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STRONG ILL-POSEDNESS IN L∞ FOR THE RIESZ TRANSFORM PROBLEM

TAREK M. ELGINDI AND KARIM R. SHIKH KHALIL

We prove strong ill-posedness in L∞ for linear perturbations of the 2-dimensional Euler equations of the
form

∂tω+ u · ∇ω = R(ω),

where R is any nontrivial second-order Riesz transform. Namely, we prove that there exist smooth
solutions that are initially small in L∞ but become arbitrarily large in short time. Previous works in this
direction relied on the strong ill-posedness of the linear problem, viewing the transport term perturbatively,
which only led to mild growth. We derive a nonlinear model taking all of the leading-order effects into
account to determine the precise pointwise growth of solutions for short time. Interestingly, the Euler
transport term does counteract the linear growth so that the full nonlinear equation grows an order of
magnitude less than the linear one. In particular, the (sharp) growth rate we establish is consistent with
the global regularity of smooth solutions.

1. Introduction

The Euler equations for incompressible flow are a fundamental model in fluid dynamics that describe the
motion of ideal fluids:

∂t u + u · ∇u +∇ p = 0,

∇ · u = 0.
(1-1)

In this equation, u is the velocity field and p is the pressure of an ideal fluid flowing in R2. A key difficulty
in understanding the dynamics of 2-dimensional Euler flows is the nonlocality of the system due to the
presence of the pressure term.

Defining the vorticity ω := ∇
⊥
· u, it is insightful to study the Euler equations in vorticity form:

∂tω+ u · ∇ω = 0,

∇ · u = 0,

u =∇
⊥1−1ω.

(1-2)

Because the L∞ norm of vorticity is conserved in the Euler equations in two dimensions, Yudovich [1963]
proved that there is a unique global-in-time solution to the Euler equation corresponding to every initial
bounded and decaying vorticity. See also [Wolibner 1933; Beale et al. 1984; Hölder 1933; Yudovich 1963;
Kato 1967; Marchioro and Pulvirenti 1994; Majda and Bertozzi 2002]. This bound on the L∞ norm is
unfortunately unstable even to very mild perturbations of the equation [Constantin and Vicol 2012; Elgindi
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and Masmoudi 2020; Elgindi 2018]. To understand this phenomenon, we are interested in studying linear
perturbations of the Euler equations in two dimensions as follows:

∂t u + u · ∇u +∇ p =

(
0
u1

)
,

∇ · u = 0.
(1-3)

Equation (1-3) is a model for many problems in fluid dynamics that have a coupling with the Euler
equations. For instance, similar types of equations appear in viscoelastic fluids, see [Constantin and
Kliegl 2012; Elgindi and Rousset 2015; Lions and Masmoudi 2000; Chemin and Masmoudi 2001], and in
magnetohydrodynamics, see [Boardman et al. 2020; Hmidi 2014; Cao and Wu 2011; Wu and Zhao 2023].
Further, they also appear when studying stochastic Euler equations; see [Glatt-Holtz and Vicol 2014].

Writing (1-3) in vorticity form, we get

∂tω+ u · ∇ω = ∂x u1,

∇ · u = 0,

u =∇
⊥1−1ω.

(1-4)

We observe that the challenge of studying these equations is that the right-hand side of (1-4) can be
written as the Riesz transform of vorticity ∂x u1 = R(ω), which is unbounded on L∞. P. Constantin and
V. Vicol [2012] considered these equations with weak dissipation, and they proved global well-posedness.
However, without dissipation it is an open question whether these equations are globally well-posed. In
this work, we are interested in the question of L∞ ill/well-posedness of the Euler equations with Riesz
forcing and the local rate of L∞ growth. The first author and N. Masmoudi studied the Euler equations
with Riesz forcing in [Elgindi and Masmoudi 2020], where they proved that it is mildly ill-posed. This
means that there is a universal constant c > 0 such that, for all ϵ > 0, there is ω0 ∈ C∞ for which the
unique local solution to (1-4) satisfies

|ω0|L∞ ≤ ϵ, but supt∈[0,ϵ] |ω(t)|L∞ ≥ c. (1-5)

The authors in [Elgindi and Masmoudi 2020] conjectured that the Euler equation with Riesz forcing
is actually strongly ill-posed in L∞. Namely, that we can take c in (1-5) to be arbitrarily large. The
goal of our work here is to show that indeed this is possible. To show this, we use the first author’s
Biot–Savart law decomposition [Elgindi 2021] to derive a leading-order system for the Euler equations
with Riesz forcing. We then show that the leading-order system is strongly ill-posed in L∞. Using
this, we can show that the Euler equation with Riesz forcing is strongly ill-posed by estimating the
error between the leading-order system and the Euler with Riesz forcing system on a specific time
interval.

We should remark that the main application of the approach of [Elgindi and Masmoudi 2020] was to
prove ill-posedness of the Euler equation in the integer Ck spaces, which was also proved independently
by J. Bourgain and D. Li [2015]. Regarding the notion of mild ill-posedness in L∞ for models related to
the Euler with Riesz forcing system, see [Wu and Zhao 2023] about the 2-dimensional resistive MHD
equations.
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1.1. Statement of the main result.

Theorem 1. For any α, δ > 0, there exists an initial data ωα,δ0 ∈ C∞
c (R

2) and T (α) such that the
corresponding unique global solution, ωα,δ, to (1-4) is such that at t = 0 we have

|ω
α,δ
0 |L∞ = δ,

but for any 0< t ≤ T (α) we have

|ωα,δ(t)|L∞ ≥ |ω0|L∞ + c log
(
1+ c

α
t
)
,

where T (α)= cα log(c|log(α)|), and c > 0 is a constant independent of α that depends linearly on δ.

Remark 1.1. Note that at time t = T (α), we have

|ωα,δ|L∞ ≥ c log(c log(c|log(α)|)),

which can be made arbitrarily large as α→ 0. Fixing δ > 0 small and then taking α sufficiently small
thus gives strong ill-posedness for (1-4) in L∞.

Remark 1.2. As we will discuss below, we in fact establish upper and lower bounds on the solutions we
construct so that on the same time-interval we have

|ωα,δ(t)|L∞ ≈ |ω0|L∞ + c log
(
1+ c

α
t
)
.

This should be contrasted with the linear problem where the upper and lower bounds for the same data
come without the log:

|ω
α,δ
linear(t)|L∞ ≈ |ω0|L∞ + c

(
1+ c

α
t
)
.

Remark 1.3. Our ill-posedness result applies to the equation

∂tω+ u · ∇ω = R(ω),

where R = R12 = ∂121
−1. Note that a direct consequence of the result gives strong ill-posedness when

R = R11 or R = R22 even though these are dissipative on L2. This can be seen just by noting that a
linear change of coordinates can transform R12 to a constant multiple of R11 − R22 = R11 − Id. The
strong ill-posedness for the Euler equation with forcing by any second-order Riesz transform (other
than the identity) follows. We further remark that the same strategy can be used to study the case of
general Riesz transforms, though we do not undertake this here since the case of forcing by second-order
Riesz transforms is the most relevant for applications we are aware of (such as the 3-dimensional Euler
equations, the Boussinesq system, viscoelastic models, MHD, etc.).

1.2. Comparison with the linear equation and the effect of transport. We now move to compare the
result of this paper with the corresponding linear results and emphasize the regularizing effect of the
nonlinearity in this problem. The ill-posedness result of [Elgindi and Masmoudi 2020] relies on viewing
(1-4) as a perturbation of

∂t f = R( f ). (1-6)
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For this simple linear equation, it is easy to show that L∞ data can immediately develop a logarithmic
singularity. Let us mention two ways to quantify this logarithmic singularity. One way is to study the
growth of L p norms as p →∞. For the linear equation (1-6), it is easy to show that the upper bound

| f (t)|L p ≤ exp(Ct)p| f0|L p

is sharp in the sense that we can find localized L∞ data for which the solution satisfies

| f (t)|L p ≥ c(t) · p.

This can be viewed as approximating L∞ “from below”. Similarly, the Cα bound for (1-6),

| f (t)|Cα ≤
exp(Ct)
α

| f0|Cα ,

can also be shown to be sharp for short time in that we can find for each α > 0 smooth and localized data
with | f0|Cα = 1 for which

| f (t)|L∞ ≥
c(t)
α
.

