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ABSTRACT Privacy Enhancing Technologies (PETs) have the potential to enable collaborative analytics
without compromising privacy. This is extremely important for collaborative analytics can allow us to really
extract value from the large amounts of data that are collected in domains such as healthcare, finance,
and national security, among others. In order to foster innovation and move PETs from the research labs
to actual deployment, the U.S. and U.K. governments partnered together in 2021 to propose the PETs
prize challenge asking for privacy-enhancing solutions for two of the biggest problems facing us today:
financial crime prevention and pandemic response.
This article presents the Rutgers ScarletPets privacy-preserving federated learning approach to identify
anomalous financial transactions in a payment network system (PNS). This approach utilizes a two-step
anomaly detection methodology to solve the problem. In the first step, features are mined based on account-
level data and labels, and then a privacy-preserving encoding scheme is used to augment these features
to the data held by the PNS. In the second step, the PNS learns a highly accurate classifier from the
augmented data. Our proposed approach has two major advantages: 1) there is no noteworthy drop in
accuracy between the federated and the centralized setting, and 2) our approach is flexible since the PNS
can keep improving its model and features to build a better classifier without imposing any additional
computational or privacy burden on the banks. Notably, our solution won the first prize in the US for its
privacy, utility, efficiency, and flexibility.

INDEX TERMS Federated Learning, Differential Privacy, Anomaly Detection, Financial Crime, Fraud
Detection, Payment Network Systems

I. Introduction

DATA is the lifeblood of the digital economy. The
volume of data/information created, captured, copied,

and consumed worldwide has grown consistently – from 2
Zettabytes in 2010 to 64.2 Zettabytes in 2020, with a forecast
of over 180 Zettabytes by 20251. Data science, AI/ML, and
analytics are being used to make sense of all of this data
and utilize it. However, as more and more data is collected
and analyzed, privacy is increasingly at risk. The risk to
privacy has been identified and explicitly called out by the
U.S. President in their recently released executive order on
Safe, Secure, and Trustworthy Artificial Intelligence2.

1https://wwwstatista.com/statistics/871513/worldwide-data-created/
2https://www.whitehouse.gov/briefing-room/statements-

releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-
on-safe-secure-and-trustworthy-artificial-intelligence/

Privacy Enhancing Technologies (PETs) can be a potential
solution to this conundrum, and the national strategy to
advance privacy-preserving data sharing and analytics rec-
ognizes that PETs can protect privacy by removing personal
information, by minimizing or reducing personal data, or by
preventing undesirable processing of data, while maintaining
the functionality of a system3. However, despite the devel-
opment of advanced PETs such as secure multiparty com-
putation [1], homomorphic encryption [2], differential pri-
vacy [3], zero knowledge proofs [4], synthetic data [5], feder-
ated learning [6], and trusted execution environments [7], as
well as significant development of research papers applying
them to solve problems [8], [9], their practical use is still
quite limited.

3https://www.whitehouse.gov/wp-content/uploads/2023/03/National-
Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf
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Recognizing this, at the inaugural Summit for Democracy
(in 2021), the U.S. and U.K. governments partnered together
to propose a set of prize challenges to unleash the potential
of these democracy-affirming technologies to make a pos-
itive impact4 [10]. Named the PETs prize challenge, this
competition utilized a red team/blue team approach with
two types of participants: blue teams developed privacy-
preserving solutions, while red teams acted as adversaries
to test those solutions.

The competition was structured into two tracks: the first
focused on transforming financial crime prevention while the
second focused on boosting pandemic response capabilities.
In the financial crime track, the objective was to develop
solutions that help tackle the challenge of international
money laundering, which finances organized crime including
human trafficking and terrorist financing, and undermines
economic prosperity. The impact of this problem is immense,
since money laundering costs up to US $2 trillion each year,
according to UN estimates5.

Information sharing and collaborative analytics among
financial organizations make it much more feasible to detect
money laundering and financial fraud. However, it is difficult
to realize such information sharing/analytics due to legal
concerns with respect to privacy and institutional concerns
due to autonomy and with respect to the confidential nature
of the information.

To solve this problem, in the financial crime prevention
track, innovators were asked to develop end-to-end privacy-
preserving federated learning solutions to detect potentially
anomalous payments, leveraging a combination of input
and output privacy techniques. Synthetic datasets created by
SWIFT, the global provider of secure financial messaging
services, were provided to the participating teams and used
to develop general solutions. The solutions developed were
judged on several different criteria, including privacy, ac-
curacy, efficiency and scalability, adaptability, usability and
explainability as well as innovativeness.

This article presents the Rutgers ScarletPets solution for
anomaly detection via privacy-enhanced two-step federated
learning. Our solution was the winner of the PETs Challenge
for transforming financial crime prevention, ranking first in
the US.

The two step approach is both accurate and scalable, and
it works as follows. In the first step, we mine features based
on account-level data and labels, and then use a privacy-
preserving encoding scheme to augment these features to
the data held by PNS. In the second step, PNS now learns
a highly accurate classifier from the augmented data.

To classify a transaction, we first check if it’s a simple
rule-based anomaly. If it is, then it is labeled as an anomaly.
However if the transaction is not a simple anomaly, then the
classifier is used to label it.

4https://drivendata.co/blog/federated-learning-pets-prize-winners-phases-
2-3

5https://www.un.org/en/coronavirus/illicit-financial-flows

Overall, our solution has several advantages. Indeed, it
won the PETs challenge because along with providing com-
prehensive privacy guarantees, it had the advantage of being
fast, scalable, and accurate (comparable to its centralized
counterpart), as well as being highly flexible. By requiring
only minimal changes to the existing architecture, it is
actually eminently deployable in practice. The implemen-
tation code is made available through NIST’s official Github
account [11].

II. Background, Notation, and Basic Setup
We tackle the problem of combating financial fraud in
national or international transfers using collaborative and
privacy-preserving anomaly detection, posed in the financial
crime prevention track of the PETs Prize Challenge [10].

A. PETs Challenge – Financial Crime Prevention
The financial track was aimed at developing privacy-
preserving financial information sharing and collaborative
analytics to detect anomalous payments without compromis-
ing the privacy of individuals’ or organizational data. Thus,
this broad and open effort intended at building trust in PETs
in general, and accelerating adoption and the development
of efficient privacy-preserving federated learning solutions in
general to counter financial crimes such as money laundering
that costs up to $2 trillion each year [12].

The challenge was organized in three phases. In the phase
I, participants were provided a synthetic global transactional
dataset of a Payment Network Systems (PNS) (which was
created by SWIFT) [13]. Using the insights from this data,
the participants proposed their approaches and outlined them
as concept papers that were then evaluated by a review panel.
The qualified proposals moved to the Phase II, wherein the
proposed approaches were implemented and then evaluated
by the review panel as well as by execution of the pro-
tocols on a standardized online platform. Additionally, the
approaches were evaluated for their privacy and security
guarantees by a separate set of participants; this constituted
the Phase III of the challenge.

B. Goals and Objective
As per the problem description,

“the analytical objective [of the PETs Challenge
is] to train a model [over PNS’s and banks’
data] that enables PNS to identify anomalous
transactions” while preserving privacy, i.e., the
solution “is able to provably ensure that sensitive
information in the datasets remain confidential to
the respective data owners across the machine
learning lifecycle” [14].

The main goal here is to combine insights from
transaction-level data, seen in the PNS, and the account level
(meta) data known only to the respective bank. Thus, if the
parties, i.e., banks and PNS collaborate, then collaborative
machine learning can be used to build a classifier, i.e.,
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decision model — to identify the anomalous transaction
before fully executing it via the network. The use of such
collaborative analytics will boost system performance by
lowering the risks of fraud, the average processing time, and
the resource-wastage in processing the transactions across all
parties, i.e., all banks and the PNS.

Since all of this information, contained in transactions and
bank’s data, is sensitive and confidential, it is imperative to
protect privacy while learning the model. Ideally, no party
should learn any additional information by contributing its
data to build the classifier, and the model should not expose
the private and sensitive information of individuals or banks.
Thus, the use of PETs-based solutions, such as federated
learning, homomorphic encryption [15], secure multiparty
protocols [16], garbled circuits [17], and differential privacy,
are befitting this setting. In particular, federated learning
solutions were encouraged for they avoid sharing of raw
data, and instead rely on learning and sharing parameters
of a model to complete the learning task.

