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Abstract— A major appeal of learning from demonstrations
or imitation learning (IL) in robotics is that it learns a policy
directly from lay users. However, Lay users may inadvertently
provide erroneous demonstrations that lead to learning of
policies that are inaccurate and hence, unsafe for humans and/or
robot. This paper makes two contributions in the endeavour
of recognizing human errors in demonstrations and thereby
helping to learn a safe IL policy. First, we created a dataset —
Layman V1.0 — with 15 lay users who provided a total of
1200 demonstrations for three simulated tasks — Lift, Can
and Square in the simulated Robosuite environment — and
two real robot tasks with a Sawyer robot, using a custom
designed Android app for tele-operation. Second, we propose a
framework named Behavior Cloning for Error Detection (BED)
to autonomously detect and discard erroneous demonstrations
from a demonstration pool. Our method uses a Behavior
Cloning method as self-supervised technique and assigns binary
weight to each demonstration based on its inconsistencies with
the rest of the demonstrations. We show the effectiveness
of this framework in detecting incorrect demonstrations in
the Layman V1.0 dataset. We further show that state-of-the-
art (SOTA) policy learners learns a better policy when bad
demonstrations, identified through the proposed framework, are
removed from the training pool. Dataset and Codes are available
in https://github.com/AssistiveRoboticsUNH/bed

I. INTRODUCTION

We envision IL-enabled robots to serve lay humans in their
own homes for a wide range of activities of daily living.
In such settings, lay users will have to teach robots — e.g
through teleoperation — how to perform a new task. Some
of these task demonstrations may get spoiled — partially or
fully — with inadvertent errors caused by factors such as
a user’s unfamiliarity with robots/teleoperation interfaces,
fatigue, distractions, etc. For example, it is not unusual for a
novice lay user to slam the door while tele-operating a robot to
show how to pick a milk-can from the refrigerator, or release
an object before reaching the goal and thereby causing it to
break. When IL-enabled robots are in the wild and robotics
experts are not around to curate the data, the policy learning
algorithm needs a mechanism to deal with such erroneous
demonstrations. Otherwise, learned policies will not only be
inaccurate but also unsafe — causing physical and/or financial
harms to end-users. Although IL is increasingly becoming
ubiquitous [1], topics relevant to deployment safety — such as
the impact of human errors on learned policies — are nascent in
the IL literature. A comprehensive study on the type of errors
lay users may make while giving demonstrations and the
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impact of those errors on the policy accuracy and safety is non-
existent. The closest group of IL works that deal with a similar
issue s policy learning from sub-optimal demonstrations. This

Fig. 1: Errors in human demonstrations: High-quality demon-
strations exhibit consistent pattern (green), whereas poor
demonstrations do not follow any nominal pattern (red). (Left)
The Lift task in the Robosuite environment [2]: lift the block
up, (Right) The Can task: pick up the can and place it in the
bottom-right corner

group of works forgoes a long-standing assumption in the IL
literature that demonstrations are optimal [3] and attempts
to learn a high accuracy policy from demonstrations that
are noisy or sub-optimal. However, the way these works
model sub-optimality is not a faithful representation of the
way errors occur in lay users’ demonstrations. For example,
adding a fixed number of random actions to a RL-generated
expert policy (RL: reinforcement learning) or adding random
actions at random states — two contemporary methods of
creating sub-optimal demonstrations [2] —is not how a human
errs while doing a goal-directed task. The seminal work [2]
published in 2021 made the first attempt to create a diagnostic
dataset — termed as “Multi-human dataset” — that captured
some examples of humans errors in demonstrating a number
of tasks in simulated Robosuite environment. This dataset
primarily considers inefficient task trajectories — e.g. long
path length — that eventually succeeded in completing the
task as examples of human errors. There is however no
coordinated effort to understand the reality of human errors
in demonstrations, the way these errors impact policy safety-
accuracy, and necessary measures to mitigate this issue. The
proposed work bridges that gap through making the following
contributions:

First, we have launched an Institutional review board (IRB)
approved study to collect human demonstrations from lay
users for various robotics tasks, both in simulation and in real-
world. This paper releases the first dataset from this ongoing
study, Layman V1.0, that contains 1200 demonstrations by
15 lay users of three simulation tasks — Can, Lift, and Square,
in the Robosuite environment — and two real world tasks by
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a Sawyer robot — Drawer Closing and Spoon Picking. An
intuitive Android App that we designed for teleoperation to
collect these data are also made available to the research
community (Section III).

