
  

  

Abstract— This paper presents a numerical method to 

approximately solve a challenging optimal control problem 

arising from a new mechanical power take-off design. The active 

mechanical motion rectifier design, while possessing great 

potential for converting energy from an oscillating mechanical 

structure, poses a complex control problem where the switching 

times and control variables need to be optimized simultaneously 

subject to implicit constraints from rectification requirements. 

A novel method is proposed to approximate the optimal solution 

based on dynamic programming (DP) techniques. By 

discretizing the state space and the control horizon, a new multi-

step forward dynamic programming scheme is proposed to 

efficiently incorporate the switching time decisions into the 

conventional optimization of control variables. The proposed 

method is flexible enough to accommodate nonlinear dynamics 

and complex dynamic constraints. A numerical example 

demonstrated the effectiveness of the proposed method by 

controlling the active mechanical motion rectifier power take-off 

for an ocean wave energy converter. 

I. INTRODUCTION 

Harvesting energy from vibrational mechanical structures 
is a prospering research area with applications to different 
fields. Power take-off (PTO) is a critical component for 
vibration energy harvesters which refers to the mechanical 
mechanism and transducers that convert the source vibration 
energy to electricity. For large scale energy harvesters, PTO 
generally is comprised of a transmission system and an electric 
generator. For example, wave energy converters (WEC) have 
used both hydraulic and mechanical transmissions to drive 
generators from the oscillatory motion of a wave capture 
structure [1,2]. For large generators, experiments show their 
efficiency rapidly decreases when their speeds drop below 
certain ranges [3]. Since vibrational energy sources such as 
ocean waves always induce oscillatory motions of the 
harvester structure, generators directly connected to such 
structures have to frequently reverse rotational directions and 
cross into the low-speed low-efficiency zones. To increase the 
generator’s efficiency, motion rectification mechanisms are 
designed to keep the generator’s rotation unidirectional above 
certain thresholds. The most common rectification 
mechanisms are hydraulic rectification circuits, which are 
especially suitable for large scale harvesters due to their high 
power density [4]. However, employing complex hydraulic 
circuits introduces additional losses in the transmission and the 
gain on the generator efficiency may be offset. Compared with 
hydraulic transmissions, mechanical transmissions involving 
only rigid body drivetrains are more efficient.  
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Therefore, mechanical motion rectifiers (MMR) are 
designed to further increase the PTO’s efficiency. Since the 
first prototype of MMR was designed and tested [5], it has 
been used in various energy harvesters including regenerative 
shock absorbers, backpacks, road pavements, and wave energy 
converters. Although successfully increasing PTO’s 
efficiency, MMRs have the drawback of limited 
controllability, which hinders their potential for large scale 
renewable energy applications where control is often needed 
to achieve economic feasibility [6]. Recently, a new generation 
of MMR was proposed and designed to enhance the 
controllability of the PTO [7]. This active mechanical motion 
rectifier (AMMR) design allows bidirectional force 
transmission and active rectification switching, eliminating 
some constraints posed by previous passive MMR designs. 
Still, designing an optimal controller for the AMMR remains 
challenging, mainly due to system switching and the inevitable 
loss of controllability when the generator is disconnected from 
the oscillating structure. 

While there have been some works trying to solve optimal 
control problems for switching systems [8-11], they assume 
the system can be controlled for each switched subsystem. For 
systems using the AMMR PTO, control force is a constant 
zero when the generator is disconnected. In other words, no 
control can be applied during this disconnection period. This 
restriction makes it impossible to use global optimal control 
necessary conditions such as the methods of [8] and [11]. 
Alternatively, the AMMR’s optimal control can be formulated 
as a mixed integer optimal control problem and solved using 
the relaxing method suggested in [9]. However, the resulting 
complementarity constraint makes the optimization problem 
hard to solve. The convergence of gradient-based optimizers 
is not guaranteed for such problems. And it can easily 
converge to infeasible points. Therefore, this method is 
difficult to be implemented in real-time control.  