To achieve the objective, it is imperative to (1) understand
the basic setup of PNS [14] (discussed in Section C), and
(2) how data is distributed and what information about
transactions and their processing is known to banks and PNS
(discussed in Section D). Note that (1) is needed to know
how the data is distributed among the parties (i.e., banks
and PNS), and hence, to construct an effective federated
learning algorithm that is distributed in nature; (2) is needed
to determine exactly what information is known to which
party when a transaction is processed, and hence, to quantify
information leakage appropriately.

C. PNS Setup, Transactional and Account Meta Data
A payment network system such as SWIFT[18] consists of
advanced Internet protocol-based messaging platform (and
network), which enables the participating institutions (e.g.,
banks) to send standardized messages, such as pertaining
to processing/execution of a transaction, to each other (see
Fig. 1 for a basic setup of a PNS). Namely, each mes-
sage/transaction first goes to PNS and is then sent to the
next recipient. In the problem setting, it was assumed that
the PNS, executing a transaction, sees all the information in
the transaction and stores it, which gives us the transactional
data, PNS(T ), at PNS site. Note that we abuse the notation
and use PNS to refer to a party that has the view of PNS, i.e.,
a party that controls the network and sees all the messages
passing through it.

Let us now look at the banks connected via PNS. Say there
are N banks (participating in PNS), each with its customers
who can send and/or receive money via wire transfers, i.e.,
transactions executed via PNS (see Fig. 2 for an example
transaction). Each bank has the account information (i.e.,
metadata), for example, bank account number, account name,
street address, country, and an account-level feature, called
Flag: which captures the status or behavior of the account,
e.g., whether the account is operating normally (Flag =

00), under monitoring (Flag = 05), or suspended (Flag =
06). See Fig. 3 and compare it to Fig. 2 for differences in
transaction level data and account (i.e., banks) level data (for
more details see [14]). Also, note that it is possible, and often
it’s the case, that account level information in the transaction
is incorrect.

While making a transaction (i.e., transferring funds), all
the account information (i.e., bank, account number, name,
and address) of the ordering account (i.e., the one sending
the funds) and beneficiary account except for Flag’s values
(as well as the recipient bank and other transaction details,
e.g., amount and currency) is shared with PNS (i.e., the PNS
system).

Sufficiency of single Flag feature
As long as the account level characterization is given by a
set of finite features, one account-level feature, e.g., Flag,
is sufficient to capture the necessary correlations. Let us
say the account level characterization features are defined
over a finite space (this assumption is supported by the data
provided by PNS). Since finite space, defined by multiple
features (each of which is finite) can be mapped to a
single finite feature via one-to-one mapping, we simplify the
account-level features by considering only a single feature
Flag.

D. Data Distribution & Parties’ Knowledge
For each transaction that is executed via PNS, PNS is
provided with the ordering and beneficiary accounts’ infor-
mation — which can be incorrect — amount and currency
details, and the receiving bank for the transaction6.

To simplify the exposition, we conceptualize the notion
of full transaction from an ordering account in bank i, let’s
call it i-Bank, to the beneficiary account in j-Bank (where i
and j are two unique integers between 1 and N that denote
individual, non-identical, banks). Each full transaction
consists of all the information known (i.e., sent) to PNS
(as part of the transaction) as well as the information of
ordering and beneficiary accounts, which are only known to
the banks i-Bank and j-Bank7.

6Note that one complete wire, i.e., an end-to-end transaction, may consist
of multiple single hop transactions. For example, a transaction from Bank#1
to Bank#2, first goes to Bank#3, and then from Bank#3 to Bank#2; this is
akin to network routing protocol, where a bank (Bank#1) may not know
how to send funds to desired bank (Bank#2) but it knows another bank
(Bank#3) that can send the funds to the desired bank (Bank#2). We focus
on identifying fraud on a single transaction level, that is, if the transaction
at any hop is identified as anomalous, the end-to-end transaction is labeled
as anomalous.

7Note that any full transaction is an individual transaction, i.e., it is not
an end-to-end transaction.
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FIGURE 1: Basic setup of Payment Network Systems (PNS). The dotted line depicts the transaction that we want to make
from Bank#1 and Bank#3; while the solid line depicts how the transaction goes through the PNS. PNS(T) denotes the data
consisting of all the transactions at PNS.

FIGURE 2: Example transaction from NYC to Berlin.

FIGURE 3: Account metadata at banks connected via PNS.

a: Federated data distribution
Let T be the set of full transactions under consideration
(e.g., pertaining to the training data). T is distributed both
vertically and horizontally such that

• Vertical partitions: T is vertically partitioned between
PNS and the banks: PNS(T ) consists of transaction-
level features (or attributes) known to PNS and
Bank(T ) consists account-level meta data (e.g., correct
account information and the corresponding Flag val-
ues).

• Horizontal partitions: Bank(T ) is horizontally par-
titioned among banks such that only the ordering
account’s bank knows the attributes of the ordering

account and the beneficiary account’s bank knows the
attributes beneficiary account. We use i-Bank(T ) to
denote the account level data for the transactions where
i-Bank’s account was ordering or beneficiary.

Thus, for any full transaction, τ ∈ T , from i-Bank’s
ordering account to j-Bank’s beneficiary account, PNS(τ)
gives the transaction-level data available at PNS site, while
ord(τ) gives account-level data of the ordering account
from i-Bank(T ), and ben(τ) gives account-level data of
the beneficiary account from j-Bank(T ). Furthermore,
we use oFlag(τ) and bFlag(τ) respectively to denote
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the ordering and beneficiary accounts’ flag value8; and
use Label(τ) to denote the label for the transaction,
Label(τ) = 1 for anomalous and Label(τ) = 0 for
normal.

b: Knowledge of the parties in PNS
PNS knows all the transaction-level features as they pass via
PNS. Thus, they are contained in PNS(T ). Additionally, as
per our understanding, PNS also gets to know the status rea-
son code for transactions [14]: the codes reveal to PNS if the
transaction was executed successfully or was unsuccessfully
terminated or denied due to invalid account information or
some non-normal status of the account.

Thus, we assume that following is the minimal infor-
mation leakage for PNS: it knows if a transaction is
successfully executed; and if a transaction is denied due to
invalid account information or “non-normal” account status;
it knows that the failure was due to either, but it cannot
distinguish between the two reasons. In addition, since end-
to-end transactions are visible to PNS, it also knows the
bank-membership of the ordering and receiving account.

The information leakage for banks processing a trans-
action (whether the sender or the receiver) is such that
they know PNS(T ); furthermore, we assume that a bank
processing the transaction knows the reason code, and if the
bank contains the ordering (or beneficiary) account, it knows
know the valid account level data.

E. Differential Privacy
Differential privacy (DP) [3] aims to preserve individual’s
privacy while publishing statistical information about a
database. DP provides formal guarantees that the distribution
of query results changes only slightly with the addition or
removal of a single record in the database. Formally, a mech-
anism (randomized algorithm) M is ε-differentially private
if for all possible sets of the outputs, S ⊆ Range(M), and
all neighboring database (that differ by a single record) D
and D′, we have that

Pr(M(D) ∈ S) ≤ eε × Pr(M(D′) ∈ S),

where ε ≥ 0, and it quantifies the level of privacy. The higher
its value, the weaker the privacy guarantee.

We also employ attribute level differential privacy [19],
where the only difference is how the neighboring databases
are considered. In attribute-DP, neighbors are considered
only in terms of set of sensitive attributes as opposed to
all attributes (sensitive or otherwise).

Two important properties of DP that we will rely on are
sequential and parallel composition. According to sequential
composition, when a single data point (or record) is used in
n independent ε-DP computations, the overall DP guarantee

8Note that for any partial transaction τ ′ in PNS(T ), the associated flag
values are unknown, i.e., oFlag(τ ′) = bFlag(τ ′) = ⊥, i.e., null.

reduces to (nε)-DP. On the other hand, in parallel composi-
tion, when mutually exclusive partitions of the database are
used by independent ε-DP computations, the overall privacy
guarantee remains the same, i.e., ε-DP.

