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STRONG ILL-POSEDNESS IN L* FOR THE RIESZ TRANSFORM PROBLEM

TAREK M. ELGINDI AND KARIM R. SHIKH KHALIL

We prove strong ill-posedness in L* for linear perturbations of the 2-dimensional Euler equations of the
form
dw~+u-Vw = R(w),

where R is any nontrivial second-order Riesz transform. Namely, we prove that there exist smooth
solutions that are initially small in L* but become arbitrarily large in short time. Previous works in this
direction relied on the strong ill-posedness of the linear problem, viewing the transport term perturbatively,
which only led to mild growth. We derive a nonlinear model taking all of the leading-order effects into
account to determine the precise pointwise growth of solutions for short time. Interestingly, the Euler
transport term does counteract the linear growth so that the full nonlinear equation grows an order of
magnitude less than the linear one. In particular, the (sharp) growth rate we establish is consistent with
the global regularity of smooth solutions.

1. Introduction

The Euler equations for incompressible flow are a fundamental model in fluid dynamics that describe the
motion of ideal fluids:
ou—+u-Vu+Vp =0,
V.u=0.
In this equation, u is the velocity field and p is the pressure of an ideal fluid flowing in R% A key difficulty

(1-1)

in understanding the dynamics of 2-dimensional Euler flows is the nonlocality of the system due to the
presence of the pressure term.
Defining the vorticity w := V- - u, it is insightful to study the Euler equations in vorticity form:

ojw+u-Vo =0,
V-u=0, (1-2)
u=vVv=iale.
Because the L° norm of vorticity is conserved in the Euler equations in two dimensions, Yudovich [1963]
proved that there is a unique global-in-time solution to the Euler equation corresponding to every initial
bounded and decaying vorticity. See also [Wolibner 1933; Beale et al. 1984; Holder 1933; Yudovich 1963;

Kato 1967; Marchioro and Pulvirenti 1994; Majda and Bertozzi 2002]. This bound on the L* norm is
unfortunately unstable even to very mild perturbations of the equation [Constantin and Vicol 2012; Elgindi
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and Masmoudi 2020; Elgindi 2018]. To understand this phenomenon, we are interested in studying linear
perturbations of the Euler equations in two dimensions as follows:

8,u+u-Vu+Vp:(L?l>, (1-3)
V-u=0.

Equation (1-3) is a model for many problems in fluid dynamics that have a coupling with the Euler
equations. For instance, similar types of equations appear in viscoelastic fluids, see [Constantin and
Kliegl 2012; Elgindi and Rousset 2015; Lions and Masmoudi 2000; Chemin and Masmoudi 2001], and in
magnetohydrodynamics, see [Boardman et al. 2020; Hmidi 2014; Cao and Wu 2011; Wu and Zhao 2023].
Further, they also appear when studying stochastic Euler equations; see [Glatt-Holtz and Vicol 2014].

Writing (1-3) in vorticity form, we get

ow—+u-Vw =0uy,
V-u=0, (1-4)
u=vV+taTle.

We observe that the challenge of studying these equations is that the right-hand side of (1-4) can be
written as the Riesz transform of vorticity d,u; = R(w), which is unbounded on L. P. Constantin and
V. Vicol [2012] considered these equations with weak dissipation, and they proved global well-posedness.
However, without dissipation it is an open question whether these equations are globally well-posed. In
this work, we are interested in the question of L ill/well-posedness of the Euler equations with Riesz
forcing and the local rate of L*° growth. The first author and N. Masmoudi studied the Euler equations
with Riesz forcing in [Elgindi and Masmoudi 2020], where they proved that it is mildly ill-posed. This

means that there is a universal constant ¢ > O such that, for all € > 0, there is wy € C* for which the
unique local solution to (1-4) satisfies

lwolre <€, but sup,cgplw@)|i~=c. (1-5)

The authors in [Elgindi and Masmoudi 2020] conjectured that the Euler equation with Riesz forcing
is actually strongly ill-posed in L°°. Namely, that we can take ¢ in (1-5) to be arbitrarily large. The
goal of our work here is to show that indeed this is possible. To show this, we use the first author’s
Biot—Savart law decomposition [Elgindi 2021] to derive a leading-order system for the Euler equations
with Riesz forcing. We then show that the leading-order system is strongly ill-posed in L. Using
this, we can show that the Euler equation with Riesz forcing is strongly ill-posed by estimating the
error between the leading-order system and the Euler with Riesz forcing system on a specific time
interval.

We should remark that the main application of the approach of [Elgindi and Masmoudi 2020] was to
prove ill-posedness of the Euler equation in the integer C¥ spaces, which was also proved independently
by J. Bourgain and D. Li [2015]. Regarding the notion of mild ill-posedness in L for models related to
the Euler with Riesz forcing system, see [Wu and Zhao 2023] about the 2-dimensional resistive MHD
equations.
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1.1. Statement of the main result.

Theorem 1. For any «,8 > 0, there exists an initial data a)g’(S € Cf,’o([F\Rz) and T (o) such that the
corresponding unique global solution, 0®?, to (1-4) is such that at t = 0 we have

8
lwg | =8,

but for any 0 <t < T (a) we have
|0®° (1) |1 = |wol L + clog<1 + §;>,

where T (a) = ca log(c|log(w)l|), and ¢ > 0 is a constant independent of a that depends linearly on 8.

Remark 1.1. Note that at time ¢t = T («), we have
|| > ¢log(c log(cllog(@)))),

which can be made arbitrarily large as @« — 0. Fixing § > 0 small and then taking « sufficiently small
thus gives strong ill-posedness for (1-4) in L.

Remark 1.2. As we will discuss below, we in fact establish upper and lower bounds on the solutions we
construct so that on the same time-interval we have

62 0)] 2 ~ ol + ¢ log 1+ g,),

This should be contrasted with the linear problem where the upper and lower bounds for the same data
come without the log:

o 1 ~ ool +¢(1+ 1),
Remark 1.3. Our ill-posedness result applies to the equation
oiw~+u-Vo = R(w),

where R = Ry, = 31 A~!. Note that a direct consequence of the result gives strong ill-posedness when
R = Ry| or R = Ry even though these are dissipative on L2 This can be seen just by noting that a
linear change of coordinates can transform Rj; to a constant multiple of Rj; — Ry» = Ry; — 1d. The
strong ill-posedness for the Euler equation with forcing by any second-order Riesz transform (other
than the identity) follows. We further remark that the same strategy can be used to study the case of
general Riesz transforms, though we do not undertake this here since the case of forcing by second-order
Riesz transforms is the most relevant for applications we are aware of (such as the 3-dimensional Euler
equations, the Boussinesq system, viscoelastic models, MHD, etc.).

