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Abstract—Synthetic data is being widely used as a replacement
or enhancement for real data in fields as diverse as healthcare,
telecommunications, and finance. Unlike real data, which repre-
sents actual people and objects, synthetic data is generated from
an estimated distribution that retains key statistical properties
of the real data. This makes synthetic data attractive for sharing
while addressing privacy, confidentiality, and autonomy concerns.

Real data often contains missing values that hold important
information about individual, system, or organizational behavior.
Standard synthetic data generation methods eliminate missing
values as part of their pre-processing steps and thus completely
ignore this valuable source of information. Instead, we propose
methods to generate synthetic data that preserve both the
observable and missing data distributions; consequently, retain-
ing the valuable information encoded in the missing patterns
of the real data. Our approach handles various missing data
scenarios and can easily integrate with existing data generation
methods. Extensive empirical evaluations on diverse datasets
demonstrate the effectiveness of our approach as well as the
value of preserving missing data distribution in synthetic data.

Index Terms—Synthetic Data Generation, GAN, Missing Data

I. INTRODUCTION AND RELATED WORK

Odern machine learning and artificial intelligence can-

not be done without access to data. Indeed, many of
the recent successes in this field, such as generative Al and
large language models have become possible only due to
their training on humongous amounts of data. However, in
many domains and situations where real data contains sensitive
information (e.g., health or user behaviorrelated data), or when
raw data cannot be shared due to legislative requirements (e.g.,
GDPR, HIPAA, and CCPA), synthetically generated data is
used as a privacy-preserving replacement for real data [1],
[2]. Many methods have been developed to generate synthetic
data (such as [3], [4], [5]), however all of them assume that
the underlying real data is complete, i.e., without any missing
values. This is often not the case, with missingness as high as
99% in e-commerce and social media datasets.

More importantly, the missing data can have a lot of value,
sometimes even more than the observable data. An anecdotal
example comes from World War II [6], when the airforce
wanted to reinforce bombers with more armor to prevent
them from being shot down. However, additional armor would
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increase weight and result in less bomb carrying capacity.
Therefore, the airforce tasked the Statistical Research Group
(SRG) to decide the amount of armor to put in different loca-
tions based on the statistical data regarding aircraft damage,
indicated by the distribution of the bullet holes on the returning
planes, i.e., the observable data. Interestingly, Abraham Wald,
the mathematician in charge of solving this problem, made the
keen observation that the missing data provided the crucial
information to solve this problem. Specifically, the data about
the possible bullet holes on the missing planes, the ones
that got shot down and did not return, was more important
because the observable data showed the survivable parts of
the plane. Based on Wald’s hypothesis, more armor was placed
on the engines, contrary to the observable data which showed
that engines were less damaged. This actually resulted in a
significant increase in the number of airplanes returning to
base, demonstrating the value of the missing data.

Similarly, in many practical settings, missing data is crucial
for effective data analysis. Typically, data is not missing
completely at random (MCAR). Instead, the missingness is
often due to underlying data, system, or behavior-dependent
mechanisms that capture complex situational or environmental
interactions [7], [8].For instance, the missing answers about
smoking on the medical chart may not be due to the question
not being asked, but rather because pregnant women with de-
pression are less likely to report smoking than non-depressed
pregnant women [9]. The missing gender and COVID-19 test
related information in symptoms-tracking surveys is strongly
linked with users’ privacy preferences that are unobservable
without the missing data [10].

Since the standard synthetic data generation methods oper-
ate on data without any missing values, if the real data has
missing values, either all of the records with missing values
are removed (known as complete-case analysis) or the missing
data is imputed. Complete-case analysis [11], [2] not only
throws away the missing data, but also ignores the observable
data in incomplete samples. Hence, it is clearly unfit for all
the real-life situations where missing values are data dependent
— i.e., Missingness at Random (MAR) or Missingness Not at
Random (MNAR) settings [12]. While the alternative approach
of imputing the missing data before generation [13], [14] better
utilizes data correlations and does not throw away a lot of data,
it still hides all the missing information from the downstream
data analyst receiving the synthetic data.
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Effectively, both the existing approaches (complete-case
analysis and impute-then-generate) erase all patterns and struc-
tures related to missingness, losing important information,
which can be leveraged in many settings (e.g., in healthcare
and bioinformatics) to solve a number of problems[7]. Indeed,
data analysts employ various methods to leverage missing
data to enhance the performance of their specific downstream
tasks, methods that are often unknown to the data generator.
Analysts can achieve better imputation by utilizing their do-
main expertise and additional information [15], [16], which the
data generator might lack. They can also use the distribution
of missing values as an extra signal to refine their models,
such as in recommendation systems[17], [18]. Moreover, many
learning algorithms explicitly account for missing data and
have outperformed those that either ignore or impute missing
values [19], [20], [21], [22].

As discussed above, since missingness is an integral part of
the data, this article aims to answer the question: “Given real
data with missing values, how can we generate synthetic data
that accurately reflects both the distribution of the observable
data and the distribution of the missing data?” The key
challenge here is to either explicitly or implicitly model,
learn, and sample from the joint distribution of the observable
and missing data, regardless of the underlying heterogeneity,
complexity, or interaction of the missingness mechanisms.

Although some recent works attempt to address the afore-
mentioned challenge, they do so for a very restricted setting
[23] or are unable to faithfully reproduce missing data distri-
bution in the synthetic data [24]. Thus, in this work, we make
the following key contributions:

1) We initiate the systematic study of approaches to generate
synthetic data that maintain both observable and missing
data distributions.

2) We propose several alternative methods to generate high
quality synthetic data and theoretically analyze each meth-
ods providing recommendations for when each is likely to
perform well.

3) Our methodology can be easily integrated into existing
data generation pipeline as a pre-processing step, and it
is independent of any specific data generation method.

4) We demonstrate the effectiveness of our methods in pre-
serving the two distributions by providing an extensive
empirical evaluation comparing against several baselines
in terms of both statistical metrics and downstream tasks
over a range of fabricated and real-world datasets.

A preliminary version of this paper presenting two alterna-
tive approaches was published in [25]. This article significantly
extends that work developing an additional hybrid approach
which outperforms both approaches in [25]. Additionally, the
article includes a thorough theoretical analysis as well as an
enhanced comparative analysis with a more robust empirical
evaluation with additional baselines.

II. RELATED WORK

Synthetic data generation is used in many fields for a
wide variety of data. There are many techniques to generate
synthetic data, for example, sampling from random forest [2],

via dynamic time wrapping Barycentric averaging [26], Hid-
den Markov Models [27], probabilistic database model [28],
Markov random fields [29], and generative adversarial net-
works (GANSs) [30], [11], [3]. GANs have recently achieved
a new state-of-the-art performance for synthetic tabular data
and imputation of missing data. TGAN [31], for instance,
is a synthetic data generator for tabular data with mixed
variable types. They use Long Short Term Memory (LSTM)
to generate data column by column. In [32], several extensions
to TGAN are proposed to support database constraints in
synthetic data generation. CTGAN [33] is a newer GAN-based
method to generate tabular data. It can handle imbalanced
discrete columns by the conditional generator and training-by-
sampling technique and generate high-quality data. However,
both models cannot handle missing data; so they impute the
data first (e.g., by using GAIN [34], a novel GAN-based
imputation method).

Synthetic data generation while preserving missing data
distribution has not received much attention in the literature.
Most work, in contrast, focuses on getting rid of the missing
data either by imputation [35], [36] or deleting all the records
with missing values (i.e., complete-case analysis). Only
very recently a GAN-based model, named MisGAN[23], was
proposed to generate synthetic data with missing values for
image data. In this work, two GANs are used, one to learn
the missing pattern (referred to as masks) distribution and
the other to learn masked data (where the missing values are
replaced by a constant) distribution. They empirically showed
that synthetic data with missing values (by MisGAN) gives
better statistical estimations. MisGAN, however, has some
serious limitations: it only works for MCAR setting, i.e.,
missingness is independent of the data, an assumption often
violated by real world datasets; applying MisGAN to tabular
data is not a trivial task. So, we propose a suite of methods
to deal with various missing mechanisms, such as MCAR,
MAR, and MNAR. Additionally, we also formulate a measure
to assess the quality of synthetic data with missing values.
Another work uses Bayesian Networks to generate synthetic
data with missing values [24]. However, their empirical results
show a very large divergence in missing pattern distribution
and other statistics. For instance, for “cholesterol” feature
with the original missing rate of 88.59%, the corresponding
synthetic data had the missing rate of 0.08%. Further, it fails
to scale to high dimensional and large scale data.

