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AN OPTIMAL CONTROL PROBLEM OF TRAFFIC FLOW

ON A JUNCTION

Pierre Cardaliaguet1,* and Panagiotis E. Souganidis2

Abstract. We investigate how to control optimally a traffic flow through a junction on the line by
acting only on speed reduction or traffic light at the junction. We show the existence of an optimal
control and, under structure assumptions, provide optimality conditions. We use this analysis to inves-
tigate thoroughly the maximization of the flux on a space-time subset and show the existence of an
optimal control which is bang-bang.
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1. Introduction

In this note, we investigate how to control optimally a traffic flow through a junction on the line by acting
only on speed reduction or traffic light at the junction.

In our setting, the evolution of the density ρA of the vehicles is given by a conservation law of the form


ρAt + (fL(ρA))x = 0 in (−∞, 0)× (0, T ),

ρAt + (fR(ρA))x = 0 in (0,∞)× (0, T ),

ρAt (0, t) ∈ G(A)(t) a.e. in (0, T ),

ρA(x, 0) = ρ0(x) in R.

(1.1)

Here fL : [0, RL] → R and fR : [0, RR] → R are two strictly concave flux functions vanishing respectively at 0
and RL and at 0 and RR. The measurable initial condition ρ0 : R → R is such that ρ0 ∈ [0, RL] on (−∞, 0)
and ρ0 ∈ [0, RR] on (0,∞). The time-dependent control is the flux limiter A = A(t) which acts on the traffic
through the junction condition, that is

ρAt (0, t) = (ρAt (0
−, t), ρAt (0

+, t)) ∈ G(A)(t) a.e. in (0, T ),
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where ρAt (0
−, t) and ρAt (0

+, t) are understood in the sense of traces, which exist since ρA solves a scalar
conservation law with a strictly concave flux. Finally, the time dependent germ G(A)(t) is given by

G(A)(t) =
{
e = (eL, eR) ∈ Q, fL(eL) = fR(eR) = min{−A(t), fL,+(eL), fR,−(eR)}

}
,

where Q = [0, RL] × [0, RR], A0 = −min{max fL,max fR} and f+ and f− denote respectively the increasing
and decreasing parts of a given map f . We note that is known, see, for example, [1], that, for piecewise constant
controls A : [0, T ] → [A0, 0], there exists a unique entropy solution ρA to (1.1).

The general optimal control problem is the minimization over all piecewise constant maps A : [0, T ] → R of
a quantity of the form

� T

0

�
R
ψ(x, t, ρA(x, t), A(t))dt (1.2)

where ψ : R× [0, T ]×R+ × [A0, 0] → R is a continuous function with a compact support and convex in the last
variable.

Models about the optimal control of traffic flow have attracted considerable attention recently; see, for
example, the monograph [2] and to the survey papers [3, 4]. In fact, several optimal control problems of the
type discussed above have been looked at in the literature, some of which having for more general junction
conditions; see, for instance, [2, 5–13]. In particular, [11] derives optimality conditions assuming the smoothness
of the optimal solution. In [9], the controls are assumed to be constant in time. Reference [10] discusses how
to minimize the queue length, the total variation of traffic speed (see also [14]), and general functions of the
density as in (1.2) for problems on the half-line. As it is explained in [10], this later case includes the “travel
time”, that is, the average time needed to reach a given position. The main result of [10] is the existence of
optimal solutions when controlling the flux at the entry of the road. In [15] (see also [12]), the authors study
problems on a junction. Their aim is to optimize integrals in time of a function of the flux at the node, namely,
expressions of the form ψ(fL(ρA(0−, t)), fR(ρA(0+, t)) and prove the existence of an optimal solution under a
total variation constraint on the control.

Our objective is to show that the problem consisting in minimizing (1.2) has a (relaxed) minimum (Thm. 3.1),
to give optimality conditions in the case where ψ is a linear function of ρA or of fL/R(ρA) (Thm. 4.2) and to
show that, under suitable structure conditions on ψ and the initial condition (including the case of maximizing
the flux on a space-time box), the relaxed control is piecewise constant and takes values in {0, A0} (Thm. 5.1).
Note that this latter result is meaningful in the context of traffic flows. It shows that it is more efficient to stop
the traffic by using traffic lights with only a finite number of switches than to slow it down by reducing the
speed. We underline however that the optimal solution depends on the choice of both the initial condition and
the cost function.

The existence of a solution is a new result since it does not require any BV bound on the control in contrast
to other results in the literature [9, 15]. The price to pay is that the optimal control is then a priori in L∞ and
not BV. As a result, it is necessary to interpret the solution in a suitable way (see below). Note, however, that,
under the assumptions of Theorem 5.1, the relaxed optimal control turns out to be piecewise constant, and thus
a “classical” control. With the exception of [11], where the optimal solution, that is, the pair (A, ρA)) is supposed
to be smooth, and [9], in which controls are assumed to be constant in time, there is no optimality conditions
in the literature. Here we obtain such conditions, at least under specific structure assumptions. Finally, we
derive from these conditions that the optimal control is bang-bang for the problem of maximizing the flux in a
space-time box.

As the direct analysis of the minimization problem in (1.2) is delicate, we rely on the representation of the
solution ρA in terms of Hamilton-Jacobi equations. This approach is classical in the literature; see, for example,
[16] and the references therein or [2], Section 3.3.1 for a comprehensive account. It amounts to replacing the
density ρA by the Moskowitz function uA = uA(x, t), which, roughly speaking, counts the number of vehicles
passed by location x before time t. Then ρA = −uAx and uA is the unique viscosity solution of the Hamilton-Jacobi
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equation on the junction problem
uAt (x, t) +HL(uAx (x, t)) = 0 in (−∞, 0)× (0, T ),
uAt (x, t) +HR(uAx (x, t)) = 0 in (0,∞)× (0, T ),
uAt (0, t) + max{A(t), HL,+(uAx (0

−, t)), HR,−(uAx (0
+, t))} = 0 in (0, T ),

uA(x, 0) = u0(x) in R,

(1.3)

where HL/R(v) = −fL/R(−v). Note that HL/R : (−RL/R, 0) → R are smooth uniformly convex Hamiltonians
with HL/R(−RL/R) = HL/R(0) = 0. The initial condition u0 : R → R is a Lipschitz map such that u0,x = −ρ0,
(u0)x ∈ (−RL, 0) on (−∞, 0) and u0,x ∈ (−RR, 0) on (0,∞). The (now relaxed) control A is a measurable map
taking values in [A0, 0], where A0 = max{minHL,minHR}.

The optimization problem (1.2) then consists in minimizing over measurable controls A, taking values in
[A0, 0], the cost

J(A) =

� T

0

�
R
ψ̃(x, t, uAx (x, t), A(t))dt, (1.4)

where ψ̃(x, t, ρ, A) = ψ(x, t,−ρ,A) is continuous function with a compact support which is convex in the last
variable. We summarize saying that we study the optimization problem

min{J(A) : A : (0, T ) → [A0, 0] measurable}, (1.5)

with J(A) as in (1.4).
Note that we restrict our analysis to a single junction on the line. The reason for this is that it is known from

[17] that the junction conditions on a more general junction can be in general much more intricate. For example,
the control parameter in the case of one entry and two exit lines could be at each time a function describing
how to dispatch the entry to the exits. In addition, the method of proof developed in this paper break down in
this three lines model because the equivalence between conservation law and Hamilton-Jacobi equations is lost.

The second strong restriction of the paper is the structure of ψ to obtain optimality conditions. If the existence
of optimal solution can be derived under the general conditions given above, in order to study the optimality
conditions we need to assume the cost functional to be written in the form

J(A) =

� T

0

�
R
[ϕ(x, t)uA(x, t) + f(A(t))]dt, (1.6)

for a suitable continuous map ϕ : R × [0, T ] → R with a compact support and f : [A0, 0] → R of class C1 and
convex. The reason for this restriction is that the derivative uAx has a very singular dependence with respect to
the variations of A. We show, however, that the map A→ uA(x, t) has directional derivatives in many directions,
which allows to derive optimality conditions. The cost function (1.4) can actually be written in the form (1.6)
when the map ψ is an affine function of ρ or of f(ρ). This includes the problems consisting in maximizing the
flux or minimizing the travel time.

In this Hamilton-Jacobi setting, our main results are: the existence of an optimal minimizer A ∈
L∞([0, T ], [A0, 0]) for the optimization problem (1.5) (Thm. 3.1). Following [18] (see also [19–22]), it is known
that, given a piecewise constant control A taking values in [A0, 0], the Hamilton-Jacobi equation (1.3) has a
unique viscosity solution uA and that ρA = −uAx is the unique entropy solution of (1.1) (see [23]). The defini-
tion of a solution uA, when A is just measurable, is made by using a representation formula (see Def. 2), the
equivalence between the two formulations (viscosity solution and representation formula) being known when A
is piecewise constant. Assuming that the cost function J takes the form (1.6), we also obtain an optimality con-
dition on the minimizer (Thm. 4.2). We then study thoroughly the nature of the maximizer when the problem
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consists in maximizing the flux on a space-time box of the form [x1, x2] × [t1, t4]. Under suitable assumptions
on the data, we show that the optimal control is piecewise constant and takes its values in {0, A0} (Thm. 5.1).
We also give an example in which constant controls are not optimal (Prop. 5.23).

The paper is organized as follows. We first introduce our standing assumptions and notations (Sect. 2). Then
we prove the existence of a minimizer to (1.4) (Sect. 3). Section 4 gives the optimality condition, while Section 5
is devoted to problem of maximization of the flux in a box.

2. Main definitions and assumptions

Standing assumptions. Throughout the paper we assume that
HL : R → R and HR : R → R are uniformly convex and

of class C2−Hamiltonians and there exist RL > 0 and RR > 0 such that

HL(−RL) = HL(0) = 0 = HR(−RR) = HR(0),

(2.1)

and {
the initial condition u0 : R → R is Lipschitz continuous and

u0,x ∈ (−RL, 0) in R− and u0,x ∈ (−RR, 0) in R+.
(2.2)

We set

A0 = max{min
p
HL(p),min

p
HR(p)}.

We also denote by p̂L ∈ (−RL, 0) and p̂R ∈ (−p̂R, 0) the unique point such that HL(p̂L) = minpH
L(p) and

HR(p̂R) = minpH
R(p). Note that HL is decreasing on [−RL, p̂L] and increasing on [p̂L, 0], and HR is decreasing

on [−RL, p̂R] and increasing on [p̂R, 0].
We write HL,+ and HL,− for the increasing part and decreasing part of HL respectively, that is,

HL,+(p) =

{
min
p
HL(p) if p ≤ p̂L,

HL(p) otherwise,
HL,−(p) =

{
HL(p) if p ≤ p̂L,

min
p
HL(p) otherwise,

and we use a symmetrical notation for HR.
Definition of a solution to (1.3). Following [18] (see also [20–22]), it is known that, for any constant flux
limiter A ∈ [A0, 0], there exists a unique viscosity solution uA to (1.3), which can be represented as

uA(x, t) = inf
γ∈H1, γ(t)=x

[ � t

0

(
LR(γ̇)1{γ>0} + LL(γ̇)1{γ<0} −A1{γ=0}

)
ds+ u0(γ(0))

]
, (2.3)

where the Lagrangians LL and LR are defined, for any α ∈ R, by

LL(α) = sup
p∈[−RL,0]

{αp−HL(p)} and LR(α) = sup
p∈[−RR,0]

{αp−HR(p)}.

