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Abstract— A major appeal of learning from demonstrations 
or imitation learning (IL) in robotics is that it learns a policy 
directly from lay users. However, Lay users may inadvertently 
provide erroneous demonstrations that lead to learning of 
policies that are inaccurate and hence, unsafe for humans and/or 
robot. This paper makes two contributions in the endeavour 
of recognizing human errors in demonstrations and thereby 
helping to learn a safe IL policy. First, we created a dataset – 
Layman V1.0 – with 15 lay users who provided a total of 
1200 demonstrations for three simulated tasks – Lift, Can 
and Square in the simulated Robosuite environment – and 
two real robot tasks with a Sawyer robot, using a custom 
designed Android app for tele-operation. Second, we propose a 
framework named Behavior Cloning for Error Detection (BED) 
to autonomously detect and discard erroneous demonstrations 
from a demonstration pool. Our method uses a Behavior 
Cloning method as self-supervised technique and assigns binary 
weight to each demonstration based on its inconsistencies with 
the rest of the demonstrations. We show the effectiveness 
of this framework in detecting incorrect demonstrations in 
the Layman V1.0 dataset. We further show that state-of-the- 
art (SOTA) policy learners learns a better policy when bad 
demonstrations, identified through the proposed framework, are 
removed from the training pool. Dataset and Codes are available 
in https://github.com/AssistiveRoboticsUNH/bed 

 

I.  INTRODUCTION 

We envision IL-enabled robots to serve lay humans in their 

own homes for a wide range of activities of daily living. 

In such settings, lay users will have to teach robots – e.g 

through teleoperation – how to perform a new task. Some 

of these task demonstrations may get spoiled – partially or 

fully – with inadvertent errors caused by factors such as 

a user’s unfamiliarity with robots/teleoperation interfaces, 

fatigue, distractions, etc. For example, it is not unusual for a 

novice lay user to slam the door while tele-operating a robot to 

show how to pick a milk-can from the refrigerator, or release 

an object before reaching the goal and thereby causing it to 

break. When IL-enabled robots are in the wild and robotics 

experts are not around to curate the data, the policy learning 

algorithm needs a mechanism to deal with such erroneous 

demonstrations. Otherwise, learned policies will not only be 

inaccurate but also unsafe – causing physical and/or financial 

harms to end-users. Although IL is increasingly becoming 

ubiquitous [1], topics relevant to deployment safety – such as 

the impact of human errors on learned policies – are nascent in 

the IL literature. A comprehensive study on the type of errors 

lay users may make while giving demonstrations and the 
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impact of those errors on the policy accuracy and safety is non- 

existent. The closest group of IL works that deal with a similar 

issue is policy learning from sub-optimal demonstrations. This 
 

Fig. 1: Errors in human demonstrations: High-quality demon- 

strations exhibit consistent pattern (green), whereas poor 

demonstrations do not follow any nominal pattern (red). (Left) 

The Lift task in the Robosuite environment [2]: lift the block 

up, (Right) The Can task: pick up the can and place it in the 

bottom-right corner 

 

group of works forgoes a long-standing assumption in the IL 

literature that demonstrations are optimal [3] and attempts 

to learn a high accuracy policy from demonstrations that 

are noisy or sub-optimal. However, the way these works 

model sub-optimality is not a faithful representation of the 

way errors occur in lay users’ demonstrations. For example, 

adding a fixed number of random actions to a RL-generated 

expert policy (RL: reinforcement learning) or adding random 

actions at random states – two contemporary methods of 

creating sub-optimal demonstrations [2] – is not how a human 

errs while doing a goal-directed task. The seminal work [2] 

published in 2021 made the first attempt to create a diagnostic 

dataset – termed as “Multi-human dataset” – that captured 

some examples of humans errors in demonstrating a number 

of tasks in simulated Robosuite environment. This dataset 

primarily considers inefficient task trajectories – e.g. long 

path length – that eventually succeeded in completing the 

task as examples of human errors. There is however no 

coordinated effort to understand the reality of human errors 

in demonstrations, the way these errors impact policy safety- 

accuracy, and necessary measures to mitigate this issue. The 

proposed work bridges that gap through making the following 

contributions: 

First, we have launched an Institutional review board (IRB) 

approved study to collect human demonstrations from lay 

users for various robotics tasks, both in simulation and in real- 

world. This paper releases the first dataset from this ongoing 

study, Layman V1.0, that contains 1200 demonstrations by 

15 lay users of three simulation tasks – Can, Lift, and Square, 

in the Robosuite environment – and two real world tasks by 
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a Sawyer robot – Drawer Closing and Spoon Picking. An 

intuitive Android App that we designed for teleoperation to 

collect these data are also made available to the research 

community (Section III). 