1.2. Comparison with the linear equation and the effect of transport. We now move to compare the
result of this paper with the corresponding linear results and emphasize the regularizing effect of the
nonlinearity in this problem. The ill-posedness result of [Elgindi and Masmoudi 2020] relies on viewing
(1-4) as a perturbation of

O f =R(f). (1-6)
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For this simple linear equation, it is easy to show that L°° data can immediately develop a logarithmic
singularity. Let us mention two ways to quantify this logarithmic singularity. One way is to study the
growth of L? norms as p — oo. For the linear equation (1-6), it is easy to show that the upper bound

|fOlLr < exp(Ct)pl folrr

is sharp in the sense that we can find localized L*>° data for which the solution satisfies

Lf@OlLr = c(®) - p.
This can be viewed as approximating L* “from below”. Similarly, the C* bound for (1-6),

exp(Ct)
o

| f(D)ce < | folce,

can also be shown to be sharp for short time in that we can find for each o > 0 smooth and localized data
with | fo|ce = 1 for which

ol = <.
o

The main result of [Elgindi and Masmoudi 2020] was that these upper and lower bounds remain unchanged
in the presence of a transport term by a Lipschitz continuous velocity field. This is not directly applicable
to our setting since the coupling between w and u is such that # may not be Lipschitz even if w is bounded.
Interestingly, in [Elgindi 2018], it was shown that this growth could be significantly stronger in the
presence of a merely bounded velocity field.

All of the above discussion leads us to understand that the nature of the well/ill-posedness of (1-4)
will depend on the precise relationship between the velocity field and the linear forcing term in (1-4). In
particular, for a natural class of data, we construct solutions to (1-4) satisfying

ol ~ 1+ log(1+ 1),
o

for short time, which is the best growth rate possible in this setting. This should be contrasted with the
corresponding growth rate for the linear problem

t
|@iinear| 20 ~ 1+ —.
o

In particular, the nonlinear term in (1-4) actually tries to prevent L* growth. Let us finally remark that
the weak growth rate we found is consistent with the vorticity trying to develop a loglog singularity.
It is curious that, in the Euler equation, vorticity with nearly loglog data is perfectly well-behaved
and consistent with global regularity but with a triple exponential upper bound on gradients. Though
establishing the global regularity rigorously remains a major open problem, this appears to be a sign that
perhaps smooth solutions to (1-3) are globally regular.

1.3. A shortdiscussion of the proof. The first step of the proof is to use the Biot—Savart law decomposition
in [Elgindi 2021] to derive a leading-order model:

0,2+ i(LS(Q) sin(20) + L.(£2) cos(20))0p 2 = LLS(Q),
20 200
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where the operators L and L. are bounded linear operators on L? defined by

00 21 0o m2r
Lipw =1 [T LD wenaas wna rpm=L T[T LD

cos(20)df ds.

Essentially all we do here is replace the velocity field by its most singular part. Upon inspecting this
model, we observe that the forcing term on the right-hand side is purely radial, while the direction of
transport is angular. Upon choosing a suitable unknown, we thus reduce the problem to solving a transport
equation for some unknown f:

0 f + 5 Ls(f) sin20)0 f =0.

Surprisingly, this reduced equation propagates the usual “odd-odd” symmetry even though the original
system does not. The leading-order model will then be strongly ill-posed if we can ensure that the solution
of this transport equation satisfies that fot L (f) can be arbitrarily large. One subtlety is that the growth
of L;(f) enhances the transport effect, which in turn depletes the growth of L;(f). In fact, were the
transport term to be stronger even by a log, the problem would not be strongly ill-posed. By a careful study
of the characteristics of this equation, we obtain a closed nonlinear integrodifferential equation governing
the evolution of L(f) (see (3-4)). We study this nonlinear integrodifferential equation and establish upper
and lower bounds on L ( f) proving strong ill-posedness for the leading-order equation; see Section 3
for more details. Finally, we close the argument by estimating the error incurred by approximating the
dynamics with the leading-order model. An important idea here is to work on a time scale long enough to
see the growth from the leading-order model but short enough to suppress any potential stronger nonlinear
growth; see Section 6 for more details.

1.4. Organization. This paper is organized as follow: In Section 2, we derive a leading-order model for
the Euler equations with Riesz forcing (1-4) based on the first author’s Biot—Savart law approximation
[Elgindi 2021]. Then, in Section 3, we obtain a pointwise estimate on the leading-order model which is
the main ingredient in obtaining the strong ill-posedness result for the Euler with Riesz forcing system.
In addition, in Section 3, we also obtain some estimates on the leading-order model in suitable norms
which will be then used in estimating the remainder term in Section 6. After that, in Section 4 we will
recall the Biot—Savart law decomposition obtained in [Elgindi 2021], and we will include a short sketch
of the proof. In Section 5, we will obtain some embedding estimates which will also be used in Section 6
for the remainder term estimates. Then, in Section 6, we show that the remainder term remains small
which will then allow us to prove the main result in Section 7.

1.5. Notation. In this paper, we will be working in a form polar coordinates introduced in [Elgindi 2021].

r=vx*+y%,

and since we will be working with functions of the variable r*, where 0 < o < 1, we will use R to

Let r be the radial variable,

denote it:
R=r".
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We will use 6 to denote the angle variable:

6 = arctan X.
X

We will use | f|r~ and | f|;2 to denote the usual L and L? norms, respectively. In addition, we will
use f; or f; to denote the time variable. Further, in this paper, following [Elgindi 2021], we will be
working on (R, 0) € [0, 00) x [0, %] where the L? norm will be with measure d R d6 and not R dR d6.

We define the weighted HE ([O, 00) X [O, %]) norm as

m

m k
| Flin =D 10R05 ™ flrz+ Y IR0 Flrzs 1 fl =D _ 1 flign-
m=0

i=0 i=1

We also define the WX norm as

m m k
| flmee = Y 10505 flooe + > IR0 flre. | flwkoe = Y | flyjpmos
i=0 i=1 m=0
Throughout this paper, we will use the notation
oo
()
L(f)(R) = / ds
R N

to define operators, and by adding a subscript Ly or L. we denote the projection onto sin(26) and cos(26)
respectively. Namely,

Ls(H)(R) = — ; sin20)df ds and - Le(f)(R) = — -

00 p21 00 p21
! / (s, 6) 1 / F6:9) o520y d6 ds.
R JO R JO

2. Leading-order model
In this section, we will derive a leading-order model for the Euler equation with Riesz forcing:
dw~+u-Vo =0,uy,
V-u=0, 2-1)
u=V=iaTle.