We use Laplace mechanism to achieve DP. For count
queries (which just count the number of records in a database
satisfying a given property), Laplace mechanism adds inde-
pendently sampled noise form Laplace distribution (of mean
0 and scale 1/ε2) to the true answer – the perturbed answer
is guaranteed to be ε-DP.

F. Bloom filters (BF)
In our approach, we will augment PNS(T ) with a secure
and privacy-preserving encoding of account-level features
(which are known to banks). And for this encoding scheme,
we will use bloom filters (BFs). BF is a probabilistic data
structure that allow for the storage and look up of elements.
The data stored in a BF is not directly retrievable. Once
data is ‘inserted’, data can be checked to see if it likely has
been seen or if it definitely has not. BF is a space-efficient
option with an acceptable false positive rate, and has been
widely used in many fields [20], [21]; for instance, they are
employed for privacy-preserving biometric issue [22]. Many
variants of BF exist. We consider the case where the BF
is a bit vector of length α. All the bits are initialized to
0. To insert an element, w independent hash functions are
used to randomly map the element into w positions in the
bit vector, which are set to 1. To query if an element is a
member, BF maps the element into its bit vectors with the
w hash functions. If all the w bits are 1s, then the element
is considered to be in the BF and otherwise not.

III. Technical approach
Given the analytical objective, the unique nature of data
and how it is distributed across parties, i.e., PNS and banks
(discussed in Section D), and the requirements for an easily
deployable solution, we opt for a domain- and problem-
specific solution because this enables an improved trade-off
between the practical usability and protection of the data.

We first describe our approach in the centralized setting
(where all the data is gathered at one site). Then we propose
our novel two-step federated learning anomaly detection
method, which extends the centralized setting to the collabo-
rative setting. Note that we use the term ‘federated learning’
in its more general sense of collaborative learning. In the first
step of the approach, we mine features based on account-
level data (from banks) and labels (from PNS); we then use
a novel privacy-preserving encoding scheme to encode these
features. In the second step, PNS uses the secure encoding
to create augmented data (PNS(T )+) to build a classifier to
identify anomalies.

Our federated approach (as outlined shortly):

• is fast and accurate (comparable to its centralized
counterpart), and it requires minimal changes to the
existing architecture—it actually builds upon it;
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• can detect one of the most challenging anomalies,
which occur due to mis-specification of information
(e.g., incorrect name, account number, or address) with-
out compromising privacy;

• can preserve all sensitive information, not only at the
account level but also at the model level (privacy
objectives are outlined in Section A);

• is also highly flexible; this is because once the data is
augmented, any classifier can be built on the augmented
data without an active involvement of other parties,
allowing drop-in replacement with newer technology;

• is very scalable, allowing new banks to be added in,
and is also easily explainable.

A. Privacy Objectives
The aim is to learn a global anomaly detection model
using PNS(T ) and banks’ data, i.e., 1-BankData, 2-
BankData,. . . ,N -BankData without sharing raw data,
i.e., via federated learning, and without compromising sensi-
tive information. Here, i-BankData denotes all the account-
level data that i-Bank has on its customers.

The sensitive information to be protected is all personally
identifiable information, namely, account number, name, ad-
dress, Flags (when it is non-zero, i.e., the account is flagged),
transaction identifiers, and time-stamps. Thus, our proposed
approach will assure that this information is not leaked or
compromised.

We consider a semi-honest threat model, i.e., the parties
faithfully follow the protocol, but they may try to gain more
information through the messages they send or/and receive.
We also assume the parties do not collude with each other;
in particular, the PNS site does not collude with any bank.
Thus, we will develop and establish the privacy guarantees of
our method under the simulation model; namely, they do not
gain more information than what is explicitly defined as their
input, output, and anything that can be inferred using them
(for details see Section IV). Furthermore, we use differential
privacy [3] to protect the sensitive information, e.g., various
time frequencies (how many transactions are initiated by a
sender per unit time) in the classification model, which could
be released or shared with parties other than PNS.

B. Approach for the Centralized Setting
Let us first discuss how our approach works if all the data
was available at one site. Algorithm 1 gives an overview the
approach in this centralized setting. Below we give details
for each of the steps in Algorithm 1 except for the last one,
which simply runs a learning algorithm over the provided
differentially private augmented data to obtain a classifier9.

9For the PETs challenge, we evaluated the performance of many classi-
fiers and found that XGBoost outperformed other models for the anomaly
detection task and therefore utilized it.

Algorithm 1 Centralized Approach

Input: T , set of full transactions; γ ∈ (0, 1), threshold;
differential privacy parameters, ε1, ε2

Output: Classifier C+
1: m-Features←Mine Flag-based features (with

anomaly-ratio > γ) from T (ε1-DP)
2: PNS(T ′)+ ← Augment Features to PNS(T ′) via

bloom filter based encoding
3: dp-PNS + train ← Make sensitive features in
PNS(T ′)+ ε2-differentially private

4: Learn classifier, C+ (e.g., using XGBoost) over
dp-PNS+train

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
To classify a transaction, first compute its Flag-based
features’ values, augment them to PNS’s transaction-
based features, and then use C+ to obtain its classifi-
cation.

1) Account-level (Flag-based) feature mining
Recall that the aim is to leverage the account-level (meta)
data with transaction data to improve the overall detection.
To do this, we perform feature mining that focuses on
capturing information about anomalous (or normal) behavior
of transactions as it pertains to account-level data.

We conceptually think of anomalous transactions having
two types: intrinsic anomalies and complex anomalies. We
use account-level rules (driven from account-level data) to
define intrinsic anomalies—for brevity, we refer to them as
rules. These rules are solely based on the account level data,
and they are used to assess whether a transaction is invalid,
i.e., it is an intrinsic anomaly. For instance, the rule that
‘money cannot be wired to an account that does not exist’ is
an example of (account-level) rule. Clearly as per the rule,
a transaction for a beneficiary account that doesn’t exist
is an intrinsic anomaly. Thus, we say a transaction is an
intrinsic anomaly if it is anomalous with high probability
(i.e., ≈ 1) when it fails to satisfy one of the account-
level rules. Note that without the account-level features
(derived from account-level data) intrinsic anomalies cannot
necessarily be distinguished from normal records.

A complex anomaly, on the other hand, is an anomaly
that is not an intrinsic anomaly. Namely, complex anomalies
can satisfy all the account level rules; when they do not,
this information (i.e., violation of some rules) alone is not
sufficient to identify them—though it can be necessary to do
so. Therefore, building a high-accuracy classifier to identify
complex anomalies requires training data consisting of the
features derived from both the PNS’s data (i.e., PNS(T )) and
the banks’ data (i.e., 1-BankData,. . . ,N -BankData).

Let us now describe how we mine the account-level, i.e.,
Flag based, rules from the data, which have sufficient
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support. These rules will be used to create account-level
features (which will later be augmented to PNS’s data). We
consider a pair of Flag values, (f, f ′), where f is for the
ordering account, and f ′ is for beneficiary account. Naturally,
each transaction τ is linked to such a pair, and the pair to
the account level rule. Since there are |Flag|2 many pairs
(|Flag| =number of possible flag values), we only want the
pairs with sufficient support. We call this support anomaly-
ratio and denote it as r(f, f ′), defined by Eq.(1):

r(f, f ′) =

∣∣{τ ∈ S(f, f ′)| Label(τ)=1}
∣∣

|S(f, f ′)|
(1)

where S(f, f ′) is the set of all transactions in T where
ordering and beneficiary Flag values are f and f ′, i.e.,
S(f, f ′) ={τ ∈T | oFlag(τ)=f and bFlag(τ)=f ′}.

To account for the rules that depend only on the benefi-
ciary account (or only on the ordering account), we consider
(∗, f) (or (f, ∗)), where ∗ indicates the independence with
respect to the ordering (or beneficiary) account respectively.

To mine the rules, we find all the relevant Flag-pairs.
To do this, we divide the rules into three categories based
on the anomaly-ratios. The first category corresponds to the
ratios that are close to zero (or below a threshold, e.g.,
0.1), and is ignored completely. The second category—called
simple rules—corresponds to the ratios that are close to one
(e.g., greater than 0.9), resulting in rules to identify intrin-
sic anomalies. The third category—called complex rules—
corresponds to the rest not covered by the first or the second
categories. The specific thresholds can be specified by the
domain experts or empirical analysis. Let m-Features
denote the set of all the pair corresponding corresponding
to simple and complex rules given by the mining process.