Second, we propose a weighted regression-based self-
supervised framework to automatically identify incorrect
demonstrations in a training pool. The proposed framework,
that we term BED, leverages policy learning as a pretext task
to learn poor weights for demonstrations that are inconsistent
with the rest of the demonstrations in the training pool. During
optimization the weights are forced to take values towards
either 1 or O that later can be treated as binary value for good
and bad respectively. A unique attribute of the proposed BED
is that it assigns a weight to an entire demonstration, instead
of state-action pairs in a demonstrations pool. (Section IV).
Third, we demonstrate the performance of BED in detecting
erroneous demonstrations in the Layman V1.0 dataset. We
further demonstrate that a SOTA IL algorithm learn a better
policy when erroneous demonstration are masked using the
proposed BED framework (Section V).

II. RELATED WORKS

IL literature traditionally followed an algorithmically
convenient assumption that demonstrations are always optimal
[3]. Considering demonstrations to be sub-optimal is a very
recent trend in IL research where the primary focus is
to learn a policy with high task-accuracy despite the sub-
optimality in the training data. We categorize the existing
IL literature that deals with sub-optimal demonstrations into
two groups based on how the sub-optimal demonstrations are
created. The first group creates sub-optimality synthetically
— such as, taking a random action with a small probability at
arbitrary states. A simulator is needed for such a synthetic
generation of sub-optimal demonstrations and typically, the
sub-optimality is introduced to a trained RL policy, instead
of a real human-demonstrations [4], [5], [6], [7], [8]. By
nature, these synthetic errors do not capture the nuances
of human errors in demonstrations and therefore trivialize
the problem. Access to a simulator allows generation of an
abundant amount of training data which can often help with
compensating for the loss of state-space-coverage caused
by incorrect/sub-optimal demonstrations [9], [10], [11], [12],
[13]. However, availability of a simulator for every task to
be taught in the wild is a too restrictive assumption for
deployment of IL-agents. The most prevalent approach in this
group of research for learning a high-accuracy policy from
sub-optimal demonstrations is weighing the demonstration
based on its correctness. A vast majority of work requires
a labeled/ranked dataset [14], [15], [16], [17], [12] to train
a machine learning model for generating poor weights or
confidence scores for incorrect demonstrations [17], [12],
[18], [19], [20]. This is unrealistic — especially, in the context
of IL in the wild — due to the burden imposed on the user for
manual ranking/labeling of incorrect demonstrations. From
this group, BCND [20] is the closest to our work since
it does not require any labeled data to generate weight.
BCND [20] uses an already learned Behavioral Cloning

(BC) policy to generate weights for state-action pairs in a
demonstration pool. Through multiple iterations, subsequent
BC policies converge toward the mode actions observed
in the demonstrations. Although intuitive, this strategy of
convergence to the mode actions will face difficulty when
dealing with human demonstrations. For example, if one state
is visited multiple times due to the incompetency of a user
in demonstrating a task, the assumption — that the number
of correct action at a state outnumber the incorrect action
at a given state — becomes invalid, causing the algorithm to
fail. We experimentally demonstrate such failures in Section
V. Note that BCND in [20] has been tested only with
synthetically generated sub-optimal data for a few simulated
Mujoco tasks.

TABLE I: A summary of the datasets typically leveraged by
IL research.

Tasks Demo by
Human?