The main result of [Elgindi and Masmoudi 2020] was that these upper and lower bounds remain unchanged
in the presence of a transport term by a Lipschitz continuous velocity field. This is not directly applicable
to our setting since the coupling between ω and u is such that u may not be Lipschitz even if ω is bounded.
Interestingly, in [Elgindi 2018], it was shown that this growth could be significantly stronger in the
presence of a merely bounded velocity field.

All of the above discussion leads us to understand that the nature of the well/ill-posedness of (1-4)
will depend on the precise relationship between the velocity field and the linear forcing term in (1-4). In
particular, for a natural class of data, we construct solutions to (1-4) satisfying

|ω|L∞ ≈ 1+ log
(
1+ t

α

)
,

for short time, which is the best growth rate possible in this setting. This should be contrasted with the
corresponding growth rate for the linear problem

|ωlinear|L∞ ≈ 1+ t
α
.

In particular, the nonlinear term in (1-4) actually tries to prevent L∞ growth. Let us finally remark that
the weak growth rate we found is consistent with the vorticity trying to develop a log log singularity.
It is curious that, in the Euler equation, vorticity with nearly log log data is perfectly well-behaved
and consistent with global regularity but with a triple exponential upper bound on gradients. Though
establishing the global regularity rigorously remains a major open problem, this appears to be a sign that
perhaps smooth solutions to (1-3) are globally regular.

1.3. A short discussion of the proof. The first step of the proof is to use the Biot–Savart law decomposition
in [Elgindi 2021] to derive a leading-order model:

∂t�+
1

2α
(Ls(�) sin(2θ)+ Lc(�) cos(2θ))∂θ�=

1
2α

Ls(�),
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where the operators Ls and Lc are bounded linear operators on L2 defined by

Ls( f )(R)= 1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

sin(2θ) dθ ds and Lc( f )(R)= 1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

cos(2θ) dθ ds.

Essentially all we do here is replace the velocity field by its most singular part. Upon inspecting this
model, we observe that the forcing term on the right-hand side is purely radial, while the direction of
transport is angular. Upon choosing a suitable unknown, we thus reduce the problem to solving a transport
equation for some unknown f :

∂t f + 1
2α

Ls( f ) sin(2θ)∂θ f = 0.

Surprisingly, this reduced equation propagates the usual “odd-odd” symmetry even though the original
system does not. The leading-order model will then be strongly ill-posed if we can ensure that the solution
of this transport equation satisfies that

∫ t
0 Ls( f ) can be arbitrarily large. One subtlety is that the growth

of Ls( f ) enhances the transport effect, which in turn depletes the growth of Ls( f ). In fact, were the
transport term to be stronger even by a log, the problem would not be strongly ill-posed. By a careful study
of the characteristics of this equation, we obtain a closed nonlinear integrodifferential equation governing
the evolution of Ls( f ) (see (3-4)). We study this nonlinear integrodifferential equation and establish upper
and lower bounds on Ls( f ) proving strong ill-posedness for the leading-order equation; see Section 3
for more details. Finally, we close the argument by estimating the error incurred by approximating the
dynamics with the leading-order model. An important idea here is to work on a time scale long enough to
see the growth from the leading-order model but short enough to suppress any potential stronger nonlinear
growth; see Section 6 for more details.

1.4. Organization. This paper is organized as follow: In Section 2, we derive a leading-order model for
the Euler equations with Riesz forcing (1-4) based on the first author’s Biot–Savart law approximation
[Elgindi 2021]. Then, in Section 3, we obtain a pointwise estimate on the leading-order model which is
the main ingredient in obtaining the strong ill-posedness result for the Euler with Riesz forcing system.
In addition, in Section 3, we also obtain some estimates on the leading-order model in suitable norms
which will be then used in estimating the remainder term in Section 6. After that, in Section 4 we will
recall the Biot–Savart law decomposition obtained in [Elgindi 2021], and we will include a short sketch
of the proof. In Section 5, we will obtain some embedding estimates which will also be used in Section 6
for the remainder term estimates. Then, in Section 6, we show that the remainder term remains small
which will then allow us to prove the main result in Section 7.

1.5. Notation. In this paper, we will be working in a form polar coordinates introduced in [Elgindi 2021].
Let r be the radial variable,

r =

√
x2

+ y2,

and since we will be working with functions of the variable rα, where 0 < α < 1, we will use R to
denote it:

R = rα.
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We will use θ to denote the angle variable:

θ = arctan
y
x
.

We will use | f |L∞ and | f |L2 to denote the usual L∞ and L2 norms, respectively. In addition, we will
use ft or fτ to denote the time variable. Further, in this paper, following [Elgindi 2021], we will be
working on (R, θ) ∈ [0,∞)×

[
0, π2

]
where the L2 norm will be with measure d R dθ and not R d R dθ .

We define the weighted Hk
(
[0,∞)×

[
0, π2

])
norm as

| f |Ḣm =

m∑
i=0

|∂ i
R∂

m−i
θ f |L2 +

m∑
i=1

|Ri∂ i
R∂

m−i
θ f |L2, | f |Hk =

k∑
m=0

| f |Ḣm .

We also define the W k,∞ norm as

| f |Ẇm,∞ =

m∑
i=0

|∂ i
R∂

m−i
θ f |L∞ +

m∑
i=1

|Ri∂ i
R∂

m−i
θ f |L∞, | f |W k,∞ =

k∑
m=0

| f |Ẇm,∞ .

Throughout this paper, we will use the notation

L( f )(R)=
∫

∞

R

f (s)
s

ds

to define operators, and by adding a subscript Ls or Lc we denote the projection onto sin(2θ) and cos(2θ)
respectively. Namely,

Ls( f )(R)= 1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

sin(2θ) dθ ds and Lc( f )(R)= 1
π

∫
∞

R

∫ 2π

0

f (s, θ)
s

cos(2θ) dθ ds.

2. Leading-order model

In this section, we will derive a leading-order model for the Euler equation with Riesz forcing:

∂tω+ u · ∇ω = ∂x u1,

∇ · u = 0,

u =∇
⊥1−1ω.

(2-1)

To do this, we follow [Elgindi 2021] and we write the equation in a form of polar coordinates. Namely,
we set r =

√
x2 + y2, R = rα, and θ = arctan (y/x). We will the rewrite (2-1) in the new functions

ω(x, y)=�(R, θ) and ψ(x, y)= r29(R, θ), with u =∇
⊥ψ , where u1 =−∂yψ and u2 = ∂xψ .

Equations of u in terms of 9:

u1 =−r(2 sin(θ)9 +α sin(θ)R ∂R9 + cos(θ)∂θ9),

u2 = r(2 cos(θ)9 +α cos(θ)R ∂R9 − sin(θ)∂θ9).
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Evolution equation for �:

∂t�+ (−αR∂θ9)∂R�+ (29 +αR∂R9)∂θ�

=
(
−2αR sin(θ) cos(θ)−α2 R sin(θ) cos(θ)

)
∂R9 + (−1+ 2 sin2(θ))∂θ9

+
(
−αR cos2(θ)+αR sin2(θ)

)
∂Rθ9 − (α2 R2 sin(θ) cos(θ))∂R R9 + (sin(θ) cos(θ))∂θθ9.

The elliptic equation for 1(r29(R, θ))=�(R, θ):

49 +α2 R2∂R R9 + ∂θθ9 + (4α+α2)R∂R9 =�(R, θ).

Now using the Biot–Savart decomposition of [Elgindi 2021], see Section 4 for more details, by defining
the operators

Ls(�)(R)=
1
π

∫
∞

R

∫ 2π

0

�(s, θ)
s

sin(2θ) dθ ds and Lc(�)(R)=
1
π

∫
∞

R

∫ 2π

0

�(s, θ)
s

cos(2θ) dθ ds

we have

9(R, θ)=−
1

4α
Ls(�) sin(2θ)− 1

4α
Lc(�) cos(2θ)+ lower-order terms.