The existence, uniqueness and representation of a solution can easily be extended to piecewise constant maps
A : [0, T ] → [A0, 0]; see, for instance, the construction in [17]. However we need to work here with measurable
maps A : [0, T ] → [A0, 0]. For this we use the following representation formula, which extends (2.3):
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Definition 2.1. Let A : [0, T ] → [A0, 0] be measurable. Then we denote by uA the map

uA(x, t) = inf
γ∈H1(0,t), γ(t)=x

JA(γ), (2.4)

where

JA(γ) =

� t

0

(LR
(
γ̇(s))1{γ(s)>0} + LL(γ̇(s))1{γ(s)<0} −A(s)1{γ(s)=0}

)
ds+ u0(γ(0)).

It is easy to see that dynamic programming gives that uA is Lipschitz continuous and satisfies (1.3) in the
viscosity sense in (R\{0}) × (0, T ). Note also that uAx ∈ [−RL, 0] and uAt ∈ [minHL, 0] a.e. in {x < 0}, while
uAx ∈ [−RR, 0] and uAt ∈ [minHR, 0] a.e. in {x > 0}.

Remark 2.2. As we will work with the representation formula (2.4), which only involves the Lagrangians, it is
interesting to recast Assumption (2.1) in term of conditions on the Lagrangians. We do this for LL for simplicity
of notation. Then (2.1) for HL is equivalent to the following condition on LL:

LL : R → R is convex and C1 in R and there exists aL < 0 < bL and RL > 0 such that

LL is uniformly convex and of class C2 in (aL, bL),

with LL(α) = 0 if α ≥ bL while LL(α) = −RLα if α ≤ aL.

(2.5)

Note that aL = (HL)′(−RL) while bL = (HL)′(0).

3. Existence of an optimal control

We prove here the existence of a minimizer for the optimal control problem (1.5). This also leads to the
existence of optimal trajectories for (2.4).

3.1. The existence result

Throughout the section we assume that

the cost function ψ̃ : R× [0, T ]× R× [A0, 0] → R is measurable and bounded,

has compact support, and is continuous in the last two variables

and is convex in the last variable.

(3.1)

The main result of this section is the following theorem.

Theorem 3.1. Assume (2.1), (2.2) and (3.1). Then, the problem (1.5) admits at least one solution.

The proof is given at the end of the section. The key remark is the continuity of the map A → uA with
respect to the weak-∗ convergence of A, a fact which needs justification in view of the highly nonlinear way
in which uA depend on A. In view of the uniform (in A) local semiconcavity of uA in (R\{0}) × (0, T ), this
continuity then easily implies the continuity of the map A→ uAx .

The proof of the continuity of uA in A is based on the following lemma, also proved at the end of the section,
which implies that we can always assume that any ε−suboptimal path γ for uA(x, t) is piecewise linear and may
vanish on an interval.

Lemma 3.2. Assume (2.1) and (2.2) and fix a measurable A : [0, t] → [A0, 0]. For any γ ∈ H1((0, t);R), there
exists γ̃ ∈ H1((0, t);R) and 0 ≤ a ≤ b ≤ t such that
(i) γ̃(t) = γ(t),
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(ii) JA(γ̃) ≤ JA(γ), and
(iii) either γ̃ is a nonvanishing straight-line, or γ̃ is affine and does not vanish on (0, a) and on (b, t), and γ̃ ≡ 0
on [a, b].
Moreover, JA(γ̃) < JA(γ) unless γ = γ̃.

We continue with the continuity property of uA in A.

Proposition 3.3. Assume that a sequence (An)n∈N in L∞([0, T ], [A0, 0]) converges weakly-∗ to A ∈
L∞([0, T ], [A0, 0]). Then the uA

n

’s converge locally uniformly to uA. In addition, for any (x, t) ∈ R × (0, T ],
there exists an optimal trajectory γ ∈ H1([0, t],R) with γ(t) = x for uA(x, t).

Proof. Note first that, since the uA
n

’s are uniformly Lipschitz continuous, they converge along subsequences.
Without loss of generality, we can assume that the whole sequence (uA

n

) converges to some u and we check
that u = uA.

We first observe that u ≤ uA. Indeed, for any (x, t) ∈ R × (0, T ] and any γ ∈ H1([0, t]) such that γ(t) = x,
we have, in view of the weak-∗ convergence of the uA

n

’s, that

u(x, t) = lim
n→∞

uA
n

(x, t) ≤ lim
n→∞

� t

0

[
LR(γ̇)1{γ>0} + LL(γ̇)1{γ<0} −An1{γ=0}

]
ds+ u0(γ(0))

=

� t

0

[
LR(γ̇)1{γ>0} + LL(γ̇)1{γ<0} −A1{γ=0}

]
ds+ u0(γ(0)) = JA(γ).

Taking the infimum over γ gives the claim.
For the other inequality, we fix (x, t) ∈ R× (0, T ]. Let γn be a 1/n−minimizer for uA

n

(x, t), that is

JAn

(γn) ≤ uA
n

(x, t) + 1/n.

Following Lemma 3.2, we may assume that either γn is affine and does not vanish on (0, t), or there exist
0 ≤ an ≤ bn < t such that γn is affine and does not vanish in (bn, 1], γ is affine and does not vanish in [0, an)
and γn ≡ 0 in [an, bn].

Next we show that γn(0) can be assumed to be bounded. For simplicity, we assume that γn vanishes on (0, t)
with an > 0, as the other cases can be treated with similar and simpler argument. Recall that

LL(α) = sup
p∈[−RL,0]

{pα−HL(p)} =

{
0 if α ≥ (HL)′(0),
−RLα if α ≤ (HL)′(−RL),

(3.2)

and the symmetric equality for LR.
Since γn(an) = 0, we have γn(s) = (an − s)γn(0)/an on [0, an]. Thus

JAn

(γn) = an(LR(−γn(0)/an)1{γn(0)>0} + LL(−γn(0)/an)1{γn(0)<0}) + u0(γ
n(0)) +Rn,

where

Rn =

� t

bn
(LR(γ̇n)1{γ>0} + LL(γ̇n)1{γ<0})−

� bn

an

An(s)

is bounded since γn is affine between bn and t, vanishes at bn and is equal to x at t.
On the other hand, if −γn(0)/an ≤ (HR)′(−RR), that is, γn(0) ≥ yn = −an(HR)′(−RR) > 0, then, as u0

satisfies u0,x ≥ −RR in (0,∞) and (3.2) holds, we find

JAn

(γn) = anLR(−γn(0)/an) + u0(γ
n(0)) +Rn
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≥ RRγn(0) + u0(y
n) + (−RR)(γn(0)− yn) +Rn

= anLR(−yn/an) + u0(yn) +Rn,

which shows that we can replace γn(0) by yn = −an(HR)′(−RR) in this case.
In a symmetric way, if −γn(0)/an ≥ (HL)′(0), that is, γn(0) ≤ zn = −an(HL)′(0) < 0, then, as u0 is

nonincreasing and (3.2) holds,

JAn

(γn) = anLL(−γn(0)/an) + u0(γ
n(0)) +Rn ≥ u0(z

n) +Rn

= anLR(−zn/an) + u0(zn) +Rn,

which proves that we can replace γn(0) by zn = −an(HL)′(0).
In conclusion, we can assume that γn(0) is bounded.
Taking a subsequence, still labelled for simplicity in the same way, we now assume that the γn’s converge on

[0, t] to some γ and that an’s and bn’s converge to some a and b respectively, with 0 ≤ a ≤ b < t. Note that the
γ̇n’s converge to γ̇ in L1.

If a = 0 or a > 0 and γ does not vanish in [0, a), and if b = t or if γ does not vanish in (b, t], it follows that
{γ = 0} = [a, b] is the limit of the interval {γ̃n = 0} = [an, bn] and the same holds for the sets {γ < 0} and
{γ > 0}. Since the γ̇n’s converge to γ̇ in L1, we can pass directly to the limit in the definition of uA

n

(x, t) to
get

u(x, t) =

� t

0

LL(γ̇(s))1{γ(s)<0} + LR(γ̇(s))1{γ(s)>0} −A(s)1{γ(s)=0} ds+ u0(γ(0))

≥ uA(x, t),

which proves the equality u(x, t) = uA(x, t) and the fact that γ is optimal for uA(x, t) in this case.
We now suppose that a > 0 and γ vanishes somewhere in (0, a), but that b = t or that γ does not vanish in

(b, t]. Then, since γ(a) = 0 and γ is affine, γ ≡ 0 on [0, a]. Writing γn(s) = αns + βn on (0, an), with βn ̸= 0
since γn(0) ̸= 0 and αn ̸= 0 since γn(an) = 0, we have that αn → 0 and βn → 0.

Assume next, to fix the ideas, that βn < 0 for any n up to a subsequence. In view of the definition of uA
n

(x, t),
we have

uA
n

(x, t) = anLL(αn)−
� bn

an

An(s)ds+ u0(β
n) +Rn,

with

Rn =

� t

bn

[
LL(γ̇n(s))1{γn(s)<0} + LR(γ̇n(s))1{γn(s)>0}

]
ds.

The argument developed above yields that the Rn’s converge to

R =

� t

b

[
LL(γ̇(s))1{γ(s)<0} + LR(γ̇(s))1{γ(s)>0}

]
ds.

Thus

u(x, t) = aLL(0)−
� b

a

A(s)ds+ u0(0) +R.
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As LL(0) = −minpH
L(p) ≥ −A0 ≥ −A(s) for a.e. s ∈ [0, a], we get

u(x, t) ≥ −
� b

0

A(s)ds+ u0(0) +R = JA(γ) ≥ uA(x, t).

This shows that u(x, t) = uA(x, t) and the fact that γ is optimal for uA(x, t) in this case.
If βn > 0 up to a subsequence, or if b < t and γ vanishes in (b, t], we argue similarly.
In conclusion, we have proved that u = uA and, therefore, that the sequence (uA

n

) converges to uA. In
addition we have also shown the existence of an optimal trajectory γ for uA(x, t) for any (x, t) ∈ R× (0, T ].

We continue with the proofs of Theorem 3.1 and Lemma 3.2.

Proof of Theorem 3.1. Let An be a minimizing subsequence. Extracting a subsequence if necessary, we can
assume that the An’s converge weakly−∗ to some A ∈ L∞([0, T ], [A0, 0]) and, therefore, that the u

An

’s converge
locally uniformly to uA.

Since the Hamiltonians are uniformly convex, the uA
n

’s are uniformly locally semiconcave in (x, t) on compact
subsets of (R\{0})× (0, T ). Thus the bounded sequence (uA

n

x )n∈N converges in L1
Loc to u

A
x . The continuity of the

compactly supported ψ̃ and its convexity in the last variable, along standard lower semicontinuity arguments,
yield that A is a minimum of J.

Proof of Lemma 3.2. Fix γ ∈ H1(0, t). If γ does not vanish on [0, t], then we denote γ̃ be the linear interpolation
between γ(0) and γ(t). By the strict convexity of LL, if γ remains negative, and of LR, if γ remains positive,
we have immediately that JA(γ̃) ≤ JA(γ), with an equality only if γ = γ̃.

