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ABSTRACT Advancements in genomic analysis techniques and data-driven research are driving precision
medicine. However, in many cases, these advances are not equitable and do not help all subpopulations,
since many existing genomic datasets lack diversity, limiting their applicability for studying populations
beyond those of European ancestry. Thus, to advance genomic analysis and to allow for a fair benchmarking
of novel proposed approaches, there is a significant demand for balanced and representative datasets. To
address this issue, we developed, SynGen6, a synthetic dataset that encompasses six distinct populations,
providing balanced representation across various ancestry groups. Using the All of Us dataset as a
foundation, we utilized principal component analysis (PCA) and e-local differential privacy (LDP)
to generate synthetic samples while preserving genetic diversity and the privacy of individuals. To
further enhance the dataset, we simulated phenotype vectors associated with significant single nucleotide
polymorphisms (SNPs), mirroring real-world gene-disease associations. We also generated synthetic SNPs
to watermark the dataset, enabling verification of cloud-based genomic computations for accuracy. Last,
synthetic relatives were created to support research on kinship inference and family-based genomic
analyses, resulting in a comprehensive dataset of 34 200 samples and 7120 SNPs across six populations. In
this article, we describe the dataset and provide the Python scripts used to generate the dataset, which can
be extended to create additional synthetic datasets, aiming to fuel advancements in genomic data analysis.
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BACKGROUND

Genomic data contain vast amounts of information about
humans, which is essential for decoding the complex re-
lationships between DNA and its environment, including
disease mechanisms [1], protein functions [2], and metabolic
pathways [3]. Traditionally, genomic data analysis involves a
lengthy process of acquiring and preprocessing raw genetic
data, using complex tools for both initial and subsequent
analyses, and interpreting the results. Although recent ad-
vancements in genetic sequencing technologies and machine
learning models have improved the efficiency of these pro-
cesses, significant challenges remain. One major obstacle is

the availability of high-quality datasets. On the one hand,
genomic data are highly sensitive, and its use and sharing
across institutional boundaries are tightly regulated due to
privacy concerns. On the other hand, existing genomic
datasets lack diversity and are not fully representative of
the global population [4]. This lack of diversity is largely
due to historical biases in data collection, with the majority
of samples coming from individuals of European ancestry
[4]. Furthermore, the complexity of genomic datasets—
both in terms of their scale and varied formats—poses
additional challenges in making this data widely accessible
and usable. For example, massive sequencing datasets stored
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in repositories such as the Sequence Read Archive (SRA)
[5] are difficult for many researchers to utilize effectively.
Accessing and reanalyzing archived data typically requires
extensive storage capacity, time-consuming downloads, and
compute-intensive processing [6]. Consequently, valuable
data often go unused [7], further limiting the advancement
of genomic research. Given these challenges, a simpler, syn-
thetic dataset with controllable features, such as customiz-
able population distributions, could be highly valuable for
preliminary research. Synthetic datasets can provide a more
accessible and manageable alternative, enabling researchers
to explore and test genomic analysis methods without the
need for vast computational resources.

While deep generative models hold promise for capturing
high-dimensional and complex distributions, their effective-
ness in generating genomic data remains unclear [8]. More-
over, their “black-box” nature raises concerns, particularly
in high-risk clinical applications where interpretability is
crucial [9]. In this work, we adopt a simpler, feature-based
approach. Specifically, we strategically create a synthetic
genomic dataset that is well suited for developing and
testing genomic data analysis methods. This dataset includes
simplified and well-defined population structures and genetic
information, which reduces privacy concerns and facilitates
faster data sharing. This approach leverages the highly com-
prehensive All of Us dataset [10], though it could be applied
to any similar alternative real dataset. All of Us contains
nearly 250000 whole genome sequences, along with inte-
grated data from surveys, physical measurements, electronic
health records (EHRs), and wearable devices. The dataset
generation process follows a structured approach: we begin
by performing standard quality control steps on the original
All of Us dataset. Next, a meticulous procedure is applied to
generate synthetic samples that replicate the characteristics
of real genomic data while allowing for precise control over
population representation. Specifically, we use a variant of
LDP to perturb the original SNP values, generating new
SNP sequences while preserving ancestry information by
conditioning the perturbation on known ancestry for each
sample. Overall, this synthetic dataset is carefully designed
to maintain both the diversity and complexity found in
real-world populations, allowing it to effectively simulate
real-world genomic scenarios and to test a wide range of
genomic analysis methods in a controlled environment. To
build a dataset ideal for preliminary genomic data analysis,
we outline the following key desiderata.

1) Diversity of Populations: The dataset should encom-
pass a broad spectrum of populations to reflect real-
world diversity accurately.