Second, we propose a weighted regression-based self- 

supervised framework to automatically identify incorrect 

demonstrations in a training pool. The proposed framework, 

that we term BED, leverages policy learning as a pretext task 

to learn poor weights for demonstrations that are inconsistent 

with the rest of the demonstrations in the training pool. During 

optimization the weights are forced to take values towards 

either 1 or 0 that later can be treated as binary value for good 

and bad respectively. A unique attribute of the proposed BED 

is that it assigns a weight to an entire demonstration, instead 

of state-action pairs in a demonstrations pool. (Section IV). 

Third, we demonstrate the performance of BED in detecting 

erroneous demonstrations in the Layman V1.0 dataset. We 

further demonstrate that a SOTA IL algorithm learn a better 

policy when erroneous demonstration are masked using the 

proposed BED framework (Section V). 

II.  RELATED WORKS 

IL literature traditionally followed an algorithmically 

convenient assumption that demonstrations are always optimal 

[3]. Considering demonstrations to be sub-optimal is a very 

recent trend in IL research where the primary focus is 

to learn a policy with high task-accuracy despite the sub- 

optimality in the training data. We categorize the existing 

IL literature that deals with sub-optimal demonstrations into 

two groups based on how the sub-optimal demonstrations are 

created. The first group creates sub-optimality synthetically 

– such as, taking a random action with a small probability at 

arbitrary states. A simulator is needed for such a synthetic 

generation of sub-optimal demonstrations and typically, the 

sub-optimality is introduced to a trained RL policy, instead 

of a real human-demonstrations [4], [5], [6], [7], [8]. By 

nature, these synthetic errors do not capture the nuances 

of human errors in demonstrations and therefore trivialize 

the problem. Access to a simulator allows generation of an 

abundant amount of training data which can often help with 

compensating for the loss of state-space-coverage caused 

by incorrect/sub-optimal demonstrations [9], [10], [11], [12], 

[13]. However, availability of a simulator for every task to 

be taught in the wild is a too restrictive assumption for 

deployment of IL-agents. The most prevalent approach in this 

group of research for learning a high-accuracy policy from 

sub-optimal demonstrations is weighing the demonstration 

based on its correctness. A vast majority of work requires 

a labeled/ranked dataset [14], [15], [16], [17], [12] to train 

a machine learning model for generating poor weights or 

confidence scores for incorrect demonstrations [17], [12], 

[18], [19], [20]. This is unrealistic – especially, in the context 

of IL in the wild – due to the burden imposed on the user for 

manual ranking/labeling of incorrect demonstrations. From 

this group, BCND [20] is the closest to our work since 

it does not require any labeled data to generate weight. 

BCND [20] uses an already learned Behavioral Cloning 

(BC) policy to generate weights for state-action pairs in a 

demonstration pool. Through multiple iterations, subsequent 

BC policies converge toward the mode actions observed 

in the demonstrations. Although intuitive, this strategy of 

convergence to the mode actions will face difficulty when 

dealing with human demonstrations. For example, if one state 

is visited multiple times due to the incompetency of a user 

in demonstrating a task, the assumption – that the number 

of correct action at a state outnumber the incorrect action 

at a given state – becomes invalid, causing the algorithm to 

fail. We experimentally demonstrate such failures in Section 

V. Note that BCND in [20] has been tested only with 

synthetically generated sub-optimal data for a few simulated 

Mujoco tasks. 

 

 

TABLE I: A summary of the datasets typically leveraged by 

IL research. 
 

Data Source Tasks Demo by 
Human? 

Robomimic  [21], 
[7] 

Lift,Can,Square,Tool Hang Yes 

MuJoCo [22], [23], 
[5], [6], [24], [16] 

Ant,  HalfCheetah,  Walker, 
Humanoid,Reacher,Swimmer, 
Beam Rider, Seacost 

No 

D4RL[5], [6] Door, Hammar, Relocate No 

Minigrid [4] DoorKey, FourRoom No 
Atari[24] Pong, Space Invader No 

Real Robot [23], 
[16] 

Custom tasks Yes 

 

 

 

The second group of work make a rare attempt to 

understand the reality of errors in human demonstrations 

[2], [21]. The seminal work in [2] introduces two datasets 

– Multi human and Can-Pair – that captures some human 

errors in demonstrations of a number of tasks in the simulated 

Robosuite environment. However, the Multi human dataset 

only captures human demonstrations with inefficient trajec- 

tories that are eventually successful in completing the tasks. 