How to achieve privacy: While mining Flag-based fea-
tures, we guarantee differential privacy (DP) [3] in comput-
ing r(f, f ′) (note we discussed DP in Section E). We use
(ε1/2)-DP Laplace mechanism [3] to independently perturb
both the numerator (|S(f, f ′)|) and the denominator (the
number of anomalies in S(f, f ′)) for each r(f, f ′). Thus,
guaranteeing overall ε1-DP in this process (which follows
from serial and parallel composition of DP10).

2) Bank and account-level feature encoding via bloom filters
We have two types of account level features that we want
to encode: 1) account information (e.g., account number,
name, address, etc.) and 2) mined features/rules given by
the pairs in m-Features. We need 1) so that we can
validate whether the specified account-level details in a
transaction are correct otherwise the transaction cannot go
through and will be considered anomaly (note that this will

10Note that every (f, f ′) pair covers a different partition of transaction
data, i.e., there are no overlaps ion data while computing anomaly-ratios for
different Flag pairs, and therefore, parallel composition can apply, giving
an overall bound of ε1.

correspond to simple anomaly and is clearly independent
of the Flag values). Solving this problem while protecting
privacy is a significant obstacle. Next, these encoding, i.e.,
derived features, are augmented to the PNS’s transactions
data, T .

Since for each transaction τ in T and every pair (f, f ′)
in m-Features, either τ ∈ S(f, f ′) or τ /∈ S(f, f ′), we
encode the mined features as membership relations using
bloom filters (described in Section F), shortly called filter
(described in detail below). We use bloom filters for their
superior performance for rule-validation and the security
and privacy properties they provide[23], [24]; additionally,
we use them to develop a privacy-preserving encoding and
membership evaluation protocol in the federated setting
(presented shortly).

We first use a simple example to describe our encoding
scheme and then give general methods for different scenar-
ios. Consider (∗, f ′): it is encoded by adding to a filter all the
accounts with Flag value f ′. Now, for a given transaction
and a filter (encoding a rule), we check if the beneficiary
account is in the filter: if it is then the filter’s output is 1
(i.e., it satisfies the rule for being likely anomalous) and
otherwise 0.

After the rules have been encoded, we use the filter’s
output, corresponding to each feature/rule, as the feature’s
value and augment it to PNS’s data, PNS(T ) — these new
features are rule-based features (as they are computed by
evaluating the rules). Let PNS(T )+ denote the PNS data
augmented with the account-level features.

Below, we provide three approaches to support a vari-
ety of Flag-based rule encoding via bloom filters. First,
we can encode and validate multiple account-related data
elements, e.g., number, name, street, country, in one filter.
Let acc_info contain all the necessary account-level in-
formation for an account, i.e., for our setting: acc_info =
acc# || name || street || country, where || denotes
concatenation. Now, instead of the account number (as done
earlier) for each account, add its acc_info to the filter.
This allows validation of the complete account information
via one filter.

Second, consider simple rules like (f1, ∗), . . . , (fa, ∗) (or
(∗, f1), . . . , (∗, fa)). We can encode all of them via one
filter by adding acc_info for all the accounts whose
Flag value is in {f1, . . . , fa}11. To evaluate the rule, we
just check if the given acc_info is in the filter; and if
it is, then the filter’s output is 1, meaning that the account
has a feature value that likely leads to its transaction being
anomalous, and the output is 0 otherwise. We note that all
the rules in the provided data are of this form; thus one
bloom filter is sufficient to capture all the rules.

Third, consider more general rules, given by a pair of
Flag values, i.e., (f, f ′). To encode such a rule, create a

11Note that a simple naming convention (which explicitly specifies
ordering or beneficiary in a bloom filter’s name) can be used to distinguish a
filter encoding for the beneficiary account from that of the ordering account.
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filter-pair (BF,BF ′): BF is for the ordering account and
BF ′ is for beneficiary account. Then, to the filter BF , we
add the account information, acc_info, for each account
with Flag = f ; and to the filter BF ′, we add acc_info
for all the accounts with Flag = f ′. To evaluate the rule,
(f, f ′), we check if acc_info for the ordering account is
in the filter BF with its output being b (∈ {0, 1}), and that
of beneficiary account is in the filter BF ′ with its output
being b′. Now, if 2b′ + b = 3 then the transaction is likely
anomalous.

From storage and computation complexity, we emphasize
that all account-level feature based rules will lead to smaller
sized filters as the flagged accounts, i.e., having the account’s
status that is anomaly prone, only constitute a tiny proportion
of the total accounts.

3) Extracting transaction-level features and assuring DP for
sensitive features
Once PNS’s data is augmented, we can perform feature
extraction and evaluation at the PNS site without involving
any other party (i.e., the banks). Here, one can use any
befitting learning/classification algorithm and the evaluation
metrics. This flexibility is indeed one of the powerful features
of our approach as it allows for a continuous improvement
by using or incorporating more advanced or newly developed
learning and data mining methods without incurring any
additional privacy cost or any additional burden on any of
the other parties.

How to achieve privacy: Firstly, we aim to use non-sensitive
data that are strong predictors. For account-level (meta) data
based feature, we directly rely on the augmented features
(which, in federated setting, will be derived using BF-
based privacy-preserving encoding). To protect privacy of
the sensitive features (namely, features containing sensitive
information or derived using some sensitive information), we
use generalization (e.g., hours instead of actual time) as well
as attribute differential privacy (discussed in Section E). For
example, a sensitive feature that is computed using counts
related to sensitive information can be made differentially
private by perturbing the counts using Laplace mechanism;
whereas for averages or mean (or other functions) that have
higher ‘sensitivity’ (i.e., the magnitude of change to be
hidden, known as global sensitivity in DP literature [3]),
smooth sensitivity based DP methods can be used for the
perturbation [25].

C. Privacy-Enhanced Anomaly Detection via Two-Step
Federated Learning
We now describe how our approach can be extended from the
centralized setting to the federated setting. A distinguishing
feature of our federated approach is to leverage the knowl-
edge PNS has about the transactions to design a protocol that,
on the one hand, improves the accuracy of classification, and

Algorithm 2 Privacy-Enhanced Two-Step Federated Learn-
ing

Input: PNS(T ) at PNS; i-Bank(T ) and i-BankData (all
the account-level data) at i-Bank for i = 1, . . . , N ; key
size, λ; differential privacy (DP) parameters, ε1, ε2

Output: Classifier C+ at PNS
FIRST STEP: Secure rule mining and encoding
1: All banks collaboratively securely generate PRF’s, F ,

key k∗ (of length λ)
2: All banks and PNS securely and collaboratively mine
Flag-based rules using Flag values from i-Bank(T )
and Label in PNS’s data with ε1-DP guarantee

3: All banks collaboratively run secure sum protocol to
estimate the number of accounts (across all banks) to
be added to each bloom filter (BF) and compute the
BF’s size

4: for i = 1, . . . , N do
5: For each rule, i-Bank initializes the local

filter and adds to it the secure encoding, i.e.,
E[acc_info] = Fk∗ (h(acc_info)), of all

the accounts from i-BankData that conform to
the rule (i.e., have specified Flag values)

6: Send all local BFs to PNS
7: end for

SECOND STEP: Secure aggregation, augmentation, and
learning

8: For each rule, PNS aggregates all the received local
filters into a global filter

9: PNS gets the secure encodings of the ordering and
beneficiary accounts for each transaction by sending
their hashes to the sender bank.

10: PNS uses the global filters and the received secure
encodings to compute values of the Flag-based features
and augments them to its training data.

11: PNS extracts features (with ε2-DP guarantee) from the
augmented data and learns C+

on the other, reduces the leakage of sensitive information
(Section IV) for more details). Thus, we choose PNS as the
central server/aggregator site as well. Even if we choose a
different site for the central server, the information-leakage
to PNS will remain the same. To extend our approach to
privacy-enhanced federated learning, we need to perform the
following three main tasks:

1) Securely learn Flag-based (i.e., account-level) rules
from banks’ data and PNS’s data.