In this paper, a new numerical method based on dynamic 
programming (DP) is proposed to approximately solve the 
optimal control of a vibration energy harvester with an AMMR 
PTO. Dynamic programming has been used in model 
predictive control of wave energy converters and showed 
tractable computation complexity [12]. For the AMMR 
problem, DP’s discretization of state spaces and time horizon 
provides a tractable way to simulate different switching 
decisions within a bounded time. A novel multi-step DP 
algorithm is proposed to simultaneously optimize switching 
times and control forces. The algorithm’s computational time 
is bounded by the discretization resolution. Therefore, the 
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algorithm is guaranteed to return a solution within specified 
time and thus suitable for real-time control implementation.  

The paper is organized as follows. Section 2 describes the 
AMMR model and formulates the optimal control problem. 
Section 3 presents the new DP method to solve the problem. 
Section 4 shows a numerical example to demonstrate the 
proposed method’s effectiveness and Section 5 concludes the 
paper. 

 

II. PROBLEM FORMULATION 

A. AMMR PTO Modelling with an Energy Harvester 

The AMMR PTO, in its simplest form, comprises two 
controllable clutches and a generator. A vibration energy 
harvester can have translational or rotational oscillatory 
motions, but both can be transformed to the rotational motion 
of the generator shaft through some gear transmissions. 
Therefore, a generic and simplified model of the AMMR 
energy harvester is presented in Fig. 1 for the formulation of 
the control problem.  

The main component of a vibration energy harvester is an 
oscillator subject to external excitations. This oscillator’s 
states generally include its position and velocity, and its 
dynamics can be represented as: 

 ( , )w=x f x   (1) 

where x is the state of the oscillator including its position θ and 
velocity ω, and w is the external force acting on the oscillator. 
Physically there are three operation statuses of the AMMR 
PTO as shown in Fig. 1. When positively engaged, the 
generator’s velocity equals the oscillator’s velocity, while the 
polarity is reversed when negatively engaged. Essentially, 
during these two statuses the generator and the oscillator move 
together as a rigid body, and the harvested power equals −ωu, 
where u is the electromagnetic force controlled by the 
generator. Note that since both u and ω reverse polarity during 
negative engaging, the power expression remains unchanged. 
Therefore, the same dynamics equation can be used for both 
engaging statuses when optimizing the power: 

                               ( , , )ef u=
en

x f x                             (2) 

where fe is the external excitation force acting on the oscillator 
and is the main source injecting energy into the system. At 
disengaging status, the oscillator and the generator become 
two separate systems. The oscillator’s motion is only driven 
by the external excitation as: 

                                  ( , )ef=
de

x f x                              (3) 

The generator continues to rotate and generate power that 
equals −ωgenu. The generator’s dynamics in its simplest form 
is just a first order inertia under control, but it can also consider 
more realistic scenarios accounting for mechanical losses such 
as gears’ damping and bearings’ friction. Since the generator’s 
rotation is mostly unidirectional, only its velocity is of concern 
in its dynamics:   

                                 ( , )gen gen genf u =                 (4) 

Figure 1.  AMMR PTO modelling with a vibration energy harvester 

B. Energy Maximization Problem with Prediction 

Assuming fe(t) is known for the time horizon [0,T], the 
optimal control problem is formulated in (6)-(10). Here, s is 
the switching time vector of the clutches. The admissible set 
of s is defined as: 
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Note that for this problem the rectification constraint is 
explicitly enforced in (10) and ω0 is the minimum speed 
threshold for the generator. Equation (7)-(9) assumes that the 
AMMR is in engaging status at time 0. If in disengaging status 
at time 0, the indexes of s need to be swapped between (7) and 
(8)(9). 

Remark 1:  When the AMMR’s status transitions from 
disengaging to engaging, an impact will occur to synchronize 
the speeds at the two sides of the clutch. This impact will cause 
state jump which needs to be described by separate dynamics. 
To reduce complications, it’s assumed the generator is always 
controlled to be at the same speed as the oscillator before 
clutch engaging. Avoiding impacts is also beneficial to the 
device’s reliability.  

