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one source to one sink, we only count the shortest path. Prior work on security has typically set 
trusted device identifiers as sources, and untrusted destinations (network, SMS) as sinks. 
However, in our approach, we set UI components as sources, while as sinks, we set any method 
that can potentially leak user information, e.g., methods that send data to the network, or write 
to local storage. To create the list of sink methods, we started with the SuSi list (widely-used in 
security research (SuSi, 2024)) as our baseline and expanded it by manually adding more 
method signatures, tripling the count of the baseline. As flow analyzer, we used the standard 
FlowDroid tool (Arzt et al., 2014), which requires specifying Java methods as sinks and sources. 
However, in Android, UI elements are specified as XML objects, not as Java methods. 

In our previous work (Ardalani et al., 2024), we used the JADX tool to map object identifiers 
in XML to their Java creation code in the Android-specific R.java file, and from there we set 
the findViewById method as a source (findViewById is used to connect a UI element to its 
corresponding code section). However, using findViewById may lead to false positives, because 
findViewById can be used to extract (or connect to) UI object properties like font size, color, or 
the position of a view are tracked, rather than the contents of the UI object (e.g., text that contains 
PI). Therefore, we refined our analysis with a new approach to reduce these false positives. 
Figure 4 illustrates the overall enhanced process used to identify and set view sources for flow 
analysis, while Figure 5 presents a code example that demonstrates this process in action. The 
first step is a manual investigation of methods responsible for retrieving data from View 
elements, such as getText() for EditText view objects. We identify a collection of approximately 
100 such methods and use FlowDroid to analyze the data flow from these methods to extended 
sink methods. In Figure 5, line 6 serves as the source (editTextInput.getText()), and line 7 is the 
sink (fileOutputStream.write(text.getBytes()), where the user input flows to the file. 
 

 
Figure 4. Overview of configuring View elements as sources for information flow analysis 

The next stage of the analysis is Object Backtracking to ID. Here, we track the view object 
(editTextInput), on which the source method is invoked, to locate the corresponding 
findViewById() call and identify the ID associated with it. In our example, tracking 
editTextInput leads us to line 3, where the ID associated with it is IdOfView. In some cases, 
the ID is a constant value, but more often, the ID is an integer variable. Therefore, a further 
analysis step, depicted in Figure 4 as ID Backtracking to Value, is required to determine the 
value of the variable. In our example, the goal is to track IdOfView back to its value. As 
illustrated, the ID originates from the return value of the method integerID(), which is 
defined in line 10 and returns the constant value 100. Finally, after obtaining the constant integer 
value, we conduct a GUI Analysis (as shown in Figure 1), which involves mapping the integer 
ID back to the corresponding entry in the R.java class. This class serves as a bridge between 
Java code and the layout XML file, allowing us to link the integer ID to the appropriate UI 
element. 
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3.5  Frequency of Personal Information Leaks Across Apps 

In this section, we examine the occurrence of personal information (PI) leaks across various 
apps. Figure 8 illustrates the distribution of PI leaks by frequency. Notably, approximately 50% 
of the apps exhibit a single PI leak, with the most commonly leaked PIs being Email, Medical 
History, and Address. Around 22% of the apps leak two PIs, with the combinations (Address, 
Credit Card), (Height, Weight), and (First Name, Last Name) being the most frequent pairs. For 
apps leaking three PIs, the most prevalent groupings are (Credit Card, Email, Phone) and (Email, 
First Name, Last Name). In instances where apps leak between four and nine PIs, no consistent 
pattern emerges. The leaked information varies significantly from one app to another, indicating 
less predictability in the types of information exposed when multiple PIs are involved. 
 

 
Figure 8. Frequency distribution of personal information (PI) leaks by the number of  

PIs leaked per app 

Figure 9 illustrates the presence of each pair of leaked personal information (PI) across the 
apps, showing how frequently these PI pairs are exposed. Notably, Credit Card appears in three 
out of the five most frequently leaked pairs, occurring in more than 40 apps. The PIs associated 
with Credit Card, such as Email or Phone Number, likely play a role in payment processing, 
serving as contact information for payment notifications or identification. Additionally, First 
and Last Name are commonly leaked alongside Credit Card, reflecting their relevance as the 
cardholder's name. Address is often included as well, typically for billing or shipping purposes. 
In 43 apps, both First and Last Name were leaked together, which is unsurprising. Furthermore, 
Email, either independently or in combination with these names, was leaked in 30 apps. The 
remaining leaked PI pairs also offer valuable insights and warrant further investigation. 
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Figure 9. Frequency of PI pairs across apps 