III. BACKGROUND AND NOTATION
A. Data, samples, and distributions

Let D = Hle F}; denote the data universe, consisting of
the set of all possible samples (i.e., records) with and without
the missing values of all features, where F}; is the set of
possible values of the ¢-th feature; each feature has a special
value NA to denote that the feature’s value is missing (i.e.,
NA € F; for each t). We use D, to denote data universe
with fully observable records, i.e., without any missing values.
The dimension d is arbitrarily fixed throughout this work.
T = {x1,22,...,2,} denotes the dataset (a multi-set) of n
samples, where each sample z; is a d-dimensional vector.
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Thus, for any sample x (we omit the subscript when the
distinction is not needed), if the value of its j-th feature is
missing, we have z; = NA. |Z| denotes the size of the dataset
T (e.g., here || = n).

We use bold lower case letter with a bar to denote a dataset
(%) and upper case letter to denote a random variable (X and
X°). P(X) denotes the distribution that X follows, we also
use P (-) to denote Pr(-) as described below.

The samples in @ have been sampled from data distribution
independently and identically (i.i.d.), and we use X to denote
the random variable for a sample. Now P (X) gives the data
distribution, which is a probability density function or prob-
ability mass function depending upon the underlying space.
Since our aim is to develop methods for generating synthetic
data that learn the data distribution from a given dataset, we
use Pz (X) to denote the learned data distribution using the
dataset T (i.e., Pz (X) is a dataset-specific approximation
of P(X)). Note that for any measurable event £ C D,
P (E) = Pr[x € E] gives the probability of the event. Since
Z may or may not contain missing values, for modeling and
definitions, we also consider a random variable X¢, which
is the counterpart of X and corresponds to sampling data
without any missing values. Similar to the above, P (X°) gives
the distribution for the counterpart of our sampled dataset,
which does not have any missing values (this is useful in
describing missing mechanisms which model generation of
missing values in the data, discussed below). Indeed X° and
X are related via the missing mechanism, as described next.

B. Missingness and Missing Mechanisms

Although the missing values appear at feature level, the
appropriate level of generalization is at the sample/record
level, which we refer to as missing pattern of a sample.
This will be a central notion throughout this work for it is
a crucial characteristic of the real-world datasets (discussed in
Section V). A missing pattern (mp) describes which features
of a sample are missing and can be modeled as binary
vector: thus, we use MP = {0,1}¢ to denote the set of
all missing patterns for any d-dimensional dataset. Hence,
for any sample 2 € D, we say m € MP = {0,1}¢ is
2’s missing pattern if m; = 1 when z; = NA and m; = 0
when z; # NA (for every ¢ = 1,2,...,d). Now for a missing
pattern m, we conveniently use ¥, to denote the set of
all the samples in Z that have the missing pattern m (i.e.,
Ty, ={zin T | miss—-patt(z) =m}, where miss-patt
gives the missing pattern of x).

Using missing patterns, we define missing pattern (mp)-
distribution for the data sampled according to IP (X), which we
denote as P (M), where M is the random variable for the miss-
ing patters for the sampled data. Since MP is finite (or at max
countable), P (M) is the probability mass function. For a given
T, we use Pz (M) to denote the empirical mp-distribution as
per T: so, for any m € MP, Pz (M =m) = |T.,|/[Z]. We
write Pz (m) = Pz (M = m) for brevity. Note that since there
are an exponential (in d) number of missing patterns, in typical
settings, Pz (m) = 0 for many patterns m, since there may be
no record in the dataset with that missing pattern.

Let us now introduce the notion of missing mechanism,
a standard way to model missingness in the data: missing
mechanism is an abstraction of the underlying process re-
sponsible for creating missing values in the data [37]. It is
conceptualized as an algorithm that takes in fully observable
data and then creates missing value by omitting some value
or replacing them with NA’s. These mechanisms are divided
into three categories, which are based on how the missing
vales are related to the data [37]. In order to understand
missing mechanisms, it is helpful to describe data through a
pair (X, X;q) of two random variables, where X, termed as
observable data, consists of collected features with possible
missing values (as described in Section III-A), and X4 is the
hidden part, which consists of the uncollected features that are
relevant to missing values as well as the feature values that
are missing; for instance, consider data on individuals about
an infectious disease, which typically does not have the level
of individuals’ exposure. Using random variables (X, Xpiq)
and M, we define the three mechanisms as:

¢ A missing mechanism is called MCAR if the missing
values created by it are missing completely at random
(MCAR), namely, they are independent of the data, i.e.,
P (M (X, Xpia)) =P (M).

e An MAR mechanism creates missing values at ran-
dom (MAR), namely, missingness depends on the part
of the data that is observable (not missing), i.e.,
P (M |(X, Xpia)) = P (M |X).

« An MNAR mechanism creates missingness not at random
(MNAR), namely, missing values creation depends on the
observable data as well as on the hidden data, and hence,
it is neither MCAR nor MAR, i.e., P (M (X, Xpid)) #
P(M |X) and P (M |(X, Xpnia)) £ P (M).

C. Synthetic Data Generation Methods (DGMs)

For synthetic data generation, we consider machine learn-
ing based generative methods, such as generative adversarial
networks (GANSs) [30], variational autoencoders (VAEs) [38],
Bayesian networks (BNs) [39]. We refer to them as data
generation methods (DGMs). Typically, a DGM, takes as input
a dataset that it uses to learn the underlying data distribution
as a generator. The learned generator is subsequently used to
generate synthetic data samples. Since only samples generated
from the learned distribution are released, these methods are
believed to provide statistical disclosure control, and hence,
are considered privacy protecting in various practical scenarios
[27], [40]. When stronger privacy guarantees are needed, one
can use the rigorous framework of differential privacy to
provably protect privacy during the learning process [41].

DGMs can be broadly classified into two groups: traditional
statistical methods and deep generative models. Statistical
methods necessitate an a priori model, viewing real data as an
instance of random variables following an inherent probabilis-
tic distribution. Synthetic data is then sampled from the built
model. For instance, Bayesian Networks are used for learn-
ing the joint probability distributions [39]. In contrast, deep
learning-based approaches aim to model the underlying data
structure in a data-driven manner without needing predefined
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mathematical equations or simulations. This category includes
models like VAEs [38], which compress data into a lower-
dimensional latent space before reconstructing it, and are
utilized across various domains such as imaging and tabular
data. Another prominent DGM method is based on GANs [30],
which consist of two adversarially related networks that are
trained together, where they try to beat each other in a game,
summarized as the minimization of a common loss function.

In this paper, we employ CTGAN [33], vanilla VAE, and
Bayesian Network to demonstrate our synthetic data gen-
eration approach. These models are adept at handling both
continuous and discrete data — this is important as we aim
to build a method to generate synthetic data that can handle
mixed data types.

Wasserstein distance: To assess the quality of the synthetic
data, we will make use of Wasserstein distance [42]. In
machine learning, it is often used to measure how close two
datasets (i.e., sets of samples) (or distributions) are [42]. Com-
pared to Kullback-Leibler or Jensen-Shannon divergences,
it is sensitive to small discrepancies and more suitable in
scenarios where distributions have differing supports or are
sparse, making it an effective tool for evaluating synthetic data
quality. For two datasets, T and vy, each of size n, (quadratic)
Wasserstein distance is defined as follows:

*mmzm%u ull*, )

n well,

W2(z,y)

where II is the set of all permutations (7 : [n] — [n],
for [n] {1,2,...,n}). Calculating Wasserstein distance
over high dimensional data is computationally very resource
intensive and time consuming; thus, we will employ its sliced
version, which computes the distance as the average over
several random linear projection [43]. Since Wasserstein and
many other distance notion do not work when the data samples
consist of missing values, especially, when used to measure
quality of the generated data, one of the contributions of
this work is to propose methodologies to tackle this problem
gracefully, as described next.