Let us now assume that γ vanishes in [0, t] and let

a = sup{a′ ∈ (0, t) : γ does not vanish in [0, a′)},

b = inf{b′ ∈ (0, t) : γ does not vanish in (b′, t]}.

By convention, we set a = 0 if γ(0) = 0 and/or b = t if γ(t) = 0. Note that, since γ vanishes in [0, t], 0 ≤ a ≤ b ≤ t.
We define γ̃ as follows: if a > 0, then γ̃ is on [0, a] the linear interpolation between γ(0) and 0. On [a, b], we

set γ̃ ≡ 0. Finally, if b < t, then γ̃ is on [b, t] the linear interpolation between 0 and γ(t). Note that γ̃ is affine
and does not vanish on (0, a) and on (b, t), and γ̃ ≡ 0 on [a, b]. In addition γ̃(t) = γ(t).

Using again the strict convexity of LL and LR we have immediately that

�
[0,a]∪[b,t]

[
LL(γ̇)1{γ<0} + LR(γ̇)1{γ>0}

]
ds ≥

�
[0,a]∪[b,t]

[
LL( ˙̃γ)1{γ̃<0} + LR( ˙̃γ)1{γ̃>0}

]
ds,

with an equality only if γ = γ̃ on [0, a] ∪ [b, t].
We now compare the cost for γ and γ̃ on [a, b]. The open set {γ ̸= 0} ∩ (a, b) is covered by a countable union

of disjoint open intervals, and γ = 0 at the end points of each of these intervals.
Let (c, d) be one of these intervals and assume, without any loss of generality, that γ > 0 there. Then using

the strict convexity of LR and that γ(c) = γ(d) = 0, we find

� d

c

LR(γ̇(s))ds >

� d

c

LR(0)ds+

� b

a

(LR)′(0)(γ̇n(s)− 0)ds =

� d

c

LR(0)ds,
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which, in view of the fact that LR(0) = supp∈[−R0,0] −HR(p) ≥ −A0 ≥ −A(s) a.e. in s, further yields

� d

c

LR(γ̇(s))ds > −
� d

c

A(s)ds.

Arguing similarly for any of the other open intervals, we see that

� b

a

[
LR(γ̇(s))1{γ>0} + LL(γ̇(s))1{γ<0} −A(s)1{γ=0}

]
ds

≥ −
� b

a

A(s)ds = −
� b

a

A(s)1{γ̃=0}ds,

with an equality only if γ ≡ 0 in [a, b].
This shows that JA(γ̃) ≤ JA(γ) with equality only if γ = γ̃.

3.2. Structure of optimal trajectories

Given an admissible control, we now investigate the existence optimal trajectories for the optimal control
problem (2.4) and explain their structure.

The representation formula (2.4) implies that, for any admissible control A, we have uA ≤ uA0 . We can
therefore expect that, for points (x, t) at which uA(x, t) < uA0(x, t), optimal trajectories have specific structure.
This is exactly what the second part of the following proposition says.

Proposition 3.4. Assume (2.1) and (2.2). For any A ∈ L∞([0, T ], [A0, 0]), there exist an optimal path γ̂x,t in
(2.4) which is either affine and does not vanish on (0, t), or there exist 0 ≤ t1 ≤ t2 ≤ T such that γ̂x,t is affine
and does not vanish on (0, t1) and on (t2, T ), and vanishes on [t1, t2]. Moreover, if (x, t) ∈ R × (0, T ] is such
that uA(x, t) < uA0(x, t) and γ is optimal for uA(x, t), then γ vanishes in (0, t) and, if

τ+ = sup{s ≥ 0, γ(s) = 0} and τ− = inf{s ≥ 0, γ(s) = 0},

then τ− < τ+, uA(0, τ+) < uA0(0, τ+) and uA(0, τ−) = uA0(0, τ−).

Proof. Combining Lemma 3.2 with Proposition 3.3 easily gives the first claim.
We now assume that uA(x, t) < uA0(x, t). If γ does not vanish or if τ− = τ+, then

uA(x, t) =

� t

0

[
LR(γ̇)1{γ>0} + LL(γ̇)1{γ<0}

]
ds+ u0(γ(0)) = JA0(γ) ≥ uA0(x, t),

which contradicts the assumption uA(x, t) < uA0(x, t). Thus τ− and τ+ exist and τ− < τ+.
Assume that uA(0, τ+) = uA0(0, τ+). Dynamic programming yields that

uA0(x, t) ≤
� t

τ+

[
LR(γ̇)1{γ>0} + LL(γ̇)1{γ<0}

]
ds+ uA0(0, τ+)

=

� t

τ+

[
LR(γ̇)1{γ>0} + LL(γ̇)1{γ<0}

]
ds+ uA(0, τ+) = uA(x, t),

which contradicts the assumption uA(x, t) < uA0(x, t). So uA(0, τ+) < uA0(0, τ+).
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We now check the equality uA(0, τ−) = uA0(0, τ−). If τ− = 0, the result is obvious since uA(·, 0) = uA0(·, 0) =
u0. We now assume that τ− > 0. Then γ does not vanish on [0, τ−) and thus, by dynamic programming,

uA0(0, τ−) ≤
� τ−

0

(LR(γ̇)1{γ>0} + LL(γ̇)1{γ<0})ds+ u0(γ(0)) = uA(0, τ−) ≤ uA0(0, τ−),

which proves the equality.

Remark 3.5. Note that there are in general infinitely many optimal controls for J in (1.5). Thus requiring
additional conditions on the optimal control is natural. The additional condition in the next result consisting

in minimizing
� T

0
A is especially suitable because its means that one wants to perturb the traffic as little as

possible. Note that A ≡ A0 means no speed limit or traffic light.

A consequence of the structure of the optimal trajectories is the following remark.

Lemma 3.6. If (2.1), (2.2) and (3.1) hold and ψ̃ is nondecreasing with respect to the last variable, then any

minimizer A which in addition minimizes
� T

0
A among all the minimizers satisfies

A(t) = A0 a.e. in {uA(0, ·) = uA0(0, ·)}.

Proof. Define

Ã(t) =

{
A0 if uA(0, t) = uA0(0, t),

A(t) otherwise

It follows, as we show below, that

uA = uÃ in R× (0, T ). (3.3)

Assuming (3.3), we first complete the proof of the lemma. Indeed, ψ̃ being nondecreasing with respect to A

yields J(A) ≥ J(Ã). Thus Ã is also a minimizer, A ≥ Ã by construction and, by assumption on A,
� T

0
A ≤

� T

0
Ã.

It follows that A = Ã equals A0 on {uA(0, ·) = uA0(0, ·)}.
We now prove (3.3). Since uA ≤ uÃ ≤ uA0 , and thus uA = uÃ in {uA = uA0}, we fix (x, t) ∈ (R\{0})× (0, T )

such that uA(x, t) < uA0(x, t).

Let γ be optimal for uA(x, t). By Proposition 3.4, we know that there exists 0 ≤ t1 ≤ t2 ≤ t such that γ is

affine and nonvanishing on (0, t1) and (t2, t) and vanishes on [t1, t2], with u
A(0, t1) = uA0(0, t1) and u

A(0, t2) <
uA0(0, t2).

Let τ = sup{s : uA(γ(s), s) = uA0(γ(s), s)}. Then t1 ≤ τ < t2, γ(τ) = 0 and uA(γ(τ), τ) = uA0(γ(τ), τ), so

that uA(γ(τ), τ) = uÃ(γ(τ), τ). Moreover uA(0, s) < uA0(0, s) on (τ, t2) and thus Ã = A on (τ, t2). By dynamic
programming,

uA(x, t) =

� t

t2

LR(γ̇)1γ>0 +

� t

t2

LL(γ̇)1γ<0 −
� t2

τ

A(s)ds+ uA(γ(τ), τ)

=

� t

t2

LR(γ̇)1γ>0 +

� t

t2

LL(γ̇)1γ<0 −
� t2

τ

Ã(s)ds+ uÃ(γ(τ), τ)

≥ uÃ(x, t) ≥ uA(x, t).

Hence uA(x, t) = uÃ(x, t), which gives the result.
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4. Optimality conditions

In order to derive the optimality conditions for the problem consisting in minimizing (1.4), we assume that

ψ̃ is linear in ux or in H(ux) with separated dependence in A. Then (1.4) can be rewritten (after integration
by parts) in the form

J(A) =

� T

0

�
R
ϕ(x, t)uA(x, t)dxdt+

� T

0

f(A(t))dt, (4.1)

where

ϕ : R× [0, T ] → R is a continuous map with a compact support
and f : [A0, 0] → R is convex and C1.

(4.2)

The function f could also depend on time. We omit this dependence for simplicity of notation. Throughout this
section, we fix A a minimizer for J.

Note that, in the case f ≡ 0, the problem is interesting only if ϕ changes sign. Indeed, if ϕ is nonpositive, then
the optimal solution is A ≡ A0, while if ϕ is nonnegative, then A ≡ 0 since, for any admissible A, u0 ≤ uA ≤ uA0 .

4.1. Examples

We list a few example leading to functionals of the form (4.1).

4.1.1. Maximization of a weighted density

The goal is to optimize the density against a smooth compactly supported weight ξ, that is,

J(A) =

� T

0

�
R
ξ(x, t)ρA(x, t)dxdt.

Recalling that ρA = −uAx , the functional can be rewritten, after integration by parts, as

J(A) =

� T

0

�
R
ξx(x, t)u

A(x, t)dxdt,

which is of the form (4.1).

4.1.2. Maximization of the flux

In traffic problems, it is natural to optimize the flux on some portion of the exit line. In other words, given
a space-time box (x1, x2)× (t1, t4), the problem is to aim at maximizing

J(A) =

� x2

x1

� t2

t1

f(ρA(x, t))dxdt,

where ρA solves (1.1). In terms of Hamilton-Jacobi equations, this amounts to maximizing

−
� x2

x1

� t2

t1

H(uAx (x, t))dxdt =

� x2

x1

� t2

t1

uAt (x, t)dxdt.
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Approximating the indicatrix function 1[x1,x1]×[t1,t4] by a smooth, compactly supported function ξ, this boils
down to minimizing

J(A) =

�
R

� T

0

ξ(x, t)uAt (x, t)dxdt = −
�
R

� T

0

ξt(x, t)u
A(x, t)dxdt,

which is of the form (4.1). This problem will be studied in details in Section 5.
kip-.2in

4.1.3. Minimization of the travel time

In [10] the authors discuss the optimization of the averaged travel time by acting on the entry condition.
Assuming that the exit road is initially empty, that is, ρ0 = 0 in (0,∞), and becomes eventually empty, that is,
ρ(·,∞) = 0, the average travel time to reach a given position x > 0 is given by

1

Qin

� 0

−∞
τx(x)ρ0(x)dx =

1

Qin

� ∞

0

tfR(ρA(x, t))dt,

where Qin =
� 0

−∞ ρL0 and τx(x) is the time needed to reach x from the position x < 0.
If we now control the junction condition and write the problem in terms of the Hamilton-Jacobi equation,

we get

J(A) = − 1

Qin

� ∞

0

tHR(uAx (x, t))dt =
1

Qin

� ∞

0

tuAt (x, t))dt,

where, under the constraint that the road must be eventually empty, we must have uA(x,∞) = umax = u0(−∞).
Thus, the problem becomes to minimize

J(A) =
1

Qin

([
t(uA(x, ·)− umax)

]∞
0

−
� ∞

0

(uA(x, t)− umax)dt

)
= − 1

Qin

� ∞

0

(uA(x, t)− umax)dt.