To do this, we follow [Elgindi 2021] and we write the equation in a form of polar coordinates. Namely,
we set r = /x2+y2, R =r%, and 0 = arctan (y/x). We will the rewrite (2-1) in the new functions
w(x,y) =Q(R,0) and ¥ (x, y) = r>W(R, 0), with u = V-, where u; = —d,¥ and up = 9, .

Equations of u in terms of W:

up = —r2sin(@)WV +a sin(0)R g W + cos(0)dy V),
ury =rQ2cos()¥ +a cos(f)R dgW¥ — sin(f)dp V).
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Evolution equation for Q:

0,2+ (—aRIgW)IRQ2+ Q¥ + aRIR V)2

= (—2a R sin(8) cos(8) — &’ R sin(0) cos(9))dg W + (—1 +2sin*(0))3p ¥
+ (—aR cos*(8) +aR sin*(0))dge W — (¢ R? sin(8) cos(0))dgr ¥ + (sin() cos(6))dpe V.

The elliptic equation for A(r2W (R, 0)) = Q(R, 0):

AV + @®R*IgpV + dgoV + (da + aP) RIRY = Q(R, 0).

Now using the Biot—Savart decomposition of [Elgindi 2021], see Section 4 for more details, by defining
the operators

00 p2m o0 p21
L (Q)(R) = % / / £206.9) Gn26)dods and L.(Q)(R) = - / / 26.9) o520 d6 ds
R Jo S 7T Jr Jo S

we have

V(R,0)= —4LL (2) sin(20) — 1 L (£2) cos(20) + lower-order terms.

Thus, if we ignore the «-terms in the evolution equation, we obtain
0,2+ W)y =(—1+2 sin2(9))89\11 ~+ (sin(6) cos(6))dge V. (2-2)

Now we consider ¥ of the form

V= —4LL (€2) sin(20) — 1 L () cos(20),

and plugging it into the evolution equation, we have
3,Q— ( 2o Le(®) sm(26)+—L Q) cos(29)) 899——(005(20))( L) cos(29)+—L Q) 51n(29))

( sm(20)> (—L Q) s1n(29)+—L ) Cos(29))
which simplifies to

atQ—( Ly()5in(20) + 5 L () cos(29)>8g§2 = 2iL Q).

In order to work with positive solutions and have the angular trajectories moving to the right, we make
the change 2 — —Q and get the final model

9,9 + (iLS(Q) §in(20) + - L.(Q) cos(29)> Q= Ly (Q). (2-3)
2a 2a 2a
We now move to study the dynamics of solutions to (2-3).
Proposition 2.1. Let Q2 be a solution to the leading-order model
0,2+ (LLS(Q) sin(20) + LLC(Q) cos(20)) 092 = LLS(Q), 2-4)
2« 2a 2«
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with initial data of the form Q|;—o = fo(R) sin(20). Then we can write 2 as

Q=ftoe /O Ly(f) dr, (2-5)

where f satisfies the transport equation
o f + % Sin(20) Ly (£) f = 0. (2-6)
Proof. The right-hand side term of (2-4) is radial, and hence if we take the inner product with sin(26) it
will be zero. Now if write 2 as
k.0 = &0+ - [ @R
and consider it to be a solution to (2-4), we obtain that f satisfies

0 fi+ (5 Lo() SI20) + 5 Le(f) c05(20)) 8 f; = 0. @7

Here we used that L;(€2;)(R) is a radial function. Notice that (2-7) is a transport equation that preserves
odd symmetry. Now if we set

2 2
ff=1[ f/(R,0)sin(20)d® and Qf:f (R, 0)sin(20) d6,
0 0

we notice that f and 2} will satisfy the same equation. Thus, if we start with the same initial conditions
fo = R0, then
fi =] forallz.

Thus, we have L;(€2;) = Ls(f;), and hence

t
Q = f,+%/o Ly(f)dr.

Now since the initial data which we are considering have odd symmetry, it suffices to consider the
transport equation:

0 fi+ 5 SnCOILy (/) f; = 0. O

3. Leading-order model estimate

The purpose of this section is to obtain L°° estimates for the leading-order model, which is the main
ingredient in obtaining the ill-posedness result for the Euler with Riesz forcing system. This will be done
in Section 3.1 in three steps: Lemma 3.1, Lemma 3.2, and Proposition 3.3. Then in Section 3.2, we will
obtain an estimate for the leading-order model which will be useful in remainder estimates in Section 6.

3.1. Pointwise leading-order model estimate.
Lemma 3.1. Let f be a solution to the transport equation

a,f—i-%sin(ZQ)Ls(f)agf:O, (3-1)
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with initial data f|;—0 = fo(R) sin(20). Then we have the following estimate on the operator Li(f):

Py /OO fols) exp(—lft Ls(fr)(s)dr> ds
R S @ Jo
So(s)
€X

o0 1 t
< L;(/O(R) Ssz p(——/ Ls(fo)(s) dr) ds, (3-2)
R S @ Jo

where c| and c, are independent of «.

Proof. To prove this, we consider the following variable change. For 6 € [(), %) let y be defined as

d 2
y :=tan(f) = —)9/ = secz(Q), and sin(20) = 1+)/y2.
Applying the chain rule, we rewrite (3-1) in the (R, y)-variables
1
dfit vLs(f)(R) 3y f =0, (3-3)
with initial data 5
. 14
Fli=o = fo(R)sin(20) = fo(R) 2

Let ¢, (y) be the flow map associated with (3-3), so we have

d 1 L[
W oty = o =ven(; [ L)
t o «Jo

Thus,
1 t
d)fl(y):yexP(——/ Ls(f,)dt).
@ Jo

Hence, we now write the solution to (3-3) as

207 (v) 2y exp(=(1/e) [y Ls(f2) d7)
= fo(R) - .
1+ y2 eXP(—(z/Ol) f() Ls(fr) d‘L’)

