

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

97

one source to one sink, we only count the shortest path. Prior work on security has typically set
trusted device identifiers as sources, and untrusted destinations (network, SMS) as sinks.
However, in our approach, we set UI components as sources, while as sinks, we set any method
that can potentially leak user information, e.g., methods that send data to the network, or write
to local storage. To create the list of sink methods, we started with the SuSi list (widely-used in
security research (SuSi, 2024)) as our baseline and expanded it by manually adding more
method signatures, tripling the count of the baseline. As flow analyzer, we used the standard
FlowDroid tool (Arzt et al., 2014), which requires specifying Java methods as sinks and sources.
However, in Android, UI elements are specified as XML objects, not as Java methods.

In our previous work (Ardalani et al., 2024), we used the JADX tool to map object identifiers
in XML to their Java creation code in the Android-specific R.java file, and from there we set
the findViewById method as a source (findViewById is used to connect a UI element to its
corresponding code section). However, using findViewById may lead to false positives, because
findViewById can be used to extract (or connect to) UI object properties like font size, color, or
the position of a view are tracked, rather than the contents of the UI object (e.g., text that contains
PI). Therefore, we refined our analysis with a new approach to reduce these false positives.
Figure 4 illustrates the overall enhanced process used to identify and set view sources for flow
analysis, while Figure 5 presents a code example that demonstrates this process in action. The
first step is a manual investigation of methods responsible for retrieving data from View
elements, such as getText() for EditText view objects. We identify a collection of approximately
100 such methods and use FlowDroid to analyze the data flow from these methods to extended
sink methods. In Figure 5, line 6 serves as the source (editTextInput.getText()), and line 7 is the
sink (fileOutputStream.write(text.getBytes()), where the user input flows to the file.

Figure 4. Overview of configuring View elements as sources for information flow analysis

The next stage of the analysis is Object Backtracking to ID. Here, we track the view object
(editTextInput), on which the source method is invoked, to locate the corresponding
findViewById() call and identify the ID associated with it. In our example, tracking
editTextInput leads us to line 3, where the ID associated with it is IdOfView. In some cases,
the ID is a constant value, but more often, the ID is an integer variable. Therefore, a further
analysis step, depicted in Figure 4 as ID Backtracking to Value, is required to determine the
value of the variable. In our example, the goal is to track IdOfView back to its value. As
illustrated, the ID originates from the return value of the method integerID(), which is
defined in line 10 and returns the constant value 100. Finally, after obtaining the constant integer
value, we conduct a GUI Analysis (as shown in Figure 1), which involves mapping the integer
ID back to the corresponding entry in the R.java class. This class serves as a bridge between
Java code and the layout XML file, allowing us to link the integer ID to the appropriate UI
element.

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

103

3.5 Frequency of Personal Information Leaks Across Apps

In this section, we examine the occurrence of personal information (PI) leaks across various
apps. Figure 8 illustrates the distribution of PI leaks by frequency. Notably, approximately 50%
of the apps exhibit a single PI leak, with the most commonly leaked PIs being Email, Medical
History, and Address. Around 22% of the apps leak two PIs, with the combinations (Address,
Credit Card), (Height, Weight), and (First Name, Last Name) being the most frequent pairs. For
apps leaking three PIs, the most prevalent groupings are (Credit Card, Email, Phone) and (Email,
First Name, Last Name). In instances where apps leak between four and nine PIs, no consistent
pattern emerges. The leaked information varies significantly from one app to another, indicating
less predictability in the types of information exposed when multiple PIs are involved.

Figure 8. Frequency distribution of personal information (PI) leaks by the number of

PIs leaked per app

Figure 9 illustrates the presence of each pair of leaked personal information (PI) across the
apps, showing how frequently these PI pairs are exposed. Notably, Credit Card appears in three
out of the five most frequently leaked pairs, occurring in more than 40 apps. The PIs associated
with Credit Card, such as Email or Phone Number, likely play a role in payment processing,
serving as contact information for payment notifications or identification. Additionally, First
and Last Name are commonly leaked alongside Credit Card, reflecting their relevance as the
cardholder's name. Address is often included as well, typically for billing or shipping purposes.
In 43 apps, both First and Last Name were leaked together, which is unsurprising. Furthermore,
Email, either independently or in combination with these names, was leaked in 30 apps. The
remaining leaked PI pairs also offer valuable insights and warrant further investigation.