2) Make the bloom filter based encoding (to be shared
with PNS) secure as well as privacy-preserving so
that PNS cannot carry out attacks (e.g., brute force
or attacks similar to using rainbow tables) to obtain
account information encoded in the filters.
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FIGURE 4: 2-Step FL overview with a simpler setting (without rule mining)

3) Securely extract the values for Flag-based features
for all the transactions in the training data and augment
the training data with these features’ values.

Tasks #1 and #2 are completed in the first step of the
learning process, it requires banks to mine account-level
features/rules, and build a privacy-preserving global bloom
filter for PNS via federated learning. Once PNS is provided
with the bloom filters, it needs to carry out task #3, which it
does by asking the sender bank of each transaction to provide
secure encoding of the ordering and beneficiary account
information for the transactions — note that PNS cannot
perform this on its own, a privacy feature of our approach;
after receiving the secure encodings, PNS populates the
Flag-based (i.e., account-level) features, augments them
to its data, and learns the classifier (by following other
steps discussed in the centralized setting, detailed in the
previous section)—this constitutes the second step. Thus,
our approach is named two-step federated learning and is
outlined in Algorithm 2. Figure 4 gives an overview of the
proposed solution in a simpler way.

We reemphasize that even in the federated setting, once
PNS has obtained augmented data, it is free to choose any
learning method and feature extraction method to build the
classifier, C+, for anomaly detection. Thus, our approach is
flexible and agile, where PNS can keep improving its model
and features to build a better classifier without imposing
on banks to carry additional computational burden or risk
privacy of their customers by sharing more information.

1) Secure and privacy-preserving feature/rule mining
The banks use a secure protocol (given in [26]) to count
and compare the number of anomalies to identify rules. For
instance, for a rule (f, f ′), the banks securely compute if the
anomaly-ratio = |a(f, f ′)|/|S(f, f ′)| > p/q (where p ≤ q);
here a(f, f ′) is the set of anomalies in S(f, f ′) (the set of all
transactions with ordering and beneficiary accounts’ Flag
as f and f ′). This, for example, can be done by computing,
E[q · |a(f, f ′)|] and E[p× |S(f, f ′)|] (where E[·] means the

value inside is not accessible, e.g., it may be encrypted or
consists of distributed random shares) and compare them
without ever revealing the the actual values. Note that for
|S(f, f ′)|, q > 0,

anomaly-ratio > p/q if and only if
q · |a(f, f ′)| − p · |S(f, f ′)| > 0.

To achieve differential privacy, we need to perturb the
counts |a(f, f ′)| and |S(f, f ′)| in a way that no one party
is able to remove noise from the counts. Let |a(f, f ′)| =∑N

i=1 |ai(f, f ′)| and |S(f, f ′)| =
∑N

i=1 |Si(f, f
′)|, where

|ai(f, f ′)| and |Si(f, f
′)| are the corresponding counts at the

i-Bank. Now, we choose two banks, let’s say i-Bank and j-
Bank, at random to perturb their counts via ε1-DP Laplace
mechanism. Now, only i-Bank or j-Bank can remove the
added noise, but each one can remove the noise that it added
and not the noise added by the other bank. Hence, the counts
are always guaranteed to be differentially private. To ensure
that PNS doesn’t learn anything about the results of rule
mining, the results of comparison are only shared with the
banks and never with PNS.

As noted earlier for the provided dataset in the PETs
challenge, rule mining is completely unnecessary since:
simple rules are fixed and all complex anomalies correspond
to non-flagged accounts (as discussed in the implementation
part of Section 1). Then, the next task in the first step is
for banks to carry out secure encoding of the Flag-based
features, which is explained next.

2) Privacy-Preserving rule encoding and aggregation
Here, we discuss the second important task in the 1st step
of our approach. This consists of creating secure encoding
for the Flag-based features (i.e., account-level data) using
pseudorandom function (PRF, e.g., AES block cipher), F , as
well as a cryptographic hash function, h (e.g., sha3), using
the secure encodings to construct local bloom filters at each
bank’s site, and then performing aggregation of secure local
bloom filters into global bloom filters at PNS’s site.

To accomplish the aforementioned, the banks need to
collaboratively pick a random key, k∗ ∈ {0, 1}λ, for the
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PRF while keeping it secret from PNS (or any other party).
A PRF, F , takes two inputs, (randomly picked12) key, k∗,
and message, m; and its output is depicted as Fk∗(m). PRF
ensures that an adversary who has some messages and their
corresponding PRF outputs still cannot predict the output for
a new message that it has not yet seen [27]. Additionally,
all the banks and PNS need to know the size of bloom filter
(corresponding to each Flag-based feature) that depends
on the error rate (κ) one is willing to tolerate and the total
number of elements to be added to the filter, e.g., total
number of valid non-flagged accounts across all banks. Thus,
they have to securely compute the estimates (e.g., in the
upper-bound sense) of the total number of accounts, across
all banks, to be added to each bloom filter without revealing
the number of accounts for any one bank as well. Below, we
provide details on how to do this.

Secure encoding. Firstly, all the banks need to securely
generate the key, k∗, of length λ: Each i-Bank randomly
picks a string ki of length λ and shares it with all the other
banks. With this, each bank can get k∗ = k1⊕k2⊕· · ·⊕kN ,
where ⊕ is for bit-wise XOR operation.

Secondly, the banks use the secure sum protocol described
below to compute the total number of accounts to be added
to a bloom filter as follows. Let’s say ni(f) is the upper-
bound estimate of the accounts in i-Bank that have Flag =
f , and p be a sufficiently big prime number (e.g., greater
than any 32-bit long positive number). Now, 1-Bank picks a
random number r ∈ {0, 1, . . . , p−1} and sets sec_sum0 =
r. Next, for i = 1, . . . , N , i-Bank computes sec_sumi =
sec_sumi−1 + ni(f) mod p and sends si to (i+1)-Bank
(N -Bank sends sec_sumN to 1-Bank). 1-Bank computes
sum = sec_sumN − r mod p and shares it with all the
banks. Banks use sum and pre-agreed upon error rate, κ, to
compute the size of the filter. It is easily possible to modify
this protocol to make it resistant to collusion between parties
as well.

Then, each bank builds its local secure bloom filters
and adds to them the secure encoding of the relevant
accounts (as per the rules following the method discussed
in in Section 2 for the centralized setting). The name of
the bloom filters bear no association with the value of
Flag, which can simply be achieved by using PRF as
a block cipher under CBC (cipher block chaining) mode.
This ensures that the correspondence between rules and
the filters remains secret. Secure bloom filter assures that
when PNS (or any party or an adversary) receives only the
secure bloom filter, it cannot carry out an attack (e.g., by
brute force or something similar to rainbow tables) to figure
out which accounts are in the bloom filter and which are
not. To build a secure bloom filter, instead of adding the
account information, acc_info, to the bloom filter, we add
E[acc_info] = Fk∗ (h(acc_info)) to the bloom filter.

12Note that randomly picking a binary string means picking a string
uniformly at random from the set of all possible strings of a specified length.

Note that given access to such a filter—but not to Fk∗—
one cannot check if an account is in the filter even if the
adversary knows the account information—this follows from
the security properties of PRF [27].

Secure aggregation. Since each (bloom) filter consists
of indexed bits, we can think of each local filter as a binary
string of length α: Let’s say, for i = 1, . . . , N , xi is the bi-
nary string of i-Bank corresponding to its secure local bloom
filter for a rule. Then, the global filter for the same rule is:
y = x1 ∨ x2 ∨ · · · ∨ xN (where yj = x1j ∨ x2j ∨ · · · ∨ xNj).
Note that this does not affect the correctness of the bloom
filter because the the filter is initialized with all bits as zero
and then any bit (in the bit array of the filter) corresponding
to an index where a value is hashed is set to one.

Thus, we aggregate/combine all the local filters corre-
sponding to one feature into a global bloom filter by OR-ing
the bits at the same indices. To do this, secure local bloom
filters are sent to PNS who carries out the aggregation.

Note that by using pseudorandom function before adding
the account information to the bloom filters, we stop PNS
from carrying out attacks on the filters. Our approach
ensures that PNS—despite having access to the filters—
cannot evaluate any of the rules on a new account without
a bank’s permission, which stop attacks from the PNS side.