Thus, if we ignore the α-terms in the evolution equation, we obtain

∂t�+ (29)∂θ�= (−1+ 2 sin2(θ))∂θ9 + (sin(θ) cos(θ))∂θθ9. (2-2)

Now we consider 9 of the form

9 =−
1

4α
Ls(�) sin(2θ)− 1

4α
Lc(�) cos(2θ),

and plugging it into the evolution equation, we have

∂t�−
( 1

2α
Ls(�)sin(2θ)+ 1

2α
Lc(�)cos(2θ)

)
∂θ�=−(cos(2θ))

(
−

1
2α

Ls(�)cos(2θ)+ 1
2α

Lc(�)sin(2θ)
)

+

(1
2

sin(2θ)
)( 1
α

Ls(�)sin(2θ)+ 1
α

Lc(�)cos(2θ)
)
,

which simplifies to

∂t�−

( 1
2α

Ls(�) sin(2θ)+ 1
2α

Lc(�) cos(2θ)
)
∂θ�=

1
2α

Ls(�).

In order to work with positive solutions and have the angular trajectories moving to the right, we make
the change �→−� and get the final model

∂t�+

( 1
2α

Ls(�) sin(2θ)+ 1
2α

Lc(�) cos(2θ)
)
∂θ�=

1
2α

Ls(�). (2-3)

We now move to study the dynamics of solutions to (2-3).

Proposition 2.1. Let � be a solution to the leading-order model

∂t�+

( 1
2α

Ls(�) sin(2θ)+ 1
2α

Lc(�) cos(2θ)
)
∂θ�=

1
2α

Ls(�), (2-4)
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with initial data of the form �|t=0 = f0(R) sin(2θ). Then we can write � as

�= f + 1
2α

∫ t

0
Ls( fτ ) dτ, (2-5)

where f satisfies the transport equation

∂t f + 1
2α

sin(2θ)Ls( f )∂θ f = 0. (2-6)

Proof. The right-hand side term of (2-4) is radial, and hence if we take the inner product with sin(2θ) it
will be zero. Now if write � as

�t(R, θ)= ft(R, θ)+
1

2α

∫ t

0
Ls(�τ )(R) dτ,

and consider it to be a solution to (2-4), we obtain that f satisfies

∂t ft +

( 1
2α

Ls( ft) sin(2θ)+ 1
2α

Lc( ft) cos(2θ)
)
∂θ ft = 0. (2-7)

Here we used that Ls(�τ )(R) is a radial function. Notice that (2-7) is a transport equation that preserves
odd symmetry. Now if we set

f s
t =

∫ 2π

0
ft(R, θ) sin(2θ) dθ and �s

t =

∫ 2π

0
�t(R, θ) sin(2θ) dθ,

we notice that f s
t and �s

t will satisfy the same equation. Thus, if we start with the same initial conditions
f0 =�0, then

f s
t =�s

t for all t.

Thus, we have Ls(�t)= Ls( ft), and hence

�t = ft +
1

2α

∫ t

0
Ls( fτ ) dτ.

Now since the initial data which we are considering have odd symmetry, it suffices to consider the
transport equation:

∂t ft +
1

2α
sin(2θ)Ls( ft)∂θ ft = 0. □

3. Leading-order model estimate

The purpose of this section is to obtain L∞ estimates for the leading-order model, which is the main
ingredient in obtaining the ill-posedness result for the Euler with Riesz forcing system. This will be done
in Section 3.1 in three steps: Lemma 3.1, Lemma 3.2, and Proposition 3.3. Then in Section 3.2, we will
obtain an estimate for the leading-order model which will be useful in remainder estimates in Section 6.

3.1. Pointwise leading-order model estimate.

Lemma 3.1. Let f be a solution to the transport equation

∂t f + 1
2α

sin(2θ)Ls( f )∂θ f = 0, (3-1)
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with initial data f |t=0 = f0(R) sin(2θ). Then we have the following estimate on the operator Ls( f ):

c1

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds

≤ Ls( ft)(R)≤ c2

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds, (3-2)

where c1 and c2 are independent of α.

Proof. To prove this, we consider the following variable change. For θ ∈
[
0, π2

)
, let γ be defined as

γ := tan(θ) =⇒
dγ
dθ

= sec2(θ), and sin(2θ)=
2γ

1+ γ 2 .

Applying the chain rule, we rewrite (3-1) in the (R, γ )-variables

∂t ft +
1
α
γ Ls( ft)(R) ∂γ f = 0, (3-3)

with initial data

f |t=0 = f0(R) sin(2θ)= f0(R)
2γ

1+ γ 2 .

Let φt(γ ) be the flow map associated with (3-3), so we have

dφt(γ )

dt
=

1
α
φt(γ )Ls( ft) =⇒ φt(γ )= γ exp

(
1
α

∫ t

0
Ls( fτ ) dτ

)
.

Thus,

φ−1
t (γ )= γ exp

(
−

1
α

∫ t

0
Ls( fτ ) dτ

)
.

Hence, we now write the solution to (3-3) as

ft(R, γ )= f0(R, φ−1
t (γ ))= f0(R)

2φ−1
t (γ )

1+φ−1
t (γ )2

= f0(R)
2γ exp

(
−(1/α)

∫ t
0 Ls( fτ ) dτ

)
1+ γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ ) dτ

) .
Now we consider the operator Ls in the (R, γ ) ∈ [0,∞)×

[
0, π2

)
-variables:

Ls( ft)(R)=
1
π

∫
∞

R

1
s

∫
∞

0
ft(s, γ )

2γ
(1+ γ 2)2

dγ ds.

Plugging in the expression for ft , we have

Ls( ft)(R)=
1
π

∫
∞

R

1
s

∫
∞

0
f0(s)

exp
(
−(1/α)

∫ t
0 Ls( fτ )(s) dτ

)
1+ γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ )(s) dτ

) 4γ 2

(1+ γ 2)2
dγ ds. (3-4)

Now since 0 ≤ exp
(
−(2/α)

∫ t
0 Ls( fτ )(s) dτ

)
≤ 1, we have an upper and a lower bound on the operator

on Ls( ft)(R) with constants c1, c2 independent of α (in fact, these constants can be explicitly computed).
Namely,

c1

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s)dτ

)
ds ≤ Ls( ft)(R)≤ c2

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s)dτ

)
ds.

Thus, we have our desired inequalities. □
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Lemma 3.2. Define the operator

L̂( ft)(R) :=
∫

∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
L̂( fs)(s) dτ

)
ds. (3-5)

Then we have ∫ t

0
L̂( fτ )(R) dτ = 2α log

(
1+ t

2α
L( f0)(R)

)
,

where L( f0)(R)=
∫
∞

R f0(s)/s ds.

Proof. We introduce gt(R) := exp
(
−(1/α)

∫ t
0 L̂( fτ )(R) dτ

)
and K (R) := f0(R)/R. Then the operator L̂

can be rewritten as

L̂( ft)(R)=
∫

∞

R
K (s)gt(s) ds. (3-6)

Now taking the time derivative of (3-6), and using that ∂t gt(R)=−(1/α)gt(R)
∫
∞

R K (s)gt(s) ds, we
can obtain

∂t L̂( ft)=−
1

2α
(L̂( ft))

2,

which can be solved explicitly:

L̂( ft)(R)=
L( f0)(R)

1+ (t/(2α))L( f0)(R)
. (3-7)

Then it follows that ∫ t

0
L̂( ft)(R) dτ = 2α log

(
1+ t

2α
L( f0)(R)

)
. □

Proposition 3.3. Let f be a solution to the transport equation

∂t f + 1
2α

sin(2θ)Ls( f )∂θ f = 0, (3-8)

with initial data f |t=0 = f0(R) sin(2θ). Then we have the following estimate on the operator Ls( f ):

2α
c1

log
(

1+
c1

2α
t L( f0)(R)

)
≥

∫ t

0
Ls( fτ )(R)≥

2α
c2

log
(

1+
c2

2α
t L( f0)(R)

)
, (3-9)

where c1 and c2 are independent of α.