This quantity is of the form (4.1), at least after a suitable regularization. However, the solution is obvious.
Indeed, since, for any admissible A, uA ≤ uA0 , J is clearly minimal when A ≡ A0. The computation above is
sketchy, but the proof can easily made rigorous.

4.2. Statement of the optimality conditions

Before discussing the optimality conditions, we need to introduce notation on the optimal trajectories staying
on {x = 0}.

Notation for the optimal trajectories for uA Let (x, t) be a point of differentiability of uA with x ̸= 0
and t ∈ (0, T ). It follows, from the structure of optimizers in Proposition 3.4 and standard relations between

the derivative of uA and the derivative of the optimal solution, that there exist t2 ≥ 0 and y ∈ R\{0} such that

any optimal trajectory γ̂x,t for uA is affine on [t2, t] with either γ̂x,t(t2) = 0, or t2 = 0 and γ̂x,t(0) = y. Note
that t2 and y are independent of the choice of the optimal solution. From Proposition 3.4, we also know that,
if γ̂x,t(t2) = 0, then there exists t1 ∈ [0, t2] such that γ̂x,t vanishes on (t1, t2) and is affine and does not vanish
on (0, t1). Here, however, t1 may depend on the optimal solution. We denote by γ̂+x,t the optimal solution for

which t1 is the smallest, and by γ̂−x,t the optimal solution for which t1 is the largest.
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Remark 4.1. Unfortunately, it seems that the set of points (x, t) for which γ̂−x,t ̸= γ̂+x,t can be of positive
measure. This is in contrast with standard optimal control problems with uniformly convex Hamiltonians for
which minimizers are a.e. unique. Thus it is not clear that one of the inequalities in the next theorem is an
equality, even in the set {A0 < A < 0}. We show later in Corollary 4.3 that this can, however, be the case in
some part of (0, T ).

Theorem 4.2. Assume (2.1), (2.2) and (4.2), and let A be a minimizer for J defined by (4.1). Then, for a.e.
s ∈ [0, T ],

� T

s

�
R
ϕ(x, t)1{γ̂+

x,t(s)=0}dxdt− f ′(A(s)) ≤ 0 a.e. on {A < 0},

and

� T

s

�
R
ϕ(x, t)1{γ̂−

x,t(s)=0}dxdt− f ′(A(s)) ≥ 0 a.e. on {A > A0}.

Proof. For ε ∈ (0, 1), let β ∈ L∞([0, T ]) be such that β(s) ≥ 0 a.e. and β = 0 on {A ≥ −ε}. Then
(
A +

hβ
)
([0, T ]) ⊂ [A0, 0] for any h ∈ (0, ε/∥β∥∞), and, hence, A+ hβ is an admissible control.

Let (x, t) be a point of differentiability of uA with x ̸= 0 and t ∈ (0, T ). By the representation formula for

uA(x, t), which can be reduced to a finite dimensional minimization problem in view of Proposition 3.4, and the
envelop theorem, A→ uA has directional derivatives in any admissible direction, and, thus, in the direction β,
with

∂Au
A(β)(x, t) = min

γ̂x,t optimal for uA(x,t)
−
� t

0

β(s)1{γ̂x,t(s)=0}ds.

Since β ≥ 0, the minimum is reached for the optimal trajectory which remains the most at 0 and thus

∂Au
A(β)(x, t) = −

� t

0

β(s)1{γ̂+
x,t(s)=0}ds.

Since ϕ has a compact support, the functional J is a Frechet differentiable function of uA (from the space of
continuous map on the support of ϕ into R) and of A (from L1([0, T ]) into R). Thus J has directional derivatives
and

0 ≤ J′(A)(β) =

� T

0

�
R
ϕ(x, t)∂Au

A(β)(x, t)dxdt+

� T

0

f ′(A(s))β(s)ds

= −
� T

0

�
R
ϕ(x, t)

� t

0

β(s)1{γ̂+
x,t(s)=0}dsdxdt+

� T

0

f ′(A(s))β(s)ds

= −
� T

0

β(s)
[ � T

s

�
R
ϕ(x, t)1{γ̂+

x,t(s)=0}dxdt− f ′(A(s))
]
ds.

As this inequality holds for any β as above, it follows that

� T

s

�
R
ϕ(x, t)1{γ̂+

x,t(s)=0}dxdt− f ′(A(s)) ≤ 0 a.e. on {A ≤ −ε}.
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We can then conclude that the first inequality holds since ε is arbitrary. The other inequality can be obtained
in the symmetrical way, choosing nonpositive perturbations β.

We introduce next the notion of the last connected component of {uA(0, ·) < uA0(0, ·)}. We say that (a, b)

is the last connected component of {uA(0, ·) < uA0(0, ·)} if, for any other connected component (a′, b′) of

{uA(0, ·) < uA0(0, ·)}, we have b′ ≤ a. It is not always true that this last connected component exists. We will
show, however, below, that this is the case under suitable assumptions.

It turns out that we can improve the optimality conditions on (a, T ], when (a, b) is the last connected

component of {uA(0, ·) < uA0(0, ·)}. This is the topic of the next corollary, which is a special case of Theorem 4.2.

Corollary 4.3. Assume (2.1), (2.2) and (4.2) and let A be a minimizer for J defined by (4.1). If (a, b) is the

last connected component of {uA(0, ·) < uA0(0, ·)}, then, for a.e. s ∈ (a, T ],

� T

s

� ∞

0

ϕ(x, t)1{γ̂+
x,t(s)=0}dxdt = f ′(A(s)) a.e. on {A0 < A < 0},

� T

s

� ∞

0

ϕ(x, t)1{γ̂+
x,t(s)=0}dxdt ≥ f ′(A(s)) a.e. on {A = 0},

and

� T

s

� ∞

0

ϕ(x, t)1{γ̂+
x,t(s)=0}dxdt ≤ f ′(A(s)) a.e. on {A = A0}.

Proof. We argue as in the proof of Theorem 4.2 using perturbations β concentrated on (a, T ). Proposition 3.4
implies that γ̂+x,t = γ̂−x,t on (a, t). Hence, we conclude that

∂Au
A(β)(x, t) = −

� t

0

β(s)1{γ̂+
x,t(s)=0}ds,

and we can complete the proof as for Theorem 4.2.

5. Maximizing the flux

We analyze here the second example in the previous section which is about optimizing the flux on the exit
line which is formulated as follows.

Fix ξ ∈ C1(R×(0, T )) with compact support and, for A : [0, T ] → [A0, 0], the aim is to minimize the functional

J(A) =

� T

0

�
R
ξ(x, t)f(ρA)(x, t)dxdt,

which, in view of the relationship between the conservation law and the Hamilton-Jacobi equation, is rewritten
as

J(A) =

� T

0

�
R
ξ(x, t)f(ρA(x, t))dxdt = inf

A

� T

0

�
R
ξ(x, t)(−H(uAx (x, t)))dxdt

=

� T

0

�
R
ξ(x, t)uAt (x, t)dxdt =

� T

0

�
R
(−ξt(x, t))uA(x, t).
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Here we want to increase the traffic in the space-time rectangle (x1, x2)× (t1, t4), where x1 > 0 and 0 < t1 <
t4 < T . For this, we choose ξ(x, t) = −ψ1(x)ψ2(t) to be an approximation of −1(x1,x2)×(t1,t4), so that

ϕ(x, t) = −ξt(x, t) = ϕ(x, t) = ψ1(x)ψ
′
2(t),

with ψ1 : [0,∞) → [0,∞) continuous, vanishing outside (x1, x2) and positive in (x1, x2). The C
1−map ψ2 :

[0, T ] → R+ is such that ψ′
2 vanishes outside the two intervals (t1, t2) and (t3, t4), is positive on (t1, t2) and

negative on (t3, t4).
We summarize all the above in

ϕ : R× (0, T ) is continuous and compactly supported in (x1, x2)× (t1, t4) and

{ϕ > 0} = (x1, x2)× (t1, t2) and {ϕ < 0} = (x1, x2)× (t3, t4),
(5.1)

and write

J(A) =

� T

0

�
R
ϕ(x, t)uA(x, t)dxdt. (5.2)

We will also assume that

x1
t2

>
x2
t3
. (5.3)

Note that this condition, which is technical, holds if t3 is large enough or if x1 and x2 are close. As we will
see below, (5.3) ensures that no characteristic can cross both {ϕ > 0} and {ϕ < 0}.

The goal is to show to show the existence of an optimal control A which is bang-bang, that is, it only takes
its values in 0 and A0.

In order to prove that this optimal control is piecewise constant, that is, the set {A = 0} consists only of a
finite number of intervals, we need to add three more technical conditions, which we explain next.

The first, which is often used in the literature, is that HR and HL have the same minimum value, that is,

minHR = minHL = A0, (5.4)

which implies that LR(0) = LL(0) = −A0.
The second one is about the behavior of the optimal trajectories for uA0 . We assume that

for any t ∈ (0, T ), γ ≡ 0 is not optimal for uA0(0, t). (5.5)

Assuming (5.4), it is easily checked that a sufficient condition for (5.5) to hold is that

either u0 has a right derivative u0,x(0+) at 0 and (HR)′(u0,x(0+)) < 0

or u0 has a left derivative u0,x(0−) at 0 and (HL)′(u0,x(0−)) > 0.

The last assumption is on the initial condition ρ0 = −u0,x. It says that ρ0 cannot oscillate too much between
0 and positive values, that is,

{x ≤ 0 : u0,x(x) = 0} consists a.e. of only finitely many intervals. (5.6)

Our main result is the following:
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Theorem 5.1. Assume (2.1), (2.2), (5.1), (5.3), (5.4), (5.5) and (5.6) and, for any measurable A : (0, T ) → R,
let J(A) be given by (5.2). Then, there exists a minimizer A which takes values in {A0, 0} only and the set
{A = 0} consists a.e. of at most a finite number of intervals.

Remark 5.2. We explain in Remark 5.21 below that, if in addition,

u0,x > 0 a.e. in (−∞, 0) and u0,x < RR a.e. in (0,∞),

then the set {A = 0} is made of at most two intervals.

The proof of the theorem is given at the end of the ongoing section. We first show that, under less restrictive
conditions, there exists a bang-bang optimal control A. However, this control has possibly a countable number
of discontinuities. To prove that the number of discontinuities is finite requires some extra work.

For the proof, we start investigating the behavior of the optimal solution starting from the last connected

component of {uA(0, ·) < uA0(0, ·)}, since it controls the structure of the whole problem. Then we obtain the
finiteness result by refining the analysis of the connected components.

5.1. Existence of bang-bang optimal control

We begin with the result about the bang-bang minimizing strategy which requires fewer assumptions.

Theorem 5.3. Assume (2.1), (2.2), (5.1), (5.3) and, for any measurable A : (0, T ) → R, let J(A) be given by
(5.2). If minHR = A0, then there exists a minimizer A which takes only values in {A0, 0}. In addition, the set
{A = 0} consists a.e. of at most a countable number of intervals.

Throughout this part we work under the assumption of Theorem 5.3. The proof, which requires several steps,
is given at the end of the subsection.