LS

* 2

(R, y) = fo(R, ¢, ' (¥)) = fo(R) ——""— =
Ji(R,y) = fo(R, ¢, (v)) = fo( )1+¢;‘(y)2

Now we consider the operator Ly in the (R, y) € [0, 00) X [0 )-Variables:

L(f)(R)—l/oolfoof(s Vs
e A AN e

Plugging in the expression for f;, we have

1 (1 [® exp(—(1/a) fy Ls(f:)(s)dT) 4y?
L(f)(R) =~ | = dy ds. 3-4
(OB nfR s/o fO(S)l+yzexp(—(2/oz)f0tLs(fr)(s)dt) (14 y2)? re G4

Now since 0 < exp(—(2/oz) fot Li(f:)(s)d r) <1, we have an upper and a lower bound on the operator
on L;(f;)(R) with constants ¢, ¢, independent of « (in fact, these constants can be explicitly computed).
Namely,

(o] t (e8] t
(s) 1 (s) 1
i / o) exp (—5 / Ls<fr><s>dr) ds < L, (f)(R) <3 f f exp(—; f Ls<fr)<s)dr) ds.
R 0 R 0

N N

Thus, we have our desired inequalities. O
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Lemma 3.2. Define the operator

o t
L(f)(R) := / Jols) exp(—l / L(fs)(s)dr> ds. (3-5)
R N o Jo

Then we have

" t
|| Bt dr =2atog 1+ 3L R),

where L(fo)(R) = [~ fo(s)/s ds.

Proof. We introduce g;(R) := exp(—(1/a) [y L(f;)(R)dt) and K (R) := fo(R)/R. Then the operator L

can be rewritten as
o0

LR = f K ()g:(s) ds. (3-6)

R

Now taking the time derivative of (3-6), and using that 9,g,(R) = —(1/a)g;(R) f;;o K(s)g:(s)ds, we
can obtain

L) === (LD,

which can be solved explicitly:

- L(fo)(R)
L R) = . 3-7
U = T ean L o) G
Then it follows that
s _ !
/O L(F)(R) dr _2alog<1+£L(fo)(R)). 0
Proposition 3.3. Let f be a solution to the transport equation
8, f + - sin(0)Ly(f)dy f =0, (3-8)

2a
with initial data f|;—o = fo(R) sin(26). Then we have the following estimate on the operator Ls(f):

2 c ! 2a ¢
— log(l + 2—1L(f0)(R)) > / Li(f:)(R) > — 10g<1 + —fL(fO)(R)>, (3-9)
o 0 c 200

1
where c| and c; are independent of a.

Proof. In the section, we will use the bounds in (3-2), namely

o /oo fols) exp(—l/t Li(f2)(s) dT) ds
R S * Jo

= Ly(f)(R) 502/00 fols) eXP(—é/ Ls(fz)(S)dT> ds, (3-10)
R 0

s

to obtain and upper and lower estimate on fot Ls(f). As before we set

d R
gz(R)=eXP<—$/O Ls(fr)(R)dT) and K(R)Zfol(e ).
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Using (3-10), we can obtain that

o] 2 00 00 2
—2</ gt<s)1<(s>ds> za,/ G (©)K(s)ds > —C—2</ gt<s>1<<s>du> NERT
20[ R R 20[ R
Similar to Lemma 3.2, we define
Ls(fi)(R) i=/R g (s)K(s)ds.

Now from (3-11), we have

—ZC—%LS(ﬁ)(R))2 > 8Ly (f)(R) = —~2(Ly(f)(R))*.
o 20

Thus,
L(fo)(R) ~ L(f)(R) > L(fo)(R) (3-12)
L+ (c1/Qa))tL(fo)(R) ~ " 14 (c2/ Qe tL(fo)(R)’
which will give us that
2 ! 2
—alog(l + C—ltL(fo)(R)) Z/ Ls(fo)(R) = —a10g<1 + C—th(fo)(R)>,
cl 2 0 c 2a
and this completes the proof. |

3.2. Estimate for the leading-order model in W* > and H* norms. The purpose of this subsection
is to obtain some estimate on the leading-order model in W% and #* norms. These will be used to
estimate the size of the remainder term in Section 6. First we will obtain estimates on W, in Lemma 3.4.
Then in Lemma 3.5, we will obtain estimates on £2;.

Lemma 3.4. Let Q; be a solution to the leading-order model:
9 + (50 Ls(22) Sin(20) + 5 Lo() c05(20)) 85 R = 5Ly (),
20 2a 20
with initial data Q2 |;—0 = fo(R) sin(20), where fy(R) is smooth and compactly supported. Consider

U, = 1 L(2)sin(20) + LLc(Qz) cos(20).
4o 4o

Then, we have the following estimates on V,:
Ck Ck
|\112|Wk+1.oo < —, |\I’2|Hk+1 < —, (3—13)
o o

where ¢y depends on the initial conditions and is independent of «.
Proof. Recall that from Proposition 2.1, we can write €2, as

1 t
Qz=f+£'/0 Ls(fo)dr,

and since the initial data is odd in 6, we have

W, = %LS(Q,) sin(26) = %Ls(ft) sin(26).
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To estimate the size of W5, from (3-4), we have

% oo exp(—(1/a) [y Ls(fo)(s)dT) 4y2
Ly(f)(R) = =
(R /R S/ Jots 1+ y2exp(—(2/a) [y Ly(fo)(s)dt) (1 +¥?)

5 dyds.

Using (3-2), we have

o0
[Wo|po < E/ fols) ds < Q.
a Jr N

For 0y >, it is clear that we have
o
|0g W2l < —,
o

where, similarly, cg depends on the initial condition.
Now for dgW,, we have .
IrW2 = —0rLy(f;) sin(20).

4o
Thus,

exp(—(1/a) [y Ls(f:)(R) dT) 4y?
1+ y2exp(—Q2/a) fi Li(f)(R) dt) (1 +y?)?

LR == [ ik ay,

and similarly, we have

C
[0rW2 |10 < —.
o

Now the estimate on R dg W, follows from the estimate on 0z W> and the fact that the initial data have
compact support. Thus,
c
|RORWs |~ < —
a
For higher-order derivatives, we can obtain the estimate following the same steps. Hence, we have
Ck
v oo < =X
W[y prtt0 < »
The #* estimates also follow using the same steps:
Ck
W1 < =, Il
[V a1 < o

In the following lemma, we will obtain the ¥ estimates on ;. Here we will use Lemma 3.4 and
transport estimates.