Proof. In the section, we will use the bounds in (3-2), namely

c1

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds

≤ Ls( ft)(R)≤ c2

∫
∞

R

f0(s)
s

exp
(
−

1
α

∫ t

0
Ls( fτ )(s) dτ

)
ds, (3-10)

to obtain and upper and lower estimate on
∫ t

0 Ls( f ). As before we set

gt(R)= exp
(
−

1
α

∫ t

0
Ls( fτ )(R) dτ

)
and K (R)=

f0(R)
R

.
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Using (3-10), we can obtain that

−
c1

2α

(∫
∞

R
gt(s)K (s) ds

)2

≥ ∂t

∫
∞

R
gt(s)K (s) ds ≥−

c2

2α

(∫
∞

R
gt(s)K (s) du

)2

. (3-11)

Similar to Lemma 3.2, we define

Ls( ft)(R) :=
∫

∞

R
gt(s)K (s) ds.

Now from (3-11), we have

−
c1

2α
(Ls( ft)(R))2 ≥ ∂t Ls( ft)(R)≥−

c2

2α
(Ls( ft)(R))2.

Thus,
L( f0)(R)

1+ (c1/(2α))t L( f0)(R)
≥ Ls( ft)(R)≥

L( f0)(R)
1+ (c2/(2α))t L( f0)(R)

, (3-12)

which will give us that

2α
c1

log
(

1+
c1

2α
t L( f0)(R)

)
≥

∫ t

0
Ls( fτ )(R)≥

2α
c2

log
(

1+
c2

2α
t L( f0)(R)

)
,

and this completes the proof. □

3.2. Estimate for the leading-order model in W k,∞ and Hk norms. The purpose of this subsection
is to obtain some estimate on the leading-order model in W k,∞ and Hk norms. These will be used to
estimate the size of the remainder term in Section 6. First we will obtain estimates on 92 in Lemma 3.4.
Then in Lemma 3.5, we will obtain estimates on �2.

Lemma 3.4. Let �2 be a solution to the leading-order model:

∂t�2 +

( 1
2α

Ls(�2) sin(2θ)+ 1
2α

Lc(�2) cos(2θ)
)
∂θ�2 =

1
2α

Ls(�2),

with initial data �2|t=0 = f0(R) sin(2θ), where f0(R) is smooth and compactly supported. Consider

92 =
1

4α
Ls(�2) sin(2θ)+ 1

4α
Lc(�2) cos(2θ).

Then, we have the following estimates on 92:

|92|W k+1,∞ ≤
ck

α
, |92|Hk+1 ≤

ck

α
, (3-13)

where ck depends on the initial conditions and is independent of α.

Proof. Recall that from Proposition 2.1, we can write �2 as

�2 = f + 1
2α

∫ t

0
Ls( fτ ) dτ,

and since the initial data is odd in θ , we have

92 =
1

4α
Ls(�t) sin(2θ)= 1

4α
Ls( ft) sin(2θ).



726 TAREK M. ELGINDI AND KARIM R. SHIKH KHALIL

To estimate the size of 92, from (3-4), we have

Ls( ft)(R)=
∫

∞

R

1
s

∫
∞

0
f0(s)

exp
(
−(1/α)

∫ t
0 Ls( fτ )(s) dτ

)
1+ γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ )(s) dτ

) 4γ 2

(1+ γ 2)2
dγ ds.

Using (3-2), we have

|92|L∞ ≤
c
α

∫
∞

R

f0(s)
s

ds ≤
c0

α
.

For ∂θ92, it is clear that we have
|∂θ92|L∞ ≤

c0

α
,

where, similarly, c0 depends on the initial condition.
Now for ∂R92, we have

∂R92 =
1

4α
∂R Ls( ft) sin(2θ).

Thus,

∂R Ls( ft)(R)=−
1
R

∫
∞

0
f0(R)

exp
(
−(1/α)

∫ t
0 Ls( fτ )(R) dτ

)
1+ γ 2 exp

(
−(2/α)

∫ t
0 Ls( fτ )(R) dτ

) 4γ 2

(1+ γ 2)2
dγ,

and similarly, we have
|∂R92|L∞ ≤

c
α
.

Now the estimate on R ∂R92 follows from the estimate on ∂R92 and the fact that the initial data have
compact support. Thus,

|R ∂R92|L∞ ≤
c
α
.

For higher-order derivatives, we can obtain the estimate following the same steps. Hence, we have

|9|W k+1,∞ ≤
ck
α
.

The Hk estimates also follow using the same steps:

|9|Hk+1 ≤
ck
α
. □

In the following lemma, we will obtain the Hk estimates on �2. Here we will use Lemma 3.4 and
transport estimates.

Lemma 3.5. Let �2 be a solution to the leading-order model

∂t�2 +

( 1
2α

Ls(�2) sin(2θ)+ 1
2α

Lc(�2) cos(2θ)
)
∂θ�2 =

1
2α

Ls(�2),

with initial data�2|t=0 = f0(R) sin(2θ), where f0(R) is smooth and compactly supported. Then, we have
the following estimates on �2:

|�2|Hk ≤ cke(ck/α)t , (3-14)

where ck depends on the initial conditions and is independent of α.

Proof. Recall that from Proposition 2.1 we can write �2 as

�2 = f + 1
2α

∫ t

0
Ls( fτ ) dτ,
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where f satisfies the transport equation

∂t ft + 292 ∂θ ft = 0.

When we consider the derivatives of�2, the transport term f dominates the radial term (1/(2α))
∫ t

0 Ls( f )dτ.
Thus, it suffices to consider the Hk estimates on f which will follow from the standard L2 estimate for
the transport equation. Thus, we have

∂t ft + 292∂θ ft = 0 =⇒ ∂t∂θ ft + 2∂θ92∂θ ft + 292∂θθ ft = 0.

Hence,
|∂θ ft |L2 ≤ |∂θ f0|L2e

∫ t
0 |∂θ92|L∞ .

From (3-13) we have |∂θ92|L∞ ≤ c0/α. Thus, applying the Gronwall inequality, we have

|∂θ ft |L2 ≤ |∂θ f0|L2e(c0/α)t . (3-15)

To obtain Hk estimates, we need to estimate terms of the form Rk∂k
R . We will show how to obtain the

R∂R estimate, and for general k, it will follow similarly. Thus, similar to L2 estimate for the ∂θ f case, since

∂t ft + 292∂θ ft = 0,

we have
∂t∂R ft + 2∂R92∂θ ft + 292∂Rθ ft = 0,

and thus,
∂t |R∂R ft |L2 ≤ 2|R∂R92|L∞ |∂θ f |L2 + |∂θ92|L∞ |R∂R ft |L2 .

Now from (3-13), (3-15), and applying the Gronwall inequality we have

|R∂R ft |L2 ≤ (|R∂R f0|L2 + |∂θ f0|L2e(c0/α)t)e(c0/α)t .

Hence,
| f (t)|H1 ≤ | f0|H1e(c1/α)t ,

which implies that
|�2(t)|H1 ≤ |�2(0)|H1e(c1/α)t .

Similarly, using (3-13), the transport estimate, and following the same steps as above, we can obtain
the general Hk estimates. Hence

|�2|Hk ≤ |�2(0)|Hk e(ck/α)t . □

4. Elliptic estimate

The purpose of this section is to recall the Biot–Savart law decomposition of [Elgindi 2021], which is
used here to derive the leading-order model. In this section, we highlight the main ideas in the proof, and
for more details, see [Elgindi 2021; Drivas and Elgindi 2023]. We remark that this is also related to the
Key Lemma of A. Kiselev and V. Šverák [2014]; see also [Elgindi 2016; Elgindi and Jeong 2023] for
generalizations.
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Proposition 4.1 [Elgindi 2021]. Given � ∈ H k such that for every R we have∫ 2π

0
�(R, θ) sin(nθ) dθ =

∫ 2π

0
�(R, θ) cos(nθ) dθ = 0

for n = 0, 1, 2, the unique solution to

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ)

satisfies
|∂θθ9|H k +α|R∂Rθ9|H k +α2

|R2∂R R9|H k ≤ Ck |�|H k , (4-1)

where Ck is independent of α. In addition, we have the weights estimate

|∂θθ Dk
R(9)|L2 +α|R∂Rθ Dk

R(9)|L2 +α2
|R2∂R R Dk

R(9)|L2 ≤ Ck |Dk
R(�)|L2, (4-2)

where Ck is independent of α. Recall that DR = R∂R .