Remark 2:  To fulfill the rectification requirement, the 
generator needs to be at least disengaged every time before the 
oscillator’s velocity crosses zero. The number of velocity zero 
crossings in the optimization horizon depends on the excitation 
force and the applied control, and thus is not known in 
advance. Switching number n in (5) is chosen as an upper 
bound of possible switches in the optimization horizon. It’s 
anticipated that if fewer switches are better, some components 
of the optimal switching time vector s will turn out to have the 
same values.  
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III. METHODOLOGY 

A.  Problem Discretization 

Due to the need to simultaneously optimize switching time 
s and generator control u, the optimal control problem (6)-(10) 
is hard to solve analytically and some numerical methods have 
to be taken. Therefore, first a discretization of the original 
problem is presented in (11)-(16). The time horizon [0,T] is 
discretized by a time resolution of Δt, with NΔt=T. The 
excitation and control are discretized in a zero-order hold way 
with k denoting the time index such that tk=kΔt. The 
discretization resolution should be at least an order of 
magnitude higher than the highest dominant frequency of the 
excitation signal to be representative of the original problem.  

1

, ( ) [ , ]

1

0

(11)

  s.t.    

    max ( , )                                                    

      [ ( ) ( 1)] ( ) t / 2       

( 1) ( ( ), ( ), ( ))        

d lb ub

i
d

i
d

S u k u u

sn

gen gen

i k s

e

J u

k k u k

k k f k u k

 

+

 

−

= =

=

− + + 

+ =

 

d

d

s

d

en

s

x f x

1

1

(12)

                         (13)

              

[ , ), 0, 2, 4...                     

( 1) ( ( ), ( ))                              

[ , ), 1,3,5...

( 1) ( ( ), ( ))  

i i

d d

e

i i

d d

d

gen gen gen

k s s i

k k f k

k s s i

k f k u k 

+

+

 =

+ =

 =

+ =

d

de
x f x

1

0

(14)

      (15)

                   

[ , ), 1,3,5...                      

( )                              

i i

d d

gen

k s s i

k 

+ =



 

0 1 1 2

0 1 1
(16)

[ , ,..., ]
     

0, , N, 1, , 1

n n

d d d

d i i n

d d d d

s s s
S

s s s s i n

+ +

− +

 =  
 

=  = = +  

ds
 

B. Multi-step Dynamic Programming Algorithm 

Dynamic programming is a powerful tool for solving 
sequential optimization problems which include discrete 
optimal control problems. The essence of the method is to 
discretize the state space of the system at each time step and 
optimize the cost of each discretized state at each step in a step-
by-step recursive way. The recursive process can start from the 
initial time moving forward or from the end time moving 
backward. For the energy maximization optimal control 
problem, since there are no terminal constraints for states at 
the end time, and the state at the initial time is given, a forward 
dynamic programming process is more suitable.  

First, a special case of the problem is considered to 
illustrate the conventional DP process. When n=0 and sd = 
[0,N], there is no clutch switching for the entire optimization 
horizon. In such a case only the generator control u needs to 
be optimized for each time step. The DP recursive relation is 
then governed by the Bellman equation (17), where Jq(x) is the 
maximal energy that can be obtained when the oscillator 
moves from the initial state x0 at time step 0 to the state x at 
step q. Note that since the generator is always engaged for this 
case, ωgen = ω. z belongs to the set of states at step k-1 that can 
reach the state x via an admissible control. Ls is the single step 

energy obtained when applying that control. ωz and ωx are the 
velocity components of states z and x. Knowing the optimal 
energy as a function of states at the current step, the optimal 
energy at the next step can be solved as a single step optimal 
control problem. In practice, when analytical derivation of the 
optimal control is hard to solve from (17), an efficient 
recursive numerical method can be applied using states and 
control discretization. 
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Let the state space be discretized as a grid set Xd={xd
1, 

xd
2,…, xd

M}, and the control be discretized as the set Ud={ud
1, 

ud
2
 ,…, ud

P} with ud
1=ulb and ud

P=uub. The recursive algorithm 
is summarized in Algorithm 1. 

Algorithm 1: Forward Optimization (Single step) 

1 For k = 0 to N-1 

2  For every index m in R(k) 

3   Eaccu = Emap(m,k); 

4    For every ud in Ud 

5     xe = fen
d(xd

m,fe(k),ud);  Add [xe] to R(k+1); 

