nm to 2000 Nm. The control torque is discretized to 400
levels. The two states for second order systems are just
position and velocity. The position of a surge device is
restricted to £30 degrees and discretized equally to 701 states.
The velocity is restricted to =1 rad/s (+66 rad/s after gear ratio)
and discretized to 801 states. The excitation wave is generated
from a JONSWAP spectrum with a peak period of 6.7s and a
significant wave height of 1 m. The prediction horizon for the
wave excitation torque is set as 15s with a discretization of 0.1s
time steps. A 300s realization of excitation torque is used to
test the control algorithm shown in Fig. 3. Both single step DP
and multistep DP are tested for the excitation profile.

A typical portion of the resulting optimal trajectories are
shown in Fig. 4 and Fig. 5. The excitation and control are
normalized to be plotted together with the WEC wave capture
structure’s velocity. Note the WEC velocity is after a 1:66 gear
ratio. For the case of AMMR, the generator is disengaged
when the control is zero. It is observed in Fig. 5 that most of
the time the generator is disengaged when the WEC’s velocity
crosses zero, meaning the rectification requirement is satisfied.
Note in this case study sometimes the generator is not
disengaged and reverses direction. This is because the rules are
set such that rectification is only compulsory when the
generator’s peak speed has exceeded a threshold. Experiments
show that generator efficiency is low below certain speeds and
little can be gained from rectification.

Compare Fig. 4 and Fig. 5, the similarity is that both
controls align the WEC’s velocity with the excitation torque.
This phase alignment maximizes the energy input from the
wave to the WEC. By examining the control actions in detail,
it is found that the non-switching case involves more reactive
power flow, which often happens after velocity zero crossings.
(Reactive power is the power injected into a WEC by the
generator when the control and velocity have the same sign.)
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On the other hand, in the AMMR case there is no such
reactive power around zero crossings. While reactive power is
still observed for smaller waves, the generator mostly operates
in the active power mode (control and velocity have an
opposite sign) for larger waves. Fig. 6 shows the accumulated
energy of a conventional linear PTO versus an AMMR PTO.
It can be seen the AMMR PTO increases power by around
30% through the proposed multistep DP algorithm.

V. CONCLUSION

In this paper, a challenging optimal control problem arising

from a promising new vibration energy harvesting PTO is
formulated rigorously and tackled numerically. The problem
involves switching systems and requires simultaneous
optimization of switching times and control. A numerical
solution framework based on dynamic programming is
proposed to solve the problem approximately. The framework
is designed to be flexible to accommodate different switching
rules to satisfy complex rectification constraints. An example
control algorithm using the framework is detailed and
implemented to a simplified WEC system. Preliminary results
show the algorithm effectively maximizes energy while
successfully performing rectification for the AMMR PTO.
More work will be done in the future to consider more
realistic generator models, evaluate discretization errors and
demonstrate the control algorithm in hardware.
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