IV. ASSESSING SYNTHETIC DATA QUALITY

We aim to develop approaches for synthetic data generation
that maintain the fidelity not only in terms of the observable
data but also missing data. The generation method will take
as input a dataset x, call it real data, possibly with missing
values, and generate synthetic dataset y such that y is similar
to @, in their observable and missing data distributions. In this
section, we propose a way to measure and assess these two
important but contrasting® properties of the data.

We achieve the aforementioned goal by considering (empir-
ical) missing pattern (mp)-distributions corresponding to the
two datasets, and then define a notion of (c,3)-closeness
(Definition 1) where o bounds closeness in terms of mp-
distributions and [ bounds the closeness in terms of the
observable data while respecting the missing data distribution.

*The contrast is due to the fact that one property, i.e., observable data
distribution, is about what we can see and the other property, i.e., missing
data distribution, is about what we cannot see.

Note that the intuition and understanding gleaned from the
explication of the consolidated measure directly guides the
development of appropriate approaches for high fidelity syn-
thetic data generation (in Section V).

A. Measuring similarity in terms of mp-distribution

For a given dataset @, Pz (M) denotes the empirical mp-
distribution per . Recall that P (X) and IP (M) give the actual
probability distributions of an i.i.d. sample z € D and its
missing pattern m € MP = {0,1}% respectively with their
corresponding random variables X and M (where m; = 1 if
j-th feature in =z is missing, see Section III-A and III-B for
details). Now for any given datasets  and ¥y, the closeness
between their corresponding mp-distributions, measured via
L7 norm, is as follows:

) =Py (M)[[1 = ) (@), 2

Diis (Ea y) :| ‘Pf (M
meMP
= |Pz (m)

where §,,(Z,Y) — Pz (m)| and %, (g,,) are the
subsets of T (y), which consist of all the samples with missing
patterns m, and Pz (m) = Pz (M = m).

B. Defining similarity between T, and Y.,

Then, we describe how to measure the similarity between
Ty, and Y,,, W(Tm,Y,,), especially, when |Z,,| # |7,,|
Note that sliced Wasserstein distance is able to handle such
cases as long as |Z,,| and |y,,| are sufficiently large [44].

We measure VW as the average of the given similarity
measure over equal sized subsets. Below, we describe this for
Wasserstein distance W.

To do this, we exploit the fact that W can be naturally
extended to measure the distance between two non-empty and
equal sized datasets with same missing pattern by projecting
all the samples down to only non-missing features, e.g.,
(1,NA,3) — (1,3). Our formulation not only resolves all the
issues we discussed earlier but also gives a useful relationship
between S and Wasserstein distance. For instance, Sz(%, ) =
W (®,y) when both the datasets consist of the same single
missing pattern; Sz(T,y) gives non-uniform weighted version
of the Wasserstein distance when D,,;s(Z,y) = 0 and
|Zm| = |Y,,| for each m.

Hence, for two given datasets, x,, of size N and y,, of
size K, with the same missing pattern m, we define W as
follows:

0 N=K=0
WQ(jm’gm) N=K>0
71 o
21— (%) 72 WZ(Z,ym) N>K>0
w (mmaym) = zeCz K
W2(G,,, ) K>N>0
W(@ 1, {0 }) K=0
W2(§m7EM) N == O
(3)

where 0,, is the zero vector with NA’s according to m; and
Cz, K is the set of all datasets of size K that can be created
from samples in &,,, that is, for @,, = {z1,...,2n}, Ca x =
{z; in &y, |i €I C[N]s.t |I|] =K}, and hence, its size is

(x)-
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C. Closeness measure between T and Yy

We now discuss our proposed consolidated measure to
characterize closeness between  and y, which in addition
to the observable data, takes into account datasets’ differences
in terms of their mp-distributions. Note that the variations in
the missing patterns across the two datasets and their unequal
sizes make it impossible to apply the existing measure (such
as Wasserstein distance from Section III-C) directly over all
the samples. For example, two samples with different missing
patterns can have different dimensions (in terms of observable
features), and thus, cannot be compared as such — e.g.,
consider comparing (1,NA,5) to (NA,9,NA).

To solve this conundrum, we propose that: firstly, a simi-
larity scoring function, s, be used to measure the similarity
between samples with the same missing pattern m (i.e., .,
and g,,,) from the two datasets (Z and y); and then, S(Z,y) is
defined as a weighted average of these scores. This approach
allows the use of standard metrics, distance functions, and
similarity measures for s, which can now be applied over
the non-missing coordinates as they remain non-missing in
all the samples with same missing pattern, e.g., we can
compute Euclidean distance between (7,NA,3) and (2,NA, 1)
by ignoring missing (i.e., NA) coordinate. Thus, for a given
similarity function s and non-negative weights, v, we define:

S(E, y) = Z Ym - SQ(fm,?m% €]
meMP

where ,, gives the weights corresponding to the missing
pattern m. In this work, we define similarity between x,, and
y,, as an average Wasserstein distance, WV (given by Eq. (3)),
ie., s(Tm,Y,,) = W(Zm,Y,,). Further, we define weights
~ with respect to a reference dataset z such that for every
m € MP, we have 7,,, = Pz (m) + 6,,,(Z, Y); This implies:

=@ g) = [ >, Pz(m)+n(@.Y) W (@, Up,)-
meMP

®)
Above we use Z as the subscript to denote the use of our
specific weight function. Note that since VV gives average
distance, the smaller the value of Sz, the higher the similarity.
We now define (v, 3)-closeness as follows:

Definition 1 ((«, B)-closeness): For given o, 8 > 0 and a
(real) dataset &, we say a (synthetic) dataset g is («, 3)-close
to x if

Dis(®,y) < a and Sz(Z,y) < B.

Note that the reference dataset (above) is fixed as the given
dataset, i.e., Z = T. Thus, giving v (Tm,Y,,) = Pz(m) +
dm (T, 7). The Pz (m) term weights the distance between Ty,
and vy, proportional to the size of x,, so that the missing
pattern that covers more samples has more weight than the
pattern that covers fewer samples of the dataset. The 9,,, term
accounts for the dissimilarity based on the divergence in the
mp-distribution.

s need not be a metric. But if s is a metric, then S can also be a metric
for appropriate selection of weights.

It is important to understand why we consider J-terms

in the weights v (in Eq. (5)), and how it relates to our
objective. We can instead consider ~* without the 4, term,
ie., v}, = Pz(m) for all m, and let Si denote the S
(given by Eq. (5)) corresponding to v*. Now, let us com-
pare S with Sz to see how (o, 3)-closeness captures the
desired properties. For instance, when the divergence in mp-
distributions of T and ¥ is zero, i.e., Dys(Z,y) = 0, we
have that Sz(Z,y) = Six(Z,¥y). And when D,,;s(Z,y) > 0,
it follows that Sz(,y) > Sx(T,y). That is, the two synthetic
datasets that have same similarity score for each missing
pattern (with respect to ), but differ in their mp-distributions
(from that of x), the one with higher D,,;s will be deemed
more farther/dissimilar from Z than the other.
Example. Consider @ and ¥, both consisting of only two miss-
ing pattern m; and mg, such that Pz (mq)= Pz (m2) =a and
Pz (m2) = Py (m1) = 1 — a. Now, even if W(Z,,,,Y,,,) =
W(Z ), Uy, )» Our consolidated measure is able to capture
the differences in the dataset, i.e., Sz(%,y) > Si(x,y) for
all a # 1/2. In particular, S3(%,y) = W(Zm,,Y,,,) and
Sz(®,y) = /1+2-2a = 1W (X, , Y, )-

Thus, («, 3)-closeness provides a way to assess which of
the given two synthetic datasets, ¥ and 3’ (with missing
values) is closer to the real dataset € € D. o measures
the discrepancies in the missing pattern distributions, while 3
captures the discrepancies in the observable data. Therefore, if
y and ' are respectively («, 3) and (o, 3') -closer to , then,
we say ¥ is closer to T than 3y’ — alternatively, ¥ is better
than 3’ — if @ < o/ and 8 < fB’. Thus, using the notion
of closeness, we can determine which of the given synthetic
datasets, or the method to generate synthetic dataset, is better.