3) Feature augmentation and learning the classifier
Once all the filters have been aggregated, PNS collects
all the transactions, PNS(T )i, originating from each bank,
i-Bank for i = 1, . . . , N ; then for each transaction in
τ ′ ∈ PNS(T )i, PNS sends the hash of the account info., i.e,
h(acc_info), for the ordering and beneficiary accounts of
τ ′ to i-Bank; in response i-Bank sends secure encoding, i.e.,
Fk∗ (h(acc_info)), for each of these accounts.

After PNS receives the secure encodings for all the
(ordering and benefeciary) accounts, it evaluate rules via
the secure global filters, and uses the results to augment its
training data.

Now, PNS carries out the same steps as detailed in the
centralized setting to learn the C+.

IV. Privacy Analysis
We consider the semi-honest adversarial model, that is, each
party (bank or PNS) will follow the given protocol (i.e., the
distributed/federated algorithm) but may try to gain more
information from the intermediate data/messages it receives.
For the basic solution, we assume that none of the parties
collude.

This restriction can however be relaxed by using threshold
homomorphic encryption [28]. Privacy is ensured both in
terms of the federated protocol as well as the model com-
puted to find anomalies. A formal proof using the simulation
paradigm is given below to show that the protocol does
not reveal any additional information beyond that explicitly
stated. Since differential privacy is used to protect account-
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level feature mining as well as the sensitive features created
by PNS, the overall model is protected.

Ideal Paradigm
There is a fully trusted third party, T-party, whom PNS sends
its data, i.e., PNS(T ), and each i-Banks sends i-BankData
(all the account-level data that it has). T-party carries out
the computation as described in the centralized setting and
returns:

• to PNS: I1 : (n, n′) for each mined rule
(RF (f), RF (f ′)) (with anomaly-ratio > γ for the rule
(f, f ′))13, where where RF denotes random function,
and n (or n′) gives the number of accounts with
Flag = f (or f ′), and when f (or f ′) is ∗ the
corresponding count is zero. I2 : Values of the aug-
mented features, named as RF (f) || RF (f ′). I3 : Ad-
ditionally, for each RF (f) || RF (f ′), as leakage, PNS
also receives additional feature values corresponding to
RF (f ′) || RF (f)14. Note that in our implementation
for the challenge, as part of I2, PNS only gets the total
number of non-flagged accounts and the corresponding
feature values (let’s say 1 if ordering account info. is
incorrect or the account is flagged, 2 if the same is
true for the beneficiary account, 3 if it’s true for both,
and 0 otherwise). Thus, for our implementation for the
challenge, I2 and I3 will be the same, and there will
be no additional leakage.

• to i-Bank: I1 : (n, n′) for each mined rule (f, f ′)
(with anomaly-ratio > γ). I2 : list of the ordering and
beneficiary accounts for the transactions initiated by the
i-Bank (note that this information is always known to
the bank that initiates a transaction).

Real Paradigm
The real paradigm corresponds to the execution of two-
step federated learning method, which reveals the following
information to the parties:

• to PNS: R1 : (n, n′) for each mined rule (f, f ′)
(with anomaly-ratio > γ) with feature names as
Fk∗(f) || Fk∗(f ′), where Fk∗ is pseudorandom func-
tion, Fk∗ , used as a block cipher in CBC mode.
R2 : bloom filters for each Fk∗(f) || Fk∗(f ′) (which
have been populated using Fk∗ and h for the relevant
accounts by all the banks). R3 : Secure encodings of the
ordering and beneficiary accounts for each transactions
initiated by the i-Bank for i = 1, . . . , N .

• to i-Bank: R1 : kj (a randomly picked string of length
λ) (from j-Bank). R2 : (n, n′) for each mined rule
(f, f ′). R3 : Partial secure sum, i.e., sec_sumi−1 for
each mined rule (f, f ′). R4 : cryptographic hashes of

13This is computed with ε1-differentially privacy guarantee.
14This accounts for PNS swapping the ordering accounts with beneficiary

accounts.

the ordering and beneficiary accounts for the transac-
tions initiated by the i-Bank.

We will now prove that the view of a non-colluding proba-
bilistic polynomial time (PPT) semi-honest adversary con-
trolling any party in the real paradigm can be simulated
by the view of the same party in the ideal paradigm; i.e.,
the two views, one in the ideal paradigm and the other in
the real paradigm, are computationally indistinguishable to
any PPT adversary (for more details, we refer the reader to
[29]). Note that here, by view we mean all the information
that a party has including its input, results, and intermediate
messages received as well as all information it can construct
(in polynomial time) from this.

Indistinguishability of PNS’s view. Let us first look at an
adversary controlling PNS in the ideal paradigm. I1 and R1

are the same. Because PRF’s output is (computationally)
indistinguishable from that of RF’s, RF (f) || RF (f ′) is
indistinguishable from Fk∗(f) || Fk∗(f ′) for the adversary.

We now show how the adversary can simulate the view of
PNS from real paradigm for R2 and R3. For each feature,
RF (f) || RF (f ′), the adversary initializes a pair of bloom
filters (B̂F , B̂F

′
) of sizes given by (n, n′) and κ, which

are known to PNS and the adversary. Then using the values
of the feature, RF (f) || RF (f ′), given by I2, it adds the
account info. to the relevant BFs. For example, if for a
transaction, RF (f) || RF (f ′) = 1 then it adds the ordering
account’s info., i.e., acc_info, as RF (h(acc_info)) to
B̂F , if RF (f) || RF (f ′) = 2 then it adds the beneficiary
account’s info. to B̂F

′
, and if RF (f) || RF (f ′) = 3 then it

adds the ordering account’s info. to B̂F and the beneficiary
account’s info. to B̂F

′
respectively. Furthermore, it keeps

counts of total number of accounts added to each bloom fil-
ter, let’s say z and z′ are respectively the counts for B̂F and
B̂F

′
; then for M = n− z and j = 1, . . . ,M , the adversary

adds RF (j) to B̂F , and for j = M + 1, . . . ,M + n′ − z′,
RF (j) to B̂F . The adversary does the same for I3 but swaps
the info. of ordering account with that of the beneficiary
account. The same procedure is repeated for each of the
augmented feature.

R3 can be simulated by considering all the accounts info.
added to the bloom filters (i.e., RF (h(acc_info))’s) from
the above. The simulatability claim of the view follows from
the indistinguishability of PRF from RF.

Indistinguishability of i-Bank’s view. R1 can be simulated
by generating a randomly picked string of length λ. I1 and
R2 are the same. As for R3, i.e., sec_sumi−1, since r is
uniformly distributed over {0, . . . , p−1}, so is sec_sumi−1.
Thus, the i-Bank in real paradigm gets the sum, e.g., n or n′,
when i = 1, and uniformly distributed sec_sumi−1 when
i ̸= 1. When in ideal paradigm the adversary is controlling
1-Bank, it knows the corresponding sum from I1, other-
wise it can generate an (distributionally) indistinguishable
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sec_sumi−1 by picking a random number. Lastly, R4 can
be generate by hashing the account given in I2. Thus, we
have shown that even at the bank level, the adversary can
simulate the view. This completes the proof.

A. Inevitable Information Leakage
We now describe and analyze the information leakage that
is inevitable; this is due to the fact that using all banks’
data together with PNS’s data, i.e., Flag values, results in
a better classifier, C+. We argue that over time a party who
is given C+ to classify transactions can learn a probabilistic
association of Flag values for accounts.

Note that C+ is better because it can identify more
anomalies than C, a classifier learned only over data without
Flag related features (e.g., PNS’s data). In particular, C+,
with high probability, can identify all the anomalies that C
can identify. But there are additional anomalies that C+ can
identify (which are missed by C); this is due to the fact that
Flag—which is directly or indirectly used by C+—is useful
in identifying these additional anomalies. This information
can be used to infer probabilistically correct associate of
Flag values for an account.

attack I. Noting the aforementioned, let’s say a party, P
(e.g., PNS), is given C+ to classify transactions. Overtime,
P gathers transaction and compile a dataset P (Tn) of n
transactions. P remove from P (Tn) the features related to
Flag, and use this dataset to learn a classifier C.

Next, P uses C+ and C to label all transactions. Any
transaction that C+ labels as anomalous but C labels as
normal, is anomalous due to Flag value of the account
being used (directly or indirectly) in C+. Furthermore, for
each such anomaly, P inspects the paths of the decision
tree(s) of C+ that are taken by these anomalies and how
they compare to other anomalies and normal records. Using
this information and the data from P (Tn), P estimates the
distribution, giving the probabilistic association of Flag
values, for the accounts present in the transactions in P (Tn).

