
Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 14-18, 2024. Abu Dhabi, UAE

Self Supervised Detection of Incorrect Human Demonstrations: A Path

Toward Safe Imitation Learning by Robots in the Wild

Noushad Sojib and Momotaz Begum

Abstract— A major appeal of learning from demonstrations
or imitation learning (IL) in robotics is that it learns a policy
directly from lay users. However, Lay users may inadvertently
provide erroneous demonstrations that lead to learning of
policies that are inaccurate and hence, unsafe for humans and/or
robot. This paper makes two contributions in the endeavour
of recognizing human errors in demonstrations and thereby
helping to learn a safe IL policy. First, we created a dataset –
Layman V1.0 – with 15 lay users who provided a total of
1200 demonstrations for three simulated tasks – Lift, Can
and Square in the simulated Robosuite environment – and
two real robot tasks with a Sawyer robot, using a custom
designed Android app for tele-operation. Second, we propose a
framework named Behavior Cloning for Error Detection (BED)
to autonomously detect and discard erroneous demonstrations
from a demonstration pool. Our method uses a Behavior
Cloning method as self-supervised technique and assigns binary
weight to each demonstration based on its inconsistencies with
the rest of the demonstrations. We show the effectiveness
of this framework in detecting incorrect demonstrations in
the Layman V1.0 dataset. We further show that state-of-the-
art (SOTA) policy learners learns a better policy when bad
demonstrations, identified through the proposed framework, are
removed from the training pool. Dataset and Codes are available
in https://github.com/AssistiveRoboticsUNH/bed

I. INTRODUCTION

We envision IL-enabled robots to serve lay humans in their

own homes for a wide range of activities of daily living.

In such settings, lay users will have to teach robots – e.g

through teleoperation – how to perform a new task. Some

of these task demonstrations may get spoiled – partially or

fully – with inadvertent errors caused by factors such as

a user’s unfamiliarity with robots/teleoperation interfaces,

fatigue, distractions, etc. For example, it is not unusual for a

novice lay user to slam the door while tele-operating a robot to

show how to pick a milk-can from the refrigerator, or release

an object before reaching the goal and thereby causing it to

break. When IL-enabled robots are in the wild and robotics

experts are not around to curate the data, the policy learning

algorithm needs a mechanism to deal with such erroneous

demonstrations. Otherwise, learned policies will not only be

inaccurate but also unsafe – causing physical and/or financial

harms to end-users. Although IL is increasingly becoming

ubiquitous [1], topics relevant to deployment safety – such as

the impact of human errors on learned policies – are nascent in

the IL literature. A comprehensive study on the type of errors

lay users may make while giving demonstrations and the

Authors are with the Department of Computer Science, Uni-

versity of New Hampshire, USA noushad.sojib@unh.edu,
Momotaz.Begum@unh.edu

impact of those errors on the policy accuracy and safety is non-

existent. The closest group of IL works that deal with a similar

issue is policy learning from sub-optimal demonstrations. This

Fig. 1: Errors in human demonstrations: High-quality demon-

strations exhibit consistent pattern (green), whereas poor

demonstrations do not follow any nominal pattern (red). (Left)

The Lift task in the Robosuite environment [2]: lift the block

up, (Right) The Can task: pick up the can and place it in the

bottom-right corner

group of works forgoes a long-standing assumption in the IL

literature that demonstrations are optimal [3] and attempts

to learn a high accuracy policy from demonstrations that

are noisy or sub-optimal. However, the way these works

model sub-optimality is not a faithful representation of the

way errors occur in lay users’ demonstrations. For example,

adding a fixed number of random actions to a RL-generated

expert policy (RL: reinforcement learning) or adding random

actions at random states – two contemporary methods of

creating sub-optimal demonstrations [2] – is not how a human

errs while doing a goal-directed task. The seminal work [2]

published in 2021 made the first attempt to create a diagnostic

dataset – termed as “Multi-human dataset” – that captured

some examples of humans errors in demonstrating a number

of tasks in simulated Robosuite environment. This dataset

primarily considers inefficient task trajectories – e.g. long

path length – that eventually succeeded in completing the

task as examples of human errors. There is however no

coordinated effort to understand the reality of human errors

in demonstrations, the way these errors impact policy safety-

accuracy, and necessary measures to mitigate this issue. The

proposed work bridges that gap through making the following

contributions:

First, we have launched an Institutional review board (IRB)

approved study to collect human demonstrations from lay

users for various robotics tasks, both in simulation and in real-

world. This paper releases the first dataset from this ongoing

study, Layman V1.0, that contains 1200 demonstrations by

15 lay users of three simulation tasks – Can, Lift, and Square,

in the Robosuite environment – and two real world tasks by

979-8-3503-7770-5/24/$31.00 ©2024 IEEE 2862

2
0
2

4
 I

E
E

E
/R

S
J

In
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 I

n
te

ll
ig

en
t

R
o
b
o
ts

 a
n
d

 S
y
st

em
s

(I
R

O
S

)
| 9

7
9
-8

-3
5
0
3

-7
7
7
0
-5

/2
4

/$
3
1
.0

0
 ©

2
0
2
4

 I
E

E
E

 |
D

O
I:

 1
0
.1

1
0
9
/I
R

O
S
5
8
5
9
2.