V. HIGH FIDELITY SYNTHETIC DATA GENERATION

Here, we present our approach and the resulting methods
that for a given dataset, T = {z1,...,x,}, generate a
synthetic dataset, § = {y1,...,yn}, that is close to T in
terms of both missing pattern (mp)-distribution and observable
data distribution. We will rely on modeling missing values as
missing mechanism, discussed in Section III-B, and the ideas
developed in the previous section.

Setting. For synthetic data generation, we consider machine
learning based generative methods, such as GANs, VAEs,
BNs. We refer to them as data generation methods (DGMs).
Note that, as discussed in Section III-C, there are variety of
ways to guarantee varying levels of privacy when using DGMs.
Our focus here is to develop an mp-distribution preserving data
generation approach using any of the existing DGMs.

Before presenting our approach we share a key observation,
which is instrumental in solving the problem in practical
settings: the number, ¢, of missing patterns (MPs) in a @
is much smaller than the total number of possible MPs,
i.e., 2¢, for d-dimensional data. In addition, a much smaller
number of MPs cover most of the samples in datasets. For
instance, in about 16 of 19 real datasets (from Kaggle and
KEEL repositories), 2 MPs account for more than 80% of
the samples. Consider the Brain dataset [45], which contains
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101 attributes, thus allowing up to 2'°! — 1 potential patterns.

Nevertheless, it contains only 96 patterns in total, with two
predominant patterns, while the majority of the other patterns
include fewer than ten records each. This means that we can
extract a lot of value from data by considering a few additional
MPs besides complete-samples. Therefore, we primarily focus
on the setting where { << 24, though our methods are
applicable in more general settings.

Solution Overview

Consider the joint distribution P (X°, M). Recall (from
Section III) that X is the random variable for complete data
samples (i.e., without any missing values); also, note that for
(X°, M) distributed according to P (X°, M), X = X°® M,
where @-operation is such that X; = NA if M; = 1 otherwise
X;=X jo . Therefore, it follows that

P(X)=P(X° M)=P(X°|M)P(M). (6)

The above equation gives two ways to approach the problem.
Approach #1: Learn the joint distribution of the observ-
able data and mp-distribution. Approach #2: Learn the mp-
distribution separately and then learn the conditional distribu-
tion of the observable data, that is, only under a fixed missing
pattern, i.e., P (X°|M). Note that in the second case, when
learning [P (X°|M), we are only concerned with learning the
observable part for that pattern, and hence, disregard all the
missing features/columns.

Let us first discuss Approach #2: It is well suited for MCAR
setting, where P (X°, M) = P (X°)P (M) (ie., the miss-
ingness is independent of the data), and non-MCAR settings
(ie.,P(X° M) # P (X°)P (M)) with sufficient support (i.e.,
number of samples) for hott partitions (explained shortly).
Now, for a given dataset, &, which is sampled according to
P (X), the mp-distribution can be learned as follows:

Pz (m) = [®|/ || ©)
for every m € MP, where T,, is the hott partition (samples
from & with MP as m). Since in practical settings (as discussed
above) the number of actual MPs in @ are much smaller, the
above method is an efficient way to learn a very good approx-
imation of P (M). When the missing mechanism is MCAR,
we use the method f/pRand (Section V-A) that learns the two
distributions independently and uses them to generate synthetic
data that is close in terms of observable and missing data
distributions. For non-MCAR setting, we propose HottGEN
(in Section V-B), wherein the process of learning of the mp-
distribution remains the same as in in f/pRand, however, the
learning of the conditional observable data distribution is a
little more involved: here, multiple generators are learned, one
for each hott partition, @, (all samples from T with the same
missing pattern m).

To realize Approach #1, i.e., learn P (X°, M), we propose
MergeGEN, wherein a DGM is trained over a dataset in which
MPs and samples are combined as one dataset, i.e., merged.
Once we can generate samples, (z1,m1), ..., (2n, My), from
P (X°, M), we can generate samples, y1,...,y, correspond-
ing to the distribution P (X) by creating missing values in
each z; as per its missing pattern m;. MergeGEN has the

added benefit that it works even when the number of MPs is
not small.

Approach #1 and Approach #2 each have their benefits and
limitations: Approach#2 is straightforward and efficient but
can perform poorly when the number of MPs in the data
is large. Conversely, Approach #1 is computationally more
demanding for DGMs such as GANs and VAEs but can handle
a larger number of MPs. This capability is beneficial when hott
partitions lack sufficient samples for training the generator. To
address these issues, we combine the two approaches into a
comprehensive solution, which we refer to as HottGEN+. The
following sections present the details.

A. Learning over Complete-Samples with Independent Miss-
ing Patterns (fRand, pRand)

Here, we learn a generator, G,,~, via the given DGM,
by using the set of complete samples, &,,~, from the given
dataset, T, where m* = 0. Thus, G,,,» < DGM(T,,~). Note
that G,,,- generates complete d-dimensional samples. To learn
the mp-distribution (P (M)), we use Eq. (7) and calculate the
proportion of each missing pattern in Z: Pz (M) denotes the
learned mp-distribution. Indeed, for any m that is not present
in Z, Pz (m) =0.

To generate a synthetic dataset of size N, set y = {}.
For every m with Pz (m) > 0, generate (N - Pz (m))-
many samples from G,,~ and create missing values in them
according to the missing pattern m (i.e., replace the j-th
feature value by NA for m; = 1 for every j), and add them to
y. We call this method pRand, where ‘p’ denotes pattern-level.

Another way is to consider missingness at the feature
level: here, missing values are created independently for each
feature in the generated samples. This is done by tossing a
coin for each sample and each feature j, which gives Heads
(corresponds to creating missing value) with probability equal
to the missing rate of the feature j. Thus, the missing rate
P (M; = 1) decides how many samples have values missing
in feature j, where M = (My,...,M;,..., Mg) is for the
missing pattern and M is the random variable for missing
value for feature j. The missing rate of the feature j can be
estimated as: Pz (m; = 1) = [{z in @ | z; = NA}|/|Z|. This
method is called fRand, where ‘f” denotes feature-level.

Remarks: One drawback of fRand (compared to pRand)
is that it produces a larger number of missing patterns, and
thus, diverges from the original mp-distribution whenever the
missingness in two features, j and j’, (correspondingly M,
and M) are not independent. Hence, as the number of such
pairs of features increases, so does the divergence in the mp-
distribution of the dataset produced by fRand (we will see this
in the Evaluation, Section VI-C).

The independence assumption (about features’ missingness)
rarely holds in practice. Even the natural setting where the
number of MPs in the dataset is small implies a very high
correlation in the missingness of the features. In addition,
pRand and fRand face further data quality loss when the
missingness is not MCAR, ie., P(X |M =m*) is (very)
different from P (X). This is because G.,,» produces samples
from Pz (X |M = m™*) instead of Pz (X). Therefore, to deal
with such non-MCAR setting, we next present HottGEN and
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Fig. 1: HottGEN. The grey color depicts missing values.

MergeGEN, two powerful methods to generate synthetic data
while preserving utility and mp-distribution.

B. Learning over Homogeneous Pattern Partitions (HottGEN)

This approach uses a collection of generators, learned over
hott partition of the dataset, . The hott partitions correspond
to different missing patterns in @, where each missing pattern
m in Z, the corresponding hott partition, x,,, only consists of
the samples with the missing pattern m (defined below).

Definition 2 (Hott partition): For any given dataset x, let
M= {m! ..., m*} =miss—patt(T) be the set of missing
patterns in ®. Then, T,,1,...,,,» make the homogeneous

pattern (hott) partition of T if T = UMEm and each T,,;
me

contains the samples with missing pattern m?.

Algorithm 1 gives the detailed HottGEN approach to gen-
erate synthetic data using hott partitions, while Figure 1 gives
a pictorial overview of the algorithm. Below, we give an
overview of the approach.

HottGEN begins by first obtaining the hott partition of
(line-1). Since all the samples in x,,; (i.e., hott partition)
have the same missing pattern, we remove all of its columns
with missing values (line-5) without affecting the observable
data. Moreover, we only consider the partitions that have
a minimum support 7 (line-4): this ensures that we have
sufficient data to train the GAN (line-6).