Ways to reduce this leakage: One, use a secure and
distributed version of C+ so that no one party can access
C+, and the classification result is only revealed to the
relevant banks. This, however, will be extremely slow and
will increase the transaction processing time undesirably.
Two, randomize values for Flag. For instance, instead of
Flag, use E[Flag], a randomized form of Flag, obtained
by encrypting all the values of Flag with semantically
secure encryption. This will hide the precise values of the
Flag but the distribution will still be inevitably revealed.
Thus, the two approaches give a way to trade-off security
and utility.

Let us now look at the information leakage for PNS and
banks and possible attacks to extract more information.
PNS’s knowledge: PNS knows PNS(Tn). Among other
information, PNS can learn: (1) what’s the valid/invalid
account details for an account; (2) which transactions were
processed successfully and which ones failed; (3) which

banks an account belongs to; (4) and does an account’s
Flag value is such that it makes the account’s transactions
anomalous. We also note that (without any prior knowledge)
PNS doesn’t know what accounts a bank has if it has not
appeared in a transaction from PNS(Tn). Below we outline
the attacks that can help PNS gain some of the non-obvious
information mentioned above.

attack II. The account details for a successful transaction
are correct. If a transaction is failed (i.e., anomalous) due to
invalid info., we assume that with high probability, it will
be made again. Thus, by comparing new transactions with
the older ones (e.g., using edit distance over the ordering
and beneficiary account details and Euclidean distance over
the amount, time etc.), PNS can infer, with high probability,
what are the valid and invalid details for an account.

attack III. Let us say the classifier C+ (learned over
PNS(Tn)+, i.e., the data consisting of transaction level and
Flag-based features) is given to PNS to identify anomalies.
Now, using its data, i.e., PNS(T ), and the strategy outlined
in attack I, PNS can obtain probabilistic association of Flag
values for accounts.

i-Bank’s knowledge: Each i-Bank knows i-BankData
(account level data for its accounts), iBank(Tn) (all transac-
tions for which i-Banks was sender or receiver bank). Note
that for the accounts in transactions in iBank(Tn), i-Bank
can also carry out attack II. Furthermore, the bank can also
carryout attack I. This is possible even when i-Bank doesn’t
have C+. i-Bank can build an approximation of C+ using
its account-level data and use it instead of C+ to carry out
attack I.

V. Experimental Evaluation and Results
A. Experimental Setup
1) Dataset
The dataset for evaluation is a synthetic dataset provided
by the PETs competition organizer. The dataset contains
approximately three million synthetic transaction records and
account data from a payment network system and a group
of banks. The percentage of anomaly transactions is 1%. As
described in Section C and D, the transaction data is hosted
at a payment network system client, which contains features
such as the transaction amount, transaction frequency, and
the amount for the currency used in each transaction. The
account data, which contains account meta information are
horizontally partitioned and hosted by multiple bank clients.
The provided account data has one important account-level
feature, Flag, which is finite and indicates the status of the
account. Details of the dataset and the feature prepossessing
can be found in the appendix.

2) Evaluation Metric
The metric used for evaluating the effectiveness of the
models is Area under the Precision–Recall Curve (AUPRC),
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also known as Average Precision (AP). This is a commonly
used metric for anomaly detection problems, as it focuses
more on the anomalies than the negative class (normal
instances). AUPRC is computed as follows:

AUPRC =
∑
n

(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall, respectively,
when thresholding at the n-th individual transaction sorted
in order of increasing recall.

3) Methods for Evaluation
We evaluate the following solutions on the provided dataset:
PNS Only: The solution only uses PNS data, specifi-
cally PNS client purely employs the Xgboost model on
transaction-level data without using Bank’s accounts in-
formation such as Flag. Centralized (PNS+Bank): Our
proposed centralized solution, as detailed in Section B.
Federated (PNS+Bank): Our proposed federated solution,
as detailed in Section C. The evaluation of centralized
and federated solutions considers variations in two critical
parameters - the acceptable false negative ratio κ of the
bloom filter, where a lower value gives more accuracy for the
bloom filter but requires increased capacity (memory) and
computational costs, and the privacy budget , i.e., the value
of ε > 0, for differential privacy applied on dataset features
(smaller values of ε provide stronger privacy protection but at
the expense of utility such as the effectiveness of the model).

We also compare our solution with the other solutions
in the PETs Competition’s leaderboard. The evaluation of
PETs competition is under one centralized scenario and three
federated scenarios with different numbers of bank clients
and data splitting.

4) Implementation Details
The experiments are implemented in Python, leveraging the
Flower framework [30] for federated learning execution, the
Xgboost library for model development, and pycryptodome
library for all cryptographic operations. Within these exper-
iments, the federated learning environment, including the
simulation of multiple clients and communication between
clients, was emulated using Flower’s built-in simulation
module with a multi-processing approach so that experiments
could be conducted on a single machine. The machine for
running experiments contains a 16-core Intel Core i7 CPU
and 32 GB of memory. Security parameters for the system’s
encryption and decryption, such as the RSA Public key, AES
session key, and XOR key, are set to a length of 32.

B. Results
1) Effectiveness of proposed methods
Fig. 5 shows the final average precision (AP) scores of the
anomalous transaction detection task on the dataset and setup
where there are four bank clients.

(a) Comparison between PNS Only and Centralized (PNS+Banks) Solution

(b) Comparison between Centralized and Federated Solution

FIGURE 5: Effectiveness w.r.t AUPRC of Proposed Solution.
We consider there are four bank clients. For parameters of
the proposed solution, κ denotes the false negative rate of the
bloom filter, ε represents the privacy budget in differential
privacy.

Fig. 5a compares the PNS Only solution with Central-
ized solutions with different differential privacy budgets. As
demonstrated in Figure 5a, by integrating PNS transaction-
level data with Bank account-level data, there is an approxi-
mate 6 percent increase in the average precision (AP) score
(from 0.91 to 0.97). We note that the impact of different DP
budgets on the Centralized solution is not drastic, which may
be attributed to the weak correlation of the sensitive attributes
overall as well as more pronounced differences between the
marginal distribution of anomalies compared to normals.

Fig. 5b compares the Centralized and Federated solutions
under a DP budget of 1, across varying bloom filter false
negative rates for the federated solution. As demonstrated
in Fig. 5b, our proposed federated Solution can achieve
a similar average precision (AP) score as the centralized
approach under different bloom filter false negative rates,
thereby validating the effectiveness of our federated solution.

The overall evaluation results demonstrate that our pro-
posed method can provide excellent detection ability for
anomalous transactions in both centralized and federated
settings.

2) Efficiency and Scalability
We now highlight the efficiency and scalability of our
methods. For this, we measured the overall runtime of clients
and server in minutes (Time), the peak memory usage across
all the clients during the training phase in gigabytes (Peak
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TABLE 1: Efficiency of Proposed Federated Solution under
four banks scenario.

Efficiency

PNS Bank1 Bank2 Bank3 Bank4

Time (Minutes) 17 0.58 0.60 0.68 0.67
Peak Memory (GB) 7.13 0.34 0.34 0.67 0.38

Network (GB) 1.44 0.32 0.31 0.72 0.71

FIGURE 6: Scalability of Proposed Federated Solution.

Memory), and the total size of resources used in communi-
cation between clients and server in gigabytes (Network).

Table 1 presents runtime, peak memory usage, and net-
work usage for each party under the scenario where there are
four bank clients. The proposed method demonstrates effi-
ciency for both PNS and bank clients, capable of completing
tasks within 20 minutes while consuming less than 10GB
of memory. Fig. 6 shows the total runtime, peak memory
usage, and network usage under scenarios with different
numbers of bank clients. The results from Fig. 6 revealed
that our method maintains efficiency as the number of clients
increases. This is primarily due to the fact that model
fitting, which constitutes the most computationally intensive
bottleneck, occurs exclusively on PNS‘s end. Hence, our
approach proves to be highly scalable, adeptly handling the
expansion in the number of partitions without significant
efficiency degradation.