Since, in principle, there are more than one minimizing control, it is necessary to introduce some further
properties of the minimizers, which will allow us to distinguish among them.

Let

A = {A minimizer of J}, A1 = {A ∈ A :

� T

0

A = min
A∈A

� T

0

A}

and

A2 = {A ∈ A1 :

� T

0

sA(s)ds = min
A∈A1

� T

0

sA(s)ds}

Requiring that A belongs to A1 is quite natural as it was explained in Remark 3.5. The condition that A
belongs to A2 is mostly technical but plays a key role to prove that the control is bang-bang.

From now on we fix A in A2. As A belongs to A1, we know from Lemma 3.6 that A ≡ A0 on {uA(0, ·) =
uA0(0, ·)}. It remains to understand what happens in the set {uA(0, ·) < uA0(0, ·)}.

The first step in this direction is the next lemma.

Lemma 5.4. Let

τ = sup

s ∈ [t1, t2] :

there exists (x, t) ∈ (x1, x2)× (s, t2),

uA is differentiable at (x, t),

uA(x, t) < uA0(x, t) and γ̂−x,t(s) = 0

 , (5.7)

with τ = 0, if the right-hand side is empty. Then A ≡ A0 a.e. in (τ, T ).
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Proof. Let

Ã(t) =

{
A0 on (τ, T ),

A(t) otherwise.

Since A0 ≤ Ã ≤ A and Ã = A0 in [0, τ ], it follows that uA ≤ uÃ ≤ uA0 with uÃ = uA in {uA = uA0} and in
[0,∞)× [0, τ ].

Let now (x, t) ∈ (0,∞)× (τ, T ) be a point of differentiability of uA such that uA(x, t) < uA0(x, t). If ϕ(x, t) <

0, then ϕ(x, t)uA(x, t) ≥ ϕ(x, t)uÃ(x, t). If ϕ(x, t) > 0, then x ∈ (x1, x2) and thus, by the definition of τ , {γ̂−x,t =
0} ⊂ [0, τ ]. Recall that Ã = A on (0, τ), so that

uA(x, t) = JA(γ̂−x,t) =

� t

0

(LR( ˙̂γ
−
x,t)1{γ̂−

x,t>0} + LL( ˙̂γ
−
x,t)1{γ̂−

x,t<0} −A1{γ̂−
x,t=0})ds

=

� t

0

(LR( ˙̂γ
−
x,t)1{γ̂−

x,t>0} + LL( ˙̂γ
−
x,t)1{γ̂−

x,t<0} − Ã1{γ̂−
x,t=0})ds = J Ã(γ̂−x,t)

≥ uÃ(x, t) ≥ uA(x, t).

This proves that uÃ(x, t) = uA(x, t) in this case.

In conclusion, ϕ(x, t)uÃ(x, t) ≤ ϕ(x, t)uA(x, t) and, therefore, J(Ã) ≤ J(A). Thus Ã is also optimal and, as

Ã ≤ A, we obtain Ã = A since A belongs to A1. So A = A0 on [τ, T ].

From now on, we implicitly assume that τ is positive, as Theorems 5.1 and 5.3 obviously hold if τ = 0 since
then A ≡ A0.

The next lemma explains the role of (5.3).

Lemma 5.5. Let (x, t) ∈ [x1, x2] × [t3, t4] and γ be optimal for uA(x, t). If γ(h) = 0 for some h ∈ [0, t], then
γ([h, t]) ∩ {ϕ > 0} = ∅. Moreover,

sup{s : γ(s) = 0} ≥ τ.

Proof. In view of the structure of optimal trajectories established in Proposition 3.4, there exists 0 ≤ s1 < s2 < t
such that γ is a straight line on [s2, t], vanishes on [s1, s2] and is a nonvanishing straight line on [0, s1). Therefore
h ∈ [s1, s2].

In order to check that γ([h, t])∩ {ϕ > 0} = ∅, it is enough to show that, if s ∈ [h, t]∩ (t1, t2), then γ(s) ≤ x1.
Let s ∈ [h, t] ∩ (t1, t2). Then, it follows from the convexity of the map s′ → γ(s′) on [s1, T ] and the facts that
γ(h) = 0 and γ(t) = x, that

γ(s) ≤ (s− h)x/(t− h) ≤ (s− h)x2/(t− h) ≤ sx2/t ≤ t2x2/t3.

Hence, by assumption (5.3),

γ(s) ≤ t2x2/t3 < x1,

which shows that γ([h, t]) ∩ {ϕ > 0} = ∅.
Let us now check that s2 = sup{s : γ(s) = 0} ≥ τ . If not, in view of the definition of τ , there exist (xn, tn) ∈

(x1, x2)× (t1, t2) such that γ̂−xn,tn vanishes at τn and τn → τ . Moreover, we can assume, without loss of generality,

that γ̂−xn,tn is a straight line on [τn, tn].
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Since s2 < τ , it follows that s2 < τn for n large. Moreover, we know that 0 = γ̂−xn,tn(τn) < γ(τn). Finally, the

first part of the proof applied to h = s2 and s = tn ∈ [s2, t] ∩ (t1, t2) yields γ̂
−
xn,tn(tn) = xn ≥ x1 > γ(tn). Thus,

we infer that there exists s ∈ (τn, tn) such that γ̂−xn,tn(s) = γ(s).
But two optimal trajectories cannot cross in (0,∞)× (0, T ). Thus there is a contradiction and we must have

s2 ≥ τ .

The next lemma gives information about the location of the left point of any connected component of

{uA(0, ·) < uA0(0, ·)} in terms of τ .

Lemma 5.6. Let (a, b) be any connected component of {uA(0, ·) < uA0(0, ·)}. Then a < τ .

Proof. If a ≥ τ , it follows from Lemma 5.4 that A ≡ A0 on [τ, T ] and, thus, on (a, b).

Fix t ∈ (a, b) and let γ be optimal for uA(0, t). Then from the structure of optimizers, γ has to vanish on
[a, t], while dynamic programming gives

uA(0, t) = −
� t

a

Ads+ uA(0, a) = −
� t

a

A0ds+ uA0(0, a) ≥ uA0(0, t).

Then we must have uA(0, t) = uA0(0, t), a contradiction to the fact that (a, b) is a subset of {uA(0, ·) <
uA0(0, ·)}.

In view of the previous lemma, we have either τ ∈ (a, b] or b < τ . We continue with the analysis of the later
case.

Lemma 5.7. Let (a, b) be a connected component of {uA(0, ·) < uA0(0, ·)} with b < τ . Then there exists τ̂ ∈ (a, b)
such that A ≡ 0 on (a, τ̂) and A ≡ A0 on (τ̂ , b).

Proof. We first check that A ̸≡ A0 in (a, b). Indeed, otherwise, for t ∈ (a, b), let γ be optimal for uA(0, t). Then
γ(s) = 0 on [a, t] and, thus, by dynamic programming we must have

uA(0, t) = −(t− a)A0 + uA(0, a) = −(t− a)A0 + uA0(0, a), (5.8)

and, after letting t→ b−,

uA0(0, b) = uA(0, b) = −(b− a)A0 + uA0(0, a).

Assume to fix the ideas that A0 = minHR–the other case can be treated in a symmetric way. Then, since
uA0
t +HR(uA0

x ) = 0 in (0,∞)× (0, T ) with HR ≥ A0, we get that uA0
t ≤ −A0 a.e. on (0,∞)× (0, T ). It follows

that uA0(0, b)− uA0(0, a) ≤ −A0(b− a). Therefore uA0
t (0, t) = −A0 on (a, b), which, recalling (5.8), implies that

uA0 = uA on {0} × [a, b], a contradiction to the definition of (a, b).

Next we check that A ̸≡ 0 in (a, b). Indeed, otherwise, we have by dynamic programming that uA(0, ·) is
constant on [a, b] and, thus, that

uA0(0, a) = uA(0, a) = uA(0, b) = uA0(0, b).

Since uA0
t +HR(uA0

x ) = 0 in (0,∞) × (0, T ) with HR ≤ 0, it follows that uA0(0, ·) is nondecreasing and thus

constant in [a, b]. So uA0 = uA on {0} × [a, b], which contradicts the definition of (a, b).
We now prove the existence of τ̂ ∈ (a, b) such that A ≡ 0 on (a, τ̂) and A ≡ A0 on (τ̂ , b). Arguing by

contradiction, we have that, for any ε > 0 small, there exists t0 ∈ (a, b) with t0 + ε ∈ (a, b) such that A ̸≡ 0 and
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A ̸≡ A0 a.e. in (t0, t0 + ε) and s→ A(s) not (essentially) decreasing in (t0, t0 + ε). Then, we must have

ε−1

� t0+ε

t0

A(s)ds ∈ (A0, 0).

Let

Aε(s) =


A(s) on (0, T )\(t0, t0 + ε),

0 on (t0, τε),

A0 on (τε, t0 + ε),

where τε ∈ (t0, t0 + ε) is such that

� t0+ε

t0

A(s)ds =

� t0+ε

t0

Aε(s)ds. (5.9)

Note that, by definition, Aε is the unique minimizer, among all measurable maps x : [t0, t0 + ε] → [A0, 0] such

that
� t0+ε

t0
A(s)ds =

� t0+ε

t0
x(s)ds, of the map x→

� t0+ε

t0
sx(s)ds.

Moreover, for all t ∈ (t0, t0 + ε),

� t

t0

Aε(s)ds ≥
� t

t0

A(s)ds. (5.10)

The stability of minimizers, Lemma 5.7 and the facts that b < τ and Aε → A in L1 as ε → 0+ yield some
small ε > 0 such that, for any (x, t) ∈ {ϕ < 0}, any optimal solution γ for uAε(x, t) which vanishes satisfies
sup{s : γ(s) = 0} ≥ b.

We claim that uAε ≤ uA in [0,∞)× [0, T ]. Indeed, let (x, t) ∈ (0,∞)× (0, T ) be such that uA is differentiable

at (x, t). If uA(x, t) = uA0(x, t), then uAε(x, t) ≤ uA0(x, t) = uA(x, t).

Next assume that uA(x, t) < uA0(x, t) and let γ = γ̂−x,t be the optimal solution for uA(x, t) which remains
the least in {x = 0}. Then, by the structure of minimizers, there exists 0 ≤ τ− < τ+ ≤ t such that γ vanishes

on [τ−, τ+] and is affine and does not vanish in (0, τ−) and in (τ−, t) and, in addition, uA(0, τ+) < uA0(0, τ+)

and uA(0, τ−) = uA0(0, τ−).
If (t0, t0 + ε) ∩ (τ−, τ+) = ∅, then

uAε(x, t) ≤ JAε(γ) = JA(γ) = uA(x, t),

where the first equality holds because Aε = A outside (t0, t0 + ε) and γ vanishes only outside this interval.

If (t0, t0 + ε) ∩ (τ−, τ+) ̸= ∅, then, since uA = uA0 in (0, a) and (0, b) and uA < uA0 in {0} × (a, b) and
γ = γ̂−x,t, we have τ+ ∈ (t0, b) and τ

− = a. The dynamic programming then yields

uAε(x, t) ≤ uAε(0, a) +

� t

τ+

LR(γ̇(s))ds−
� τ+

a

Aε(s)ds

≤ uA(0, a) +

� t

τ+

LR(γ̇(s))ds−
� τ+

a

A(s)ds = uA(x, t),

where the second inequality holds because uA = uAε in R× [0, t0], and (5.10) holds. It follows that uAε ≤ uA.
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Next we claim that {uAε < uA} ⊂ {ϕ ≥ 0}. Let γ be optimal for uAε(x, t), where (x, t) is a point of
differentiability of uAε and ϕ(x, t) < 0. By the choice of ε, we know that h = sup{s : γ(s) = 0} ≥ b.