Once the generators are learned, we use them to generate
a synthetic dataset of size N (line 10-15). For each pattern
m? with at least 7-support (i.e., |Z,,| > 7), we calculate
the proportionally appropriate number, 7n;, of samples with
missing pattern m?. Next, n; samples are generated using the
generator (,,,; (line-12), followed by the addition of the miss-
ing columns, and the collection of all the generated samples
with MPs (line 12-15) to produce the synthetic dataset.

Remarks: We note that HottGEN only considers the hott
partitions with 7-support; thus, in the settings of our interest
(discussed in the beginning of Section V), this result in a little
higher than zero divergence in mp-distribution. That is, if X is
the proportion of the samples covering all the hott partitions
lacking 7-support, then D,,;s(%,Y) < 2X (see Section A). In
Section VI, we will see that HottGEN is in fact one of the
best performing methods to generate synthetic data.

C. Learning Data and Missingness Together (MergeGEN)

Here, we propose a method to learn P (X°, M), i.e., the
observable data distribution together with the mp-distribution.

Algorithm 1 HottGEN

Input: = {x1,...,2,} (real dataset) and 7 (min support)
Output: ¥ = {y1,...,yn} (synthetic dataset)

Build HottGEN:
/[Create hott partitions of the data
i {Zp1,...,&pyr} = hott-partition(T)
/I Use DGMs to learn the synthetic data generator over
/I the hott partitions with at least T-support
M, =0  // will contain the MPs with 7-support
:for j=1to k do
if size(T,,;) > 7 then
Z = remove-missing-cols(T,,s)
G.mi = DGM(Z)
M, =M, uU{m’}

: if
: endetl'}g' !

R A U R

Generate synthetic dataset of size N via HottGEN
10: for m in M, do

/I Compute the number of records

/I to be sampled as per Pz (m)

. o size(@m)

11: n; = N X . s15e(@,)
/I Generate n; synthetic data samples
// using the generator G,

— .
12: Z' ={z1,...,2n,} st. 2; < Gy, for every i
_ _ . . —/
13: Y,, = add-missing-cols(Z’,m)
14: end for
15: y = U 7%, and shuffle the indices of the samples in
7 meM,
A Real data B Training and data generation C Synthetic data
1 Generate ids and 3

impute missing data Generate MP
B E [ v 0 13 A F |0 | e v e[ M e e u A M e
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Fig. 2: MergeGEN. Grey, white, and orange colors respectively
denote missing, non-missing, and imputed values, while green
denotes missing pattern (MP) ids.

Algorithm 2 gives the details while Figure 2 gives a pictorial
overview. Below, we give an overview of the approach.

MergeGEN begins by creating categorical ids for each
missing pattern in the given dataset () — we refer to these
ids as missing pattern ids or MP ids. We use categorical data
type for the MP ids instead of integers (or ordinals) to prevent
the DGM, such as GANSs, from making use of the geometric or
other numeric properties that are not related to MPs. Using the
MP ids, we create (hash) maps for mapping MP ids to missing
patterns and vice versa (line 1-6). We then use the pattern-to-
id (p27) mapping to generate MP ids (I D;) for each sample z;
in  (line 7-9). Since most DGMs cannot learn the generator
using the missing values, we impute all the missing values in
, and add the MP ids as an additional feature to the imputed
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Algorithm 2 MergeGEN
., Zn} (real dataset), N (size of synthetic

Input: T = {z1,..
data)
Output: ¥ = {y1,...

,yn} (synthetic dataset)
Setup and training:
/ICreate one-to-one mapping from missing patterns
/Ito categorical ids
M =miss-patt(®) //the set of MPs in T
Initialize p2: and ¢2p (hash maps) and set id = 1
for m in M do
sid = concat(“MP”, str(id)) //int to string
Set p2i(m) = sid, i2p(sid) = m, and id = id + 1
end for
/IGenerate MP ids for all samples in
for i =1,2,...,n do
ID; = p2i(miss—patt(x;))
9: end for
/[Learn the synthetic data generator via a DGM
10: Z = impute-missing-values(T)
11: 2’ = add-feature(z,ID) Nzl = (2, 1D;)
12: G =DGM(Z')

AN

® 3

Generating synthetic dataset:
13: w = {wi,...,wn}, where w; < G for every j
14: W = create-missing-patterns(w,i2p)
15: § = remove-ID-feature(w’) and shuffle indices of

the samples in y

T to obtain the processed dataset Z’ (line 10-11). Now we use
the given DGM to learn the synthetic data generator, G, over
the processed dataset (line 12).

To generate synthetic data (of size e.g., N = n), we use the
generator to produce N samples (line-13), and create missing
patterns as per the MP id in each of the generated samples
(line-14). Finally, we remove the MP id feature (i.e., I D) to
produce the synthetic dataset with missing values (line-15).

Remarks: One way MergeGEN is more powerful than the
prior methods is that it can learn the complex interactions,
correlations, and dependencies among features as well as
features and missing patterns; furthermore, it can handle the
settings with larger number of MPs, where the other method
may perform poorly. However, it does come at the cost of
a significant computational overhead as the DGM uses the
whole dataset to learn the generator; this is particularly true
for methods such as GANS.

D. HottGEN+: A Hybrid Approach and a Complete Solution

In the previous sections, we proposed methods (HottGEN,
pRand, and MergeGEN) for synthetic data generation while
preserving observable and mp-distributions, and also briefly
discussed their limitations and strengths. Here, we present a
way to combine HottGEN with other methods to give a hybrid
approach, where the limitation of one method are addressed by
the other, greatly increasing the quality of the generated data.
Here, we consider HottGEN and non-MCAR setting because
for MCAR setting, pRand suffices (see Section A) as long as
T~ (the set of complete samples) is large enough to learn the

distribution, otherwise MergeGEN should be used for MCAR
setting. Thus, this approach is named HottGEN+.

Let us look at one way to quantifiably improve the quality
of the synthetic data generated by HottGEN. Let M and
M. respectively be the missing patterns present in = and v,
where v is generated by HottGEN, and let |Z,,| = |y,,| for
each m € M. (recall that M, C M conisits of MPs that
have 7-support in ). We would like to generate additional
synthetic data samples (corresponding to the left-over patterns,
iLe., Z = Upneam\M, L) Which will be included in y to boost
its quality in terms of («, §)-closeness.

We describe the basic idea via a naive methodology, called
HottGEN+Naive, which augments the HottGEN’s generated
data with additional samples and provably improves the data
quality. To do this, we compute the average, p.,, of all
the samples in each x,, for every m € M \ M., ie,
tm = X4 inw, ©)/[®ml|. Then, for each m € M\ M,:
we add |Z,,|-many pu,, duplicates to y. This produces the
synthetic dataset . Now, for ¥, D,,;ss(Z,y") = 0, which
means we have been able to preserve the mp-distribution in
the synthetically generated dataset. Thus, D,,;ss(Z,y") <
Dyniss(®,y) when M \ M., is not empty. Furthermore,
S=(Z,y") < Sz(T,y) (see Section A for details). Thus,
HottGEN+Naive is better than HottGEN if M \ M. is not
empty, i.e., there are some missing patterns (not all) that lack
T-support.

HottGEN+: Now instead of the naive methodology, we can
generate the required samples (corresponding to the left-over
data) using pRand or MergeGEN. However, in the case of
MergeGEN, there is a small change in the learning phase,
where instead of the whole dataset, T, we will only use Z =
Umem\M, Tm as the input data.

Remarks: It is quite obvious that, for most practical setting,
MergeGEN (and pRand) will produce samples (for the left-
over patterns) that will outperform the naive methodology.
Hence, the synthetic datasets, produced by HottGEN+pRand
or Hott+MergeGEN will be closer (Definition 1) to @ than the
one generated by the HottGEN-+Naive.

E. Discussion and Guidelines

This section summarizes the insights and guidelines for an
effective application of our proposed approaches and how to
decide which one is appropriate for a given setting. Firstly,
consider MCAR setting. If the set of complete-samples, i.e.,
T+, has sufficient support, pRand is the most computationally
efficient method to generates datasets that are as close to @ as
the dataset generated by any other method. This is because,
under MCAR, P (X | M =m*) = P(X°) and can learned
well by a good DGM (e.g., GAN or BN) using Z,,~. In this
case, using another methods will incur a higher computational
cost without any additional improvement.