20
2
4
.1

0
80

2
1
0
6

mailto:noushad.sojib@unh.edu
mailto:Momotaz.Begum@unh.edu

2863

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

a Sawyer robot – Drawer Closing and Spoon Picking. An

intuitive Android App that we designed for teleoperation to

collect these data are also made available to the research

community (Section III).

Second, we propose a weighted regression-based self-

supervised framework to automatically identify incorrect

demonstrations in a training pool. The proposed framework,

that we term BED, leverages policy learning as a pretext task

to learn poor weights for demonstrations that are inconsistent

with the rest of the demonstrations in the training pool. During

optimization the weights are forced to take values towards

either 1 or 0 that later can be treated as binary value for good

and bad respectively. A unique attribute of the proposed BED

is that it assigns a weight to an entire demonstration, instead

of state-action pairs in a demonstrations pool. (Section IV).

Third, we demonstrate the performance of BED in detecting

erroneous demonstrations in the Layman V1.0 dataset. We

further demonstrate that a SOTA IL algorithm learn a better

policy when erroneous demonstration are masked using the

proposed BED framework (Section V).

II. RELATED WORKS

IL literature traditionally followed an algorithmically

convenient assumption that demonstrations are always optimal

[3]. Considering demonstrations to be sub-optimal is a very

recent trend in IL research where the primary focus is

to learn a policy with high task-accuracy despite the sub-

optimality in the training data. We categorize the existing

IL literature that deals with sub-optimal demonstrations into

two groups based on how the sub-optimal demonstrations are

created. The first group creates sub-optimality synthetically

– such as, taking a random action with a small probability at

arbitrary states. A simulator is needed for such a synthetic

generation of sub-optimal demonstrations and typically, the

sub-optimality is introduced to a trained RL policy, instead

of a real human-demonstrations [4], [5], [6], [7], [8]. By

nature, these synthetic errors do not capture the nuances

of human errors in demonstrations and therefore trivialize

the problem. Access to a simulator allows generation of an

abundant amount of training data which can often help with

compensating for the loss of state-space-coverage caused

by incorrect/sub-optimal demonstrations [9], [10], [11], [12],

[13]. However, availability of a simulator for every task to

be taught in the wild is a too restrictive assumption for

deployment of IL-agents. The most prevalent approach in this

group of research for learning a high-accuracy policy from

sub-optimal demonstrations is weighing the demonstration

based on its correctness. A vast majority of work requires

a labeled/ranked dataset [14], [15], [16], [17], [12] to train

a machine learning model for generating poor weights or

confidence scores for incorrect demonstrations [17], [12],

[18], [19], [20]. This is unrealistic – especially, in the context

of IL in the wild – due to the burden imposed on the user for

manual ranking/labeling of incorrect demonstrations. From

this group, BCND [20] is the closest to our work since

it does not require any labeled data to generate weight.

BCND [20] uses an already learned Behavioral Cloning

(BC) policy to generate weights for state-action pairs in a

demonstration pool. Through multiple iterations, subsequent

BC policies converge toward the mode actions observed

in the demonstrations. Although intuitive, this strategy of

convergence to the mode actions will face difficulty when

dealing with human demonstrations. For example, if one state

is visited multiple times due to the incompetency of a user

in demonstrating a task, the assumption – that the number

of correct action at a state outnumber the incorrect action

at a given state – becomes invalid, causing the algorithm to

fail. We experimentally demonstrate such failures in Section

V. Note that BCND in [20] has been tested only with

synthetically generated sub-optimal data for a few simulated

Mujoco tasks.

TABLE I: A summary of the datasets typically leveraged by

IL research.

Data Source Tasks Demo by
Human?

Robomimic [21],
[7]

Lift,Can,Square,Tool Hang Yes

MuJoCo [22], [23],
[5], [6], [24], [16]

Ant, HalfCheetah, Walker,
Humanoid,Reacher,Swimmer,
Beam Rider, Seacost

No

D4RL[5], [6] Door, Hammar, Relocate No

Minigrid [4] DoorKey, FourRoom No
Atari[24] Pong, Space Invader No

Real Robot [23],
[16]

Custom tasks Yes

The second group of work make a rare attempt to

understand the reality of errors in human demonstrations

[2], [21]. The seminal work in [2] introduces two datasets

– Multi human and Can-Pair – that captures some human

errors in demonstrations of a number of tasks in the simulated

Robosuite environment. However, the Multi human dataset

only captures human demonstrations with inefficient trajec-

tories that are eventually successful in completing the tasks.