2) Preservation of Genetic Information: The dataset
should retain the rich genetic information present in
the original dataset.

3) Complexity of Attributes and Values: The dataset
should demonstrate variations in both attributes and
values. Each sample should include fundamental SNP

data as well as more specific attributes such as pheno-
type information. Moreover, the dataset should capture
relationships among samples to support a wide range
of genomic research.

4) Exclusion of Errors: The dataset should be of high
quality, excluding any misleading information, partic-
ularly in the context of high-risk clinical research.

5) Minimization of Privacy Risks: While the privacy of
samples in the All of Us dataset is protected using
access control, the creation and use of the synthetic
data should ensure that privacy risks are not increased
for the participants.

COLLECTION AND DESIGN

The general methodology for generating the synthetic dataset
is depicted in Fig. 1. The process begins with a quality
control step applied to the original All of Us dataset to
ensure data integrity. Following this, synthetic samples are
generated for each subpopulation after conducting a PCA-
based population stratification to control for population struc-
ture. Careful control over the number of samples ensures
proportional representation without over-representing any
particular population. Next, a phenotype vector is simulated
using PhenotypeSimulator [11] on the combined synthetic
and original datasets. The level of phenotype heterogeneity
is controlled by a hyperparameter, which is set to 0.5
in this dataset, representing a balanced case/control ratio.
Synthetic SNPs are also introduced to watermark the dataset,
which can be used to confirm the integrity of the analysis
results in the cloud settings [12]. Additionally, a random
selection of samples from each subpopulation is chosen, and
synthetic relatives are generated to simulate realistic familial
structures.

Preprocessing on All of Us Dataset

Initially, the All of Us dataset contains 245 394 samples and
202959 SNPs. We begin by performing standard quality
control steps [13] using PLINK 1.9 [14], which include
filtering out SNPs with minor allele frequency (MAF) values
smaller than 0.01, SNPs with a missing rate greater than
5%, and deviations from Hardy—Weinberg equilibrium (with
the threshold chosen to be le — 6). Additionally, samples
with a missing rate greater than 5% are removed to ensure
data quality. We then perform PCA on the filtered genome
dataset to extract the eigenvalues and eigenvectors, focusing
on the top-200 principal components. Based on the ances-
try information for each sample, we partition the dataset
into six subsets, each representing a distinct subpopulation.
After completing these steps, the final dataset contains
184 712 samples and 7180 SNPs and represents six different
subpopulations, including 51.3% of European, 25.5% of
African, 18.6% of American, 2.7% of East Asian, 1.4%
of South Asian, and 0.4% of West Asian, ready for further
analysis.
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(a). Ancestry groups after QC

(b) Synthetic samples with known ancestry
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FIG. 1. SynGené6 generation methodology overview. (a) Standard QC steps on All of Us dataset. (b) Creation of synthetic samples using PCA and a
variant of ¢-LDP for each population. (c) Simulation of phenotype vector with predefined selected causal SNPs and case/control ratio. (d) Creation of
watermark SNPs using the phenotype vector. (e) Creation of synthetic relatives following Mendel’s law.

Samples Generation With Known Ancestry

As mentioned in the previous section, one critical issue with
existing genomic datasets is the lack of full representation
across diverse populations. To address this and create a more
balanced dataset, we aim to generate synthetic samples with
known racial or ancestry information. For each subset of
the dataset, we randomly select a group of real samples and
perturb their records to produce synthetic samples. While
there are several approaches to perturbation, we selected a
variant of local differential privacy (LDP) [15] for two key
reasons. First, differential privacy (DP) is a well-established
privacy framework that provides formal guarantees ensuring
that the distribution of query results changes minimally with
the addition or removal of a single record in the database.
LDP [16] further extends this notion by enabling privacy
preservation at the individual level, particularly in scenarios
where data are shared. Second, this variant of LDP allows for
better preservation of the “closeness” between the original
and synthetic samples, a key requirement when generat-
ing race-controlled synthetic genomic data at the expense
of offering weaker privacy guarantees than standard LDP.
Standard e-LDP can be achieved by flipping the values of
the SNPs based on a probability ¢ = (1/e€ + d — 1), where
d represents the number of possible states for a SNP, and
e determines the noise level. For SNPs, we use an additive
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encoding, where the values 0, 1, and 2 represent homozygous
dominant, heterozygous, and homozygous recessive, respec-
tively, hence d = 3. There is a probability ¢ that a state
“0” SNP can be flipped to “2” and vice versa, which would
significantly alter the genetic information and compromise
the integrity of the synthetic data.