Let us next consider the more realistic setting, i.e., when
the missing mechanism is not MCAR: namely, the missing
mechanism is either MAR or MNAR or a combination of
them and MCAR with different features possibly missing
under different mechanisms. Under the non-MCAR setting,
pRand is bound to perform extremely poorly, especially when
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the distributional mass (of P (M)) is not overwhelmingly
concentrated for the missing pattern m*. Thatis, P (M = m*),
is not large, e.g., P (M =m™*) < 0.3.

In non-MCAR settings, HottGEN, MergeGEN, and
HottGEN+ are a much better fit. HottGEN is preferred when
all or most of the hott partitions have sufficient support or
most of the mass of P (M) is concentrated in some & hott
partitions that have sufficient support so that DGM can learn
a generator that have satisfactory performance. In case, the k
hott partitions have sufficient data and rest of the hott partitions
together provide large enough dataset, HottGEN+ can be used
to improve the quality of the generated data.

However, if all the hott partitions lack sufficient support,
then pRand and HottGEN (and even HottGEN+) will perform
poorly. Here, using MergeGEN — which makes use of all
the data and not any single hott partition — obviates the
data insufficiency problem and can give a generator that
produces better quality synthetic data, but it does incur a higher
computational cost for neural network based methods.

VI. EMPIRICAL EVALUATION

We carry out an extensive empirical evaluation measuring
performance using a variety of different metrics over both
carefully fabricated and real world datasets; the evaluation
considered a range of different missing data settings, our
approaches augmented with various data generation methods,
for example, HottGAN uses a GAN-based generator, while
HottBN relies on a Bayesian Network, and HottVAE em-
ploys Variational Autoencoders within the HottGen frame-
work, which we compare against other baseline approaches.
Key observations from the evaluation include:

o In all scenarios involving missing data, synthetic data that
maintains both observable and missing data distributions is
of higher quality compared to synthetic data produced using
complete-case analysis (i.e., deletion) or the impute-then-
generate approach.

o Our methods significantly outperform other methods (e.g.,
MisGAN [23] and Bayesian Networks [46]) to generate
synthetic data with missingness.

e In particular, when missing data settings is non-MCAR
and missing patterns are many, HottGAN and MergeGAN
outperform other methods, the baselines, as well as fRand
and pRand.

o The hybrid methodology, e.g., Hott+MergeGAN, supports
fine-tuning the quality vs. efficiency tradeoff for complex
missing mechanisms: it improves data quality (compared to
HottGAN) and reduces the computation cost (compared to
MergeGAN) (Section VI-B).

« Bayesian Networks (BN) are particularly well suited to
our generation methodology. Indeed, HottBN and MergeBN
perform the best of all of the methods (Tables I and II).

e Sz, i.e., the proposed weighted average Wasserstein distance
based similarity measure very well tracks the comparative
performance of the synthetic data generation methods.
Assessment Criteria. Several subjective and objective

measures are used to measure the quality of the synthetic

data produced. First, t-SNE (t-distributed stochastic neighbor

embedding in 2D) analysis [47] to visually assess the fidelity
of the synthetic datasets across different missing patterns.
For discrete features, the y2-test validates the hypothesis
that the real and synthetic data are from the same (i.e.,
sufficiently close) distribution(s). For numeric features, the
relative error of mean (REM) and relative error of standard
deviation (RESD) (of real and synthetic datasets) provide
a quantitative measurement—they are respectively reported
as the average of REM and RESD. In addition, we assess
the overall quality of synthetic data using Sz (Eq. (5)), i.e.,
weighted Wasserstein distance across missing patterns (note
that since sliced-Wasserstein distance is computed using
multiple projections, only numeric features are used for this).
The quality of the generated missing pattern distribution is
measured via the mp-distribution divergence (Eq. (2)), i.e.,
Dmis~

Other methods and Baselines. We compare our meth-
ods with two baselines, i.e., the Deletion method (where
only complete samples are used from the real data) and the
Imputation method (where missing values in real data are
imputed by 3-Nearest Neighbors algorithm before using the
data). In addition, we compare two other methods that can
generate synthetic data with missing values: MisGAN [23],
which consists of two different GANs that work in tandem
to learn observable and missing data distributions; Bayesian
Network (BN) [46] and CTGAN [31], which learns missing
data distribution by treating it as a special value.

All our methods are implemented using Python 3.6.0,
PyTorch 1.8.0, and CTGAN [31] (which is the state-of-the-
art tabular data generation model and can handle mixed data
types) with its default configuration. For Bayesian Network
(BN), we used bnlearn [48]; for MisGAN, we used the authors’
provided implementation [23] with the given configuration,
except we omitted Sigmoid function in the output layer to
avoid synthetic data getting mapped between 0 and 1. The
evaluation was done on a Windows Server 2012 R2 with 128G
RAM and Intel(R) Xeon(R) CPU E5-2640.

A. Evaluation over Fabricated Data

We use two types of fabricated datasets, generated using the

Gaussian mixture model and missing at random (MAR) mech-
anism (ie., P(X, M) =P (M | X)P(X) # P(M)P(X)).
Following is their overview (and the details are given in
Appendix. B).
Gauss 1 datasets allow us to evaluate all the methods in
a simple but crucial setting. Each Gauss 1 dataset consists
of 3 features and 10000 records, with two correlated and
one independent feature. The missing mechanism depends
on feature 1 and creates missing values in feature 2. For a
given quantile ¢: it replaces the value of feature 2 by NA
(probabilistically by flipping a coin) if feature 1’s value is
below g-th quantile. Note that the randomization, introduced
via the coin flip, is crucial to mimic real-world situations
where the missingness is not completely deterministic. We use
qg = 0.2,0.4,0.6,0.8 to obtain 5 different Gauss 1 datasets,
each with different missingness correlations and extent.
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Fig. 3: Synthetic data quality, Gauss 1. Each quantile refers to
a different dataset, @, with different MAR-missingness. REMS
and RESD resp. give relative error of mean and standard
deviation of the synthetic dataset, gy, and S = Sz(T,y).

Gauss 2 (compared to Gauss 1) has more missing patterns
(MPs) and a complex mp-distribution. With Gauss 2, we
simulate a real world like correlation among multiple features.
Each Gauss 2 dataset consists of 6 features and 25000 records,
where except for one feature, all others are correlated (for
different coefficient values). The missing values are created
in 4 of its 6 features, each with a different specification
(i.e., quantile value) of the missing mechanism. This mech-
anism works exactly like the one for Gauss 1 except for
one difference: it probabilistically depends on two features;
it depends on feature 1 or feature 2 (depending upon a fair
coin flip) to create missing values, just like for Gauss 1. For
the missing mechanism, we choose features 3, 4, 5, and 6
with a different quantile for each: the quantiles 0.2,0.4, 0.6,
and 0.8 for features 3, 4, 5, and 6, respectively. Thus, these
datasets help evaluate the performance of the mp-distribution
preserving synthetic data generation methods under MAR-
missingness. For the evaluation, we independently sample 5
datasets for each type and specification.

Results. On all fabricated datasets, our methods outperform
all the baselines and the other methods on almost all the
evaluation metrics (Fig. 3, Table I, and Fig. C.1). Note that the
results for Bayesian Network (BN) and MisGAN are extremely
bad and have been omitted from Fig. 3 so that the differences
among the methods are observable. For instance, for ¢ = 0.2,
BN achieved REM=34.4, RES=5.7, 5=0.67, and D,,,;s=0.68,
while MisGAN achieved REM=1.5, RES=0.67, S3=1.6, and
D,,;5=0.74. Furthermore, since Deletion and Imputation meth-
ods only generate complete-samples, they perform poorly on
D,,;s and Sz; thus, we omit their results for these metrics
from Fig. 3 as well.