The Can-Pair dataset simply mixes demonstrations from a

target task with those from a non-target task. Despite this lack

of diversity in human-generated sub-optimality, the policy

accuracy of standard behavior cloning algorithm dropped

when tested with these two datasets [2] , indicating that

human errors are fundamentally different from synthetically

introduced sub-optimality. The only other work in this

group is ILEAD [21] which leverages the expertise level

of demonstrators to learn a better policy. However, it does

not address the issue that the expertise level of lay users

changes over time. Table I summarizes the datasets that the

contemporary IL research community relies on for policy

learning from sub-optimal demonstrations. There is only

one dataset that includes human demonstrations. Overall,

understanding human errors in demonstrations and their

impact on the learned policy is a heavily under-explored

area in imitation learning. This paper attempts to bridge that

gap.

2864

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

III. UNDERSTANDING ERRORS IN HUMAN

DEMONSTRATIONS: LAYMAN V1.0 DATASET

The famous quote of Tolstoy that ‘All happy families are

alike; each unhappy family is unhappy in its own way’ could

be an uncanny characterization of human errors in demon-

strations. Errors in human demonstrations manifest in diverse

ways, while correct demonstrations tends to exhibit consis-

tency (Fig. 1). Not all errors have negative consequences on

the quality of the learned pol-

icy. For example, the sub-

optimal demonstrations in the

Multi-human dataset actually

helped BC-RNN to learn a

robust policy than the base-

line [2] – primarily because

of the higher state-space cov-

erage achieved through the

exploration performed by the

inefficient trajectories. To un-

derstand the nuances of hu-

man errors during demonstra-

tions, we have launched an

IRB approved study where lay

users are asked to provide task

demonstrations through tele-

An expert demonstration of both tasks is shown in Figure 5.

For the simulated tasks, 12 participants were involved and

each provided 25 demonstrations for each task. For the real

robot tasks, 5 participants were involved and each provided

20 demonstrations for each task. We recorded observations

from two cameras (a wrist camera and a front-view camera),

end-effector position, joint positions, joint velocities, and

gripper status. Observation data can be considered as states

while the delta changes in the end-effector position can be

considered as actions. All demonstrations were recorded at

a frequency of 20Hz. The dataset contains both naturally

occuring mistakes (Type-1 and Type-2 as defined later) and

intentionally making mistakes (Type-3 as defined later).

Summary of Human errors: Analysis of the Layman V1.0

dataset reveals two primary type of errors in human demonstra-

tions. It is important to note that inclusion of more participants

with diverse demographics and diverse tasks requiring finer

manipulation skills will inevitably reveal other type of human

errors that are not currently present in Layman V1.0.

operating robots in simulated

and real environments. This

paper releases the first version

of this dataset: Layman V

1.0.

User Demographics: Fifteen

lay users participated in this

study. None of the participants

Fig. 2: SixDOF Android

App interface. A robot

end-effector is controlled

through the sliding button

and the physical rotation of

the phone

Fig. 3: Errors in human demonstrations for the Spoon picking
task. Type 1: a user displaces the holder while picking up

the spoon but managed to put the spoon in the cup. Type 2:
had any previous exposure to robotics. However, participants
had varying level of familiarity with computer games: ‘1’

indicates no familiarity at all and ‘10’ indicates proficiency in

playing various computer games using keyboard/mouse/game-

controller. Among the participants, 7 were male and 8

were female; 4 participants had self-reported expertise level

between 1-3, 5 participants reported between 4-6, and 6 other

reported between 7-10; 8 participants were in the age group

18-22 years and 7 were in the age group 23-30 years.

Teleoperation interface: We designed an Android app, that

we term SixDOF, for teleoperation of a Sawyer robot and

the robot in the simulated Robosuite environment. Unlike

similar apps [2], SixDOF is openly available for the research

community (Github Link). Fig. 2 shows the SixDOF interface.

The App uses the gyroscope of an Android phone for an easy

and intuitive control of the robot.

Data: The Layman V1.0 dataset consists of a total 1200

demonstrations for three tasks in simulation – Lift, Can,
Square in Robosuite – and two tasks in real world by a

Sawyer robot – Drawer Closing and Spoon Picking. The

Drawer Closing task involves closing the top drawer of a multi-

drawer shelf, while the Spoon Picking task entails picking

up a spoon from a holder and dropping it into a coffee cup.

a user displaced the holder and failed to put the spoon in the

cup. Type 3: the expert picked up the spoon efficiently but

intentionally threw it on the table.

• Type 1: A user struggles to control the robot using the

interface, primarily due to unfamiliarity, resulting in the

robot visiting states that are not relevant to the task goal.