In the variant we adopt, to preserve more realistic genetic
variation, we modify the flipping process as follows.

1) If 27, = 0 or 2}, = 2, the state of SNP £ is flipped to

1 with probability ¢ = (2/e +d — 1).
2) If aj, = 1, the state of SNP k is flipped to 0 or 2 with
probability ¢ = (1/e€ +d — 1).

This approach ensures that direct transitions between
states “0” and “2” are avoided. By carefully selecting appro-
priate noise level, the synthetic samples retain the ancestry
characteristics of the original dataset. To further ensure the
privacy and quality of the generated data, we filter out low-
quality synthetic samples—those that are either identical to
the original ones or significantly deviate from the target
ancestry group.

In our implementation, we set € to 6 for each group—
note that since every sample can only belong to one group,
the overall € is also 6 (due to parallel composition). To
ensure balance in the final dataset, we manually control
the number of synthetic samples generated for each group,
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targeting 5000 samples per group. This process results in a
dataset containing six racial/ancestry groups with a total of
30000 samples. If any subset of the original data contains
fewer than 5000 samples, we repeat the process multiple
times to generate a sufficient number of synthetic samples.
Once the genotype arrays are generated, we create a list of
random numbers to serve as the sample IDs. The samples are
then sorted in ascending order based on their corresponding
sample IDs.

Phenotype Generation

After completing the previous steps, we proceed to simulate
the phenotype vector for both real and synthetic samples.
The primary objective is to assess the efficiency and ef-
fectiveness of techniques for gene-disease association, such
as genome-wide association studies (GWASs). To create the
synthetic phenotype vector, we utilize PhenotypeSimulator
[11], a R/CRAN package for simulating multitrait, multilo-
cus genotype-to-phenotype relationships. This tool enables
the simulation of genetic variant effects, infinitesimal genetic
effects (genetic background), nongenetic covariate effects,
and noise effects with a predefined covariance structure. It
also allows specification of the variance contribution of each
component to the total phenotypic variance. In this work,
we chose a combination of genetic effects and observational
noise effects, which is standard for genetic association
studies. Details of the simulation procedure are publicly
available.! In this tool, two key factors drive phenotype
generation: the selection of significant SNPs and the number
of cases (i.e., positive labels). To mimic a real-world scenario
where a subset of the genotypes are likely correlated with
the phenotype, we randomly select 10% (i.e., 718) SNPs
and then utilize a logit model that uses these with randomly
picked coefficients to generate a phenotype vector. This
is likely to generate a phenotype that is correlated with
these SNPs. We also adopt a balanced case/control strategy,
ensuring equal representation of cases and controls.

Watermark SNPs Generation

With the growing adoption of cloud computing for conduct-
ing GWAS, it becomes crucial to verify that a third-party
server performs the computations outsourced to it correctly.
Following the approach in [12], we propose generating
several synthetic SNPs that are highly correlated with the
simulated phenotype vector to “watermark’ the dataset. This
allows easy detection of any incorrect or deteriorated behav-
ior from the server by comparing the returned results with
the known results on the synthetic SNPs, at least for GWAS.
In this work, we adopt the first approach from [12] due to
its simplicity and efficiency. This method involves four key
steps to generate synthetic SNPs. First, the synthetic SNP

!Phenotype Simulation section in https://github.com/idsla/SynGen6/blob/
main/gen_allofus.ipynb

is initialized by duplicating the phenotype vector. Second,
we identify two sets of indices: 1) where the phenotype
is 1; and 2) where the phenotype is 0. Third, we determine
the number of 0, 1, and 2 alleles required in the synthetic
SNP. Finally, the initialized SNP is randomized based on
the numbers calculated in the third step. After generating
the synthetic SNPs, we assign random SNP IDs to each. In
the implementation, we followed the hyperparameter settings
from [12], with eps = 0.3 and zp = 0.49, and generated 20
additional watermark SNPs, considering a balance between
detection capability and overhead.