Proof. First, we will show how to obtain (4-1). Since� is orthogonal to sin(nθ) and cos(nθ) for n=0, 1, 2,
9 must also be orthogonal to sin(nθ) and cos(nθ) for n = 0, 1, 2. Consider the elliptic equation, and we
consider the L2 estimate

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ).

Taking the inner product with ∂θθ9 and integrating by parts, we obtain

−4|∂θ9|
2
L2 + |∂θθ9|

2
L2 −α

2
|∂θ9|

2
L2 +α

2
|R∂Rθ9|

2
L2 +

1
2(4α+α

2)|∂θ9|
2
L2 ≤ |�|L2 |∂θθ9|L2 .

Now by assumption, we have
9(R, θ)=

∑
n≥3

9n(R)einθ ,

and hence
|∂θ9|

2
L2 ≤

1
9 |∂θθ9|

2
L2 .

Using the above inequality, we can show that

5
9 |∂θθ9|

2
L2 +α

2
|R∂Rθ9|

2
L2 +

1
2(4α−α

2)|∂θ9|
2
L2 ≤ |�|L2 |∂θθ9|L2,

and thus we have
|∂θθ9|L2 ≤ C0|�|L2,

where C0 is independent of α. The estimate for the R2∂R R9-term will follow similarly. We can also obtain
the H k estimates by following the same strategy. To obtain the (4-2) estimates, recall that DR = R∂R and
we notice that we can write the elliptic equation in the form

49 + ∂θθ9 +α2 D2
R(9)+ 4α DR(9)=�(R, θ).

From this, we observe that the DR operator commutes with the elliptic equation, and hence (4-2) estimates
will follow from (4-1). □
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Theorem 2 [Elgindi 2021]. Given � ∈ H k, where � has the form of

�(R, θ)= f (R) sin(2θ)
(
�(R, θ)= f (R) cos(2θ)

)
,

the unique solution to

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ)

is

9 =−
1

4α
L( f )(R) sin(2θ)+R( f )

(
9 =−

1
4α

L( f )(R) cos(2θ)+R( f )
)
,

where

L( f )(R)=
∫

∞

R

f (s)
s

ds

and

|R( f )|H k ≤ c| f |H k ,

where c is independent of α.

Proof. Consider the case where �(R, θ)= f (R) sin(2θ); the case where �(R, θ)= f (R) cos(2θ) can
be handled similarly. In this case 9(R, θ) will be of the form 9(R, θ)=92(R) sin(2θ), where 92(R)
will satisfy the ODE

α2 R2∂R R92 + (4α+α2)R∂R92 = f (R).

We can solve the ODE, see Theorem 4.24 in [Drivas and Elgindi 2023], and obtain

∂R92(R)=
1
α2

1
R4/α+1

∫ R

0

f (s)
s1−4/α ds.

Now using that 92(R)→ 0 as R →∞, we obtain

92(R)=−
1
α2

∫
∞

R

1
ρ4/α+1

∫ ρ

0

f (s)
s1−4/α ds dρ.

We notice that we can write the above as

92(R)=−
1
α2

∫
∞

R

1
ρ4/α+1

∫ ρ

0

f (s)
s1−4/α ds dρ =

1
4α

∫
∞

R
∂ρ

(
1
ρ4/α

)∫ ρ

0

f (s)
s1−4/α ds dρ.

Thus, by integrating by parts, it follows that

92(R)=−
1

4α

∫
∞

R

f (s)
s

ds −
1

4α
1

R4/α

∫ R

0

f (s)
s1−4/α ds := −

1
4α

L( f )(R)+R( f ).

Using Hardy-type inequality, see Lemma 4.25 in [Drivas and Elgindi 2023], one can show that

|R( f )|L2 ≤ c| f |L2,

where c is independent of α. □
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5. Embedding estimate in terms of the Hk norm

In this section we consider some embedding estimate in the Hk norm which will be used in Section 6.
These estimates will be used various times as we estimate the remainder term. Recall that the Hk norm is
defined as

| f |Ḣm =

m∑
i=0

|∂ i
R∂

m−i
θ f |L2 +

m∑
i=1

|Ri∂ i
R∂

m−i
θ f |L2, | f |Hk =

k∑
m=0

| f |Ḣm .

Lemma 5.1. Let f ∈HN, where N ∈ N. Then we have

|∂k
R∂

m
θ f |L∞ ≤ ck,m | f |Hk+m+2, (5-1)

|Rk∂k
R∂

m
θ f |L∞ ≤ ck,m | f |Hk+m+2 (5-2)

for any k +m + 2 ≤ N.

Proof. We will show how to obtain inequality (5-2), since inequality (5-1) follows from standard Sobolev
embedding. To show that

|Rk∂k
R∂

m
θ f |L∞ ≤ ck,m | f |Hk+m+2,

for any k +m + 2 ≤ N, we apply Sobolev embedding to obtain

|Rk∂k
R∂

m
θ f |L∞ ≤ ck,m |Rk∂k

R∂
m
θ f |H2

R,θ
,

where H 2
R,θ is the standard H 2 norm in R and θ . When considering the second derivative terms of

Rk∂k
R∂

m
θ f , for the angular derivatives term, we have |Rk∂k

R∂
m+2
θ f |L2 ≤ | f |Hk+m+2 . Now for the radial

derivatives, we have three cases. Considering the case when the two radial derivatives land on ∂k
R∂

m
θ f ,

we have
|Rk∂k+2

R ∂m
θ f |L2 ≤ |Rk+2∂k+2

R ∂m
θ f |L2 + |∂k+2

R ∂m
θ f | ≤ | f |Hk+m+2,

where the last inequality follows from the definition of the HN norm. The other two cases follow in a
similar way. □

We will also need some embedding estimates for the stream function 9 in terms of �.

Lemma 5.2. Let � ∈HN, where N ∈ N, satisfy the same conditions as in Proposition 4.1. Then for the
solution 9 of

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ),

we have
|∂k

R∂
m
θ 9|L∞ ≤ ck,m |�|Hk+m+1 (5-3)

for k,m ∈ N with k +m + 1 ≤ N.

Proof. As in Lemma 5.1, applying the Sobolev embedding, we have

|∂k
R∂

m
θ 9|L∞ ≤ ck,m |∂

k
R∂

m
θ 9|H2

R,θ
.

From the elliptic estimates in Proposition 4.1, for any i, n ∈ N, we have

|∂ i
R∂

n
θ9|L2 ≤ ci,n|�|Hi+n−1 . (5-4)
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Thus, to bound |∂k
R∂

m
θ 9|H2

R,θ
, we take � to be in Hk+m+1. Hence, we have

|∂k
R∂

m
θ 9|L∞ ≤ ck,m |�|Hk+m+1, (5-5)

completing the proof. □

Lemma 5.3. Let � ∈HN, where N ∈ N, satisfying the same conditions as in Proposition 4.1. Then for
the solution 9 of

49 + ∂θθ9 +α2 R2∂R R9 + (4α+α2)R∂R9 =�(R, θ),

we have
|Rk∂k

R∂
m
θ 9|L∞ ≤ ck,m |�|Hk+m+1 (5-6)

for k,m ∈ N with k +m + 1 ≤ N.

Proof. As in Lemma 5.1, applying the Sobolev embedding, we have

|Rk∂k
R∂

m
θ 9|L∞ ≤ ck,m |Rk∂k

R∂
m
θ 9|H2

R,θ
.

From the elliptic estimates in Proposition 4.1, for any i, n ∈ N, we have

|∂ i
R∂

n
θ9|L2 ≤ ci,n|∂

i
R∂

n−1
θ �|L2 ≤ ci,n|�|Hi+n−1 (5-7)

and
|Ri∂ i

R∂
n
θ9|L2 ≤ ci,n|�|Hi+n−1 . (5-8)

Thus, if we look at the second derivative terms of Rk∂k
R∂

m
θ 9, we can use the above inequalities to

obtain the desired estimate. For the angular derivative term, we have |Rk∂k
R∂

m+2
θ 9|L2 ≤ ck,m |�|Hk+m+1 .