Lemma 3.5. Let Q2; be a solution to the leading—order model

at92+( Ly(@2) sin(26) + 5~ L () cos(20)>89522 — L.

20 200
with initial data 2, |;—0 = fo(R) sin(260), where fo(R) is smooth and compactly supported. Then, we have

the following estimates on 2;:
Q05 < cpe /", (3-14)
where cy, depends on the initial conditions and is independent of «.

Proof. Recall that from Proposition 2.1 we can write €2, as

t
Q=f+ %fo Ly(f.) d.
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where f satisfies the transport equation
0r fr +2W2 0 fr = 0.

When we consider the derivatives of €25, the transport term f dominates the radial term (1/(2a)) fot Ly(f)dr.
Thus, it suffices to consider the ¥ estimates on f which will follow from the standard L? estimate for
the transport equation. Thus, we have

Ufi +2W280 i =0 = 909 fi +-209W20p fi +-2W2pe f1 = 0.
Hence,
[0g filp2 < |aGfO|L2€f0 |09 Wa| oo

From (3-13) we have [0g W7 |1~ < co/c. Thus, applying the Gronwall inequality, we have
180 fil 12 < |36 fol L2¢' /. (3-15)

To obtain H* estimates, we need to estimate terms of the form Rkaﬁ. We will show how to obtain the
ROg estimate, and for general k, it will follow similarly. Thus, similar to L? estimate for the 9y f case, since

o fy +2Wo0g f; =0,
we have
0;0R fr +20r W20y f1 +2W20re f1 =0,
and thus,
0| ROR fil2 < 2|RORW2 L |0g f 12 + 109 W2l |ROR fr 12

Now from (3-13), (3-15), and applying the Gronwall inequality we have

IR fil12 < (IRIR fol 12 + |9 fol 2 O/ )e 0/
Hence,
|f Ol <1 folpre /™",
which implies that
100 < 122050/,

Similarly, using (3-13), the transport estimate, and following the same steps as above, we can obtain
the general 7 estimates. Hence
|Qlys < 1220) e /", O

4. Elliptic estimate

The purpose of this section is to recall the Biot—Savart law decomposition of [Elgindi 2021], which is
used here to derive the leading-order model. In this section, we highlight the main ideas in the proof, and
for more details, see [Elgindi 2021; Drivas and Elgindi 2023]. We remark that this is also related to the
Key Lemma of A. Kiselev and V. Sverik [2014]; see also [Elgindi 2016; Elgindi and Jeong 2023] for
generalizations.
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Proposition 4.1 [Elgindi 2021]. Given Q € H* such that for every R we have
27 21
/ Q(R, 0)sin(nb) do = / Q(R,0)cos(nf)dd =0
0 0

forn =0, 1,2, the unique solution to
AW + 9oV + a’ R?Ogg W + (da + a®) ROV = Q (R, 0)
satisfies
999 W gt + ot| RORe W | i + *| R*Orr W i < Cr|Q e, (4-1)
where Cy, is independent of «. In addition, we have the weights estimate
1800 D (W) 2 + | Roge D (V)| 2 +&*| R*9rr D (W) 2 < Ci| D ()2, (4-2)
where Cy, is independent of o. Recall that Dp = Rog.

Proof. First, we will show how to obtain (4-1). Since €2 is orthogonal to sin(n6) and cos(nf) forn =0, 1, 2,
W must also be orthogonal to sin(n6) and cos(n8) for n =0, 1, 2. Consider the elliptic equation, and we
consider the L? estimate

AW + JgoW + ’R?9rr ¥ + (4o + a®)RIR Y = Q(R, 0).
Taking the inner product with dgg W and integrating by parts, we obtain
2 2 2 2 2 2 1 2 2
—4[0p W2+ 1000 W 2 — [0 W2 + " |RORg W} 2 + 5 (4o + ) |3V ;> < [S2]12[099 V| 2.

Now by assumption, we have
W(R,0) =) W, (R)e",

n>3

and hence
2 1 2
[0g W72 < 51300 W72

Using the above inequality, we can show that

219po W17, +*|RIRe W7 > + 5 (4o — ) |9 W7, < |S2;21000 V] 2,

and thus we have
[0g9 W12 < Col€2| 2,

where Cy is independent of «. The estimate for the R%3x g W-term will follow similarly. We can also obtain
the H* estimates by following the same strategy. To obtain the (4-2) estimates, recall that Dz = Rdg and
we notice that we can write the elliptic equation in the form

4W + 39 W 4 o> D3 (W) 4 4a D(¥) = Q(R, 0).

From this, we observe that the Dg operator commutes with the elliptic equation, and hence (4-2) estimates
will follow from (4-1). Il
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Theorem 2 [Elgindi 2021]. Given Q € H¥, where Q has the form of

Q(R,0) = f(R)sin(20) (Q(R, 0) = f(R) cos(29)),
the unique solution to

40 + 85p W + a?R?gg W + (4o + a®) ROg W = Q(R, 6)
is

1 . 1
W == L(f)(R)sin(26) + R(f) <xp =~ L(f)(R) cos(26) +R(f)>,
where
L(f)(R) = / L) 4
R s

and

IRk <cl flyk,

where c is independent of o.

Proof. Consider the case where Q(R, 6) = f(R) sin(260); the case where Q (R, 8) = f(R) cos(20) can
be handled similarly. In this case W (R, 6) will be of the form W (R, §) = W, (R) sin(26), where W, (R)
will satisfy the ODE

o> R?0gr Vs + (4o +®)RIR W, = f(R).
We can solve the ODE, see Theorem 4.24 in [Drivas and Elgindi 2023], and obtain

R
1 f6)

8RWZ(R):(X_2R4/“+1 s 45

Now using that W, (R) — 0 as R — 0o, we obtain

\Ifz(R)=_i/oop L (7T
R

o2 Yot Jo g T-4/a

We notice that we can write the above as
1 1 Pf(s) 1 o0 1 Pf(s)
WZ(R)——Q—ZA p4/0[+1 . 51*4/0{ dep_E_/; 8p W ) mdé‘dﬂ

Thus, by integrating by parts, it follows that

Lo 11 (R w1
vk == [ IR [ b L) + R,

Using Hardy-type inequality, see Lemma 4.25 in [Drivas and Elgindi 2023], one can show that

IR()2 <clflpa,

where c is independent of «. O
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5. Embedding estimate in terms of the ¥ norm

In this section we consider some embedding estimate in the ¥ norm which will be used in Section 6.
These estimates will be used various times as we estimate the remainder term. Recall that the ¥ norm is
defined as

m m k
Flim = D 10000 Fliz+ > R8L Flize 1 flage = Y | lion.
i=0 i=1 m=0
Lemma 5.1. Let f € HY, where N € N. Then we have
0835 f 112 < Clom] flpgeemsa, (5-1)
|R¥O% 00" f 110 < Chom| flpgkimsa (5-2)

foranyk+m+2 < N.