IADIS International Journal on WWW/Internet

104

Figure 9. Frequency of PI pairs across apps

3.6 Characterizing Network Links

Section 3.3 and Table 4 have indicated that 24.59% of the leaks were to the network. However,
that does not indicate which entity the app is communicating with, over the network. When apps
send or receive data, knowing the destination (or origin) of this data helps us determine the
nature of the app, the nature of the communication, and potential areas of concern. Furthermore,
it can also help the end-user track what websites or services are receiving their data or help
prevent misuse of that data. To address this issue we analyzed links, specifically the URLs
embedded in apps, and then devised a characterization of these links.

Extracting links. To extract links, we first decompiled the app using the JADX (JADX,
2024) and apktool (Apktool, 2024) decompilers, extracted all the URLs found in the decompiled
version, and finally categorized the links. When classifying links, we grouped them into one of
four classifications: first-party, third-party, advertising, and Google APIs. Our data, displayed
in Table 6, shows that Google APIs are the most popular links (46.51%), followed by
third-party links (37.64), then first-party links (11.79%).

IADIS International Journal on WWW/Internet

106

Most link-heavy apps. Table 7 shows the top-ten apps with the most links for each
classification. The app with the highest number of overall links was
org.iggymedia.periodtracker, with 9574 third-party links, and 168 known advertising links. The
most common domains in this app were webmd.com, babycenter.com, and healthline.com. The
app with the highest number of first-party links was webmd.com, with 8,598 first-party links,
which we attribute to WebMD being a reference app. App infirmiers.pro had the highest number
of advertising links (1498, which is a quarter of all advertising links in our 2832 app dataset).

Table 7. Top-10 apps with the most embedded links

 Most Link-Heavy Apps & their
Classifications

APK Name First-
party

Third-
party

Advertising Google
APIs

Top 3 Most common
Links

org.iggymedia.periodtracker 0 9574 168 31 webmd.com
babycenter.com
healthline.com

com.webmd.android 8598 12 2 53 *.webmd.com
googleapis.com

 www.idangero.us
com.WegileWildCard.transform 0 5744 1 53 dropbox.com

googleapis.com
gravatar.com

infirmiers.pro 0 514 1498 31 facebook.com
googletagmanager.com

googleapis.com
com.phillips.cdp.ohc.tuscany 392 1129 1 17 *.philips.*

nakupovanje.net
googleapis.com

com.lf.lfvtandroid 0 1472 1 45 youtube.com
googleapis.com

lifefitness.com
gov.va.general.med.ee 1287 20 0 22 *.va.gov

googleapis.com
nap.edu

wikem.chris 0 1257 18 18 youtube.com
mdcalc.com

 thepocusatlas.com
uk.co.classprofessional.cpg 18 1031 0 1 *.community.librios.com

evidence.nhs.uk
gravatar.com

 com.bracemateapp.bracemate 29 623 0 1 dropbox.com
google.com

youtube.com

Table 8 shows that a typical Medical app communicates with 27 URLs, whereas a typical
Health&Fitness app communicates with 39 URLs. Table 9 shows statistics on links, separated
by their classifications. A typical Medical app has 3 first-party links, 7 third-party links,
2 advertising links, and 24 Google API links. In contrast, a typical Health&Fitness app has 4
first-party links, 9 third-party links, 3 advertising links, and 29 Google API links. This data
suggests that Health&Fitness apps have a higher inclination to communicate data to the URLs.

https://github.com/Alireza-Ardalani/PIT

A STUDY OF PERSONAL INFORMATION LEAKS IN MOBILE MEDICAL, HEALTH,
AND FITNESS APPS

109

Figure 12. Output of PIT for com.phr.PayNow app

5. CONCLUSIONS AND FUTURE WORK

Our study has revealed that Medical, as well as Health&Fitness apps, collect and leak a plethora
of personal information. We believe that our work could be extended along several directions.
First, a dynamic analysis that captures the destination of PI would provide a more precise
temporal dimension of when data is collected, and how often it is transmitted to the network.
Second, our current toolchain runs locally; we envision it could be extended to collect and report
data for a given individual app to the end-users as a browser extension or directly on the phone.
Finally, our analysis could be combined with a policy analysis to determine (and inform users)
of app compliance with privacy regulations such as the GDPR in the EU or CCPA in California.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This material is based upon work
supported by the National Science Foundation under Grant No. CCF-2106710.