Yes

Data Source

Robomimic
[7]

MulJoCo [22], [23],
[5], [6], [24], [16]

[21], | Lift,Can,Square,Tool Hang

Ant, HalfCheetah, Walker, | No
Humanoid Reacher,Swimmer,
Beam Rider, Seacost

D4RLJ[5], [6] Door, Hammar, Relocate No
Minigrid [4] DoorKey, FourRoom No
Atari[24] Pong, Space Invader No

Real Robot [23], | Custom tasks Yes

[16]

The second group of work make a rare attempt to
understand the reality of errors in human demonstrations
[2], [21]. The seminal work in [2] introduces two datasets
— Multi human and Can-Pair — that captures some human
errors in demonstrations of a number of tasks in the simulated
Robosuite environment. However, the Multi human dataset
only captures human demonstrations with inefficient trajec-
tories that are eventually successful in completing the tasks.
The Can-Pair dataset simply mixes demonstrations from a
target task with those from a non-target task. Despite this lack
of diversity in human-generated sub-optimality, the policy
accuracy of standard behavior cloning algorithm dropped
when tested with these two datasets [2] , indicating that
human errors are fundamentally different from synthetically
introduced sub-optimality. The only other work in this
group is ILEAD [21] which leverages the expertise level
of demonstrators to learn a better policy. However, it does
not address the issue that the expertise level of lay users
changes over time. Table I summarizes the datasets that the
contemporary IL research community relies on for policy
learning from sub-optimal demonstrations. There is only
one dataset that includes human demonstrations. Overall,
understanding human errors in demonstrations and their
impact on the learned policy is a heavily under-explored
area in imitation learning. This paper attempts to bridge that

gap.
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III. UNDERSTANDING ERRORS IN HUMAN
DEMONSTRATIONS: LAYMAN V1.0 DATASET

The famous quote of Tolstoy that A/l happy families are
alike; each unhappy family is unhappy in its own way’ could
be an uncanny characterization of human errors in demon-
strations. Errors in human demonstrations manifest in diverse
ways, while correct demonstrations tends to exhibit consis-
tency (Fig. 1). Not all errors have negative consequences on
the quality of the learned pol-
icy. For example, the sub-
optimal demonstrations in the
Multi-human dataset actually
helped BC-RNN to learn a
robust policy than the base-
line [2] — primarily because
of the higher state-space cov- A
erage achieved through the ™ oo
exploration performed by the 5
inefficient trajectories. To un-
derstand the nuances of hu-
man errors during demonstra-
tions, we have launched an
IRB approved study where lay
users are asked to provide task
demonstrations through tele-
operating robots in simulated
and real environments. This
paper releases the first version
of this dataset: Layman V
1.0.

User Demographics: Fifteen
lay users participated in this
study. None of the participants
had any previous exposure to robotics. However, participants
had varying level of familiarity with computer games: ‘1’
indicates no familiarity at all and ‘10’ indicates proficiency in
playing various computer games using keyboard/mouse/game-
controller. Among the participants, 7 were male and 8
were female; 4 participants had self-reported expertise level
between 1-3, 5 participants reported between 4-6, and 6 other
reported between 7-10; 8 participants were in the age group
18-22 years and 7 were in the age group 23-30 years.
Teleoperation interface: We designed an Android app, that
we term SixDOF, for teleoperation of a Sawyer robot and
the robot in the simulated Robosuite environment. Unlike
similar apps [2], SixDOF is openly available for the research
community (Github Link). Fig. 2 shows the SixDOF interface.
The App uses the gyroscope of an Android phone for an easy
and intuitive control of the robot.

Data: The Layman V1.0 dataset consists of a total 1200
demonstrations for three tasks in simulation — Lift, Can,
Square in Robosuite — and two tasks in real world by a
Sawyer robot — Drawer Closing and Spoon Picking. The
Drawer Closing task involves closing the top drawer of a multi-
drawer shelf, while the Spoon Picking task entails picking
up a spoon from a holder and dropping it into a coffee cup.

local ip=10.0.0.12

enable ctrl spinner_as_z

X:047;Y:1.92,2:9.63
, X050 3y 050

RECORD OFF

Fig. 2: SixDOF Android
App interface. A robot
end-effector is controlled
through the sliding button
and the physical rotation of
the phone