6     Energy = Ls(xd
m,ud)+Eaccu; 

7     If Energy > Emap([xe],k+1) 

8      Emap([xe],k+1) = Energy; 

9      Tracemap([xe],k+1) = m;  Umap([xe],k+1) = ud; 

10     Endif 

11    Endfor 

12  Endfor 

13 Endfor 

The process moves from step 0 to step N-1 and the 
intermediary optimization results are stored in four maps for 
resolving the optimal control later on. The reachability map R 
stores the indexes of the reachable states at each step. The 
optimal energy map Emap stores the optimal energy associated 
with each state at each step. The trace map Tracemap stores 
the index of the state at the last step leading to the optimal 
energy of a state at the current step. The control map Umap 
stores the optimal control leading to a state at the current step. 
At each time step, each feasible control is applied to each 
reachable state through the dynamics on line 5 in Algorithm 1. 
The resulting state xe at the next step is quantized to a discrete 
state and its index [xe] is stored as a reachable state. 
Meanwhile, the accumulated energy of applying this control is 
compared to the maximal energy stored in the energy map. If 
it exceeds the existing maximum, the energy, trace, and control 
maps are updated to record the new optimum. After the 
forward process finishes and all the storage maps are 
propagated, the optimal  trajectories can be easily resolved 
from a backward tracing process shown in Algorithm 2. 

Algorithm 2: Backward Tracing (Single step) 

1 Find idx = argmaxm Emap(m,N);   k = N; 

2 While k > 0  

3  xopm(k) = xd
idx;      

4  uopm(k-1) = Umap(idx,k); 

5  idx = Tracemap(idx,k);       

6  k = k-1; 

7 End 
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The primary distinction of the general problem (11)-(16) 
from the always engaging case is the added option of another 
control action at each step, i.e. disengaging the generator. If 
continuing to use the single step DP in (17), three troublesome 
issues will arise. First, a separate state is required to describe 
the generator speed as it will not equal the oscillator velocity. 
Second, the number of controls at each step will double due to 
the binary option of engaging/disengaging. These two issues 
will significantly increase computation time especially if the 
discretization resolution is high. Another issue is that there will 
be no restrictions on the length of interval between switching. 
The switching frequency can get as high as 1/Δt and may add 
unnecessary burden to the clutches for marginal energy 
increase. For these reasons, a modified multi-step DP relation 
is proposed in (18). 
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For this modified equation, one state can be reached from 
either the last step or multiple steps back. When it is reached 
from the last step, the current status remains engaging and the 
optimal energy is computed in the same way as the single step 
DP. When it is reached from an earlier step, the current status 
changes from disengaging to engaging. The optimal energy 
during the multistep disengaging span is represented as Lm. 
The optimal trajectory for an oscillator state is chosen from all 
the previous steps T(x,q) that can reach that state. The key 
insight that leads to this method is that Lm can be expressed 
analytically. During disengagement, the generator is a first 
order inertia converting its kinetic energy to electricity. When 
assuming reengaging at the same speed with the oscillator, the 
maximal energy recovered during disengagement is simply the 
kinetic energy drop of the generator inertia. When the 
generator’s losses are considered, Lm can still be explicitly 
expressed either by solving an optimal control for a generator 
model or adding an efficiency coefficient.   

Fig. 2 illustrates how the multistep DP works and 
compares it with the single step DP. For multistep DP, not all 
the states have the option of disengaging at any time, instead a 
set of disengaging rules dictates which states can disengage. 
This allows restrictions to be placed on the switching pattern 
and reduces computation loads. When executing the 
disengaging action, a forward simulation is performed until 
reengaging conditions are met. The reengaging conditions are 
set such that rectification constraints are satisfied. Energy is 
directly computed for the disengaging steps without the need 
of step by step control optimization, keeping the computation 
tractable.  

Essentially, the multistep DP process allows some 
switching rules to be enforced within the DP framework. 
These rules reduce exploration spaces and promote more 
practical switching patterns. More strict rules lead to less 