However, the user eventually completes the task. Type 1

errors may result in trajectories that are fundamentally

different from an expert demonstration of the task. Note

that, state visitation may differ among different runs of

the same task, even for the same user.

• Type 2: This is similar to Type 1 but the user is

unsuccessful in completing the task at the end. Type

2 errors also include trajectories that are similar to an

expert trajectory for the most part but failed at the end

to complete the task.

The Can-Pair dataset in [2] reports a type of error for the Can
task where a human intentionally performs a series of actions

that lead to a task failure – for instance, throwing away the can

instead of placing it at the designated location. Although this

type of intentional error is not common when lay users train

2865

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

θ

L

θ

j

robots, for the sake of comparison with the Can-Pair dataset,
we create data spoiled with this type of error and term it Type

3 error. The first author of this paper, considered as an expert,

created Type 3 error dataset for the Can, Lift, and Square
tasks. For the Sawyer dataset lay users also contributed to

the Type 3 errors. The same expert also generated Baseline

demonstrations which complete each task efficiently hence,

in the shortest time. Type 3 and Baseline demonstrations,

despite not being from lay users, are available in the Layman

the (in)consistency of a demonstration with respect to the

rest in the training pool and thereby assigning a poor weight

to inconsistent, hence erroneous, demonstrations. In its basic

form in equation (2), the BED objective function penalizes

action inconsistency – i.e., poorly weighing demonstrations

where the evolution of actions is different from the rest in

the training pool.

|D|

V1.0 to facilitate comparison by other similar research. Fig. 3

demonstrates three type of errors corresponding to the Spoon
picking task.

IV. THE PROPOSED FRAMEWORK: BEHAVIOR CLONING

argmin
L

w
θ,w i=1

 1
i |Di|

L

(s,a)∼Di

(
π (s) − a

)2
(2)

FOR ERROR DISCOVERY (BED)

A. Preliminaries

We consider a standard Markov Decision Process (MDP)

[25] formalized as a tuple {S, A, P, R, d0, T } where S is the

set of states, A is the set of possible actions, P : S ×A×S →
[0, 1] is the transition probability, R : S × A → [0, 1] is the

reward function, d0 : S → [0, 1] is the initial state distribution
and T is the episode horizon. However, the reward function

R is unknown in the context of IL and is typically retrieved

from human demonstration D.

The proposed BED framework leverages policy learning –

specifically, behavior cloning (BC) – as a pretext task to

identify errors in human demonstrations. The generalized BC

objective function is [6]:

arg max E(s,a)∼D [log πθ(a|s) · f (s, a)] (1)
θ

Here πθ is the parameterized BC policy with parameters θ and

f : S × A → [0, 1] is an arbitrary weight function. Choices

of f generate objective functions for a range of algorithms
that deals with suboptimal demonstrations.

B. The BED Framework

Given a set of demonstrations of a task, the goal of the

the proposed BED framework is to separate the correct

demonstrations from the erroneous/incorrect ones in a self-

|D|

wj = m · |D|
j=1

0 ≤ wj ≤ 1

Here wi represents the weights assigned to the i-th demonstra-

tion, |D| denotes the total number of demonstrations, and m is

a hyperparameter denoting the percentage of demonstrations
in the training pool that we hypothesize to be correct. (we
present empirical analysis on the sensitivity of BED on m
in Section V). Also, πθ is our pretext task that can be any

policy that takes an state s and predict an action a. The

constraints ensures that the sum of the weights equals to

our hypothesized number of good demonstrations and that

weights are in between 0 and 1. Note that the objective

in (2) takes inspiration from the generalized BC objective

function in 1 and leverages the fact that maximizing log-

likelihood is the dual of minimizing the MSE [26], [27].

An important difference of (2) from 1 is that it weighs

each demonstration, instead of each state-action pair. We

can convert the constrained optimization problem 2 into a

soft unconstrained BED loss function as follows. Here the

third constraint is omitted by clipping w between 0 and 1

during each update.

supervised manner. Such incorrect demonstrations can be

spoiled with any type of errors (Type 1, 2, or 3). The BED

framework uses policy learning as a pretext task to achieve

L(D, m) =
L

w

i∈|D|

 1
i |Di|

L

(s,a)∼Di
|D|

(
π (s) − a

)2

(3)

this. The intuition behind error discovery through the BED

framework is based on the following two assumptions:

Assumption 1. The number of correct demonstrations out-

numbers the erroneous demonstrations.

Assumption 2. Correct demonstrations exhibit greater consis-

tency among themselves, whereas incorrect demonstrations

exhibit variability.

Both are reasonable assumptions in the context of task

learning from a human demonstrator. Learning from an unla-

beled dataset that contains both successful and unsuccessful

demonstrations is substantially limited without Assumption

1. According to both assumptions, in an unlabeled dataset,

the largest consistency group represents the correct demon-

strations. Leveraging this fact, the proposed BED defines an

optimization problem where the objective function captures

+ k
(
m |D| −

L
w

)2

j=1

Here, k is a soft constrained multiplier; higher k results in

faster weight learning. In practice choice of k does not affect

weight learning.