An expert demonstration of both tasks is shown in Figure 5.
For the simulated tasks, 12 participants were involved and
each provided 25 demonstrations for each task. For the real
robot tasks, 5 participants were involved and each provided
20 demonstrations for each task. We recorded observations
from two cameras (a wrist camera and a front-view camera),
end-effector position, joint positions, joint velocities, and
gripper status. Observation data can be considered as states
while the delta changes in the end-effector position can be
considered as actions. All demonstrations were recorded at
a frequency of 20Hz. The dataset contains both naturally
occuring mistakes (Type-1 and Type-2 as defined later) and
intentionally making mistakes (Type-3 as defined later).
Summary of Human errors: Analysis of the Layman V1.0
dataset reveals two primary type of errors in human demonstra-
tions. It is important to note that inclusion of more participants
with diverse demographics and diverse tasks requiring finer
manipulation skills will inevitably reveal other type of human
errors that are not currently present in Layman V1.0.

Type |

Type 3

Fig. 3: Errors in human demonstrations for the Spoon picking
task. Type 1: a user displaces the holder while picking up
the spoon but managed to put the spoon in the cup. Type 2:

a user displaced the holder and failed to put the spoon in the
cup. Type 3: the expert picked up the spoon efficiently but
intentionally threw it on the table.

« Type 1: A user struggles to control the robot using the
interface, primarily due to unfamiliarity, resulting in the
robot visiting states that are not relevant to the task goal.
However, the user eventually completes the task. Type 1
errors may result in trajectories that are fundamentally
different from an expert demonstration of the task. Note
that, state visitation may differ among different runs of
the same task, even for the same user.

o Type 2: This is similar to Type 1 but the user is
unsuccessful in completing the task at the end. Type
2 errors also include trajectories that are similar to an
expert trajectory for the most part but failed at the end
to complete the task.

The Can-Pair dataset in [2] reports a type of error for the Can
task where a human intentionally performs a series of actions
that lead to a task failure — for instance, throwing away the can
instead of placing it at the designated location. Although this
type of intentional error is not common when lay users train
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robots, for the sake of comparison with the Can-Pair dataset,
we create data spoiled with this type of error and term it Type
3 error. The first author of this paper, considered as an expert,
created Type 3 error dataset for the Can, Lift, and Square
tasks. For the Sawyer dataset lay users also contributed to
the Type 3 errors. The same expert also generated Baseline
demonstrations which complete each task efficiently hence,
in the shortest time. Type 3 and Baseline demonstrations,
despite not being from lay users, are available in the Layman
V1.0 to facilitate comparison by other similar research. Fig. 3
demonstrates three type of errors corresponding to the Spoon
picking task.

IV. THE PROPOSED FRAMEWORK: BEHAVIOR CLONING
FOR ERROR DISCOVERY (BED)

A. Preliminaries

We consider a standard Markov Decision Process (MDP)

[25] formalized as a tuple {S, A, P, R, do, T } where S is the
set of states, A is the set of possible actions, P : S XAXS —
[0, 1] is the transition probability, R : S X A — [0, 1] is the
reward function, do : S — [0, 1] is the initial state distribution
and T is the episode horizon. However, the reward function
R is unknown in the context of IL and is typically retrieved
from human demonstration D.
The proposed BED framework leverages policy learning —
specifically, behavior cloning (BC) — as a pretext task to
identify errors in human demonstrations. The generalized BC
objective function is [6]:

arg max E(s,a)~p [log e(als) - f(s, )] (M

Here 716 is the parameterized BC policy with parameters 6 and
f:S XA — [0, 1] is an arbitrary weight function. Choices

of f generate objective functions for a range of algorithms
that deals with suboptimal demonstrations.

B. The BED Framework

Given a set of demonstrations of a task, the goal of the
the proposed BED framework is to separate the correct
demonstrations from the erroneous/incorrect ones in a self-
supervised manner. Such incorrect demonstrations can be
spoiled with any type of errors (Type 1, 2, or 3). The BED
framework uses policy learning as a pretext task to achieve
this. The intuition behind error discovery through the BED
framework is based on the following two assumptions:
Assumption 1. The number of correct demonstrations out-
numbers the erroneous demonstrations.

Assumption 2. Correct demonstrations exhibit greater consis-
tency among themselves, whereas incorrect demonstrations
exhibit variability.