(a) Single step dynamic programming 

(b) Multistep dynamic programming 

Figure 2.  Illustrations of single step and multistep dynamic programming 

computation time and more predictable switching patterns, 
while looser rules more closely approximate the true energy 
optimum at the cost of more computation time and less 
favorable switching patterns. In this work, a set of rules based 
on the oscillator’s velocity is proposed as an example. The 
corresponding multistep DP algorithm is presented in 
Algorithm 3. In the pseudocode g(x) is a function outputting 
the oscillator’s velocity from its state. Compared with 
Algorithm 1, the main difference of Algorithm 3 is the added 
branch of disengaging action from line 17-40. The disengaging 
rules are set based on several discrete speed thresholds (only 
two are showed in the pseudocode). Basically, the generator 
can be disengaged when its speed drops below a threshold if 
its peak speed exceeds the threshold before. This is to ensure 
that disengaging happens when the oscillator’s speed 
decreases and is about to reverse direction. An additional 
Peakmap storage is needed to record the peak speed during 
the engaging status. From line 19-39, the oscillator’s states are 
continuously simulated until either its speed exceeds the 
maximal reengaging speed Vre2 or the prediction horizon 
ends. During this simulation, reengaging is allowed after the 
oscillator’s velocity crosses zero and exceeds the minimal 
reengaging speed Vre1. The state after reengaging is marked 
as a reachable state and the associated storage maps are 
updated. Note a new Tmap is introduced to record the time 
step leading to the reengaging state, which will be used in the 
multistep backward tracing. The rules chosen in this algorithm 
restrict the switching to happen just for rectification 
(disengaging at velocity zero crossing). By setting Vre1≥ ω0 
and Vth2>Vth1>ω0, the minimal generator speed constraint 
(15) is also satisfied. After the forward optimization finishes, 
the optimal control sd and uopm can be resolved in a backward 
tracing process shown in Algorithm 4. 
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Algorithm 3: Forward Optimization (Multistep) 

1 For k = 0 to N-1 

2  For every index m in R(k) 

3   Eaccu = Emap(m,k);  Vp = Peakmap(m,k); Vs = |g(xd
m)|; 

4    For every ud in Ud 

5     xe = fen
d(xd

m,fe(k),ud);  Add [xe] to R(k+1); 

6     Energy = Ls(xd
m,ud)+Eaccu; 

7     If Energy > Emap([xe],k+1) 

8      Emap([xe],k+1) = Energy; 

9      Tracemap([xe],k+1) = m;  Umap([xe],k+1) = ud; 

10      newp = max(|g(xe)|,Vp);  

11      If   newp > Peakmap([xe],k+1) 

12       Peakmap([xe],k+1) = newp; 

13      Endif 

14      Tmap([xe],k+1) = k; 

15     Endif 

16    Endfor 

17   If (Vp > Vth1 & Vs ≤ Vth1) || (Vp > Vth2 & Vs ≤ Vth2) 

18    Vs = 0;  zcro = 0;  kk = k;  xs= xd
m; 

19    While (Vs < Vre2 || zcro == 0) & kk < N 

20     xe = fde
d(xs,fe(kk));  Vs = |g(xe)|; 

21     If  zcro == 0  

22      If  sign(g(xe)) ~= sign(g(xs)) 

23       zcro == 1; 

24      Endif 

25     Elseif  zcro == 1 

26      If  Vs ≥ Vre1 

27       Add [xe] to R(kk+1); 

28       Energy = Lm(xd
m,xe)+Eaccu; 

29       If  Energy > Emap([xe],kk+1) 

30        Emap([xe],kk+1) = Energy; 

31        Tracemap([xe],kk+1) = m; 

32        Umap([xe],kk+1) = 0; 

33        Peakmap([xe],kk+1) = |g(xe)|; 

34        Tmap([xe],kk+1) = k; 

35       End 

36      Endif 

37     Endif 

38     xs = xe;  kk = kk+1;   

39    Endwhile 

40   Endif 

41  Endfor 

42 Endfor 

 

Algorithm 4: Backward Tracing (Multistep) 

1 Find idx = argmaxm Emap(m,N);   

2 k = N;  sd = 0;  ks = n+2;  sd(ks) = N; 

3 While k > 0  

4  kc = k;   xopm(kc) = xd
idx;      

5  uopm(kc-1) = Umap(idx,kc); 

6  idx = Tracemap(idx,kc);       

7  k = Tmap(idx,kc);      

8  If   k < kc-1 

  
9   ks = ks-1; sd(ks) = kc;   

 
10   ks = ks-1; sd(ks) = k;   

 
11  Endif 

12 End 

 

 

 