It is possible to incorporate more terms in the BED loss

function in (3) to account for inconsistencies other than that

in action evolution. For example, both Type 1 and Type 2

errors involve state evolution that is inconsistent with the

expert (path consistency); Type 2 errors further involves

inconsistency with respect to reaching a desired goal state

(goal consistency).

Accordingly, we can define a generalized BED loss term

2866

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

j

L

L

that includes action, state, and goal consistency.

Algorithm 1 BED Training

L(D, m) =c ·
 1 wi ·

|D |
L (

πθ(s) − a
)

Input Mixed Dataset D, Percent of demos to keep m

Output Binary Mask w|D|
i∈|D|

i
(s,a)∼Di 1: Randomly initialize policy θ and wi = 0.5∀i ∈ |D|

+ h ·
L

wi · ∥(G, gi)∥
i∈|D|

+ q ·
L

wi · ∥(Z, ζi)∥

i∈|D|
|D|

(4)

2: Estimate G using (6) and Z using (8)

3: di = demo indices [1, 2, ..., |D|], b=batch_size

4: while epoch ≤ epochs or sum(round(w)) ̸= m · |D| do

5: for i = 1 to ⌈|D|/batch_size⌉ do

6: bi = di[i · b : i · b + b]

+ k ·
(
m · |D| −

L
w

)2

j=1

Here, c, h, and q refer to the importance of action consistency,

goal consistency, and path consistency, respectively. However,

we do not have any knowledge about the goal G except that,

the terminal observations of all correct demonstrations should

represent the goal. Accordingly, we propose to estimate the

goal in the latent space through equation (5) for each demo.

Finally, equation (6) helps us to estimate the global goal G.

gi = flatent(state

|Di|

}
) (5)

7: calculate loss using equation (4)

8: wclipped = max(0, min(w, 1))

9: update w[bi] and θ as standard gradient update.

10: end for

11: Update G using (6) and Z using (8)

12: end while

13: return round(w)

G = E [goal] = (
 wi

) · g
sum(w) i

(6)

i∈|D|

Similarly, we do not have any knowledge of a nominal path Z
from which deviation should be punished as an ‘inconsistent’

path. Rather, we estimate such a path using equation (7) and

(8).

ζi = flatent(states ∈ Di) (7)

Fig. 4: The BED pipeline: a mini-batch of demonstrations, not

state-action pairs, is used to learn weights that discriminate

correct demonstrations from incorrect ones

Z = E [path] = (
 wi

) · ζ
sum(w) i

i∈|D|

(8)

different type of inconsistencies, not the policy. We use the

weights w generated through BED as a binary mask that

Note that the estimation of the latent goal and the latent

path are a weighted sum of the latent goal and latent path,

respectively. The pretext policy requires to have a latent

encoder flatent which we can extract from any intermediate

layer of a policy network. We can use this latent layer

to generate the latent goal and latent path. As the length

of the path ζi can vary between demonstrations, we use

linear interpolation to make the length same. When the path

consistency term is consider in (4), the goal consistency term

is redundant since the goal is inherently included as the last

step of the path. Accordingly, we can set h=0.

C. Training BED

For visual BC it only practical to train model using GPU.

As the BED loss iterates over all demonstrations, it takes

considerable amount of GPU memory before it can update

the model parameter θ, w. To mitigate this resource issue, we

devised a novel idea of mini-batching over demonstrations,

instead of state-action pairs. Each mini-batch contains n <<
|D| demonstrations and the weights w corresponding to those

demonstrations are updated. The joint training of θ and w
is described in Algorithm 1. Figure 4 depicts the idea of

mini-batching over demonstrations in the BED framework. It

is important to note that the BED loss learns ‘a policy’ as

a pretext task but the BED training is designed to optimize

can filter out incorrect demonstrations before policy learning

happens by any model architecture.

V. EXPERIMENTS AND RESULTS

We conducted a set of experiments to shed light on the

following: (1) The impact of human errors captured in

Layman V1.0 on the policy accuracy of a SOTA policy

learning algorithms namely, BC-RNN [2], (2) The perfor-

mance of BED in detecting incorrect demonstrations in

Layman V1.0 (3) The sensitivity of BED’s performance

to the choice of the hyperparameter m (4) Comparison with

BCND when incorrect demonstrations are masked using the

BED framework. Additionally, we also experimented with

three MuJoco tasks to facilitate a direct comparison with

BCND [22] which reported performance only with MuJoco

tasks.

As the pretext policy for BED we used a BC policy

architecture from [2], we also used the BC-RNN from

robomimic. Both of them used default hyperparameters.