Both are reasonable assumptions in the context of task
learning from a human demonstrator. Learning from an unla-
beled dataset that contains both successful and unsuccessful
demonstrations is substantially limited without Assumption

1. According to both assumptions, in an unlabeled dataset,
the largest consistency group represents the correct demon-
strations. Leveraging this fact, the proposed BED defines an
optimization problem where the objective function captures

the (in)consistency of a demonstration with respect to the
rest in the training pool and thereby assigning a poor weight
to inconsistent, hence erroneous, demonstrations. In its basic
form in equation (2), the BED objective function penalizes
action inconsistency — i.e., poorly weighing demonstrations
where the evolution of actions is different from the rest in
the training pool.

P L

s - d? @

argmin = w ——
ow o Py,
2
wj=m - |D|
j=1
0w =<1

Here w; represents the weights assigned to the i-th demonstra-
tion, | D| denotes the total number of demonstrations, and m is
a hyperparameter denoting the percentage of demonstrations
in the training pool that we hypothesize to be correct. (we
present empirical analysis on the sensitivity of BED on m
in Section V). Also, 79 is our pretext task that can be any
policy that takes an state s and predict an action a. The
constraints ensures that the sum of the weights equals to
our hypothesized number of good demonstrations and that
weights are in between 0 and 1. Note that the objective
in (2) takes inspiration from the generalized BC objective
function in 1 and leverages the fact that maximizing log-
likelihood is the dual of minimizing the MSE [26], [27].
An important difference of (2) from 1 is that it weighs
each demonstration, instead of each state-action pair. We
can convert the constrained optimization problem 2 into a
soft unconstrained BED loss function as follows. Here the
third constraint is omitted by clipping w between 0 and 1
during each update.

L 1 | I 2
L(D,m) = w, H Te(s) — a
e P egn
L ©)
ik Sm D) - w,-)2
j=1

Here, k is a soft constrained multiplier; higher k results in
faster weight learning. In practice choice of k does not affect
weight learning.

It is possible to incorporate more terms in the BED loss
function in (3) to account for inconsistencies other than that
in action evolution. For example, both Type 1 and Type 2
errors involve state evolution that is inconsistent with the
expert (path consistency); Type 2 errors further involves
inconsistency with respect to reaching a desired goal state
(goal consistency).

Accordingly, we can define a generalized BED loss term
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that includes action, state, and goal consistency.

L ,. 1 L ¢ )
L(D, m) =c - YD) mo(s) — a’?
ielD| Y (s,a)~D;
+h:  wi |I(G,g)ll
i€lD|
“
+q- wi - (Z, %)l
i€|D|
i
kU ID| — w2
j=1

Here, ¢, h, and q refer to the importance of action consistency,
goal consistency, and path consistency, respectively. However,
we do not have any knowledge about the goal G except that,
the terminal observations of all correct demonstrations should
represent the goal. Accordingly, we propose to estimate the
goal in the latent space through equation (5) for each demo.
Finally, equation (6) helps us to estimate the global goal G.

gi :ﬁatent(State |Dl|}) (5)
_ L w
GElgoall Camay 'O

Similarly, we do not have any knowledge of a nominal path Z
from which deviation should be punished as an ‘inconsistent’
path. Rather, we estimate such a path using equation (7) and

(8).

G = flatent(sﬁtes € Dy @)
- - Wi
Z = E [path] | l(sum(w)) ¢, (®)
i€|D

Note that the estimation of the latent goal and the latent
path are a weighted sum of the latent goal and latent path,
respectively. The pretext policy requires to have a latent
encoder fiatenr Which we can extract from any intermediate
layer of a policy network. We can use this latent layer
to generate the latent goal and latent path. As the length
of the path §; can vary between demonstrations, we use
linear interpolation to make the length same. When the path
consistency term is consider in (4), the goal consistency term
is redundant since the goal is inherently included as the last
step of the path. Accordingly, we can set h=0.