When considering the radial derivative terms, we have three terms. For the Rk∂k+2
R ∂m

θ 9-term, applying
(5-7) and (5-8), we have

|Rk∂k+2
R ∂m

θ 9|L2 ≤ |Rk+2∂k+2
R ∂m

θ 9|L2 + |∂k+2
R ∂m

θ 9| ≤ ck,m |�|Hk+m+1 .

The other terms can be handled in similar way. Hence, we have our desired result. □

6. Reminder estimate

In this section, we obtain an error estimate on the remaining terms in the Euler with Riesz forcing. Recall
that � satisfies the evolution equation

∂t�+ (−αR∂θ9) ∂R�+ (29 +αR∂R9) ∂θ�

=
(
2αR sin(θ) cos(θ)+α2 R sin(θ) cos(θ)

)
∂R9 + (1− 2 sin2(θ)) ∂θ9

+
(
αR cos2(θ)+αR sin2(θ)

)
∂Rθ9 + (α2 R2 sin(θ) cos(θ)) ∂R R9 − (sin(θ) cos(θ)) ∂θθ9, (6-1)

and the elliptic equation is

49 +α2 R2∂R R9 + ∂θθ9 + (4α+α2)R∂R9 =�(R, θ). (6-2)

From Section 2, the leading-order model for the Euler with Riesz forcing equation satisfies

∂t�2 + (292)∂θ�2 = (−1+ 2 sin2(θ))∂θ92 + (sin(θ) cos(θ)) ∂θθ92, (6-3)
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where
92(R, θ)=

1
4α

Ls(�2) sin(2θ)+ 1
4α

Lc(�2) cos(2θ). (6-4)

Now set �r :=�−�2 to be the remainder term for the vorticity, and similarly set 9r :=9−92 to be
the remainder term for the stream function. Thus, we have that the remainder, �r , satisfies the evolution
equation

∂t�r + (−αR(∂θ92 + ∂θ9r ))(∂R�2 + ∂R�r )+ (292∂θ�r + 29r∂θ�2 + 29r∂θ�r )

+ (αR(∂R92 + ∂R9r ))(∂θ�2 + ∂θ�r )

=
(
2αR sin(θ) cos(θ)+α2 R sin(θ) cos(θ)

)
(∂R92 + ∂R9r )

+ (1− 2 sin2(θ))∂θ9r +α(R cos2(θ)− R sin2(θ))(∂Rθ92 + ∂Rθ9r )

+α2(R2 sin(θ) cos(θ))(∂R R92 + ∂R R9r )− (sin(θ) cos(θ))∂θθ9r . (6-5)

The goal of this section is to show that �r remains small. Namely, using energy methods, for some
time T, we show that

supt≤T |�r (t)|L∞ ≤ Cα1/2

for some constant C independent of α.

Lemma 6.1. Let �r =�−�2 satisfy (6-5) with � and �2 satisfying (6-1) and (6-3), respectively. Let
9r =9 −92 with 9 and 92 satisfying (6-2) and (6-4), respectively. Then we have the estimates

|∂k
R∂

m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 and |Rk∂k

R∂
m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 (6-6)

for k,m ∈ N.

Proof. Recall that by the Biot–Savart law decomposition [Elgindi 2021] (see Section 4 for more details),
we have the following decomposition for the elliptic equation (6-2):

9(R, θ)= 1
4α

Ls(�) sin(2θ)+ 1
4α

Lc(�) cos(2θ)+R(�),

with R(�) bounded on HN with a constant independent of α. This follows from the elliptic estimates
in Proposition 4.1 and Theorem 2 in Section 4. Now since we defined �r =�−�2 and 9r =9 −92,
with �2, and 92 satisfying (6-3), and (6-4), respectively, we have the following decomposition for 9r :

9r (R, θ)=
1

4α
Ls(�r ) sin(2θ)+ 1

4α
Lc(�r ) cos(2θ)+R(�r )+R(�2). (6-7)

Hence, this gives the estimates

|∂k
R∂

m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 and |Rk∂k

R∂
m
θ 9r |L2 ≤

ck,m

α
|�r |Hk+m−1 . □

We define the following terms to shorten the notation:

I1 =−αR(∂θ92 + ∂θ9r )(∂R�2 + ∂R�r ),

I2 = (292∂θ�r + 29r∂θ�2 + 29r∂θ�r ),

I3 = αR(∂R92 + ∂R9r )(∂θ�2 + ∂θ�r ),

I4 = 2α(1−α)R sin(θ) cos(θ)(∂R92 + ∂R9r ),
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I5 = (1− 2 sin2(θ))∂θ9r ,

I6 = α(R cos2(θ)− R sin2(θ))(∂Rθ92 + ∂Rθ9r ),

I7 = α
2(R2 sin(θ) cos(θ))(∂R R92 + ∂R R9r ),

I8 =−(sin(θ) cos(θ))∂θθ9r .

Now we have the error estimate proposition.

Proposition 6.2. Let �r =�−�2 satisfy (6-5) with �r |t=0 = 0. Then

sup0≤t<T |�r (t)|L∞ ≤ cNα
1/2,

where T = cα log(c|log(α)|) and c is a small constant independent of α.

Proof. We will use ∂N to refer to any mixed derivatives in R and θ of order N (not excluding pure R- and
θ -derivatives). From the definition of the HN norm, to obtain the HN estimate we will take the following
inner product with each Ii -term:

⟨∂N Ii , ∂
N�r ⟩ and ⟨Rk∂k

R∂
N−k
θ Ii , Rk∂k

R∂
N−k
θ �r ⟩

for 0 ≤ k ≤ N and 1 ≤ i ≤ 8.

Estimate on I1 and I3: Here we will estimate I1 and I3. The estimate of I3 is very similar to I1, and so
we will just show how to obtain the estimate on I1.

Estimate on I1: We can write I1 as

I1 =−αR(∂θ92 + ∂θ9r )(∂R�2 + ∂R�r )

=−α(∂θ92)R(∂R�2)−α(∂θ92)R(∂R�r )−α(∂θ9r )R(∂R�2)−α(∂θ9r )R(∂R�r )

= I1,1 + I1,2 + I1,3 + I1,4,

and we will estimate each term separately.

• I1,1 =−α∂θ92 R∂R�2. Here we have

⟨∂N (α∂θ92 R∂R�2), ∂
N�r ⟩ =

N∑
i=0

ci,N

∫
∂ i (α∂θ92)∂

N−i (R∂R�2) ∂
N�r .

Now from Lemmas 3.4 and 3.5, we know that

|92|W k+1,∞ ≤
ck
α

and |�2|Hk ≤ |�2(0)|Hk e(ck/α)t .

Thus, we have
N∑

i=0

∫
α∂ i (∂θ92)∂

N−i (R∂R�2) ∂
N�r ≤ cN

N∑
i=0

α|∂ i∂θ92|L∞ |∂N−i (R∂R�2)|L2 |∂N�r |L2

≤ cNα|92|WN+1,∞ |�2|HN+1 |�r |HN

≤ α
cN

α
e(cN /α)t |�r |HN ≤ cN e(cN /α)t |�r |HN ,
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and similarly we have

⟨∂k
R∂

N−k
θ (α∂θ92 R∂R�2), R2k∂k

R∂
N−k
θ �r ⟩

= ci,m,N

∫ N∑
i+m=0

∂ i
R∂

m
θ (α∂θ92) ∂

k−i
R ∂N−k−m

θ (R∂R�2) R2k∂k
R∂

N−k
θ �r .

From the definition of the WN+1,∞ norm, we have for i +m ≤ N,

|Ri∂ i
R∂

m+1
θ 92|L∞ ≤ |92|WN+1,∞ .

Again, applying Lemmas 3.4 and 3.5, we obtain

N∑
i+m=0

∫
Ri∂ i

R∂
m
θ (α∂θ92) Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�2) Rk∂k

R∂
N−k
θ �r

≤ cN

N∑
i+m=0

α|Ri∂ i
R∂

m+1
θ 92|L∞ |Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�2)|L2 |Rk∂k

R∂
N−k
θ �r |L2

≤ cNα|92|WN+1,∞ |�2|HN+1 |�r |HN ≤ α
cN

α
e(cN /α)t |�r |HN ≤ cN e(cN /α)t |�r |HN .