Synthetic Relatives Generation

Several important tasks in genomic data analysis, such as
kinship inference methods and family-based GWAS, re-
quire family relationship information. However, in real-world
datasets, this information is often difficult to collect. For
example, the original All of Us contains only around 6% of
samples to be related by kinship. To overcome this limitation,
our goal is to generate synthetic relatives to supplement the
dataset. In particular, for each subset (i.e., samples with
the same ancestry information), we randomly select 400
samples that do not have known relatives in the original
dataset and generate synthetic relatives following Mendel’s
law of inheritance. Given two SNP sequences from unrelated
individuals, we simulate their offspring’s SNP sequence
according to Mendel’s law. For example, if SNP 1 values
for the two individuals are O and 1, the offspring’s SNP 1
value is either O or 1, with equal probability. In the synthetic
genome array (produced after “Samples Generation With
Known Ancestry” section), we randomly select 200 samples
to represent fathers and 200 samples to represent mothers
from each population. Using Mendel’s law, we simulate the
first-degree descendants for these 200 parent pairs. Next, the
first-degree descendants are randomly reassigned into father
and mother groups, and the same process is repeated to
generate 100 second-degree descendants. Finally, we repeat
this process to produce 50 third-degree descendants. As a
result, the dataset includes 200 first-degree, 100 second-
degree, and 50 third-degree relatives per group. This process
results in a dataset containing 7200 pairs (approximately
20% of the entire dataset) of related samples.

VALIDATION AND QUALITY

The SynGen6 dataset provides a diverse genomic dataset,
containing kinship and phenotype information across six
distinct ancestry groups. Table I summarizes the key char-
acteristics of this dataset. To validate the quality of the
generated genetic markers, we compare the MAF values
between the original and synthetic SNPs. As shown in
Fig. 2, the distribution of MAF values for synthetic SNPs
closely resembles that of the original SNPs, showing that
the synthetic data preserve key allele frequency patterns.
Next, we conduct a t-SNE analysis [17] on each ancestry
group to assess the alignment between synthetic and original
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TABLE |. Dataset Summary

Original Data Original Data  Synthetic Data
(After QC)

#Samples 245394 172 644 32 1007
#SNPs 202959 7180 7200*
European (%) 54.4 51.3 16.6
African (%) 23.2 25.5 16.6
American (%) 18.3 18.6 16.6
East Asian (%) 2.3 2.7 16.6
South Asian (%) 1.3 1.4 16.6
West Asian (%) 0.4 0.4 16.6

Note: fIncluding 2100 synthetic relatives. *Including 20 watermark SNPs.

Original
1000 M Synthetic
o
800
o
o
400
I o
L-r—- md °

04 05

sjuno)y
I —

MAF Values

2 03
MAF values Synthetic Original

(a) (b)

FIG. 2. MAF values of original (orange) and synthetic (blue) SNPs. (a) His-
togram. (b) Violin plot.
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FIG. 3. t-SNE plots across six groups of samples. Red dots indicate
original samples. Blue dots indicate synthetic samples.

samples. Fig. 3 illustrates that synthetic samples are well
aligned with the original samples across all six populations,
especially in the African, American, and European ancestry
groups. However, there is noticeable divergence in the East
Asian group, indicating lower representation in the synthetic
samples. A more comprehensive evaluation of the quality
and utility of the synthetic samples is necessary and will
be addressed in future work. Furthermore, to assess the
quality of the synthetic relatives, we compute the KING
[18] coefficient, a widely used measures for estimating
kinship between individuals, and plot the distribution of
kinship-relatedness coefficients in Fig. 4. The KING kin-
ship coefficient ¢(i,j) between two individuals ¢ and j is
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defined as

6(i, ) = 2n11 — 4(no2 + n20) — N1 + N1k
where n11 denotes the total number of SNPs in which both
individuals ¢ and j are heterozygous, ngs refers to the total
number of SNPs where ¢ is homozygous dominant and j is
homozygous recessive, nyy denotes the number of SNPs in
which individual ¢ is homozygous recessive and individual j
is homozygous dominant, and n;, and n.; denote the total
SNPs where ¢ and j are heterozygous, respectively.

Fig. 4 shows that the synthetic relatives exhibit realistic
kinship relationships. Last, for the watermark SNPs, which
are designed to be highly associated with the phenotype
vector, we conduct a logistic based test. The average p-value
for the 20 watermark SNPs is 9.55 x 10736, with a standard
deviation of 3.50 x 10735, indicating that these SNPs main-
tain a strong association with the phenotype.

4711*

RECORDS AND STORAGE

The SynGen6 dataset is organized into a compressed folder
containing five CSV files, each serving a specific purpose
related to genomic, kinship, and phenotype data. The Python
and R script used to generate the synthetic dataset is also in-
cluded and publicly available (see “Source Code and Scripts”
section). These files are designed to facilitate comprehensive
preliminary genomic analysis. The Sample SNP Data file
contains the primary genetic information for all individuals.
The Phenotype Condition Data file associates individuals’
genotypes with simulated phenotype. The Watermark SNP
Data file ensures data integrity using synthetic SNPs for
validation in cloud-based analyses. Finally, the Kinship-
Relatedness Data provides information on genetic relation-
ships between individuals. A detailed description of each file
is given as follows.