C. Training BED

For visual BC it only practical to train model using GPU.
As the BED loss iterates over all demonstrations, it takes
considerable amount of GPU memory before it can update
the model parameter 6, w. To mitigate this resource issue, we
devised a novel idea of mini-batching over demonstrations,
instead of state-action pairs. Each mini-batch contains n <<
| D| demonstrations and the weights w corresponding to those
demonstrations are updated. The joint training of 6 and w
is described in Algorithm 1. Figure 4 depicts the idea of
mini-batching over demonstrations in the BED framework. It
is important to note that the BED loss learns ‘a policy’ as
a pretext task but the BED training is designed to optimize

Algorithm 1 BED Training
Input Mixed Dataset D, Percent of demos to keep m

Output Binary Mask w)p,
: Randomly initialize policy 8 and w; =0.5V1i € |D|

—_

. Estimate G using (6) and Z using (8)
: di = demo indices [1, 2, ..., | D|], b=batch_size
- while epoch < epochs or sum(round(w)Y=m - |D| do
for i=1 to [|D]|/batch_size] do
bi=di[i-b:i-b+b]
calculate loss using equation (4)
Welipped = max(0, min(w, 1))
update w[bi] and O as standard gradient update.
end for
Update G using (6) and Z using (8)
: end while
: return round(w)

Do T N i

—_ e
W N = O

demo_1

demo 2
demo 3 demo 2
I: demo 5 |— | Modet I: T o : gﬁisx:’
! 1 {6, w} Loss iil bmrh“
demo b

| demo n
. / batch

dataset
Fig. 4: The BED pipeline: a mini-batch of demonstrations, not
state-action pairs, is used to learn weights that discriminate
correct demonstrations from incorrect ones

different type of inconsistencies, not the policy. We use the
weights w generated through BED as a binary mask that
can filter out incorrect demonstrations before policy learning
happens by any model architecture.

V. EXPERIMENTS AND RESULTS

We conducted a set of experiments to shed light on the
following: (1) The impact of human errors captured in
Layman V1.0 on the policy accuracy of a SOTA policy
learning algorithms namely, BC-RNN [2], (2) The perfor-
mance of BED in detecting incorrect demonstrations in
Layman V1.0 (3) The sensitivity of BED’s performance
to the choice of the hyperparameter m (4) Comparison with
BCND when incorrect demonstrations are masked using the
BED framework. Additionally, we also experimented with
three MuJoco tasks to facilitate a direct comparison with
BCND [22] which reported performance only with MuJoco
tasks.

As the pretext policy for BED we used a BC policy
architecture from [2], we also used the BC-RNN from
robomimic. Both of them used default hyperparameters.

The primary performance metric for BED is the number
of False Positive (FP: incorrect demonstrations reported as
correct through assigning a weight w=1) and False Negative
(FN: correct demonstrations are reported as incorrect through
assigning a weight w=0). The performance goal of BED is
to keep FP and FN as low as possible.
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Fig. 5: Spoon picking tasks (top row) involves picking up a spoon from a spoon holder and placing it inside a coffee cup.
The Drawer closing task (bottom row) involves closing an open drawer

A. Mixed dataset preparation for experiments

Based on complexity of the tasks, each task has different N
number of demonstrations (Lift=100, Can=150, Square=100,
Spoon=100, Drawer=70). However, percentage of correct and
incorrect data are consistent in all the tasks. For each task we
used N = N, + N; demonstrations, where N, and N; are the
number of correct and incorrect demonstrations, respectively.
Baseline is when 100% (N = N, + 0) are correct. Incorrect
demonstrations are spoiled with Type 1, 2, or 3 errors to
prepare three datasets namely, Type 1 dataset, Type 2 dataset,
and Type 3 dataset. 20% spolied means 20% data are replaced
with incorrect data. For 20% spoiled data, Lift, Square and
Spoon has 80 expert demos and 20 incorrect demos, Can
task has 120 expert demos and 30 incorrect demos, Drawer
task has 56 expert and 14 incorrect demos. For all the tasks
except square first author provided N expert demonstrations.
For the square task, we borrowed N expert demonstration
from Robomimic dataset [2].