The Can-Pair dataset simply mixes demonstrations from a 

target task with those from a non-target task. Despite this lack 

of diversity in human-generated sub-optimality, the policy 

accuracy of standard behavior cloning algorithm dropped 

when tested with these two datasets [2] , indicating that 

human errors are fundamentally different from synthetically 

introduced sub-optimality. The only other work in this 

group is ILEAD [21] which leverages the expertise level 

of demonstrators to learn a better policy. However, it does 

not address the issue that the expertise level of lay users 

changes over time. Table I summarizes the datasets that the 

contemporary IL research community relies on for policy 

learning from sub-optimal demonstrations. There is only 

one dataset that includes human demonstrations. Overall, 

understanding human errors in demonstrations and their 

impact on the learned policy is a heavily under-explored 

area in imitation learning. This paper attempts to bridge that 

gap. 
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III.  UNDERSTANDING ERRORS IN HUMAN 

DEMONSTRATIONS: LAYMAN V1.0 DATASET 

 

The famous quote of Tolstoy that ‘All happy families are 

alike; each unhappy family is unhappy in its own way’ could 

be an uncanny characterization of human errors in demon- 

strations. Errors in human demonstrations manifest in diverse 

ways, while correct demonstrations tends to exhibit consis- 

tency (Fig. 1). Not all errors have negative consequences on 

the quality of the learned pol- 

icy. For example, the sub- 

optimal demonstrations in the 

Multi-human dataset actually 

helped BC-RNN to learn a 

robust policy than the base- 

line [2] – primarily because 

of the higher state-space cov- 

erage achieved through the 

exploration performed by the 

inefficient trajectories. To un- 

derstand the nuances of hu- 

man errors during demonstra- 

tions, we have launched an 

IRB approved study where lay 

users are asked to provide task 

demonstrations through tele- 

An expert demonstration of both tasks is shown in Figure 5. 

For the simulated tasks, 12 participants were involved and 

each provided 25 demonstrations for each task. For the real 

robot tasks, 5 participants were involved and each provided 

20 demonstrations for each task. We recorded observations 

from two cameras (a wrist camera and a front-view camera), 

end-effector position, joint positions, joint velocities, and 

gripper status. Observation data can be considered as states 

while the delta changes in the end-effector position can be 

considered as actions. All demonstrations were recorded at 

a frequency of 20Hz. The dataset contains both naturally 

occuring mistakes (Type-1 and Type-2 as defined later) and 

intentionally making mistakes (Type-3 as defined later). 

Summary of Human errors: Analysis of the Layman V1.0 

dataset reveals two primary type of errors in human demonstra- 

tions. It is important to note that inclusion of more participants 

with diverse demographics and diverse tasks requiring finer 

manipulation skills will inevitably reveal other type of human 

errors that are not currently present in Layman V1.0. 

operating robots in simulated 

and real environments. This 

paper releases the first version 

of this dataset: Layman V 

1.0. 

User Demographics: Fifteen 

lay users participated in this 

study. None of the participants 

Fig. 2: SixDOF Android 

App interface. A robot 

end-effector is controlled 

through the sliding button 

and the physical rotation of 

the phone 

 

 

 

 

 

Fig. 3: Errors in human demonstrations for the Spoon picking 
task. Type 1: a user displaces the holder while picking up 

the spoon but managed to put the spoon in the cup. Type 2: 
had any previous exposure to robotics. However, participants 
had varying level of familiarity with computer games: ‘1’ 

indicates no familiarity at all and ‘10’ indicates proficiency in 

playing various computer games using keyboard/mouse/game- 

controller. Among the participants, 7 were male and 8 

were female; 4 participants had self-reported expertise level 

between 1-3, 5 participants reported between 4-6, and 6 other 

reported between 7-10; 8 participants were in the age group 

18-22 years and 7 were in the age group 23-30 years. 