Thus, we have

⟨I1,1, �r ⟩HN ≤ cN e(cN /α)t |�r |HN . (6-8)

• I1,2 =−α∂θ92 R∂R�r . Here we have

⟨∂N (α∂θ92 R∂R�r ), ∂
N�r ⟩ =

N∑
i=0

ci,N

∫
∂ i (α∂θ92)∂

N−i (R∂R�r )∂
N�r .

To obtain this estimate, we again apply Lemma 3.4. Namely, that |92|W k+1,∞ ≤ ck/α. When i = 0, we
integrate by parts and obtain∫

(α∂θ92)∂
N (R∂R�r ) ∂

N�r ≤ c|92|W2,∞ |�r |
2
HN ≤

cN

α
|�r |

2
HN .

For 1 ≤ i ≤ N we have
N∑

i=1

∫
α∂ i (∂θ92)∂

N−i (R∂R�r ) ∂
N�r ≤ cN

N∑
i=1

α|∂ i∂θ92|L∞ |∂N−i (R∂R�r )|L2 |∂N�r |L2

≤ cNα|92|WN+1,∞ |�r |HN |�r |HN ≤ α
cN

α
|�r |

2
HN ≤ cN |�r |

2
HN .

Similarly, now for the Rk∂k
R∂

N−k
θ -terms we have

⟨Rk∂k
R∂

N−k
θ (α∂θ92 R∂R�r ), Rk∂k

R∂
N−k
θ �r ⟩

= ci,m,N

∫ N∑
i+m=0

Rk∂ i
R∂

m
θ (α∂θ92) ∂

k−i
R ∂N−k−m

θ (R∂R�r ) Rk∂k
R∂

N−k
θ �r .
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We again use |92|W k+1,∞ ≤ ck/α. Hence, we have
N∑

i+m=0

∫
Ri∂ i

R∂
m
θ (α∂θ92) Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�r ) Rk∂k

R∂
N−k
θ �r

≤ cN

N∑
i+m=0

α|Ri∂ i
R∂

m+1
θ 92|L∞ |Rk−i ∂k−i

R ∂N−k−m
θ (R∂R�r )|L2 |Rk∂k

R∂
N−k
θ �r |L2

≤ cNα|92|WN+1,∞ |�r |HN |�r |HN ≤ α
cN

α
|�r |

2
HN ≤ cN |�r |

2
HN .

Thus, we have
⟨I1,2, �r ⟩HN ≤ cN |�r |

2
HN . (6-9)

• I1,3 =−α(∂θ9r )R∂R�2. To obtain the estimate on I1,3, we will use Lemma 3.5, which will give us
the estimate on �2. In addition, to bound the ∂θ9r -term, we will use the decomposition of 9r (6-7) and
estimate (6-6) combined with the elliptic estimates from Proposition 4.1 and embedding estimates from
Lemma 5.2. Now we have

⟨∂N (α∂θ9r R∂R�2), ∂
N�r ⟩ =

N∑
i=0

ci,N

∫
∂ i (α∂θ9r )∂

N−i (R∂R�2) ∂
N�r .

When 0 ≤ i ≤ N/2, we will use the embedding from Lemma 5.1. Namely that

|∂ i∂θ9r |L∞ ≤ ci |∂θ9r |Hi+2 .

Then, applying Lemma 6.1, we have

|∂θ9r |Hi+2 ≤
ci

α
|�r |Hi+2 .

Thus,
N/2∑
i=0

∫
∂ i (α∂θ9r )∂

N−i (R∂R�2) ∂
N�r ≤

N/2∑
i=0

α|∂ i∂θ9r |L∞ |∂N−i (R∂R�2)|L2 |∂N�r |L2

≤

N/2∑
i=0

α
ci

α
|�r |Hi+2 |�2|HN+1 |�r |HN

≤ |�r |HN/2+2 |�2|HN+1 |�r |HN ≤ cN ecN /α|�r |
2
HN .

Here we used Lemma 3.5 for the |�2|HN+1-term.
When N/2 ≤ i ≤ N , we will use Lemma 6.1. Namely,

|∂ i∂θ9r |L2 ≤
ci

α
|�r |Hi .

Thus, we have
N∑

i=N/2

∫
∂ i (α∂θ9r )∂

N−i (R∂R�2) ∂
N�r ≤

N∑
i=N/2

α|∂ i∂θ9r |L2 |R∂R�2|WN−i,∞ |∂N�r |L2

≤

N∑
i=N/2

α
ci

α
|�r |Hi |�2|WN/2,∞ |�r |HN

≤ cN |�r |HN |�2|HN |�r |HN ≤ cN e(cN /α)t |�r |
2
HN .
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Similarly, to estimate the inner product

⟨∂k
R∂

N−k
θ (α(∂θ9r )R∂R�2), R2k∂k

R∂
N−k
θ �r ⟩ ≤ cN e(cN /α)t |�r |

2
HN ,

we will use the weighted embedding estimates from Lemma 5.1 combined with Lemma 6.1. Following
the same steps as we did in the previous inner product, we obtain

⟨I1,3, �r ⟩HN ≤ cN e(cN /α)t |�r |
2
HN . (6-10)

• I1,4 =−α(∂θ9r )R∂R�r . To obtain the estimate on I1,4, we will use Lemma 6.1 and the embedding
estimate from Lemma 5.1 to handle the ∂θ9r -term. To handle the R∂R�r -term, we will use embedding
estimates from Lemma 5.1 and follow the same steps as we did in the previous inner product. We will
only show how to obtain the estimate on the term

⟨∂k
R∂

N−k
θ (α∂θ9r R∂R�r ), R2k∂k

R∂
N−k
θ �r ⟩

= ci,m,N

∫ N∑
i+m=0

∂ i
R∂

m
θ (α∂θ9r ) ∂

k−i
R ∂N−k−m

θ (R∂R�r ) R2k∂k
R∂

N−k
θ �r .

For the other inner product, the idea is the same. To start the estimate, first we consider the case when
i = m = 0. We integrate by parts and use the embedding estimates in Lemmas 5.1 and 6.1 to estimate the
∂θ9r -term. We have∫
α∂θ9r (Rk+1∂k+1

R ∂N−k
θ �r + Rk∂k

R∂
N−k
θ �r ) Rk∂k

R∂
N−k
θ �r

≤ α|R∂Rθ9r |L∞ |Rk∂k
R∂

N−k
θ �r |

2
L2 +α|∂θ9r |L∞ |Rk∂k

R∂
N−k
θ �r |

2
L2

≤ cN (|�r |H3 |�r |
2
HN + |�r |H2 |�r |

2
HN )

≤ cN |�r |
3
HN .

Now when 1 ≤ i +m ≤ N/2, we will again use Lemmas 5.1 and 6.1 and the definition of the Hk norm
to obtain

N/2∑
i+m≥1

Ri∂ i
R∂

m
θ (α∂θ9r )

(
Rk+1−i∂k+1−i

R ∂N−k−m
θ �r + Rk−i∂k−i

R ∂N−k−m
θ �r

)
Rk∂k

R∂
N−k
θ �r

≤

N/2∑
i+m≥1

α|Ri ∂ i
R∂

m+1
θ 9r |L∞ |Rk+1−i∂k+1−i

R ∂N−k−m
θ �r |L2 |Rk∂k

R∂
N−k
θ �r |L2

+

N/2∑
i+m≥1

α|Ri ∂ i
R∂

m+1
θ 9r |L∞ |Rk−i∂k−i

R ∂N−k−m
θ �r |L2 |Rk∂k

R∂
N−k
θ �r |L2

≤ cN

N/2∑
i+m≥1

|�r |Hi+m+2(|�r |HN + |�r |HN−1)|�r |HN

≤ cN |�r |HN/2+3(|�r |HN + |�r |HN−1)|�r |HN

≤ cN |�r |
3
HN .
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Now for the case when N/2 ≤ i +m ≤ N, we will use Lemmas 5.1 and 6.1 to obtain
N∑

i+m≥N/2

Ri∂ i
R∂

m
θ (α∂θ9r )