REFERENCES

Ardalani, A., Antonucci, J. and Neamtiu, I., 2024. Towards Precise Detection of Personal Information
Leaks in Mobile Health Apps. 18th IADIS International Conference on e-Health (part of MCCIS 2024).
Budapest, Hungary.

Arzt, S., et al., 2014. FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. ACM SIGPLAN Notices, Vol. 49, No. 6.

Apktool, 2024. A tool for reverse engineering Android APK files. Available at:
https://ibotpeaches.github.io/Apktool/

Continella, A., et al., 2017. Obfuscation-Resilient Privacy Leak Detection for Mobile Apps Through
Differential Analysis (Report for NDSS Symposium 2017). Available at:
https://publik.tuwien.ac.at/files/publik_278933.pdf

https://publik.tuwien.ac.at/files/publik_278933.pdf
https://publik.tuwien.ac.at/files/publik_278933.pdf

IADIS International Journal on WWW/Internet

110

HIPAA, 2024. US Department of Health & Human Services: Guidance Regarding Methods for
De-identification of Protected Health Information in Accordance with the Health Insurance Portability
and Accountability Act (HIPAA) Privacy Rule. Available at: https://www.hhs.gov/hipaa/for-
professionals/privacy/special-topics/de-identification/index.html#protected

Huang, J., et al., 2015. SUPOR: Precise and Scalable Sensitive User Input Detection for Android Apps.
Proceedings of the 24th USENIX Security Symposium (SEC'15). USENIX Association, USA,
pp. 977-992.

JADX, 2024. Dex to Java Decompiler. Available at: https://github.com/skylot/jadx
Jia, Q., et al., 2019. Who Leaks My Privacy: Towards Automatic and Association Detection with GDPR

Compliance. In E. Biagioni, Y. Zheng and S. Cheng (eds.) Wireless Algorithms, Systems, and
Applications. WASA 2019. Lecture Notes in Computer Science, vol 11604. Springer, Cham.
https://doi.org/10.1007/978-3-030-23597-0_11

McClurg, J., Friedman, J. and Ng, W., 2013. Android Privacy Leak Detection via Dynamic Taint Analysis.
Available at: https://jrmcclurg.com/papers/internet_security_final_report.pdf

Rahaman, S., Neamtiu, I. and Yin, X., 2021. Algebraic-datatype Taint Tracking, with Applications to
Understanding Android Identifier Leaks. ESEC/FSE 2021: Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. Athens, Greece, pp. 70-82.

Reardon, J., et al., 2019. 50 Ways to Leak Your Data: An Exploration of Apps' Circumvention of the
Android Permissions System. Proceedings of the 28th USENIX Security Symposium, pp. 603-620.
Available at: https://www.usenix.org/conference/usenixsecurity19/presentation/reardon

Ren, J., et al., 2016. ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic. MobiSys
'16: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and
Services, pp. 361-374. Available at: https://dl.acm.org/doi/abs/10.1145/2906388.2906392

Samat, S., 2022. Living in a Multi-device World with Android. Available at:
https://blog.google/products/android/io22-multideviceworld/

SuSi, 2024. Available at: https://github.com/secure-software-engineering/SuSi
Sweeney, L., 2000. Simple Demographics Often Identify People Uniquely (Data Privacy Working Paper

3). Available at: https://dataprivacylab.org/projects/identifiability/paper1.pdf
Van Alstin, C., 2024. Massive Data Trove from Change Healthcare Hack Now for Sale on Dark Web,

Health Exec. Available at: https://healthexec.com/topics/health-it/cybersecurity/massive-data-trove-
change-healthcare-hack-now-sale-dark-web

Wei, X., et al., 2012. ProfileDroid: Multi-layer Profiling of Android Applications. Mobicom '12:
Proceedings of the 18th annual international conference on Mobile computing and networking,
pp. 137-148.

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html#protected
https://github.com/skylot/jadx
https://jrmcclurg.com/papers/internet_security_final_report.pdf
https://dl.acm.org/doi/abs/10.1145/2906388.2906392
https://github.com/secure-software-engineering/SuSi
https://healthexec.com/topics/health-it/cybersecurity/massive-data-trove-change-healthcare-hack-now-sale-dark-web