Teleoperation interface: We designed an Android app, that 

we term SixDOF, for teleoperation of a Sawyer robot and 

the robot in the simulated Robosuite environment. Unlike 

similar apps [2], SixDOF is openly available for the research 

community (Github Link). Fig. 2 shows the SixDOF interface. 

The App uses the gyroscope of an Android phone for an easy 

and intuitive control of the robot. 

Data: The Layman V1.0 dataset consists of a total 1200 

demonstrations for three tasks in simulation – Lift, Can, 
Square in Robosuite – and two tasks in real world by a 

Sawyer robot – Drawer Closing and Spoon Picking. The 

Drawer Closing task involves closing the top drawer of a multi- 

drawer shelf, while the Spoon Picking task entails picking 

up a spoon from a holder and dropping it into a coffee cup. 

a user displaced the holder and failed to put the spoon in the 

cup. Type 3: the expert picked up the spoon efficiently but 

intentionally threw it on the table. 

 

• Type 1: A user struggles to control the robot using the 

interface, primarily due to unfamiliarity, resulting in the 

robot visiting states that are not relevant to the task goal. 

However, the user eventually completes the task. Type 1 

errors may result in trajectories that are fundamentally 

different from an expert demonstration of the task. Note 

that, state visitation may differ among different runs of 

the same task, even for the same user. 

• Type 2: This is similar to Type 1 but the user is 

unsuccessful in completing the task at the end. Type 

2 errors also include trajectories that are similar to an 

expert trajectory for the most part but failed at the end 

to complete the task. 

The Can-Pair dataset in [2] reports a type of error for the Can 
task where a human intentionally performs a series of actions 

that lead to a task failure – for instance, throwing away the can 

instead of placing it at the designated location. Although this 

type of intentional error is not common when lay users train 
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θ 

L 

θ 

j 

robots, for the sake of comparison with the Can-Pair dataset, 
we create data spoiled with this type of error and term it Type 

3 error. The first author of this paper, considered as an expert, 

created Type 3 error dataset for the Can, Lift, and Square 
tasks. For the Sawyer dataset lay users also contributed to 

the Type 3 errors. The same expert also generated Baseline 

demonstrations which complete each task efficiently hence, 

in the shortest time. Type 3 and Baseline demonstrations, 

despite not being from lay users, are available in the Layman 

the (in)consistency of a demonstration with respect to the 

rest in the training pool and thereby assigning a poor weight 

to inconsistent, hence erroneous, demonstrations. In its basic 

form in equation (2), the BED objective function penalizes 

action inconsistency – i.e., poorly weighing demonstrations 

where the evolution of actions is different from the rest in 

the training pool. 

 
|D| 

V1.0 to facilitate comparison by other similar research. Fig. 3 

demonstrates three type of errors corresponding to the Spoon 
picking task. 

IV.  THE PROPOSED FRAMEWORK: BEHAVIOR CLONING 

argmin 
L 

w 
θ,w i=1 

 1  
i |Di| 

L 

(s,a)∼Di  

(
π (s) − a

)2 
(2) 

FOR ERROR DISCOVERY (BED) 

A. Preliminaries 

We consider a standard Markov Decision Process (MDP) 

[25] formalized as a tuple {S, A, P, R, d0, T } where S is the 

set of states, A is the set of possible actions, P : S ×A×S → 
[0, 1] is the transition probability, R : S × A → [0, 1] is the 

reward function, d0 : S → [0, 1] is the initial state distribution 
and T is the episode horizon. However, the reward function 

R is unknown in the context of IL and is typically retrieved 

from human demonstration D. 

The proposed BED framework leverages policy learning – 

specifically, behavior cloning (BC) – as a pretext task to 

identify errors in human demonstrations. The generalized BC 

objective function is [6]: 

arg max E(s,a)∼D [log πθ(a|s) · f (s, a)] (1) 
θ 

Here πθ is the parameterized BC policy with parameters θ and 

f : S × A → [0, 1] is an arbitrary weight function. Choices 

of f generate objective functions for a range of algorithms 
that deals with suboptimal demonstrations. 