The primary performance metric for BED is the number

of False Positive (FP: incorrect demonstrations reported as

correct through assigning a weight w=1) and False Negative

(FN: correct demonstrations are reported as incorrect through

assigning a weight w=0). The performance goal of BED is

to keep FP and FN as low as possible.

L
2

2867

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

Fig. 5: Spoon picking tasks (top row) involves picking up a spoon from a spoon holder and placing it inside a coffee cup.

The Drawer closing task (bottom row) involves closing an open drawer

A. Mixed dataset preparation for experiments

Based on complexity of the tasks, each task has different N
number of demonstrations (Lift=100, Can=150, Square=100,

Spoon=100, Drawer=70). However, percentage of correct and

incorrect data are consistent in all the tasks. For each task we

used N = Nc + Ni demonstrations, where Nc and Ni are the

number of correct and incorrect demonstrations, respectively.

Baseline is when 100% (N = Nc + 0) are correct. Incorrect

demonstrations are spoiled with Type 1, 2, or 3 errors to

prepare three datasets namely, Type 1 dataset, Type 2 dataset,

and Type 3 dataset. 20% spolied means 20% data are replaced

with incorrect data. For 20% spoiled data, Lift, Square and

Spoon has 80 expert demos and 20 incorrect demos, Can

task has 120 expert demos and 30 incorrect demos, Drawer

task has 56 expert and 14 incorrect demos. For all the tasks

except square first author provided N expert demonstrations.

For the square task, we borrowed N expert demonstration

from Robomimic dataset [2].

B. Experiment 1: Impact of human errors on policy accuracy

We evaluate BC-RNN policy accuracy – i.e., mean success

rate over 3 means where each mean was calculated over 50

rollouts using different seeds. Results are reported in Table II.

Here ‘Baseline’ indicates policy accuracy with the Baseline

dataset (see Section III). The accuracy drops for all tasks

TABLE II: Impact of human errors in demonstrations on

BC-RNN policy. Baseline contains no incorrect demo while

other types replaced 20% with incorrect demos.

Task Baseline Type 1 Type 2 Type 3
Lift 0.99 0.73 0.71 0.78

Can 0.69 0.60 0.59 0.64

Square 0.57 0.25 0.23 0.45

Drawer 1.0 0.2 0.0 1.0
Spoon 1.0 0.0 0.2 0.1

when the policy is learned from demonstrations spoiled with

human errors. It is important to note that Type 1 and Type

2 errors (genuine errors made by lay users) have stronger

negative impact than the Type 3 error (intentional errors made

by an expert). In general, the real robot tasks suffer the most

due to incorrect demonstrations. These results affirm the need

for separating erroneous human demonstrations before policy

learning.

C. Performance of BED in detecting erroneous demonstra-

tions

The proposed BED framework is applied to 20% incorrect

data of all tasks with the following hyperparameter settings.

m = 0.8 , c = 20, h = 0, q = 5, k = 1. Table III reports

the results in terms of FP rates. The proposed BED shows

low FP when dealing with Type 1 and Type 2 errors. Type 3

error identification, however, often exhibits a high FP rate.

This is because Type 3 errors include demonstrations from

experts that share certain commonalities with the correct

demonstrations (e.g., for the can task, they may be pursuing

a different goal but are efficient in maneuvering).

TABLE III: False Positive rate of BED in detecting errors in

demonstrations. Here, 1/20 means 1 out of the 20 incorrect

demonstrations were wrongfully assigned a weight of w=1.

Task Type 1 Type 2 Type 3

Lift 1/20 1/20 0/20

Can 2/30 4/30 13/30

Square 3/20 7/20 4/20
Drawer 2/14 2/14 3/14

Spoon 0/20 1/20 7/20

We noticed that running the same experiment without path

consistency results in similar performance for simulation but

lower performance for real robot in detecting Type-1 error.

Since the goal/task-completion is not well-defined for the two

real robot tasks, meaning that some lay users did not stop

recording immediately after completing the task, ends up in

non-consistent last (goal) time-step. Because of this, here we

did not use goal consistency loss (h = 0). BED performance

for all real robot tasks are slightly higher than that for all

simulation tasks, presumably because inconsistencies in real

2868

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

world are far more prominent – hence, recognizable – than

those in the simulation.

D. Sensitivity of BED performance to the choice of the

hyperparameter m

Given a training pool, the BED essentially identifies percent

of correct demonstrations as defined by m, making the

hyperparameter m an important design choice. To understand

the dependency of BED’s performance on the choice of m,

we conducted a series of experiments with the Can task with

different percent of mixed dataset (10%, 20%, 30% , 40%) of

Type-2. The total number of demonstrations remained 150 for

all experiments. Table IV reports FP rate. The results show

that irrespective of the choice of m and the actual number

of incorrect demonstrations in the training pool, the FP rate

remains close to zero. However, there is an opportunity cost

associated with the choice of m, as it wants to assign a fixed

number of demos to weight 1. If actual bad demos are less

than N − m · |D| it detect some other good demos as bad.