In particular, on Gauss 1, HottBN demonstrates the most
favorable performance, followed by MergeBN, HottVAE, and
HottGAN, as illustrated in Fig. 3. Although Imputation is
close to MergeGAN in performance, Imputation drawback, of
course, is its inability to preserve missing data distribution
in the synthetic data. Deletion, fRand, and pRand performed
poorly—still better than BN and MisGAN—because missing

10

TABLE I: Synthetic data quality, Gauss 2. For each method,
Score gives (out of 5) the number of metrics as per which the
method is among the top-2; blue color for top-1 and lightblue
for top-2. While other metrics are the same as Fig. 3. PCD is
given in the text.

Methods REM RESD PCD  Diis Sz Score
Deletion 0.79 0.16 0.92 - - 0/5
Imputation 0.15 0.12 0.52 - - 2/5
MisGAN [23] 1.21 0.81 2.15 1.2 1.9 0/5
BN [46] 31.53 16.53 2.30 1.01 2.2 0/5
fRand 0.79 0.17 0.94 0.83 1.35 0/5
pRand 0.79 0.17 0.91 0 0.7 1/5
MergeGAN 0.14 0.08 0.52 0.01 0.29 1/5
MergeVAE 0.03 0.09 1.54 0 0.17 1/5
MergeBN 0.03 0.10 0.27 0 0.05 4/5
HottGAN 0.14 0.07 0.82 0 0.17 2/5
HottVAE 0.06 0.01 1.28 0 0.15 2/5
HottBN 0.01 0.01 0.30 0 0.09 5/5

data is not MCAR.

On Gauss 2, the trends in the results are also similar to what
we saw above (see Table I). For Gauss 2, we also computed the
error in estimating the original correlation matrix—referred to
as PCD [49]: it is computed as the Frobenius norm of the
difference of the original and estimated correlation matrices.
Furthermore, the t-SNE plots (Fig. C.1 give additional confir-
mation for the results (depicted in Fig. 3 and Table I).

Thus, the results show that when the missingness is MAR,
generating synthetic data while preserving mp-distribution
leads to higher quality synthetic data. Furthermore, under
such missingness, HottBN and MergeBN are better options
compared to fRand and pRand. Lastly, we note that under
MAR missingness, MisGAN and Bayesian Network both are
bad choices to generate synthetic data with missingness.

B. Evaluation of Tradeoffs over “Complex”-Missingness

Here, we demonstrate how HottGAN+ (similary for
HottVAE+ and HottBN+) improves over both HottGAN
(HottVAE and HottBN) and MergeGAN (MergeVAE and
MergeBN) under non-MCAR missingness when some missing
patterns lack sufficient samples. The evaluation is carried out
over a carefully fabricated dataset, Gauss 3, sampled from
a multivariate Gaussian distribution; the missing values are
created by different MCAR, MAR, and MNAR mechanisms.
Gauss 3 consists of 50,000 records and 6 features with
different degrees of correlation coefficients. The missing data
is produced by three different missing mechanisms, encom-
passing MCAR, MAR, and MNAR. As a result, Gauss 3
contains 31 missing patterns. We select the 21 largest missing
patterns. The largest missing pattern contains 17977 records
and consists of 36.7% of the total records, while the smallest
one (among the 21 missing patterns) consists of 0.4% of the
total records. The details of the instantiation of each type of
missiness are provided in B.

Results: Figure 4 shows how different versions of HottGEN+
compare in terms of data quality for different volumes of
data being processed by HottGEN. For the evaluation, we
train HottGAN over the top-k patterns (i.e., the k& hott par-
titions with the most support) and generate the corresponding
synthetic data. For rest of the patterns, we generate syn-
thetic data using Naive method (HottGAN+Naive), pRand
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Fig. 4: Synthetic data quality, Gauss 3. (a) horizontal axis gives two values for each tick, the top one gives top-k, i.e., k hott
partitions with the highest support; the bottom one gives the percentage size of top-k. (b)-(e) horizontal axis gives top-k MPs.

(HottGAN+pRand), and MergeGEN (Hott+MergeGAN). Ad-
ditionally, we train MergeGAN on the entire dataset as a
baseline. Moreover, we implement the VAE-based (includ-
ing HottVAE, MergeVAE, and Hott+MergeVAE) and BN-
based (including HottBN, MergeBN, and Hott+MergeBN)
approaches following the same methodology.

From Figure 4, Hott+MergeBN produces the highest
quality datasets consistently, followed by MergeBN and
Hott+MergeVAE. Notably, in comparison to HottGAN and
MergeGAN, Hott+MergeGAN generates synthetic data of
better quality. It is noteworthy that Hott+MergeGAN achieves
this with only approximately % of the training time required
by MergeGAN when £ = 10. Similarly, the VAE-based and
BN-based versions reduce the training time by around %

When k£ > 10, HottGAN+pRand and Hott+MergeGAN pro-
duce datasets of similar quality, which is not surprising since
around 90% of the data is generated by HottGAN. Moreover,
during the evaluation, we observe that adding J,, penalty
to the weights enables us to account for divergence in mp-
distributions while assessing similarity. This is demonstrated
by the increased value of Sz in comparison to Si.

C. Evaluation over Real Data with Missingness

We use two real world datasets: Price and Brain (Appendix
D, Table III provides the details.) Both datasets have missing
values, which are either MAR or MNAR as confirmed by
Little’s test [50], [51] for MCAR (extremely low p-value=0).
The missing rates for Price [52] range from 0.8% to 49.6%,
and that of Brain [45], from 0.002% to 40.98%. Brain has
53 missing patterns, out of which we select top-2 (covering
93.3% of the samples) as the rest consisted of a few samples.

Here, we additionally use the downstream task of classifi-
cation to characterize the performance of all the methods. For
each dataset, we identify a categorical feature that is correlated
with the missing patterns and appropriately convert it to a
binary feature, and use it as the target feature. We then use
CART [53], Logistic Regression (LR), and Linear Support
Vector Machine (SVM) [54] to build three different classifiers.
To measure the classification performance, we use the standard
method of Training on Real and Testing on Synthetic data
(TRTS) as well as Training on Synthetic and Testing on Real
(TSTR) [55], and then compute the area under ROC curve
(AUROQC) [56]. In order to assess the comparative performance
of synthetic data generation methods, we measure these scores
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TABLE II: Quality of the synthetic data constructed from real data. Data Quality Measures and Scores are the same as in
Table. I. Downstream Task reports the pAUROC (explained in the text).

Price Brain
Data Quality Measures Downstream Task Data Quality Measures Downstream Tasks
Score Score
Methods REM RESD D, Sy CART LR SVM REM RESD D, Sz CART LR SVM
Deletion 0.01 0.03 - - 0.69 068 068 2/7 | 005 0.03 - B 075 073 074 277
Imputation 0.06 0.37 - - 1 089 089  0/7 | 005 0.37 - - 068 075 074 1/7
MisGAN [23] | 1.56 0.27 077 097 0 0 0 0/7 1.06 098 2 h 0 0 0 0/7
BN [46] 3153 1653 050 148 1 085 085  0/7 | 2249 45252  0.64 h 090 081 075 /7
CTGAN [31] | 23898 10607 0.09 158 109 093 093 17 | 2551 10374 0.8 h 075 059 065 07
fRand 0.01 0.04 001 038 069 068 068 37 | 005 0.08 2 h 055 077 073 1/7
pRand 0.01 0.03 0 037 069 068 068 377 | 005 0.08 0 056 075 074 075 277
MergeGAN 0.14 0.09 0.06 032 1 097 097  0/7 | 005 0.08 037 034 068 075 074 2/7
MergeVAE 0.13 0.55 0 026 069 068 0.68 177 | 001 0.06 0 017 052 054 053 477
MergeBN 0.13 0.45 0 0.07 1 099 097 37 | 001 0.06 0 0.14 089 092 093 /7
HottGAN 0.02 0.11 0 028 1.04 099 099 57 | 005 0.08 0 027 077 085 085 277
HottVAE 0.13 0.34 0 009 098 092 092 17 | 001 0.13 0 021 052 054 053 277
HottBN 0.03 0.10 0 0.05 1 098 098 47 | 009 22391 0 068 089 091 091 417
Since MisGAN only produced one value of the target binary variable, the AUROC is undefined; so we use 0 to depict its worst performance.
h depicts a high value of Sz when the number of MPs generated are way more that that of in the real data.
relative to that of real data, i.e., AUROC for Training over (@ (b)
. MP 1 MP 2 MP 3 MP 4 P 1 MP 2
Real and Testing over Real (TRTR). In Table II, we report COE e Co T e T Ty i
i
proportional AUROC, denoted as pAUROC and computed  Deleton  Missing  Missing  Missing -‘:@' Missing ‘
as (AUROC[TRTS]+ AUROC[TSTR])/(2 « AUROC[TRTRY]). :@, ‘
. . . . Imputation  Missing Missing Missing &= %% | Missing
The higher the pAUROC, the higher the quality of synthetic =
data. Each classifier is trained over 80% of data and tested on MisGAN Missing ~ Missing
the rest 20%, five times with random splits. Be.
X . . A Bayesian 44%3?‘ s "
Results. Let us begin with the t-SNE plots (Fig. 5). Since the = Network SO
Scikit-learn t-SNE plotting implementation could not handle CTGAN Missing :}:{’F‘
large datasets, we used samples of size 5, 000 for each missing *
pattern for real and synthetic datasets. We picked the samples =~ T®and Missing  Missing