B. Experiment 1: Impact of human errors on policy accuracy

We evaluate BC-RNN policy accuracy —i.e., mean success
rate over 3 means where each mean was calculated over 50
rollouts using different seeds. Results are reported in Table I
Here ‘Baseline’ indicates policy accuracy with the Baseline
dataset (see Section III). The accuracy drops for all tasks

TABLE 1II: Impact of human errors in demonstrations on
BC-RNN policy. Baseline contains no incorrect demo while
other types replaced 20% with incorrect demos.

Task Baseline | Type 1 Type 2 Type 3
Lift 0.99 0.73 0.71 0.78
Can 0.69 0.60 0.59 0.64
Square 0.57 0.25 0.23 0.45
Drawer 1.0 0.2 0.0 1.0
Spoon 1.0 0.0 0.2 0.1

when the policy is learned from demonstrations spoiled with
human errors. It is important to note that Type 1 and Type
2 errors (genuine errors made by lay users) have stronger

negative impact than the Type 3 error (intentional errors made
by an expert). In general, the real robot tasks suffer the most
due to incorrect demonstrations. These results affirm the need
for separating erroneous human demonstrations before policy
learning.

C. Performance of BED in detecting erroneous demonstra-
tions

The proposed BED framework is applied to 20% incorrect
data of all tasks with the following hyperparameter settings.
m=0.8,c=20,h=0,q =5,k = 1. Table III reports
the results in terms of FP rates. The proposed BED shows
low FP when dealing with Type 1 and Type 2 errors. Type 3
error identification, however, often exhibits a high FP rate.
This is because Type 3 errors include demonstrations from
experts that share certain commonalities with the correct
demonstrations (e.g., for the can task, they may be pursuing
a different goal but are efficient in maneuvering).

TABLE III: False Positive rate of BED in detecting errors in
demonstrations. Here, 1/20 means 1 out of the 20 incorrect
demonstrations were wrongfully assigned a weight of w=1.

Task Type 1 Type 2 Type 3
Lift 120 1/20 0/20
Can 2/30 4/30 13/30
Square 3/20 7/20 4/20
Drawer 2/14 2/14 3/14
Spoon 0/20 1/20 7/20

We noticed that running the same experiment without path
consistency results in similar performance for simulation but
lower performance for real robot in detecting Type-1 error.
Since the goal/task-completion is not well-defined for the two
real robot tasks, meaning that some lay users did not stop
recording immediately after completing the task, ends up in
non-consistent last (goal) time-step. Because of this, here we
did not use goal consistency loss (h = 0). BED performance
for all real robot tasks are slightly higher than that for all
simulation tasks, presumably because inconsistencies in real
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world are far more prominent — hence, recognizable — than
those in the simulation.

D. Sensitivity of BED performance to the choice of the
hyperparameter m

Given a training pool, the BED essentially identifies percent
of correct demonstrations as defined by m, making the
hyperparameter m an important design choice. To understand
the dependency of BED’s performance on the choice of m,
we conducted a series of experiments with the Can task with
different percent of mixed dataset (10%, 20%, 30% , 40%) of
Type-2. The total number of demonstrations remained 150 for
all experiments. Table IV reports FP rate. The results show
that irrespective of the choice of m and the actual number
of incorrect demonstrations in the training pool, the FP rate
remains close to zero. However, there is an opportunity cost
associated with the choice of m, as it wants to assign a fixed
number of demos to weight 1. If actual bad demos are less
than N — m - | D] it detect some other good demos as bad.

TABLE 1V: The sensitivity (FP rate) of BED to the hyper-
parameter m (Can task, Nji: the actual number of incorrect
demonstrations, N;: the number of incorrect demonstrations
BED will attempt to find based on the choice of m)

m (N i) Ni

I5730] 457 60
0.8 (30) 1 3 1 0
0.6 (60) 0 0 0 5

So, we run another experiment without having this con-
straint (setting m = 0 while keeping g > 0). Table V shows
the results. It suggests that, without any assumption of how
many are correct, using action and path consistency, BED
can detect good and bad demonstration with a very good
accuracy while not mislabelling any good data.