TABLE IV: The sensitivity (FP rate) of BED to the hyper-

parameter m (Can task, Ni: the actual number of incorrect

demonstrations, N̄ i : the number of incorrect demonstrations

BED will attempt to find based on the choice of m)

m (N¯i) Ni
15 30 45 60

0.8 (30) 1 3 1 0

0.6 (60) 0 0 0 5

So, we run another experiment without having this con-

straint (setting m = 0 while keeping q > 0). Table V shows

the results. It suggests that, without any assumption of how

many are correct, using action and path consistency, BED

can detect good and bad demonstration with a very good

accuracy while not mislabelling any good data.

TABLE V: BED on various mixture datasets (Can Type-2)

ranging from 10% to 40%. (Ni: the actual number of incorrect

demonstrations

Ni 15 30 45 60
FP 5 0 1 0

FN 2 3 2 3

It raises the question of whether we can completely remove

the m from BED loss, the answer is keeping m gives us a

generalized version of the loss that gives flexibility to select

a certain number of demonstration as good or bad.

For example, in the following subsection with MuJoco tasks

where we did not use goal and path consistency (h = q = 0)

because of the nature of the dataset, without the m term

the policy optimization gives wi = 0 for all w because it

gives the most minimized loss. On the otherhand keeping m

forces sum of the weights equal to m ∗ |D| hence minimizing

the objective function will assign w = 1 to the consistent
demos and w = 0 to the inconsistent demos as they tends to
contribute higher loss in the loss function.

E. The role of BED in improving policy accuracy

We evaluate the policy accuracy of BC-RNN and BCND on

Type 2 datasets for all five tasks. Table VI reports the result.

There is significant increase in BC-RNN policy accuracy

when errors are masked using BED. Note that BCND is

designed to learn from sub-optimal data. However, BCND

performs quite poorly as compared to BC-RNN, both in

masked and unmasked cases. The reason is that BCND is

based on BC that does not benefit from history and different

types of policy like Gaussian Mixture Model as used by BC-

RNN. This indicates the incapability of algorithms that learns

from sub-optimal data to deal with sub-optimality triggered

by human errors. Note that no hyperparameter tuning was

performed for BCND due to its extensive time requirement

especially for visual imitation learning.

TABLE VI: Policy accuracy on Type-2 dataset.

Task BC-RNN BCND BED Masked-
BC-RNN

Lift 0.71 0.22 0.90
Can 0.59 0.0 0.67

Square 0.23 0.0 0.52

Drawer 0.0 0.0 1.0
Spoon 0.2 0.2 1.0

F. Other Experiment: Comparison with BCND in Mujoco

BCND is the most closely related algorithm to the proposed

BED in a sense that it operates without requiring any labeling,

instead it relies on only a few simple assumptions. However,

BCND has only been tested with tasks in Mujoco environment

[22]. In order to make a direct comparison with BCND, we

also ran experiments with three Mujoco tasks using action

consistency loss only (m = 0.8, k = 10, h = q = 0).

Table VII reports the results. Both BC and BCND adopt

a Gaussian policy architecture, featuring two MLP layers

as an intermediate layer and two additional MLP layers for

calculating the mean and variance. Each task consists of

25 demonstrations. In case of Baseline (column 2), all 25

are expert data. Accuracy with BC (column 3) and BCND

(column 4) are generated with 20% incorrect (20 correct and

5 incorrect) demonstrations where incorrect data are created

by introducing random actions at arbitrary states. Finally,

column 5 shows accuracy with BC after the 5 incorrect

demonstrations are masked using BED. Results show that

masking incorrect/sub-optimal data actually increases policy

accuracy, as compared to learning from those incorrect data.

TABLE VII: MuJoCo tasks, mean reward over three mean

success, each mean calculated over 50 rollouts with different

seeds.

 Baseline BC BCND BED Masked BC

Ant-v3 4810.11
±67.82

4435.16
±29.16

2414.35
±1145.73

4752.81
±55.09

HalfCheetah-
v3

4070.67
±53.11

3812.50
±211.72

2946.26
±56.34

4098.58
±11.25

Walker2d-
v3

5452.36
±74.04

2445.95
±55.49

422.55
±45.08

5159.09
±517.57

2869

Authorized licensed use limited to: University of New Hampshire. Downloaded on August 01,2025 at 10:23:18 UTC from IEEE Xplor e. Restrictions apply.