Proof. We will show how to obtain inequality (5-2), since inequality (5-1) follows from standard Sobolev
embedding. To show that
|R* 3RO flroe < chom| flageimsz,

for any k +m +2 < N, we apply Sobolev embedding to obtain
|R*0R 35" f11 < cim|RCOROG fluz

where lew is the standard H? norm in R and #. When considering the second derivative terms of
R 8§ dy' f, for the angular derivatives term, we have | R¥ 8§ 8(;”+2 Sfli2 < | flyx+m+2. Now for the radial
derivatives, we have three cases. Considering the case when the two radial derivatives land on aﬁgagf fs
we have

IR ORTZ00 f 12 < [RMF2ONTZO0 112+ 19KT200 1 < | f lpemen,

where the last inequality follows from the definition of the 4" norm. The other two cases follow in a
similar way. (|
We will also need some embedding estimates for the stream function W in terms of 2.
Lemma 5.2. Let Q@ € HN, where N € N, satisfy the same conditions as in Proposition 4.1. Then for the
solution ¥V of
4W + dgp W + &’ R29gr W + (4o + 0®) RIRWY = Q(R, 0),
we have
18500 W | L0 < Chom | R ggeemsn (5-3)

fork,m e Nwithk+m+1<N.
Proof. As in Lemma 5.1, applying the Sobolev embedding, we have

|0% 05" W0 < cim|OR 0" W12 -
From the elliptic estimates in Proposition 4.1, for any i, n € N, we have

0% 08 W |12 < Ci.n|Qpgitnt. (5-4)
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Thus, to bound |8§8(’9"\IJ|H§ o we take €2 to be in H¥T"*!1. Hence, we have

100 W | Lo < Cpom |Qggrime1, (5-5)

completing the proof. O

Lemma 5.3. Let Q € #, where N € N, satisfying the same conditions as in Proposition 4.1. Then for
the solution V¥ of
AW + 9oV 4+’ R*OgrV + (da + &> RIRY = Q(R, 0),
we have
|R¥O% 00 W | 10 < Chm | Qpgtims (5-6)
fork,m e Nwithk+m-+1<N.
Proof. As in Lemma 5.1, applying the Sobolev embedding, we have
IR0k 0 W | 1 < Chm | ROR 05" 3 -
From the elliptic estimates in Proposition 4.1, for any i, n € N, we have
1005 W] 2 < cinl0%00 Q2 < €in|Qlggien (5-7)
and
IR 8%05W |12 < ¢in|Qpgiin. (5-8)

Thus, if we look at the second derivative terms of R* 823@" W, we can use the above inequalities to
obtain the desired estimate. For the angular derivative term, we have |Rk8§ 8g1+2\11| 12 < Chom| 2 agkam+1.
When considering the radial derivative terms, we have three terms. For the Rkajg“ 0y’ W-term, applying
(5-7) and (5-8), we have

IR IR0 W | 12 < |RFT2ONT200 W 1o + 9K T2 W] < o |Qggeims

The other terms can be handled in similar way. Hence, we have our desired result. O

6. Reminder estimate

In this section, we obtain an error estimate on the remaining terms in the Euler with Riesz forcing. Recall
that Q2 satisfies the evolution equation

9 Q+ (—aR¥HW) IpQ2+ QW + aRIRW) 3,2

= (2aR sin(0) cos(9) + a*R sin(9) cos(0)) dg W + (1 — 2sin*(9)) dp ¥
+ («R cos*(0) + aR sin*(0)) dgg W + (¢* R* sin(0) cos(9)) drr W — (sin(0) cos(9)) dpp W,  (6-1)

and the elliptic equation is
4W + @ R*Igr Y + dpo ¥ + (4o + ¢®) RIRY = Q(R, 0). (6-2)
From Section 2, the leading-order model for the Euler with Riesz forcing equation satisfies

3+ (QW2) 32 = (—1 +25in(0))dg W1 + (sin(0) cos(9)) dgg V2, (6-3)
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where
1

Uy (R, 0) = —L;(£2,)sin(20) + iLC(SZQ) cos(20). (6-4)
4a 4o
Now set €2, := Q — Q; to be the remainder term for the vorticity, and similarly set W, := W — W, to be
the remainder term for the stream function. Thus, we have that the remainder, 2,, satisfies the evolution
equation

02 + (—aR(3p W2 + 09 W) (022 + ORS2) + (2W209 2, + 2W, 0925 + 2W, 99 €2;)

+ (@R(Ir W2+ 0rY;)) (3922 + 0p€2/)
= (ZaR sin(0) cos(0) + o«’R sin(0) cos(@))(aR W, +0rY,)
+ (1 —25in%(0)) 39 W, 4+ a(R cos*(0) — R sin>(0)) (drg W2 + dge V,)

+a?(R?sin(0) cos(0)) (Orr W2 + drr ¥, ) — (sin(0) cos(9))dge¥,. (6-5)

The goal of this section is to show that €2, remains small. Namely, using energy methods, for some

time T, we show that

sup, <7 |2 (1)|~ < Ca'/?

for some constant C independent of «.
Lemma 6.1. Ler Q, = Q — Qy satisfy (6-5) with Q and 2, satisfying (6-1) and (6-3), respectively. Let
W, =W — W, with W and Y, satisfying (6-2) and (6-4), respectively. Then we have the estimates
10501 W, |12 < KM@, lpjeent and | R¥059IW, 12 < KR, ke (6-6)
o o
fork,m e N.