TABLE V: BED on various mixture datasets (Can Type-2)
ranging from 10% to 40%. (V;: the actual number of incorrect
demonstrations

N:i: | I5] 30| 45 | 60
FP 5 0 1 0
FN 2 3 2 3

It raises the question of whether we can completely remove
the m from BED loss, the answer is keeping m gives us a
generalized version of the loss that gives flexibility to select
a certain number of demonstration as good or bad.

For example, in the following subsection with MuJoco tasks
where we did not use goal and path consistency (h = g = 0)
because of the nature of the dataset, without the m term

E. The role of BED in improving policy accuracy

We evaluate the policy accuracy of BC-RNN and BCND on
Type 2 datasets for all five tasks. Table VI reports the result.
There is significant increase in BC-RNN policy accuracy
when errors are masked using BED. Note that BCND is
designed to learn from sub-optimal data. However, BCND
performs quite poorly as compared to BC-RNN, both in
masked and unmasked cases. The reason is that BCND is
based on BC that does not benefit from history and different
types of policy like Gaussian Mixture Model as used by BC-
RNN. This indicates the incapability of algorithms that learns
from sub-optimal data to deal with sub-optimality triggered
by human errors. Note that no hyperparameter tuning was
performed for BCND due to its extensive time requirement
especially for visual imitation learning.

TABLE VI: Policy accuracy on Type-2 dataset.

Task BC-RNN | BCND BED Masked-
BC-RNN

Lift 0.71 0.22 0.90

Can 0.59 0.0 0.67

Square 0.23 0.0 0.52

Drawer | 0.0 0.0 1.0

Spoon 0.2 0.2 1.0

F. Other Experiment: Comparison with BCND in Mujoco

BCND is the most closely related algorithm to the proposed
BED in a sense that it operates without requiring any labeling,
instead it relies on only a few simple assumptions. However,
BCND has only been tested with tasks in Mujoco environment
[22]. In order to make a direct comparison with BCND, we
also ran experiments with three Mujoco tasks using action
consistency loss only (m = 0.8, k = 10, h = g = 0).
Table VII reports the results. Both BC and BCND adopt
a Gaussian policy architecture, featuring two MLP layers
as an intermediate layer and two additional MLP layers for
calculating the mean and variance. Each task consists of
25 demonstrations. In case of Baseline (column 2), all 25
are expert data. Accuracy with BC (column 3) and BCND
(column 4) are generated with 20% incorrect ( 20 correct and
5 incorrect) demonstrations where incorrect data are created
by introducing random actions at arbitrary states. Finally,
column 5 shows accuracy with BC after the 5 incorrect
demonstrations are masked using BED. Results show that
masking incorrect/sub-optimal data actually increases policy
accuracy, as compared to learning from those incorrect data.

TABLE VII: MuJoCo tasks, mean reward over three mean
success, each mean calculated over 50 rollouts with different
seeds.

’ - Hatul ] ! Bascline BC BCND | BED Masked BC

the policy optimization gives w; = 0 for all w because it Ant-v3 4810.1T | 4435.16 | 241435 | 475281
gives the most minimized loss. On the otherhand keeping m +67.82 | +29.16 | +1145.73]| +55.09

: ECCAE HalfCheetah- | 4070.67 | 3812.50 | 2946.26 4098.58
forces sum of the weights equal to m * |D| hence minimizing 3 5311 | +211.72| +56.34 | +11.25
the objective function will assign w = 1 to the consistent Walker2d- 545236 | 244595 | 422.55 5159.09
demos and w = 0 to the inconsistent demos as they tends to v3 +74.04 | £55.49 | +45.08 | +517.57
contribute higher loss in the loss function.
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VI. CONCLUSIONS

This paper makes two contributions toward understanding
the impact of human errors on IL policy. First, it reports
a first-of-its-kind dataset capturing the nuances of lay user
errors in demonstrating robots, both in simulation and real
world. Second, it proposes a novel framework to identify
demonstrations spoiled with various type of human errors
in a self-supervised manner. The proposed framework uses
policy learning as a pretext task and hence does not require
any labeling of the data. Extensive experiments demonstrate
the performance of the proposed method in simulation and
real world. The proposed BED can be used as a wrapper with
any policy learning algorithm to identify and block incorrect
demonstrations from reaching the policy learner.
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