If {γ = 0} ∩ (a, b) = ∅, then

uAε(x, t) = JAε(γ) = JA(γ) ≥ uA(x, t),

and, hence uAε(x, t) = uA(x, t).

Otherwise γ ≡ 0 on (a, b) because uAε ≤ uA < uA0 on {0} × (a, b) and γ(h) = 0 with h ≥ b, and, then

uAε(x, t) = uAε(0, a)−
� h

a

Aε(s)ds+

� t

h

LR(γ̇)

= uA(0, a)−
� h

a

A(s)ds+

� t

h

LR(γ̇) = JA(γ) ≥ uA(x, t),

where we used (5.9) and the fact that Aε = A in (t0 + ε, T ) in the second equality.

This shows that uAε(x, t) = uA(x, t) and completes the claim.

We now complete the proof of the lemma. Since uAε ≤ uA with equality in {ϕ < 0}, Aε is also a minimizer

of J. By construction we have
� T

0
Aε =

� T

0
A, so that Aε belongs to A1. Finally, as Aε is the unique minimizer,

among all measurable maps x : [t0, t0 + ε] → [A0, 0] such that
� t0+ε

t0
A(s)ds =

� t0+ε

t0
x(s)ds, of the map x →� t0+ε

t0
sx(s)ds, we have

� T

0
sAε(s)ds <

� T

0
sA(s)ds, which contradicts the assumption that A ∈ A2.

It follows that A satisfies the required condition.

We now address the case of a connected component (a, b) such that τ ∈ (a, b]. Note that, in view of Lemma 5.6,

(a, b) must then be the last connected component of {uA < uA0}.

Lemma 5.8. Let τ be defined in (5.7) and (a, b) be a connected component of {uA < uA0} such that τ ∈ (a, b].
Then,

τ = inf{s ∈ [0, T ] : A ≡ A0 on [s, T ]}.

Proof. Let τ̂ = inf{s ∈ [0, T ] : A ≡ A0 on [s, T ]}. In view of Lemma 5.4, we already know that τ̂ ≤ τ .
By the definition of τ , there exists (xn, tn) ∈ (x1, x2) × (t1, t2) such that γ̂−xn,tn vanishes at τn and τn → τ .

We can also assume, without loss of generality, that γ̂−xn,tn is a straight-line on [τn, tn].

If τ̂ < τ , then τn > τ̂ for n large enough. But then, since γ̂−xn,tn vanishes on (a, τn),

uA(xn, tn) = uA(0, τ̂ ∨ a) +
� tn

τn

LR( ˙̂γ
−
xn,tn)ds−

� τn

τ̂∨a

A0ds

= uA(0, τ̂ ∨ a) +
� tn

τ̂∨a

LR( ˙̂γ
−
xn,tn)ds > uA(0, τ̂ ∨ a) +

� tn

τ̂∨a

LR(γ̇n)ds ≥ uA(xn, tn),

where γn : [τ̂ , tn] → R is the straight line γn(s) = s → (s − τ̂ ∨ a)xn/(tn − τ̂ ∨ a), the second equality holds
because LR(0) = −minHR = −A0, and the strict inequality comes from the fact that LR is strictly convex and
τ̂ ∨ a < τn.

Since the conclusion above is impossible, we must have τ̂ = τ .

In order to proceed, we need to perturb sightly the optimal control. For this, it is necessary to have estimates
on the behavior of the optimal trajectories of the perturbed problem. This is the aim of the following lemma.
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Lemma 5.9. Assume (2.1) and (2.2). For each δ > 0, there exists ε > 0 so that, for all measurable A : [0, T ] →
[A0, 0] such that ∥A − A∥L1 ≤ ε, for all (x, t) ∈ (x1, x2) × (t3, t4) such that uA(x, t) < uA0(x, t), and for all γ
optimal paths for uA(x, t),

sup{s : γ(s) = 0} ≥ τ − δ.

Proof. Set

m = inf

γ(s) :
there exists (x, t) ∈ [x1, x2]× [t3, t4] such that s ≤ t,

γ is optimal for uA(x, t) and,
γ does not vanish on [0, t]

 . (5.11)

A standard compactness argument and Lemma 5.5 imply that m > 0. Indeed, let γn and sn be such that

γn(sn) → m as n → ∞ with γn nonvanishing and optimal for uA(xn, tn) for some (xn, tn) ∈ [x1, x2] × [t3, t4].
Then γn is a straight-line, so that γn(sn) ≥ min γn = min{xn, γn(0)}.

If m = 0, then γn(0) must converge to 0 since xn ≥ x1. Moreover, up to a subsequence, the (xn, tn)’s converge

to some (x, t) and the γn’s converge to a straight line γ which is optimal for uA(x, t). Note that γ(0) = 0 and
thus γ(s) = sx/t. So γ vanishes, but sup{s : γ(s) = 0} = 0 < τ , which contradicts Lemma 5.5.

Fix δ′ = min{m/2, x1δ/t4} and let ε > 0 be such that, for any measurable A : [0, T ] → [A0, 0] such that
∥A − A∥L1 ≤ ε, for any (x, t) ∈ (x1, x2) × (t3, t4) and any γ optimal for uA(x, t), there exists γ̃ optimal for

uA(x, t) such that ∥γ − γ̃∥L∞ ≤ δ′.
Fix such A, (x, t) ∈ (x1, x2)× (t3, t4) and γ. Assume uA(x, t) < uA0(x, t). We know that γ vanishes. Set

s+ = sup{s : γ(s) = 0}.

It follows that that γ(s) = x(s− s+)/(t− s+) on [s+, t].

Let γ̃ be optimal for uA(x, t) such that ∥γ − γ̃∥∞ ≤ δ′. If γ̃ does not vanish on [0, t], then, in view of the
definition of m in (5.11),

δ′ ≥ |γ̃(s+)− γ(s+)| ≥ m,

which contradicts the choice of δ′. Thus γ̃ vanishes and, by Lemma 5.5,

s̃+ = sup{s : γ(s) = 0} ≥ τ.

If s+ ≤ τ , then

δ′ ≥ |γ̃(s̃+)− γ(s̃+)| ≥ x(s̃+ − s+)/(t− s+) ≥ x1(τ − s+)/t4.

Hence

s+ ≥ τ − t4δ
′/x1 ≥ τ − δ.

Lemma 5.10. Let τ defined in (5.7) and (a, b) be a connected component of {uA < uA0} such that τ ∈ (a, b].
Then A ≡ 0 on (a, τ).
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Proof. The argument is very close to the proof of Lemma 5.7. The key idea is to prove that

A is essentially nonincreasing on (a, τ) and takes values in {A0, 0} only. (5.12)

Assume that (5.12) holds. By Lemma 5.8, there is a sequence of Lebesgue point (sn)n∈N for A converging to
τ− such that A(sn) > A0. Thus we infer that A(sn) = 0 and, as A is essentially nonincreasing, that A ≡ 0 on
(a, sn). Letting n→ ∞ proves that A ≡ 0 in (a, τ) and completes the proof of the lemma.

It remains to verify (5.12). Fix δ > 0 small. Lemma 5.9 yields an ε > 0 such that, for any measurable A :
[0, T ] → [A0, 0] with ∥A−A∥L1 ≤ |A0|ε, any optimal trajectory γ started from a point (x, t) ∈ (x1, x2)× (t3, t4)

of differentiability of uA with uA(x, t) < uA0(x, t) satisfies sup{s : γ(s) = 0} ≥ τ − δ.
Let now t0 ∈ (a, τ − δ − ε). It needs to be checked that A is nonincreasing on (t0, t0 + ε) and takes values in

{A0, 0}. This is obvious, if A ≡ 0 on (t0, t0 + ε) or A ≡ A on (t0, t0 + ε).

Assume next that ε−1
� t0+ε

t0
A ∈ (A0, 0), and let

Aε(s) =


A(s) on (0, T )\(t0, t0 + ε),

0 on (t0, τε),

A0 on (τε, t0 + ε),

where τε ∈ (t0, t0 + ε) is such that

� t0+ε

t0

A(s)ds =

� t0+ε

t0

Aε(s)ds. (5.13)

We can follow the argument in the proof of Lemma 5.7 to infer that Aε belongs to A2 and, therefore, Aε = A,
and, thus A is nonincreasing on (t0, t0 + ε). The fact that it takes the values A0 and 0 now follows.

We can give now the proof of the main theorem of this subsection.

Proof of Theorem 5.3. Lemma 3.6 yields that A equals A0 on {uA(0, ·) = uA0(0, ·)}, and let τ be defined by
(5.7).

Assume that (a, b) is the connected component of {uA(0, ·) < uA0(0, ·)} such that τ ∈ (a, b] if it exists. Then
Lemma 5.4 states that A ≡ A0 on [τ, T ] while Lemma 5.10 shows that A ≡ 0 on (a, τ).

If (a, b) is another connected component of {uA(0, ·) < uA0(0, ·)}, then Lemma 5.7 shows that A ≡ 0 on (a, τ̂)
and A ≡ A0 on (τ̂ , b) for some τ̂ ∈ (a, b).

It follows that A takes values in {A0, 0} only. As the number of connected components of {uA(0, ·) < uA0(0, ·)}
is at most countable, the set {A = 0} consists a.e. in at most a countable number of intervals.

5.2. Optimal trajectories starting from the last connected component

The goal of this subsection is to show that optimal solutions starting from the last connected component of

{uA(0, ·) < uA0(0, ·)} cannot remain for a long time on {x = 0}.
Throughout this part, we work under the assumption that

(2.1), (2.2), (5.1), (5.3), (5.4) and (5.5) hold. (5.14)

The following lemma explains the role of assumption (5.5).

Lemma 5.11. Assume (5.14). Let γ be optimal for uA0(0, t) for t ∈ (0, T ). Then γ is a straight line which does
not vanish on [0, t).
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Proof. We argue by contradiction. If γ vanishes in [0, t), then, in view of the structure of optimal trajectories
described in Proposition 3.4, there exists a ∈ [0, t) such that γ vanishes on [a, t] and, if a > 0, is a nonvanishing
straight line in (0, a).

It follows from (5.5) that a > 0.
Assuming, to fix the ideas, that γ(0) > 0 and using again dynamic programming we find

uA0(0, t) =

� a

0

LR(γ̇)ds−
� t

a

A0ds+ u0(γ(0))

=

� t

0

LR(γ̇)ds+ u0(γ(0)) >

� t

0

LR( ˙̃γ)ds+ u0(γ̃(0)),

where γ̃ is the straight line connecting (γ(0), 0) and (0, t), the second equality holds because A0 = −LR(0) and
the strict inequality is due to the strict convexity LR.

The conclusion is impossible, since γ̃ is admissible.

We now state a technical lemma which shows that all connected components of

{uA(0, ·) < uA0(0, ·)} must somehow “see” {ϕ > 0}.