from real and synthetic that were closest to each other. For
Price, we see that all methods are able to mimic the real
data distribution for the complete samples (i.e., MP4) except
for MisGAN. MisGAN generates extremely bad quality data
for all MPs—and it is the worst performing method on all
evaluation metrics (see Table II).

Although Deletion and Imputation are able to do well for
MP4, they cannot generate data for other missing patterns (as
discussed earlier). Furthermore, our mp-distribution preserving
methods outperform them, giving lower (or comparable) errors
and much higher pAUROC scores for classification (Table II).
For instance, pRand has the performance as Deletion, but
additionally preserves mp-distribution (see D,,;ss and Sz);
and HottGAN and HottBN outperforms Imputation on every
single evaluation criterion.

Further looking at the t-SNE plots reveals that Bayesian
Network performs better than MisGAN as well as pRand
and fRand. It however commits the highest errors for mean
and standard deviation (see REM and RES in Table II),
which suggests replacing the missing data with a special value
distorts the data distribution significantly. Nevertheless, for the
downstream task, BN outperforms Deletion, fRand, pRand,
and MisGAN, all of which rely on complete samples and
MCAR missingness. But, here again (i.e., for the downstream
task) HottBN and MergeBN both outperform BN, showing a
clear advantage of preserving mp-distribution.

Going from Price to Brain dataset, fRand and MisGAN are
quite useless: both produce lots of MPs—MisGAN and fRand
respectively produced 889 and 106681 MPs—but none of them
were the actual MPs present in the real data. This is because
when missingness occurs in more features, the methods that

HottGAN

HottVAE 33

'o&ﬁ»ao

HottBN

Fig. 5: t-SNE plot, Price (a) and Brain (b) datasets. Each plot
gives a “scatter-plot” projection of original data (red points)
and synthetic data (blue points) for each missing pattern (MP).
The higher the overlap between the red and blue points, the
higher the synthetic data quality.

assume MCAR missingness produce more missing patterns.
Thus, they are not appropriate for non-MCAR settings. Al-
though BN was able to generate data for the two MPs in Brain
data, it resulted in higher D,,;, (Table II): it produced 1334
MPs, with 73% fewer records for MP1 and 52% more records
for MP2. Furthermore, for the downstream task, BN performs
better than all other methods except for HottGAN, HottBN,
and MergeBN. Yet in terms of other statistical data quality
measures, BN is still among the worst methods.

Across both datasets, HottBN and MergeBN have the best
overall performance as indicated by the scores and individual
evaluation criteria, while HottGAN remains the second best
option. When the missing patterns are too many to have
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sufficient support for individual hott partitions, MergeGAN
is expected to perform better than HottGAN.

We further evaluated HottGEN+ on two real-world datasets,
Price and Brain, using all the missing patterns (8 for Price
and 53 for Brain). In addition to the datasets generated by
HottGAN, we used MergeGAN to generate synthetic datasets
for the remaining patterns. Specifically, we calculated the
D,pis and Sz metrics for HottGAN+MergeGAN. The results
show that HottGEN+ outperforms HottGAN in both cases,
with improvements of 9.8% and 21.4% on Sz for Price
(0.174 vs. 0.193) and Brain (0.198 vs. 0.252), respectively.
Additionally, there were improvements on D,,;s for both
datasets (Price: 0 vs. 0.002; Brain: 0 vs. 0.0106). Note that
the performance of HottGAN reported here is different from
the values reported in Table II , as the datasets in Table II
excluded the minor missing patterns.

Remarks: The use of BN gives an interesting case under-
scoring the importance of preserving the mp-distribution in
synthetic data generation. Our vanilla version of BN adapts tra-
ditional Bayesian Networks to handle missing data internally,
eliminating the need for imputation or deletion of samples with
missing values. However, this standard version underperforms
compared to our enhanced versions corresponding to Hott
Partitioning (HottBN) and Merge Approach (MergeBN).

For example, in Table II, the vanilla version of BN scores
1/7 for both the Price and Brain datasets. In contrast, our
enhanced versions significantly improve performance, achiev-
ing scores of 4/7 to 7/7. This improvement is achieved by
preserving both observable and missing data distributions. The
impact and innovation of our methods are evident in the sub-
stantial performance gains illustrated in Table I, Figure C.la,
Figure C.1b, and Table II. Furthermore, the suite of approaches
presented in this work can handle a variety of missing data sce-
narios, induced by different types of missing data mechanisms
and the resulting mp-distributions. In particular, the HottGEN+
approach, which uses the hott partitioning on the top-k missing
patterns, combined with other approaches like MergeGEN for
the remaining data, provides an effective method to calibrate
for a mp-distribution. This boosts the utility of the generated
synthetic data (Figure 4).

VII. DISCUSSION AND CONCLUSION

Real data often exhibits missing values, which have tradi-
tionally been deemed problematic and removed via deletion
or imputation methods, under the assumption that a dataset
without missing values (after imputation) could enhance the
performance of machine learning models. This is often justi-
fied when the missing mechanism is MCAR, but not otherwise.
Many online tutorials for machine learning and data analysis
assert that missing data imputation is essential in the standard
data processing pipeline, with simple methods such as mean
imputation and kNN being the most widely adopted methods.

However, treating all missing data merely as noise is
fundamentally flawed. Handling missing data is inherently
complex: simple imputation methods typically fail to address
complex scenarios such as MNAR while most evaluations
of imputation methods assume that all missing values are
from the same missing-data mechanism. Crucially, without
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careful consideration, imputed datasets might introduce or
even amplify biases. Synthetic datasets, designed to mimic
real datasets, inevitably inherit and propagate these biases,
potentially leading to unforeseen consequences, particularly
when used to train future generative models on Web-crawled
datasets. In this work, we introduce three novel approaches,
HottGEN, MergeGEN, and HottGEN+, that retain the distri-
butions of both observable and missing data, thereby creating
more realistic datasets and enhancing the flexibility of syn-
thetic data applications. For instance, when such data is used
to train machine learning models, the most suitable imputation
method can be employed to minimize bias. Moreover, our
approach specifically addresses the problem of missing data,
particularly under non-random missing mechanisms, which
existing methods often fail to properly handle. By explicitly
modeling and replicating missing patterns, we ensure that the
missing data distribution is faithfully preserved in the synthetic
datasets, as opposed to other baseline methods which can
mirror the observable data distribution but do not explicitly
account for the structure or patterns of missing data, resulting
in a loss of important information.

Furthermore, as demonstrated before and in a recent study
[7], real data often displays distinct missing patterns that
are not random. These patterns, although informative, are
often ignored by existing generative models. In this paper,
we introduce methods that efficiently leverage these missing
patterns and generate synthetic data that preserves both the
missing pattern distribution as well as the observable data
distribution of the real data. Our empirical evaluation shows
significant improvements in synthetic data quality, for instance,
HottBN achieved 96% improvements in terms of Sz on Price
dataset, compared to the traditional simple imputation method.

In the future, we plan to tackle temporal data generation,
which poses unique challenges due to the temporal correlations
in missing data distributions. Also, given our method’s capac-
ity to learn data distributions conditioned on missing patterns,
we aim to explore its potential in data imputation.
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