TABLE 2: Evaluation from Leaderboard

Centralized Federated

Method AP AP@N1 AP@N2 AP@N3

ILLIDAN Lab [31] 0.4457 0.6784 0.6466 0.6466
PPMLHuskies 0.9801 0.9494 0.9610 0.9477

Visa [32] 0.7949 0.5219 0.5121 0.4575
Ours 0.9741 0.9751 0.9748 0.8941*

3) Comparison with other solutions in PETs Challenge
As summarized in Table 2, we compare our method against
the other solutions from the PETs competition. Our approach
can achieve the high average precision (AP) score in the
centralized setting, with results of 0.97 AP score close to
the PPMLHuskies by a marginal difference of 0.006. Across
three distinct federated learning scenarios, our method at-
tained an average precision (AP) score of 0.97, slightly
higher than PPMLHuskies and significantly surpassing other
leading solutions, such as those from Visa and ILLIDAN.
Notably, during the third phase of the PETs competition,
which involved adversarial attack testing of various methods,
our approach emerged as the winner in the final assessment.
However, due to the organizers’ decision not to disclose
the adversarial test details, those specific results cannot be
displayed here. The PETS Challenge results further support
the effectiveness and robustness of our solution.

VI. Related Work
Financial crime detection. Financial crime detection has
been extensively studied in both research and industry.
Traditional approaches primarily rely on rule-based strate-
gies, utilizing human prior knowledge [33]. However, these
methods struggle to handle the complexity of patterns and the
volume of data. Machine learning and data mining emerged
as data-driven approaches, playing a crucial role in this
field [34]. The focus of this paper is closely aligned with
fraud detection, a typical outlier identification task with
highly imbalanced datasets. A substantial body of work in
this area included supervised methods like Random Forest
and Support Vector Machine, and unsupervised methods
such as DBSCAN and Isolation Forest. Deep learning-based
anomaly detection has recently drawn great interest due
to its ability to handle complex, high-dimensional data, as
demonstrated in initiatives like FEAWAD [35] and REPEN
[36]. We refer readers to Adbench [37] for a comprehensive
evaluation.

Graph and network analysis have also been established as
important tools in capturing fraud characteristics in vast fi-
nancial transaction datasets, where nodes and edges represent
entities such as companies, individuals, and transactions[38],
[39]. In [40], the authors utilized both labeled data (users
are labeled as fraud or not) and unlabeled data (social
relations and attributes) and proposed SemiGNN to exploit
the representations of users. In [41], the authors developed
a group-aware (gang-aware) graph neural network-based ap-
proach (GAGNN); in particular, they designed a community-
centric encoder to transform the original transactions into
graphs and then encoded the graph using both topological
and attribute-wise information, the embedding then fed into
the prediction layer. Unlike the methods above that assume

*We note that the results noted here differ from the public leader board.
Our final run on the PETs competition platform outperformed all other
federated solutions, but failed the 3rd case due to a system/programmatic
issue with the competition platform.
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data centralization, this work aims to identify fraudulent
wire transactions in payment networks, where transaction
information is distributed among multiple organizations.
Privacy-preserving federated anomaly detection. Federated
learning-based anomaly detection, allowing multiple clients
to collaboratively train a global model without pooling local
datasets, is a promising solution to improve outlier detection
performance in various applications [42], [43]. Despite its
advantages, FL systems were susceptible to several attacks
and could compromise the privacy of local datasets [44].
Existing research to address privacy and security concerns
investigates integrating privacy-enhancing technologies like
Differential Privacy, Homomorphic Encryption, and Secure
Multi-party Computation with federated anomaly detection.
In [45], the authors developed XORBoost, a multi-party
computation-based federated gradient boosted tree model;
while this approach can provide a security guarantee, the
complexity grows quadratically with the number of nodes
and linearly with the number of samples and features,
bringing huge computation bottlenecks considering the scale
of transactional data. In [46], the authors developed a dif-
ferentially private Gradient Boosted Decision Tree (GBDT),
relying on secure aggregation and differential privacy to
guarantee privacy. However, this work focused on horizon-
tally federated settings and is not directly applicable to mixed
settings.
PETs Prize Challenge solutions. For the PETs Challenge,
the authors from [31] proposed a solution leveraging a hybrid
of vertical and horizontal federated learning. This approach
involved banking clients locally, training an autoencoder on
account information, and sharing the embeddings with a
central server. The transaction client, such as a Payment
Network, then retrieved these embeddings and integrated
them with transaction features to train classification models.
Gaussian noise was added to the concatenated features to
protect data privacy from model inversion and membership
inference. To protect model sharing from account clients
to the server, account clients encrypt the embedding before
sharing with the server. This method achieved an AUPRC
score of approximately 0.67 per the PETs leaderboard.
However, it presented a risk of leaking private account
information. Similar to our work, the solution from Visa
Research [32], focusing on “flag” attribute exclusive to
banks, employed multi-party computation and noisy aggre-
gations. This approach attained an AUPRC score of around
0.52 per the PETs leaderboard but introduced significant
computational overheads.

VII. Discussions and Conclusion
This article introduces a novel privacy-preserving method
for payment network systems (PNS) and banks to collaborate
and leverage their data to enhance the detection of fraudulent
wires using anomaly detection. Our method works in two
steps. In the first step, bank clients collaboratively mine
account-level features/rules and securely share this informa-

tion with the PNS, utilizing secure Bloom Filters and secure
aggregation. In the subsequent step, the PNS generates
additional features by querying the secure aggregated Bloom
Filter and trains a classifier on the augmented datasets.
Further, to guard against model inversion and membership
inference attacks, the PNS protects sensitive features using
a differentially private mechanism.

For the PETs challenge, our implementation focused on
flag-based rule mining, leveraging the unique “flag” data
field held by banks. This approach perfectly suits the
challenge when flag information significantly contributes to
classification performance, yet it can also be extended to
other account-level data. For example, banks can formulate
more sophisticated flag-based rules using anomaly ratios,
creating additional Bloom Filters and features. Additionally,
banks can train local classifiers to determine transaction-
associated account risk scores, and encode this information
via secure Bloom Filters. The PNS can then use this score
data for final predictions, either by generating additional
features or through an ensemble approach.

Our secure Bloom Filters and aggregation protocols have
broader applications, including in multi-party private set
union problems and Federated Submodel Learning (FSL),
where group membership is sensitive and needs to be pro-
tected. For instance, in FSL, a machine learning model is
divided into multiple submodels based on different data
types used to train model parts. Users interact with only
the relevant submodel for their local data, minimizing com-
munication costs. However, updated submodel indices and
values can inadvertently reveal data types that the user
has. To preserve user privacy during FSL, both indices
and updated values must remain private during reading and
writing. Our proposed Bloom Filters and secure aggregation
can be incorporated to address these privacy concerns, as
demonstrated in[47].

Our solution demonstrates state-of-the-art performance on
the PETs challenge datasets, excelling in both accuracy
and scalability by leveraging informative rule mining and
shifting the computational load to the PNS (or server)
side. Furthermore, the drop is performance going from
centralized solution to its federated counterpart is negligible,
which stands in contrast with other approaches. However,
it encounters two limitations. Firstly, the data-dependent
nature of rule mining, while effective for account flag data,
complicates the extraction of informative rules from other
features. To address this, future work will explore data-driven
approaches, such as neural networks, to extract valuable
representations. Secondly, the efficiency gained from using
Bloom Filters is contingent on the availability of informative
rules. A significant number of rules may lead to increased
communication overhead during the secure aggregation. To
tackle this issue, we are considering alternatives like the
counting Bloom Filter [48], which may offer a more scalable
solution. Moreover, the deployment in real-world applica-
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tions needs to address challenges such as client dropout,
which requires further exploration in future research.

Our research primarily targets outlier detection within
the bank-PNS network, therefore, operating under the as-
sumption that the entities involved are non-colluding and
semi-honest. However, adapting our methodology to with-
stand covert or malicious adversaries presents additional
challenges. Such adversaries, including potentially malicious
banks or those compromised by an attacker, can undermine
the classifier’s accuracy by sharing local Bloom filters poi-
soned by incorrectly labeled data. Although existing methods
[49], [50] offer strategies to counter such malicious clients,
integrating these techniques into our framework needs further
investigation. Furthermore, accurate yet private anomaly
detection may require the use of models such as sensitive
privacy[51], [52], which we plan to explore in the future.
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