Lemma 5.12. Assume (5.14), fix (a, b) a connected component of {uA(0, ·) < uA0(0, ·)} and let

O =

(x, t) :

uA(x, t) < uA0(x, t) and

there exists γ optimal for uA(x, t) such that

sup{s : γ(s)} ∈ (a, b)

 . (5.15)

Then, |O ∩ {ϕ > 0}| > 0.

Proof. Define

Ã(t) =

{
A0 on (a, b),

A(t) otherwise.

Since Ã ≤ A we have uA ≤ uÃ. We claim that

uÃ(x, t) = uA(x, t) in ((0,∞)× (0, T ))\O. (5.16)

Fix (x, t) ∈ ((0,∞)× (0, T ))\O, let γx,t be an optimal path for uA(x, t) and set

τ+ = sup{s ∈ [0, t] : γx,t(s) = 0}.

In view of the definition of O, observe that τ+ /∈ (a, b).
If γx,t(s) ̸= 0 for any s ∈ (a, b), then

uA(x, t) = JA(γx,t) = J Ã(γx,t) ≥ uÃ(x, t) ≥ uA(x, t),

which proves (5.16) in this case.
We assume next that γx,t vanishes at a point in (a, b). This implies that τ+ ≥ b and, thus, in view of the

structure of the minimizers, γx,t vanishes on [b, τ+].
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Define

γ̃x,t(s) =

{
γA0

0,b(s) on [0, b],

γx,t(s) on [b, t],

where γA0

0,b is optimal for uA0(0, b), and recall that, in view of Lemma 5.11, γA0

0,b vanishes only at t = b.
Then by dynamic programming and the optimality of γx,t, we find

uA(x, t) =

� t

b

[
LR(γ̇x,t)1{γx,t(s)>0} −A(s)1{γx,t(s)=0}

]
ds+ uA(0, b)

=

� t

b

[
LR(γ̇x,t)1{γx,t(s)>0} − Ã(s)1{γx,t(s)=0}

]
ds+ uA0(0, b)

=

� t

0

[
LR( ˙̃γx,t)1{γ̃x,t(s)>0} + LL( ˙̃γx,t)1{γ̃x,t(s)<0} − Ã(s)1{γ̃x,t(s)=0}

]
ds+ u0(γ̃x,t(0))

= J Ã(γ̃x,t),

where the second equality holds because A = Ã on [b, t] and uA(0, b) = uA0(0, b) and the third one because γA0

0,b

does not vanish on [0, b).
Thus

uA(x, t) = J Ã(γ̃x,t) ≥ uÃ(x, t) ≥ uA(x, t),

and, hence, (5.16) is true also in this case.

Assume that |O ∩ {ϕ > 0}| = 0. Then, in view of (5.16) and the fact that uA ≤ uÃ and ϕ ≤ 0 a.e. in O, we
have

J(Ã)− J(A) =

�
O

ϕ(x, t)(uÃ(x, t)− uA(x, t))dxdt ≤ 0,

and, thus, J(Ã) ≤ J(A), which proves that Ã is also optimal.

Moreover, since A ∈ A1, we have
� T

0
Ã ≥

� T

0
A, which implies that A ≡ Ã since A ≥ Ã. It follows A = Ã = A0

in (a, b), which, as we show next, is not possible.

Fix t ∈ (a, b) and let γ0,t and γ
A0
0,a be optimal for respectively uA(0, t) and for uA0(0, a). We recall that γA0

0,a

vanishes only at t = a by Lemma 5.11 and define

γ̃x,t(s) =

{
γA0
0,a(s) on [0, a],

γ0,t(s) on [a, t].

Assume that γA0
0,a(0) > 0. Then, as γ0,t vanishes on [a, t] by Proposition 3.4 and A = A0 = −LR(0) in (a, b),

uA(0, t) = −
� t

a

A0ds+ uA(0, a) =

� t

a

LR(γ̇x,t)ds+ uA0(0, a)

=

� t

0

LR( ˙̃γx,t)ds+ u0(γ̃x,t(0)) >

� t

0

LR(γ̇)ds+ u0(γ(0)),
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where γ is the straight-line between (0, γ̃x,t(0)) and (0, t). Note that the second equality holds because γA0
0,a is

positive on [0, a) and the strict inequality because LR is strictly convex.
Thus

uA(0, t) >

� t

0

LR(γ̇)ds+ u0(γ(0)) = JA0(γ) ≥ uA0(0, t),

which is impossible since uA0 ≥ uA.
If γA0

0,a(0) < 0, then we argue in the same way with LL instead of LR using that A0 = −LL(0).
The fact that |O ∩ {ϕ > 0}| > 0 now follows.

From now on, we denote by (a, b) the last connected component of {uA(0, ·) < uA0(0, ·)} if there is one, and
recall that τ ∈ (a, b], where τ is defined by (5.7).

Let γ̂+
0,b

be the optimal solution for uA(0, b) which remains the most on {x = 0} and define

s− = inf{s : γ̂+
0,b

(s) = 0}. (5.17)

Lemma 5.13. Assume (5.14). Fix (x, t) ∈ R × (0, T ) and let γ be an optimal trajectory for uA(x, t). If γ
vanishes at some point in (0, t) and sup{s : γ(s) = 0} ∈ [s−, b], then {s : γ(s) = 0} ⊂ [s−, b]. In particular, if

(x, t) ∈ (x1, x2)× (t3, t4) is a point of differentiability of uA such that uA(x, t) < uA0(x, t), then

sup{s : γ̂+x,t(s) = 0} ∈ [τ, b) and inf{s : γ̂+x,t(s) = 0} = s−.

Proof. Fix γ as in the statement and assume that s+ = sup{s : γ(s) = 0} ∈ [s−, b]. Let s− = inf{s : γ(s) = 0}.
Then, by the structure of minimizers, {s : γ(s) = 0} = [s−, s+].

If we had s− < s−, then using dynamic programming, we can replace γ̂+
0,b

by γ on [0, s+] to find an optimal

trajectory for uA(0, b) which remains in {x = 0} longer than γ̂+
0,b

, a contradiction with the definition of γ̂+
0,b

.

Thus s− ≥ s−.
Let (x, t) ∈ (x1, x2) × (t3, t4) be a point of differentiability of uA such that uA(x, t) < uA0(x, t), and set

s+ = sup{s : γ̂+x,t(s) = 0} and s− = inf{s : γ̂+x,t(s) = 0}.
Proposition 3.4 yields that uA(0, s+) < uA0(0, s+) and Lemma 5.5 implies that s+ ≥ τ . Thus, if (a, b) is the

connected component of {uA(0, ·) < uA0(0, ·)} containing s+, we have b ≥ τ , so that (a, b) = (a, b). Note that
s− ≤ a.

By the first claim, we also have that {s, γ̂+x,t(s)} ⊂ [s−, b]. If s− > s−, we can replace γ̂+x,t by γ̂
+

0,b
on [0, a] to

find an optimal solution for uA(x, t) which remains in {x = 0} longer than γ̂+x,t, a contradiction to the definition

of γ̂+x,t. Hence s− = s−.

We investigate next the sign of the quantity

H(s) =

� T

s

� ∞

0

ϕ(x, t)1{γ̂+
x,t(s)=0}dxdt,

which appears in the optimality condition.

Lemma 5.14. Assume (5.14). The map s→ H(s) is nonincreasing and nonnegative on (s−, τ).
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Proof. Let s ∈ (s−, τ) and δ > 0 small so that s+ δ < τ . We have

H(s) = H(s+ δ) +

� s+δ

s

� ∞

0

ϕ(x, t)1{γ̂+
x,t(s)=0}dxdt

+

� T

s+δ

� ∞

0

ϕ(x, t)(1{γ̂+
x,t(s)=0} − 1{γ̂+

x,t(s+δ)=0})dxdt

= H(s+ δ) + (H1) + (H2).

For (H1), we recall that, for any (x, t) ∈ R+ × (s, s + δ) such that ϕ(x, t) ̸= 0, we know that γ̂+x,t(t) = x ≥ x1,
and, thus, if we choose δ small enough,

γ̂+x,t(s) ≥ x1 − ∥(HR)′∥∞(t− s) ≥ x1 − ∥(HR)′∥∞δ > 0,

Thus γ̂+x,t(s) ̸= 0 and, hence, (H1) = 0.

For (H2), let (x, t) be a point of differentiability of uA with ϕ(x, t) ̸= 0, such that either γ̂+x,t(s) = 0 or

γ̂+x,t(s+ δ) = 0.

If ϕ(x, t) < 0, then, by Lemma 5.13, γ̂+x,t vanishes at least on [s−, τ ]. Thus γ̂+x,t(s) = γ̂+x,t(s+ δ) = 0 and the
integrant of (H2) vanishes for such (x, t).

If ϕ(x, t) > 0, then γ̂+x,t vanishes on an interval of the form [s−, h] with h ≥ s, and, thus, if γ̂+x,t(s + δ) = 0,

then γ̂+x,t(s) = 0. In this case the integrant of (H2) at (x, t) is nonnegative. Hence (H2) ≥ 0.
In view of the above, we have H(s) ≥ H(s+ δ), that is, the map s→ H(s) is nonincreasing on (s−, τ).
Now recall that, in view of Lemma 5.10, A ≡ 0 on (a, τ). Since (a, b) is the last connected component of

{uA(0, ·) < uA0(0, ·)}, Corollary 4.3 yields that H is nonnegative on (a, τ). As s → H(s) is nonincreasing on
(s−, τ), we infer that H is nonnegative on (s−, τ).

We proceed with our investigation of the last connected component (a, b) in the case where γ̂+
0,b

remains in

{x = 0} before a.

Lemma 5.15. Assume (5.14) and suppose that s− < a. Then there exists a sequence (tn)n∈N such that, n→ ∞,

tn → a− and uA(0, tn) < uA0(x, tn).

Proof. We argue by contradiction assuming that there exists δ ∈ (0, a − s−] such that uA(0, t) = uA0(0, t) for
any t ∈ [a− δ, a]. Then A ≡ A0 in (a− δ, a).

Let γ be optimal for uA0(0, a− δ). It follows that does γ does not vanish on [0, a− δ), and, to fix the ideas,
we assume that it remains negative, and set

γ̃(s) =

{
γ(s) if s ∈ [0, a− δ],

γ̂+
0,b

(s) if s ∈ [a− δ, b].

Then, since LR(0) = −A0 and γ̂+0,b vanishes on [s−, b],

uA0(0, b) = uA(0, b) = −
� b

a−δ

A0ds+ uA(0, a− δ) =

� b

a−δ

LR( ˙̃γ)ds+ uA0(0, a− δ)

=

� b

0

LR( ˙̃γ)ds+ u0(γ̃(0) >

� b

0

LR( ˙̌γ)ds+ u0(γ̌(0)) = JA0(γ̌),
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where γ̌ is the straight-line between (γ(0), 0) and (0, b) and the strict inequality follows from the strong convexity
of LR. This is impossible because γ̌ is admissible.

The next lemma states that, if the optimal trajectory starting from (0, b) vanishes outside [a, b], then there

exists (â, b̂) := (s−, a), a one before last connected component of {uA(0, ·) < uA0(0, ·)}, which touches the last
one at a.

Lemma 5.16. If s− < a, then (s−, a) is a connected component of {uA(0, ·) < uA0(0, ·)}.

Proof. Let (tn) be the sequence introduced in Lemma 5.15 and (an, bn) be the connected component of

{uA(0, ·) < uA0(0, ·)} containing tn. Then bn ≤ a.