B. The BED Framework 

Given a set of demonstrations of a task, the goal of the 

the proposed BED framework is to separate the correct 

demonstrations from the erroneous/incorrect ones in a self- 

|D| 

wj = m · |D| 
j=1 

0 ≤ wj ≤ 1 

 

Here wi represents the weights assigned to the i-th demonstra- 

tion, |D| denotes the total number of demonstrations, and m is 

a hyperparameter denoting the percentage of demonstrations 
in the training pool that we hypothesize to be correct. (we 
present empirical analysis on the sensitivity of BED on m 
in Section V). Also, πθ is our pretext task that can be any 

policy that takes an state s and predict an action a. The 

constraints ensures that the sum of the weights equals to 

our hypothesized number of good demonstrations and that 

weights are in between 0 and 1. Note that the objective 

in (2) takes inspiration from the generalized BC objective 

function in 1 and leverages the fact that maximizing log- 

likelihood is the dual of minimizing the MSE [26], [27]. 

An important difference of (2) from 1 is that it weighs 

each demonstration, instead of each state-action pair. We 

can convert the constrained optimization problem 2 into a 

soft unconstrained BED loss function as follows. Here the 

third constraint is omitted by clipping w between 0 and 1 

during each update. 

supervised manner. Such incorrect demonstrations can be 

spoiled with any type of errors (Type 1, 2, or 3). The BED 

framework uses policy learning as a pretext task to achieve 

L(D, m) = 
L 

w 

i∈|D| 

 1  
i |Di| 

L 

(s,a)∼Di  
|D| 

(
π (s) − a

)2
 

 

 
(3) 

this. The intuition behind error discovery through the BED 

framework is based on the following two assumptions: 

Assumption 1. The number of correct demonstrations out- 

numbers the erroneous demonstrations. 

Assumption 2. Correct demonstrations exhibit greater consis- 

tency among themselves, whereas incorrect demonstrations 

exhibit variability. 

Both are reasonable assumptions in the context of task 

learning from a human demonstrator. Learning from an unla- 

beled dataset that contains both successful and unsuccessful 

demonstrations is substantially limited without Assumption 

1. According to both assumptions, in an unlabeled dataset, 

the largest consistency group represents the correct demon- 

strations. Leveraging this fact, the proposed BED defines an 

optimization problem where the objective function captures 

+ k 
(
m |D| − 

L 
w 

)2
 

j=1 

 

Here, k is a soft constrained multiplier; higher k results in 

faster weight learning. In practice choice of k does not affect 

weight learning. 

It is possible to incorporate more terms in the BED loss 

function in (3) to account for inconsistencies other than that 

in action evolution. For example, both Type 1 and Type 2 

errors involve state evolution that is inconsistent with the 

expert (path consistency); Type 2 errors further involves 

inconsistency with respect to reaching a desired goal state 

(goal consistency). 

Accordingly, we can define a generalized BED loss term 
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j 

L 

L 

that includes action, state, and goal consistency. 

 
 

Algorithm 1 BED Training  

L(D, m) =c · 
 1  wi · 

|D | 
L (

πθ(s) − a
)
 

Input Mixed Dataset D, Percent of demos to keep m 

Output Binary Mask w|D| 
i∈|D| 

i 
(s,a)∼Di  1: Randomly initialize policy θ and wi = 0.5∀i ∈ |D| 

+ h · 
L 

wi · ∥(G, gi)∥ 
i∈|D| 

+ q · 
L 

wi · ∥(Z, ζi)∥ 

i∈|D| 
|D| 

 

(4) 

2: Estimate G using (6) and Z using (8) 

3: di = demo indices [1, 2, ..., |D|], b=batch_size 

4: while epoch ≤ epochs or sum(round(w)) ̸= m · |D| do 

5: for i = 1 to ⌈|D|/batch_size⌉ do 

6: bi = di[i · b : i · b + b] 

+ k · 
(
m · |D| − 

L 
w 

)2
 

j=1 

Here, c, h, and q refer to the importance of action consistency, 

goal consistency, and path consistency, respectively. However, 

we do not have any knowledge about the goal G except that, 

the terminal observations of all correct demonstrations should 

represent the goal. Accordingly, we propose to estimate the 

goal in the latent space through equation (5) for each demo. 

Finally, equation (6) helps us to estimate the global goal G. 

gi = flatent(state
 
|Di|

}
) (5) 

7: calculate loss using equation (4) 

8: wclipped = max(0, min(w, 1)) 

9: update w[bi] and θ as standard gradient update. 

10: end for 

11: Update G using (6) and Z using (8) 

12: end while 

13: return round(w) 
 

 

G = E [goal] = ( 
  wi  

) · g 
sum(w) i 

(6) 

i∈|D| 

Similarly, we do not have any knowledge of a nominal path Z 
from which deviation should be punished as an ‘inconsistent’ 

path. Rather, we estimate such a path using equation (7) and 

(8). 