VI. CONCLUSIONS

This paper makes two contributions toward understanding

the impact of human errors on IL policy. First, it reports

a first-of-its-kind dataset capturing the nuances of lay user

errors in demonstrating robots, both in simulation and real

world. Second, it proposes a novel framework to identify

demonstrations spoiled with various type of human errors

in a self-supervised manner. The proposed framework uses

policy learning as a pretext task and hence does not require

any labeling of the data. Extensive experiments demonstrate

the performance of the proposed method in simulation and

real world. The proposed BED can be used as a wrapper with

any policy learning algorithm to identify and block incorrect

demonstrations from reaching the policy learner.

ACKNOWLEDGMENT

This was supported in part by the National Science

Foundation IIS 1830597 and OIA 2218063

REFERENCES

[1] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, pp. 1–35, 2017.

[2] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,

L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martín-Martín, “What matters
in learning from offline human demonstrations for robot manipulation,”
in Conference on Robot Learning (CoRL), 2021.

[3] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters,
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[4] T. Zhao, W. Yu, S. Wang, L. Wang, X. Zhang, Y. Chen, Y. Liu,

W. Cheng, and H. Chen, “Skill disentanglement for imitation learning
from suboptimal demonstrations,” arXiv preprint arXiv:2306.07919,
2023.

[5] G.-H. Kim, S. Seo, J. Lee, W. Jeon, H. Hwang, H. Yang, and K.-

E. Kim, “Demodice: Offline imitation learning with supplementary
imperfect demonstrations,” in International Conference on Learning
Representations, 2021.

[6] H. Xu, X. Zhan, H. Yin, and H. Qin, “Discriminator-weighted offline
imitation learning from suboptimal demonstrations,” in International
Conference on Machine Learning. PMLR, 2022, pp. 24 725–24 742.

[7] J. Hejna, J. Gao, and D. Sadigh, “Distance weighted supervised learning
for offline interaction data,” arXiv preprint arXiv:2304.13774, 2023.

[8] M. Yang, S. Levine, and O. Nachum, “Trail: Near-optimal imitation
learning with suboptimal data,” arXiv preprint arXiv:2110.14770, 2021.

[9] B. Burchfiel, C. Tomasi, and R. Parr, “Distance minimization for
reward learning from scored trajectories,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[10] V. Tangkaratt, B. Han, M. E. Khan, and M. Sugiyama, “Variational
imitation learning with diverse-quality demonstrations,” in Proceedings
of the 37th International Conference on Machine Learning, 2020, pp.
9407–9417.

[11] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations,” in International conference on machine learning.
PMLR, 2019, pp. 783–792.

[12] Y. Wang, C. Xu, B. Du, and H. Lee, “Learning to weight imperfect
demonstrations,” in International Conference on Machine Learning.
PMLR, 2021, pp. 10 961–10 970.

[13] K. Shiarlis, J. Messias, and S. Whiteson, “Inverse reinforcement
learning from failure,” 2016.

[14] S. Choi, K. Lee, and S. Oh, “Robust learning from demonstrations with
mixed qualities using leveraged gaussian processes,” IEEE Transactions
on Robotics, vol. 35, no. 3, pp. 564–576, 2019.

[15] B. Hertel and S. R. Ahmadzadeh, “Learning from successful and failed
demonstrations via optimization,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 7807–7812.

[16] S. Zhang, Z. Cao, D. Sadigh, and Y. Sui, “Confidence-aware imitation
learning from demonstrations with varying optimality,” in Conference
on Neural Information Processing Systems (NeurIPS), 2021.

[17] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and M. Sugiyama,
“Imitation learning from imperfect demonstration,” in International
Conference on Machine Learning. PMLR, 2019, pp. 6818–6827.

[18] M. Hussein, B. Crowe, M. Clark-Turner, P. Gesel, M. Petrik, and

M. Begum, “Robust behavior cloning with adversarial demonstration
detection,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp. 7858–7864.

[19] M. Hussein and M. Begum, “Detecting incorrect visual demonstrations
for improved policy learning,” in Conference on Robot Learning.
PMLR, 2023, pp. 1817–1827.

[20] F. Sasaki and R. Yamashina, “Behavioral cloning from noisy demon-
strations,” in International Conference on Learning Representations,
2020.

[21] M. Beliaev, A. Shih, S. Ermon, D. Sadigh, and R. Pedarsani, “Imitation
learning by estimating expertise of demonstrators,” in International
Conference on Machine Learning. PMLR, 2022, pp. 1732–1748.

[22] F. Sasaki and R. Yamashina, “Behavioral cloning from noisy demon-
strations,” in International Conference on Learning Representations,
2021.

[23] Z. Cao and D. Sadigh, “Learning from imperfect demonstrations from
agents with varying dynamics,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5231–5238, 2021.

[24] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator imita-
tion learning via automatically-ranked demonstrations,” in Conference
on robot learning. PMLR, 2020, pp. 330–359.

[25] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[26] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[27] Y. Bengio, I. Goodfellow, and A. Courville, Deep learning. MIT
press Cambridge, MA, USA, 2017, vol. 1.