Proof. Recall that by the Biot—Savart law decomposition [Elgindi 2021] (see Section 4 for more details),
we have the following decomposition for the elliptic equation (6-2):

W(R,0) = %LS(Q) sin(20) + %LC(Q) cos(20) + R(2),

with R(2) bounded on 7" with a constant independent of «. This follows from the elliptic estimates
in Proposition 4.1 and Theorem 2 in Section 4. Now since we defined 2, = Q — Qp and ¥, = ¥ — ,,
with €, and W, satisfying (6-3), and (6-4), respectively, we have the following decomposition for W,:

V. (R,0) = %LS(QJ sin(260) + %LC(Q,) cos(20) +R(€2,) +R(€22). (6-7)

Hence, this gives the estimates
1058w, 2 < EM 1@, lpent and  [RX858MW, |12 < EMQ, |y jeinot 0
o o
We define the following terms to shorten the notation:
I = —aR(0g W2 + dp W, ) (Or 22 + 0r2,),
I = (2W70p2, +2W, 092 +2W, 00 2;),
I3 =aR(0rW2 + 0r W, ) (09€22 + 05 2;),
Iy =20 (1 —a)R sin(0) cos(0) (g Wy + 0r ¥,),
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Is = (1 —2sin%(0)) 9y Y,
Is = a(R cos*(9) — Rsin*(0))(dre W2 + dre \V,),
Iy = &*(R? sin(6) cos(0)) (9rr W2 + drr W),
I3 = —(sin(0) cos(6))dpo V.
Now we have the error estimate proposition.
Proposition 6.2. Let 2, = Q — Q; satisfy (6-5) with Q,|;—0 = 0. Then

1/2
SUPg<; -7 2 (1)1 < eyar'/?,

where T = ca log(c|log(w)|) and c is a small constant independent of «.

Proof. We will use 3" to refer to any mixed derivatives in R and 6 of order N (not excluding pure R- and
6-derivatives). From the definition of the 7" norm, to obtain the H”" estimate we will take the following
inner product with each /;-term:

(0%1;, 9") and  (R*9p05 " 1;, R0 ")
for0<k<Nand1<i<8.

Estimate on /; and /3: Here we will estimate /; and /3. The estimate of /3 is very similar to /1, and so
we will just show how to obtain the estimate on /.

Estimate on /;: We can write I; as
I = —aR(0gWr + 09V, ) (0r €22 + OR2,)
= —a(3pW2) R(9r€22) — (39 W2) R(OR€2,) — (99 W) R(IR€22) — (39 W) R(ORS2/)
=hath2+hsz+ 1,
and we will estimate each term separately.

e [1] = —adyWr RORS2;. Here we have

N
(0" (adp W2 ROR), 0V Q) = ) " cin / 0" (g W2)d" ™" (ROR) 9V Q.
i=0
Now from Lemmas 3.4 and 3.5, we know that

[Wo [kt < Z—k and  [Qp|yr < |QZ(O)|er(Ck/a)t'

Thus, we have
N

N
Z/aaf(aewz)aN—f(RaRszz) 0N, <y Y aldpWalre |9V T (RORQ) L2 10" Q12
i =0 i=0

<cyo|Walyn+ico |22+t |20 |y

C
<aZeeNDNQ v < ene D, gy,
o
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and similarly we have
(0%0) " (adp Wy ROR), R*8KNTFQ,)

N
= Ci,m,N / Z Lo (adgWp) 9% 10) KM (ROR ) R*0K0N T+,
i+m=0
From the definition of the WY +1:% norm, we have for i +m < N,

R0 05 s 1w < [Walyywr .

Again, applying Lemmas 3.4 and 3.5, we obtain

N
> f R 9% (cdpW2) R 97 9) " (RO 2) R0 .
i+m=0
N .
<cy Y a| ROy Wl |RETT O 0 TH T (ROR) |2 IRM 0K D) TH Q12
i+m=0

CN N N
< ena|Walyynetoo |2 lavet |2 lyn < a——e NN Q v < eneNONQ, .
o

Thus, we have
(T1,1, Qr)pgy < ene Qg (6-8)

o 1o =—adyWy RORS2,. Here we have

N
(0" (cdp W2 ROR), 0V Q) = ) cin / 0" (009 W2)9" ' (ROR2)0" Q.
=0

To obtain this estimate, we again apply Lemma 3.4. Namely, that |V, |yk+1.00 < cx/oc. When i =0, we
integrate by parts and obtain

CN
f(aaewnaN(RaRszr) N < c|Walyyece | Q5 n < ;mr@w.
For 1 <i < N we have

N N
> / ad By W2)9" ! (RORR) N < ey ) B Walre [0V (RO 12 10V 12
i=1 i=1
N 2 2
< enaWalyyvens [0l |9 ln < a—~ 12 < en 1 -
Similarly, now for the R¥8%3) ~*-terms we have

(R¥9%8) ¥ (adg W RORR,), R¥0%0) *Q,)

N
= Cim.N / Y RYoRI (@de W) B 19 T (RORS,) R¥ORD,TH 2,
i+m=0
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We again use |V |\yk+1.00 < ¢ /a. Hence, we have

N
> fRia;agl(aa@xpz) RE1gk=TgN=k=m(RoRQ,) R¥0%0) * 2,
i+m=0 N
<cy Y a|RUR; T Wl |RETT 00 TH T (RORS) 12 | RA 0K D) TF Q12
i+m=0
N 2 2
< ena|Walyynttoo [S2 v (27 gyv < a?IQrIHN < NIy N
Thus, we have
(T2, )3y < en|Qel- (6-9)

e [13=—a(dyV,)RIRr2,. To obtain the estimate on /; 3, we will use Lemma 3.5, which will give us
the estimate on €2,. In addition, to bound the dy W,-term, we will use the decomposition of W, (6-7) and
estimate (6-6) combined with the elliptic estimates from Proposition 4.1 and embedding estimates from
Lemma 5.2. Now we have

N
(0" (@ W ROR), 0V Q) =) cin f 0" (W) 8" (RORS2) 9V Q.
i=0
When 0 <i < N/2, we will use the embedding from Lemma 5.1. Namely that
10709 W, | L < ¢i]3p Wy |ggis2.