ζi = flatent(states ∈ Di) (7) 

 

 

Fig. 4: The BED pipeline: a mini-batch of demonstrations, not 

state-action pairs, is used to learn weights that discriminate 

correct demonstrations from incorrect ones 

Z = E [path] = ( 
  wi  

) · ζ 
sum(w) i 

i∈|D| 

(8) 
 

different type of inconsistencies, not the policy. We use the 

weights w generated through BED as a binary mask that 

Note that the estimation of the latent goal and the latent 

path are a weighted sum of the latent goal and latent path, 

respectively. The pretext policy requires to have a latent 

encoder flatent which we can extract from any intermediate 

layer of a policy network. We can use this latent layer 

to generate the latent goal and latent path. As the length 

of the path ζi can vary between demonstrations, we use 

linear interpolation to make the length same. When the path 

consistency term is consider in (4), the goal consistency term 

is redundant since the goal is inherently included as the last 

step of the path. Accordingly, we can set h=0. 

C.  Training BED 

For visual BC it only practical to train model using GPU. 

As the BED loss iterates over all demonstrations, it takes 

considerable amount of GPU memory before it can update 

the model parameter θ, w. To mitigate this resource issue, we 

devised a novel idea of mini-batching over demonstrations, 

instead of state-action pairs. Each mini-batch contains n << 
|D| demonstrations and the weights w corresponding to those 

demonstrations are updated. The joint training of θ and w 
is described in Algorithm 1. Figure 4 depicts the idea of 

mini-batching over demonstrations in the BED framework. It 

is important to note that the BED loss learns ‘a policy’ as 

a pretext task but the BED training is designed to optimize 

can filter out incorrect demonstrations before policy learning 

happens by any model architecture. 

V.  EXPERIMENTS AND RESULTS 

We conducted a set of experiments to shed light on the 

following: (1) The impact of human errors captured in 

Layman V1.0 on the policy accuracy of a SOTA policy 

learning algorithms namely, BC-RNN [2], (2) The perfor- 

mance of BED in detecting incorrect demonstrations in 

Layman V1.0 (3) The sensitivity of BED’s performance 

to the choice of the hyperparameter m (4) Comparison with 

BCND when incorrect demonstrations are masked using the 

BED framework. Additionally, we also experimented with 

three MuJoco tasks to facilitate a direct comparison with 

BCND [22] which reported performance only with MuJoco 

tasks. 

As the pretext policy for BED we used a BC policy 

architecture from [2], we also used the BC-RNN from 

robomimic. Both of them used default hyperparameters. 

The primary performance metric for BED is the number 

of False Positive (FP: incorrect demonstrations reported as 

correct through assigning a weight w=1) and False Negative 

(FN: correct demonstrations are reported as incorrect through 

assigning a weight w=0). The performance goal of BED is 

to keep FP and FN as low as possible. 

L 
2 



2867 

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply. 

 

 

Fig. 5: Spoon picking tasks (top row) involves picking up a spoon from a spoon holder and placing it inside a coffee cup. 

The Drawer closing task (bottom row) involves closing an open drawer 

 

A. Mixed dataset preparation for experiments 

Based on complexity of the tasks, each task has different N 
number of demonstrations (Lift=100, Can=150, Square=100, 

Spoon=100, Drawer=70). However, percentage of correct and 

incorrect data are consistent in all the tasks. For each task we 

used N = Nc + Ni demonstrations, where Nc and Ni are the 

number of correct and incorrect demonstrations, respectively. 

Baseline is when 100% (N = Nc + 0) are correct. Incorrect 

demonstrations are spoiled with Type 1, 2, or 3 errors to 

prepare three datasets namely, Type 1 dataset, Type 2 dataset, 

and Type 3 dataset. 20% spolied means 20% data are replaced 

with incorrect data. For 20% spoiled data, Lift, Square and 

Spoon has 80 expert demos and 20 incorrect demos, Can 

task has 120 expert demos and 30 incorrect demos, Drawer 

task has 56 expert and 14 incorrect demos. For all the tasks 

except square first author provided N expert demonstrations. 

For the square task, we borrowed N expert demonstration 

from Robomimic dataset [2]. 

B.  Experiment 1: Impact of human errors on policy accuracy 

We evaluate BC-RNN policy accuracy – i.e., mean success 

rate over 3 means where each mean was calculated over 50 

rollouts using different seeds. Results are reported in Table II. 