3.6 Characterizing Network Links  

Section 3.3 and Table 4 have indicated that 24.59% of the leaks were to the network. However, 
that does not indicate which entity the app is communicating with, over the network. When apps 
send or receive data, knowing the destination (or origin) of this data helps us determine the 
nature of the app, the nature of the communication, and potential areas of concern. Furthermore, 
it can also help the end-user track what websites or services are receiving their data or help 
prevent misuse of that data. To address this issue we analyzed links, specifically the URLs 
embedded in apps, and then devised a characterization of these links. 

Extracting links. To extract links, we first decompiled the app using the JADX (JADX, 
2024) and apktool (Apktool, 2024) decompilers, extracted all the URLs found in the decompiled 
version, and finally categorized the links. When classifying links, we grouped them into one of 
four classifications: first-party, third-party, advertising, and Google APIs. Our data, displayed 
in Table 6, shows that Google APIs are the most popular links (46.51%), followed by  
third-party links (37.64), then first-party links (11.79%).  
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Most link-heavy apps. Table 7 shows the top-ten apps with the most links for each 
classification. The app with the highest number of overall links was 
org.iggymedia.periodtracker, with 9574 third-party links, and 168 known advertising links. The 
most common domains in this app were webmd.com, babycenter.com, and healthline.com. The 
app with the highest number of first-party links was webmd.com, with 8,598 first-party links, 
which we attribute to WebMD being a reference app. App infirmiers.pro had the highest number 
of advertising links (1498, which is a quarter of all advertising links in our 2832 app dataset).  

Table 7. Top-10 apps with the most embedded links 

 Most Link-Heavy Apps & their 
Classifications     

 

APK Name First-
party 

Third-
party 

Advertising Google 
APIs 

Top 3 Most common 
Links 

org.iggymedia.periodtracker 0 9574 168 31 webmd.com 
babycenter.com 
healthline.com 

com.webmd.android 8598 12 2 53 *.webmd.com 
googleapis.com 

 www.idangero.us 
com.WegileWildCard.transform 0 5744 1 53 dropbox.com 

googleapis.com 
gravatar.com 

infirmiers.pro 0 514 1498 31 facebook.com 
googletagmanager.com 

googleapis.com 
com.phillips.cdp.ohc.tuscany 392 1129 1 17 *.philips.* 

nakupovanje.net 
googleapis.com 

com.lf.lfvtandroid 0 1472 1 45 youtube.com 
googleapis.com 

lifefitness.com 
gov.va.general.med.ee 1287 20 0 22 *.va.gov 

googleapis.com 
nap.edu 

wikem.chris 0 1257 18 18 youtube.com 
mdcalc.com 

 thepocusatlas.com 
uk.co.classprofessional.cpg 18 1031 0 1 *.community.librios.com 

evidence.nhs.uk 
gravatar.com 

 com.bracemateapp.bracemate 29 623 0 1 dropbox.com 
google.com 

youtube.com 
 

Table 8 shows that a typical Medical app communicates with 27 URLs, whereas a typical 
Health&Fitness app communicates with 39 URLs. Table 9 shows statistics on links, separated 
by their classifications. A typical Medical app has 3 first-party links, 7 third-party links,  
2 advertising links, and 24 Google API links. In contrast, a typical Health&Fitness app has 4 
first-party links, 9 third-party links, 3 advertising links, and 29 Google API links. This data 
suggests that Health&Fitness apps have a higher inclination to communicate data to the URLs. 





https://github.com/Alireza-Ardalani/PIT
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Figure 12. Output of PIT for com.phr.PayNow app 

5.  CONCLUSIONS AND FUTURE WORK 

Our study has revealed that Medical, as well as Health&Fitness apps, collect and leak a plethora 
of personal information. We believe that our work could be extended along several directions. 
First, a dynamic analysis that captures the destination of PI would provide a more precise 
temporal dimension of when data is collected, and how often it is transmitted to the network. 
Second, our current toolchain runs locally; we envision it could be extended to collect and report 
data for a given individual app to the end-users as a browser extension or directly on the phone. 
Finally, our analysis could be combined with a policy analysis to determine (and inform users) 
of app compliance with privacy regulations such as the GDPR in the EU or CCPA in California.   
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