IV. RESULTS 

The proposed control method is tested on a simplified 
wave energy converter model with the AMMR PTO. The 
WEC’s wave capture structure typically has the same 
dynamics as a spring-mass-damper (SMD) system under 
harmonic wave excitations. With panchromatic irregular 
waves, the oscillating capture structure’s dynamics is more 
complex, generally needing to be approximated by a higher 
order model. For this study, a second order SMD model is used 
to represent the WEC oscillator’s dynamics. Second order 
model can match the WEC dynamics within a frequency 
range. Since the wave excitation spectrum typically has a 
narrow band, a second order model can be tuned to match the 
WEC dynamics at the frequency range where the wave power 
is concentrated. The parameters chosen for the model in this 
paper roughly match an oscillating surge device around its 
resonant frequency [13]. The buoyancy spring coefficient is 
300 Nm/rad. The physical mass and added mass combined are 
70 Kgm2. The radiation damping is 60 Nms/rad. The device 
parameter is then scaled up 5 times using the Froude law. The 
AMMR model assumes perfect clutches where 
engaging/disengaging happens instantaneously. The 
mechanical friction and damping are lumped to 140 Nms/rad, 
adding to the radiation damping. The generator’s inertia is 50 
Kgm2 after equivalized with the gear ratio. The generator 
torque range after multiplied by the gear ratio is from -2000 
Nm to 2000 Nm. The control torque is discretized to 400 
levels. The two states for second order systems are just 
position and velocity. The position of a surge device is 
restricted to ±30 degrees and discretized equally to 701 states. 
The velocity is restricted to ±1 rad/s (±66 rad/s after gear ratio) 
and discretized to 801 states. The excitation wave is generated 
from a JONSWAP spectrum with a peak period of 6.7s and a 
significant wave height of 1 m. The prediction horizon for the 
wave excitation torque is set as 15s with a discretization of 0.1s 
time steps. A 300s realization of excitation torque is used to 
test the control algorithm shown in Fig. 3. Both single step DP 
and multistep DP are tested for the excitation profile. 

A typical portion of the resulting optimal trajectories are 
shown in Fig. 4 and Fig. 5. The excitation and control are 
normalized to be plotted together with the WEC wave capture 
structure’s velocity. Note the WEC velocity is after a 1:66 gear 
ratio. For the case of AMMR, the generator is disengaged 
when the control is zero. It is observed in Fig. 5 that most of 
the time the generator is disengaged when the WEC’s velocity 
crosses zero, meaning the rectification requirement is satisfied. 
Note in this case study sometimes the generator is not 
disengaged and reverses direction. This is because the rules are 
set such that rectification is only compulsory when the 
generator’s peak speed has exceeded a threshold. Experiments 
show that generator efficiency is low below certain speeds and 
little can be gained from rectification.  

Compare Fig. 4 and Fig. 5, the similarity is that both 
controls align the WEC’s velocity with the excitation torque. 
This phase alignment maximizes the energy input from the 
wave to the WEC. By examining the control actions in detail, 
it is found that the non-switching case involves more reactive 
power flow, which often happens after velocity zero crossings. 
(Reactive power is the power injected into a WEC by the 
generator when the control and velocity have the same sign.)  
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Figure 3.  A JONSWAP irregular wave excitation sequence 

Figure 4.  Non-switching optimal trajectories (single step DP) 

Figure 5.  AMMR optimal trajectories (multistep DP) 

Figure 6.  Energy comparison between conventional and AMMR PTO 

On the other hand, in the AMMR case there is no such 
reactive power around zero crossings. While reactive power is 
still observed for smaller waves, the generator mostly operates 
in the active power mode (control and velocity have an 
opposite sign) for larger waves. Fig. 6 shows the accumulated 
energy of a conventional linear PTO versus an AMMR PTO. 
It can be seen the AMMR PTO increases power by around 
30% through the proposed multistep DP algorithm.  

V. CONCLUSION 

In this paper, a challenging optimal control problem arising 

from a promising new vibration energy harvesting PTO is 

formulated rigorously and tackled numerically. The problem 

involves switching systems and requires simultaneous 

optimization of switching times and control. A numerical 

solution framework based on dynamic programming is 

proposed to solve the problem approximately. The framework 

is designed to be flexible to accommodate different switching 

rules to satisfy complex rectification constraints. An example 

control algorithm using the framework is detailed and 

implemented to a simplified WEC system. Preliminary results 

show the algorithm effectively maximizes energy while 

successfully performing rectification for the AMMR PTO. 

More work will be done in the future to consider more 

realistic generator models, evaluate discretization errors and 

demonstrate the control algorithm in hardware. 
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