Here ‘Baseline’ indicates policy accuracy with the Baseline 

dataset (see Section III). The accuracy drops for all tasks 

TABLE II: Impact of human errors in demonstrations on 

BC-RNN policy. Baseline contains no incorrect demo while 

other types replaced 20% with incorrect demos. 
 

Task Baseline Type 1 Type 2 Type 3 
Lift 0.99 0.73 0.71 0.78 

Can 0.69 0.60 0.59 0.64 

Square 0.57 0.25 0.23 0.45 

Drawer 1.0 0.2 0.0 1.0 
Spoon 1.0 0.0 0.2 0.1 

 

when the policy is learned from demonstrations spoiled with 

human errors. It is important to note that Type 1 and Type 

2 errors (genuine errors made by lay users) have stronger 

negative impact than the Type 3 error (intentional errors made 

by an expert). In general, the real robot tasks suffer the most 

due to incorrect demonstrations. These results affirm the need 

for separating erroneous human demonstrations before policy 

learning. 

C.  Performance of BED in detecting erroneous demonstra- 

tions 

The proposed BED framework is applied to 20% incorrect 

data of all tasks with the following hyperparameter settings. 

m = 0.8 , c = 20, h = 0, q = 5, k = 1. Table III reports 

the results in terms of FP rates. The proposed BED shows 

low FP when dealing with Type 1 and Type 2 errors. Type 3 

error identification, however, often exhibits a high FP rate. 

This is because Type 3 errors include demonstrations from 

experts that share certain commonalities with the correct 

demonstrations (e.g., for the can task, they may be pursuing 

a different goal but are efficient in maneuvering). 

 

TABLE III: False Positive rate of BED in detecting errors in 

demonstrations. Here, 1/20 means 1 out of the 20 incorrect 

demonstrations were wrongfully assigned a weight of w=1. 
 

Task Type 1 Type 2 Type 3 

Lift 1/20 1/20 0/20 

Can 2/30 4/30 13/30 

Square 3/20 7/20 4/20 
Drawer 2/14 2/14 3/14 

Spoon 0/20 1/20 7/20 

 

We noticed that running the same experiment without path 

consistency results in similar performance for simulation but 

lower performance for real robot in detecting Type-1 error. 

Since the goal/task-completion is not well-defined for the two 

real robot tasks, meaning that some lay users did not stop 

recording immediately after completing the task, ends up in 

non-consistent last (goal) time-step. Because of this, here we 

did not use goal consistency loss (h = 0). BED performance 

for all real robot tasks are slightly higher than that for all 

simulation tasks, presumably because inconsistencies in real 
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world are far more prominent – hence, recognizable – than 

those in the simulation. 

 

D.  Sensitivity of BED performance to the choice of the 

hyperparameter m 

Given a training pool, the BED essentially identifies percent 

of correct demonstrations as defined by m, making the 

hyperparameter m an important design choice. To understand 

the dependency of BED’s performance on the choice of m, 

we conducted a series of experiments with the Can task with 

different percent of mixed dataset (10%, 20%, 30% , 40%) of 

Type-2. The total number of demonstrations remained 150 for 

all experiments. Table IV reports FP rate. The results show 

that irrespective of the choice of m and the actual number 

of incorrect demonstrations in the training pool, the FP rate 

remains close to zero. However, there is an opportunity cost 

associated with the choice of m, as it wants to assign a fixed 

number of demos to weight 1. If actual bad demos are less 

than N − m · |D| it detect some other good demos as bad. 

TABLE IV: The sensitivity (FP rate) of BED to the hyper- 

parameter m (Can task, Ni: the actual number of incorrect 

demonstrations, N̄ i :  the number of incorrect demonstrations 

BED will attempt to find based on the choice of m) 
 

m (N¯i) Ni 
15 30 45 60 

0.8 (30) 1 3 1 0 

0.6 (60) 0 0 0 5 

 

So, we run another experiment without having this con- 

straint (setting m = 0 while keeping q > 0). Table V shows 

the results. It suggests that, without any assumption of how 

many are correct, using action and path consistency, BED 

can detect good and bad demonstration with a very good 

accuracy while not mislabelling any good data. 