Then, applying Lemma 6.1, we have

o
|09 Wy [3gi+2 < — |2 |42
o
Thus,
N/2 N/2

> / 0" (dp W) 0N (RORS2) OV Qr <Y at]d' W, |1 [0V (RORQ) 1210V Q112
i =0 i=0
N/2

i
< Zaém,mmmﬂwﬁ [oMMY
i=0
< |9 g2 | ol [ Iy < ene™N¥ Q15w
Here we used Lemma 3.5 for the |22]4/~-+1-term.
When N/2 <i < N, we will use Lemma 6.1. Namely,

i Ci
[0°0g W) |12 < E|Qr|w‘~
Thus, we have

N N
> / 0" (cdp W) 0N T (ROR2) 0N Q< D @ 09 Wy | 12 |RIR 2 lyyw—ice [0V 2 |12
i=N/2 i=N/2

N
Ci
= D a1 hul Qb by
i=N/2
2
< N |92 13w 1230w [ Iy < ene N ONQ L
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Similarly, to estimate the inner product
N—k 2 N—k 2
(0505 (39 W) ROR), R¥ 00y Q) < ene /™ |Q, 17 v

we will use the weighted embedding estimates from Lemma 5.1 combined with Lemma 6.1. Following
the same steps as we did in the previous inner product, we obtain

(113, 2 )av < ene Q3 (6-10)

e [14=—a(dyV,)ROg,. To obtain the estimate on /1 4, we will use Lemma 6.1 and the embedding
estimate from Lemma 5.1 to handle the dg\W,-term. To handle the R0z <2,-term, we will use embedding
estimates from Lemma 5.1 and follow the same steps as we did in the previous inner product. We will
only show how to obtain the estimate on the term

(k)" @, RoRS2). R*0fa) ™)
i [ 3 a5 R Rl
i+m=0

For the other inner product, the idea is the same. To start the estimate, first we consider the case when
i =m = 0. We integrate by parts and use the embedding estimates in Lemmas 5.1 and 6.1 to estimate the
g ¥,--term. We have

/aagqf,(Rk“a;g“ Nk, + RFaka) *Q,) RY koY TFQ,
< | RORe W, |1 |R 9505 * Q17 + el 0p Wr | oo |R* 90, 17,
< en (9l 190 3y + 190 12 1920 150)
<Nl
Now when 1 <i+m < N /2, we will again use Lemmas 5.1 and 6.1 and the definition of the H* norm
to obtain
N/2

Z R 0507 (adpW,) (R Tkt =gV —k=mqy 1 RF-Igk=TgN=k=m Q. ) Rk ko N+,

i+m=>1

N/2
< Z Q| R DRI, | oo |RIFITIGRTIZI N =k=m ey |15 |R¥ 0% 0 7+ 2,112
i+m>1 N/2
+ Z a| R %8I, oo [RFTT AN TR 2 RN OROY TR, |
i+m=>1
N/2
<cn D Qb2 (1Qrlgy + 1D lv-) | Qg
i+m>1

< N 2 gz (182, [y + |20 |gv 1) [S27 [ yv

3
<Nl B
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Now for the case when N/2 <i+m < N, we will use Lemmas 5.1 and 6.1 to obtain
N
> RIORO; (dpWw,) (R R ) R, + RN ) T, ) R o) TR,
i+m>N/2

N
< D RO W | (IR TN T 1) [RY 0K ) TR
i+m>N/2 N
+ D) alR ORI | (IR o0 TR 1) | RA 9T 12
v i+m=>N/2
< Z |2 [2gi4m (|Qr|’HN—(z’+m)+3 + |Qr|'HN—(i+m)+2) |2 [N
i+m>N/2

3
=< CN|Qr|HN |Qr|HN/2+3|Qr|HN = CN|Qr|7_LN,

and thus, we have
(I14s Q) v < NIl (6-11)

Thus, we have the following estimate on the /;-term:
(I, Qp)qgw < ene D |Q g + ene Y QI+ en Q[ (6-12)

Estimate on /3: The estimate on /3 follows similarly to I, so we skip the details for this case. One can
obtain

(I3, Qv < ene Qg+ ene Q[ + e IRl (6-13)
Estimate on I>: Here we have
I = (2W209 Q2 +2W, 0020 +2W,002,) = 1 + 2 + 12 3.

o Ip ] =2W,092,. To estimate I 1, we follow the same steps as in the /1-term. Using Lemma 3.4,
namely that |Ws|yv.o < cy/a, we have

CN
(Dot Qe)gn < 12 - (6-14)

o Ihp =2W,09p$2. Similarly, to estimate I, we also follow the same steps as we did in /;. More
specifically, to handle the W, -term, we will follow similar steps as for the terms /; 3 and /; 4. Namely,
we will apply embedding estimates and Lemma 6.1 to estimate the W,-term. To estimate €2, we use
Lemma 3.5 to obtain that |$27]x < |S22(0)|er(ck/"‘)’. Thus we have

CN
(.2, Qehpen < —=e N1 [y (6-15)

o [53=2W,0pQ2,. This term I, 3 can be estimated similarly to the /; 4-term by using embedding and
Lemma 6.1. Hence, we obtain

C
(D3 )y < |2 Py (6-16)
o
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Thus we have
CN CN R CN CN R CN
(D, Qehgn = Qe+ —=e VIR G + 1y < —=e QR + 2R [y (6-17)

Estimates on 14, Is, Is, I7, and Ig: We can write I4 as

Iy = 2R sin() cos(0) 4+ o> R sin(0) cos(0)) (9g W2 + Iz V)

=2+ a) sin(@) cos(8) RIgWs 4+ a (2 + ) sin(0) cos(0) ROV, = Iy 1 + I45.
Recall that
Is = (1 —25sin%(0)) 9V,

We can also rewrite and I and I as
Is = a(cos?(0) — sin*(0)) R (dgg W2 + dge V)

= a(cos?(0) — sin*(0)) RAgg W1 + ar(cos?(9) — sin®(0)) Rogg W, = I | + I 2
and
I; = a*(sin(9) cos(0)) R*(dgr W2 + drr Vr)
= o%(sin(8) cos(0)) R? dgr Wy + % (sin(8) cos(0)) R* dgpr W, = I7.1 + 175
Recall that
Ig = —sin(0) cos(0) dgo ¥, .

Now for i =4, 6, and 7, using Lemma 3.4, namely that |V |1 < cx /o, we have the estimate

(Li1, 2 )yv <cn|Qlyv fori=4,6,7. (6-18)
Using Lemma 6.1, we obtain
i )ar <@ B = e[ fori =4.6,7 (6-19)
and
CN 2 .
(lis )y < — [ |3n  fori=35,8. (6-20)
o

Hence, from (6-18), (6-19), (6-20), we have
(Iiy Q)yn < cen|Qlyy + C—N|Qr|3{,\, fori =4,5,...,8. (6-21)
o

Total remainder estimate: Here we obtain the total error estimate. From our previous work we have

8
d
TR B = 0, Quday < 1T Q).
i=1
and thus from (6-12), (6-