It is important to note that access to the SynGen6 dataset
must be obtained via the All of Us Research Hub,? since
this dataset cannot be publicly distributed. This study used
data from the All of Us Research Program’s Controlled Tier
Dataset v7 available to authorized users on the Researcher
Workbench. Since data generated from All of Us cannot be

Zhttps://workbench.researchallofus.org/
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made publicly available, as an alternative, we provide a toy
synthetic dataset generated using the same methodology but
based on the Human 10000 Genome dataset [19], which is
publicly available and can be distributed to offer insights
into the SynGen6 dataset. The DOI provided in the article
refers to this toy dataset, which can be used to understand
and experiment with the data format. However, it is not
recommended to use this toy dataset for benchmarking or
real-world deployment, and instead the actual SynGen6 data
should be used, and this dataset can be created by running
our scripts in the All of Us Research Hub WorkBench.?

File Descriptions
Sample SNP Data (CSV)
This file contains the SNP data for all individuals in the
dataset. Each row corresponds to a unique individual.
1) Column 1: Sample ID: A unique identifier for each
individual.
2) Column 2: Ancestry: The ancestry group (e.g., African
and European).
3) Columns 3: Onward: Each column represents a spe-
cific SNP, with values reflecting the genotype (e.g., 0,
1, and 2).

Phenotype Condition Data (CSV)
This file contains phenotype information for each individual.
1) Column 1: Sample ID: Unique identifier for each
individual.
2) Column 2: Phenotype Condition: A binary variable
representing the presence (1) or absence (0) of the
simulated condition.

Watermark SNP Data (CSV)
This file includes the synthetic watermark SNPs designed to
ensure data integrity.
1) Columns 1-20: Watermark SNPs ID: Synthetic SNPs
used for validation purposes.
2) Row 1-30000: Sample ID: Each row represents the
SNPs values for each sample.
3) Row 30001: p-Values: The p-values indicate the sta-
tistical association between each watermark SNP and
the phenotype condition.

Kinship-Relatedness Data (CSV)
This file provides information on the synthetic relatives in
the dataset.

1) Column 1: Sample ID: The ID of the synthetic indi-
vidual related to a sample in the Sample SNP Data
file.

2) Column 2: Ancestry: The Sample ID from the Sam-
ple SNP Data to which the synthetic individual is
related.

3Please see https://www.researchallofus.org/frequently-asked-questions/
#workbench-fags for information regarding how to access All of Us Work-
Bench.

3) Column 3: Relatedness: Presents the kinship relation-
ship.

4) Column 4: Kinship Coefficient: Provides the calculated
kinship coefficients between the SNP data of the
synthetic individual and its ancestor.

Synthetic Relatives SNP Data
This file provides SNP information on the synthetic relatives
in the dataset.
1) Column 1: Sample ID: A unique identifier for each
individual.
2) Columns 2: Onward: Each column represents a spe-
cific SNP, with values reflecting the genotype (e.g., 0,
1, and 2).

INSIGHTS AND NOTES
SynGen6 is designed to enable fast and efficient preliminary
analysis of genomic data while addressing critical chal-
lenges, including the lack of diversity, limited data sharing,
and data scarcity. First, with known association relationships,
the dataset facilitates benchmarking of case-control GWAS
algorithms, providing a controlled environment for testing.
Second, by incorporating samples related by kinship, the
dataset supports research into kinship inference methods,
which are often challenging to conduct due to the scarcity
of such data. Third, with the introduction of watermark
SNPs, it can be used to verify the integrity of the results in
cloud-based computations. Finally, the synthetic samples are
generated using real samples, with the added layer of LDP
to safeguard individual privacy from the original dataset.
While SynGen6 is designed to reflect realistic genomic
data distributions, certain simplifications were intentionally
made to ensure feasibility in its creation and design. The
dataset is strictly intended as a research benchmark, with
known ground truth relationships, and results derived from it
are neither intended to generalize to real-world genomic data
analysis nor for the deployment in real settings. Future work
aims to develop a comprehensive evaluation framework that
includes statistical comparison and privacy evaluations and
to incorporate additional features, such as demographic in-
formation, phenotype vector infusion, and synthetic clinical
data, potentially leveraging large language models (LLMs)
to enhance its applicability.

SOURCE CODE AND SCRIPTS
The source codes and scripts used in this work are available
in the GitHub repository idsla/SynGen6.*

Data processing: Plink 1.9.

Phenoyte simulation: PheynotypeSimulator.®

“https://github.com/idsla/SynGen6
Shttp://pngu.mgh.harvard.edu/purcell/plink/
Ohttps://cran.r-project.org/web/packages/PhenotypeSimulator
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