(
Rk+1−i∂k+1−i

R ∂N−k−m
θ �r + Rk−i∂k−i

R ∂N−k−m
θ �r

)
Rk∂k

R∂
N−k
θ �r

≤

N∑
i+m≥N/2

α|Ri ∂ i
R∂

m+1
θ 9r |L2

(
|Rk+1−i∂k+1−i

R ∂N−k−m
θ �r |L∞

)
|Rk∂k

R∂
N−k
θ �r |L2

+

N∑
i+m≥N/2

α|Ri ∂ i
R∂

m+1
θ 9r |L2

(
|Rk−i∂k−i

R ∂N−k−m
θ �r |L∞

)
|Rk∂k

R∂
N−k
θ �r |L2

≤

N∑
i+m≥N/2

|�r |Hi+m
(
|�r |HN−(i+m)+3 + |�r |HN−(i+m)+2

)
|�r |HN

≤ cN |�r |HN |�r |HN/2+3 |�r |HN ≤ cN |�r |
3
HN ,

and thus, we have

⟨I1,4, �r ⟩HN ≤ cN |�r |
3
HN . (6-11)

Thus, we have the following estimate on the I1-term:

⟨I1, �r ⟩HN ≤ cN e(cN /α)t |�r |HN + cN e(cN /α)t |�r |
2
HN + cN |�r |

3
HN . (6-12)

Estimate on I3: The estimate on I3 follows similarly to I1, so we skip the details for this case. One can
obtain

⟨I3, �r ⟩HN ≤ cN e(cN /α)t |�r |HN + cN e(cN /α)t |�r |
2
HN + cN |�r |

3
HN . (6-13)

Estimate on I2: Here we have

I2 = (292∂θ�r + 29r∂θ�2 + 29r∂θ�r )= I2,1 + I2,2 + I2,3.

• I2,1 = 292∂θ�r . To estimate I2,1, we follow the same steps as in the I1-term. Using Lemma 3.4,
namely that |92|WN ,∞ ≤ cN/α, we have

⟨I2,1, �r ⟩HN ≤
cN

α
|�r |

2
HN . (6-14)

• I2,2 = 29r∂θ�2. Similarly, to estimate I2,2 we also follow the same steps as we did in I1. More
specifically, to handle the 9r -term, we will follow similar steps as for the terms I1,3 and I1,4. Namely,
we will apply embedding estimates and Lemma 6.1 to estimate the 9r -term. To estimate �2, we use
Lemma 3.5 to obtain that |�2|Hk ≤ |�2(0)|Hk e(ck/α)t . Thus we have

⟨I2,2, �r ⟩HN ≤
cN

α
e(cN /α)t |�r |

2
HN . (6-15)

• I2,3 = 29r∂θ�r . This term I2,3 can be estimated similarly to the I1,4-term by using embedding and
Lemma 6.1. Hence, we obtain

⟨I2,3, �r ⟩HN ≤
cN

α
|�r |

3
HN . (6-16)
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Thus we have

⟨I2, �r ⟩HN ≤
cN

α
|�r |

2
HN +

cN

α
e(cN /α)t |�r |

2
HN +

cN

α
|�r |

3
HN ≤

cN

α
e(cN /α)t |�r |

2
HN +

cN

α
|�r |

3
HN . (6-17)

Estimates on I4, I5, I6, I7, and I8: We can write I4 as

I4 = 2αR sin(θ) cos(θ)+α2 R sin(θ) cos(θ))(∂R92 + ∂R9r )

= α(2+α) sin(θ) cos(θ) R∂R92 +α(2+α) sin(θ) cos(θ) R∂R9r = I4,1 + I4,2.

Recall that
I5 = (1− 2 sin2(θ))∂θ9r .

We can also rewrite and I6 and I7 as

I6 = α(cos2(θ)− sin2(θ))R(∂Rθ92 + ∂Rθ9r )

= α(cos2(θ)− sin2(θ))R∂Rθ92 +α(cos2(θ)− sin2(θ))R∂Rθ9r = I6,1 + I6,2

and
I7 = α

2(sin(θ) cos(θ))R2(∂R R92 + ∂R R9r )

= α2(sin(θ) cos(θ))R2 ∂R R92 +α
2(sin(θ) cos(θ))R2 ∂R R9r = I7,1 + I7,2.

Recall that
I8 =− sin(θ) cos(θ) ∂θθ9r .

Now for i = 4, 6, and 7, using Lemma 3.4, namely that |9|Hk+1 ≤ ck/α, we have the estimate

⟨Ii,1, �r ⟩HN ≤ cN |�r |HN for i = 4, 6, 7. (6-18)

Using Lemma 6.1, we obtain

⟨Ii,2, �r ⟩HN ≤ α
cN

α
|�r |

2
HN = cN |�r |

2
HN for i = 4, 6, 7 (6-19)

and
⟨Ii , �r ⟩HN ≤

cN

α
|�r |

2
HN for i = 5, 8. (6-20)

Hence, from (6-18), (6-19), (6-20), we have

⟨Ii , �r ⟩HN ≤ cN |�r |HN +
cN

α
|�r |

2
HN for i = 4, 5, . . . , 8. (6-21)

Total remainder estimate: Here we obtain the total error estimate. From our previous work we have

d
dt

|�r |
2
HN = ⟨∂t�r , �r ⟩HN ≤

8∑
i=1

|⟨Ii , �r ⟩HN |,

and thus from (6-12), (6-13), (6-17), and (6-21), we have

d
dt

|�r |
2
HN ≤ cN e(cN /α)t |�r |HN +

cN

α
e(cN /α)t |�r |

2
HN +

cN

α
|�r |

3
HN ,

and hence
d
dt

|�r |HN ≤ cN e(cN /α)t +
cN

α
e(cN /α)t |�r |HN +

cN

α
|�r |

2
HN . (6-22)
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Now since we have �r |t=0 = 0, we will use bootstrap argument to close the remainder estimate. We
will assume that |�r |HN ≤ 2cNα

1/2 for time 0< t ≤ T, and then show that |�r (t)|HN ≤ cNα
1/2, and this

will give the remainder estimate. Let us assume that

|�r |HN ≤ 2cNα
1/2.

Then from (6-22) we have

d
dt

|�r |HN ≤ cN e(cN /α)t +
cN

α
e(cN /α)t |�r |HN + 4c3

N ,

and thus

|�r |HN ≤

(∫ t

0
cN e(cN /α)τ + 4c3

N dτ
)

exp
(∫ t

0

cN

α
e(cN /α)τ dτ

)
≤ (αcN e(cN /α)t + 4c3

N t) exp(cN e(cN /α)t).

Hence, if we choose our time scale 0< t ≤ T (α)= c1α log(c2|log(α)|) for c1 and c2 small constants, for
example, take c1 = 1/cN , and c2 = 1/(4cN ), we have

|�r |HN ≤ cNα
1/2,

which completes the bootstrap argument and gives the proof of Proposition 6.2. □

7. Main result

We now recall and prove the main theorem of this work.

Theorem 3. For any α, δ>0, there exists initial dataωα,δ0 ∈C∞
c (R

2) and T (α) such that the corresponding
unique global solution, ωα,δ, to (1-4) is such that at t = 0 we have

|ω
α,δ
0 |L∞ = δ,

but for any 0< t ≤ T (α) we have

|ωα,δ(t)|L∞ ≥ |ω0|L∞ + c log
(

1+ c
α

t
)
,

where T (α)= cα log(c|log(α)|), and c > 0 is a constant independent of α that depends linearly on δ.

Proof. Consider the initial data of the form

ω0 =�|t=0 = f0(R) sin(2θ),

where f0(R), with R = rα, is a nonnegative compactly supported smooth function which is zero on[
0, 1

2

]
∪ [1,∞) and positive outside. We know that we can write �=�2 +�r , and from the form of the

initial data, we have �r |t=0 = 0 and thus from Proposition 6.2 we have

|�r (t)|L∞ ≤ cNα
1/2

for 0 ≤ t ≤ T (α) = cα log(c|log(α)|), where recall that c is a small constant independent of α. Recall
also that we can write �2 as

�2 = f + 1
2α

∫ t

0
Ls( fτ ) dτ,
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and thus from Proposition 3.3, we obtain

�2 = f + 1
2α

∫ t

0
Ls( fτ ) dτ ≥ f + c0 log

(
1+ c0

α
t
)

for some c0 independent of α and thus we have our desired result. □
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