 

TABLE V: BED on various mixture datasets (Can Type-2) 

ranging from 10% to 40%. (Ni: the actual number of incorrect 

demonstrations 
 

Ni 15 30 45 60 
FP 5 0 1 0 

FN 2 3 2 3 

 

It raises the question of whether we can completely remove 

the m from BED loss, the answer is keeping m gives us a 

generalized version of the loss that gives flexibility to select 

a certain number of demonstration as good or bad. 

For example, in the following subsection with MuJoco tasks 

where we did not use goal and path consistency (h = q = 0) 

because of the nature of the dataset, without the m term 

the policy optimization gives wi = 0 for all w because it 

gives the most minimized loss. On the otherhand keeping m 

forces sum of the weights equal to m ∗ |D| hence minimizing 

the objective function will assign w = 1 to the consistent 
demos and w = 0 to the inconsistent demos as they tends to 
contribute higher loss in the loss function. 

E. The role of BED in improving policy accuracy 

We evaluate the policy accuracy of BC-RNN and BCND on 

Type 2 datasets for all five tasks. Table VI reports the result. 

There is significant increase in BC-RNN policy accuracy 

when errors are masked using BED. Note that BCND is 

designed to learn from sub-optimal data. However, BCND 

performs quite poorly as compared to BC-RNN, both in 

masked and unmasked cases. The reason is that BCND is 

based on BC that does not benefit from history and different 

types of policy like Gaussian Mixture Model as used by BC- 

RNN. This indicates the incapability of algorithms that learns 

from sub-optimal data to deal with sub-optimality triggered 

by human errors. Note that no hyperparameter tuning was 

performed for BCND due to its extensive time requirement 

especially for visual imitation learning. 

TABLE VI: Policy accuracy on Type-2 dataset. 
 

Task BC-RNN BCND BED Masked- 
BC-RNN 

Lift 0.71 0.22 0.90 
Can 0.59 0.0 0.67 

Square 0.23 0.0 0.52 

Drawer 0.0 0.0 1.0 
Spoon 0.2 0.2 1.0 

 

F. Other Experiment: Comparison with BCND in Mujoco 

BCND is the most closely related algorithm to the proposed 

BED in a sense that it operates without requiring any labeling, 

instead it relies on only a few simple assumptions. However, 

BCND has only been tested with tasks in Mujoco environment 

[22]. In order to make a direct comparison with BCND, we 

also ran experiments with three Mujoco tasks using action 

consistency loss only (m = 0.8, k = 10, h = q = 0). 

Table VII reports the results. Both BC and BCND adopt 

a Gaussian policy architecture, featuring two MLP layers 

as an intermediate layer and two additional MLP layers for 

calculating the mean and variance. Each task consists of 

25 demonstrations. In case of Baseline (column 2), all 25 

are expert data. Accuracy with BC (column 3) and BCND 

(column 4) are generated with 20% incorrect ( 20 correct and 

5 incorrect) demonstrations where incorrect data are created 

by introducing random actions at arbitrary states. Finally, 

column 5 shows accuracy with BC after the 5 incorrect 

demonstrations are masked using BED. Results show that 

masking incorrect/sub-optimal data actually increases policy 

accuracy, as compared to learning from those incorrect data. 

 

TABLE VII: MuJoCo tasks, mean reward over three mean 

success, each mean calculated over 50 rollouts with different 

seeds. 
 

 Baseline BC BCND BED Masked BC 

Ant-v3 4810.11 
±67.82 

4435.16 
±29.16 

2414.35 
±1145.73 

4752.81 
±55.09 

HalfCheetah- 
v3 

4070.67 
±53.11 

3812.50 
±211.72 

2946.26 
±56.34 

4098.58 
±11.25 

Walker2d- 
v3 

5452.36 
±74.04 

2445.95 
±55.49 

422.55 
±45.08 

5159.09 
±517.57 
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VI.  CONCLUSIONS 

This paper makes two contributions toward understanding 

the impact of human errors on IL policy. First, it reports 

a first-of-its-kind dataset capturing the nuances of lay user 

errors in demonstrating robots, both in simulation and real 

world. Second, it proposes a novel framework to identify 

demonstrations spoiled with various type of human errors 

in a self-supervised manner. The proposed framework uses 

policy learning as a pretext task and hence does not require 

any labeling of the data. Extensive experiments demonstrate 

the performance of the proposed method in simulation and 

real world. The proposed BED can be used as a wrapper with 

any policy learning algorithm to identify and block incorrect 

demonstrations from reaching the policy learner. 
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