Note also that, since s− = inf{s : γ̂+
0,b

(s) = 0}, Proposition 3.4 yields that we have uA(0, s−) = uA0(0, s−),

and, since uA(0, ·) < uA0(0, ·) in (an, bn), we have an ≥ s−.
We claim that H is positive in a neighborhood of an. Indeed, let δ be as in the proof of Lemma 5.14, that is,

assume that δ < x1/∥(HR)′∥∞, and, consider the sets

On =

(x, t) :
uA(x, t) < uA0(x, t) and

there exists γ optimal for uA(x, t) and
sup{s : γ(s) = 0} ∈ (an, bn)

 .

Recall that it follows from Lemma 5.12 that {ϕ > 0}∩On has a positive measure. Thus, there exists sn ∈ (an, bn)
such that the sets

En = {(x, t) ∈ {ϕ > 0} ∩ On : sup{s, γ+x,t(s) = 0} ∈ (sn − δ/2, sn)}

has a positive measure. Choosing, if necessary, δ smaller, we can assume that
(sn − δ/2, sn + δ/2) ⊂ (an, bn).

Then, arguing as in the proof of Lemma 5.14, we have

H(sn − δ/2) = H(sn + δ/2) +

� sn+δ/2

sn−δ/2

� ∞

0

ϕ(x, t)1{γ̂+
x,t(sn−δ/2)=0}dxdt

+

� T

sn+δ/2

� ∞

0

ϕ(x, t)(1{γ̂+
x,t(sn−δ/2)=0} − 1{γ̂+

x,t(sn+δ/2)=0})dxdt

= H(s+ δ) + (H1) + (H2),

where (H1) vanishes by the choice of δ. We also know from the proof of Lemma 5.14 that the integrand of (H2)
is nonnegative, and, by construction, it is positive on En.

Since H(sn + δ/2) is nonnegative, it follows that H(sn − δ/2) is positive and, therefore, that H is positive
on (s−, sn − δ/2). Since δ is arbitrary, this proves that H is positive on (s−, sn), and, thus, on (s−, an).

It follows from Theorem 4.2 and the positivity of H on (s−, sn), that A ≡ 0 on this interval.

Recall that, in view of Lemma 5.7, for any connected component (a, b) of {uA(0, ·) < uA0(0, ·)} which is not
the last one, there exists a threshold τ ∈ (a, b) such that A ≡ 0 on (a, τ) and A ≡ A0 in (τ, b). We denote by
τn ∈ (an, bn) the threshold associated with (an, bn).

We now show that bn = a. Indeed, otherwise there would be n′ > n such that tn′ > bn. But the argument
above shows that A ≡ 0 on (s−, an′) with an′ ≥ bn, a contradiction to the fact that A ≡ A0 in (τn, bn).

We now claim that an = s−. Indeed, assuming that s− < an, we note that, in view of the fact that A ≡ 0 in

(s−, an), u
A(0, ·) is constant in this interval. But uA(0, an) = uA0(0, an) and u

A0(0, ·) is nondecreasing, so that,
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for any t ∈ [s−, an),

uA(0, t) ≤ uA0(0, t) ≤ uA0(0, an) = uA(0, an) = uA(0, t).

Hence uA0 is constant and equals uA in {0} × [s−, an]. This implies that A ≡ A0 in (s−, an), a contradiction.

Therefore an = s−. This shows that (s−, a) = (an, bn) is a connected component of {uA(0, ·) < uA0(0, ·)}.

The main consequence of the previous lemma is the confinement of optimal trajectories vanishing in the last
connected component.

Corollary 5.17. Assume (5.14). Let γ be an optimal path for uA(x, t) with (x, t) ∈ [x1, x2]× [t3, t4]. If |{γ =

0}| > 0, then the last connected component (a, b) of {uA < uA0} exists and either {γ = 0} ⊂ [a, b] or {γ = 0} ⊂
[â, b] where (â, a) is a one before the last connected component of {uA < uA0}.

Proof. In view of the structure of minimizers, there exists s− < s+ such that {γ = 0} = [s−, s+]. Moreover, in
view of Lemma 5.5, we know that s+ ≥ τ .

Fix ε ∈ (0, s+ − s−). If A ≡ A0 in (s+ − ε, s+), then, by dynamic programming, if γε is the straight-line
connecting (0, s+ − ε) and (x, t),

uA(x, t) =

� t

s+
LR(γ̇)ds−

� s+

s+−ε

A0ds+ uA(s+ − ε, 0)

=

� t

s+−ε

LR(γ̇)ds+ uA(s+ − ε, 0) >

� t

s+−ε

LR(γ̇ε)ds+ uA(s+ − ε, 0),

which is a contradiction.
So A ̸≡ A0 in (s+ − ε, s+), and, hence, there exists tε ∈ (s+ − ε, s+) such that uA(0, tε) < uA0(0, tε).

Let (a, b) be the connected component of {uA < uA0} containing tε. We know from Proposition 3.4 that
s− ≤ a, which implies that this connected component does not depend on ε. In addition, b > tε, thus, as ε→ 0,
b ≥ s+ ≥ τ . Thus (a, b) must be the last connected component.

Assume now that {γ = 0} ̸⊂ [a, b] and let γ̂+
0,b

be the optimal trajectory for uA(0, b) which remains the most in

{x = 0}. It follows from Lemma 5.13 that {γ = 0} ⊂ {γ̂+
0,b

= 0} and thus {γ̂+
0,b

= 0} ̸⊂ [a, b]. Then Lemma 5.16

states that, if we set s− = inf{s, γ̂+
0,b

(s) = 0}, then (s−, a) is the one before last connected component of

{uA < uA0}.

5.3. On the number of connected components

We finally show in this subsection that, if (5.14) and (5.6) hold, then the number of connected component

of {uA < uA0} is finite.

Let τ be given by (5.7). We define α ∈ [0, T ] as follows: If there is no last connected component of {uA < uA0},
then α = τ . If there is a last connected component (a, b), but the component (â, b̂) before last either does not

exist or satisfies b̂ < a, then we set α = a. Finally, if b̂ = a, we set α = â.
We first discuss a technical stability result.

Lemma 5.18. Given ε > 0, there exists δ > 0 such that, for any measurable A : [0, T ] → [A0, 0] with ∥A −
A∥L1 ≤ |A0|δ, any (x, t) ∈ [x1, x2]× [t3, t4] with u

A(x, t) < uA0(x, t) and for any optimal trajectory γ for uA(x, t),

inf{s : γ(s) = 0} ≥ α− ε.
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Proof. We first consider the case A ≡ A. Let (x, t) ∈ [x1, x2] × [t3, t4] and γ be optimal for uA(x, t). We show
that inf{s : γ(s) = 0} ≥ α.

If |{γ = 0}| = 0, then by the structure of minimizers and Lemma 5.5 imply that

inf{s : γ(s) = 0} = sup{s : γ(s) = 0} ≥ τ ≥ α.

If |{γ = 0}| > 0, then, in view of Corollary 5.17, the last connected component (a, b) of {uA < uA0} exists and
either

inf{s : γ(s) = 0} ≥ a ≥ α,

or there exists a one before last connected component (â, b̂) with b̂ = a and

inf{s : γ(s) = 0} ≥ â ≥ α.

We now show that there exists C > 0 such that, for any t ∈ [α, T ], any optimal trajectory γ of uA(0, t)
satisfies, for all s ∈ [0, s−], the bound

|γ(s)| ≥ C−1(s− − s)/s−, (5.18)

where s− = inf{s : γ(s) = 0}.
Indeed, let γ be such a path. We know that s− ≥ α. Moreover, by the structure of minimizers, γ does not

vanish on [0, s−) and uA(0, s−) = uA0(0, s−). Thus, γ|[0,s−]
is an optimal path for uA0(0, s−). Then Lemma 5.11

and a compactness argument yield the existence of some C > 0, which is independent of γ, such that |γ(0)| ≥
C−1. Since γ|[0,s−]

is a straight line, (5.18) follows.

In view of stability in L1 of the paths A, for any ε > 0, there exists δ > 0 such that, for any measurable
A : [0, T ] → [A0, 0] with ∥A− A∥L1 ≤ δ|A0|, for any (x, t) ∈ [x1, x2]× [t3, t4] and for any optimal trajectory γ

for uA(x, t), there exists an optimal trajectory γ̃ for uA(x, t) such that ∥γ − γ̃∥∞ ≤ (CT )−1ε, where C is the
constant in (5.18).

Let s− = inf{s : γ̃(s) = 0}. We know that s− ≥ α. Then, by (5.18),

|γ(s)| ≥ |γ̃(s)| − (CT )−1ε ≥ C−1(s− − s)/s− − (CT )−1ε.

If γ(s) = 0 for some s ≤ s−, then s ≥ s− − s−T−1ε ≥ α− ε.
The proof is now completed.

We show next a “local finiteness” result for the number of connected components of {uA < uA0} ∩ (0, α− ε).

Lemma 5.19. Assume (5.14) and let α be defined as above. Then, for any ε > 0, the set {uA < uA0}∩ (0, α− ε)
is the finite union of disjoint intervals. Moreover, for any connected component (a, b) with b < α, there exists

δ > 0 such that uA0(0, ·) = uA(0, ·) = uA0(0, a) on (a− δ, a).

Proof. Fix ε > 0 and let δ > 0 be as in Lemma 5.18. If (a, b) is a connected component of {uA < uA0} such that
a ≤ α− ε, set

Aδ(s) =

{
0 if s ∈ (a− δ, a),

A(s) otherwise,

and observe that ∥Aδ −A∥L1 ≤ |A0|δ and uAδ ≤ uA.
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We claim that uAδ = uA in [x1, x2]× [t3, t4]. Indeed, let (x, t) ∈ [x1, x2]× [t3, t4]. If u
Aδ(x, t) = uA0(x, t), the

claim is obvious. Otherwise, let γ be optimal for uAδ(x, t). Then, by Lemma 5.18,

inf{s : γ(s) = 0} ≥ α− ε ≥ a.

Then {γ = 0} ⊂ {Aδ = A}, and, hence,

uAδ(x, t) ≤ uA(x, t) ≤ JA(γ) = JAδ(γ) = uAδ(x, t),

the first inequality being a consequence of the fact that A ≤ Aδ, and, thus, u
Aδ = uA in [x1, x2]× [t3, t4].

Since uAδ ≤ uA with an equality in {ϕ < 0}, we have that J(Aδ) ≤ J(A).

We now show that uAδ(0, a) = uA(0, a). Recalling Lemma 5.12, for any point (x, t) ∈ O ∩ {ϕ > 0} of

differentiability of uA(x, t), we set

sx,t = sup{s : γ̂−x,t(s) = 0} ∈ (a, b).

Then, using the path γ̂−x,t in the dynamic programming, we find

uAδ(x, t) ≤
� t

sx,t

LR( ˙̂γ
−
x,t)ds−

� sx,t

a

A(s)ds+ uAδ(0, a).

If uAδ(0, a) < uA(0, a), then

uAδ(x, t) <

� t

sx,t

LR( ˙̂γ
−
x,t)ds−

� sx,t

a

A(s)ds+ uA(0, a) = uA(x, t),

which implies, in view of the fact that |O∩{ϕ > 0}| > 0, that J(Aδ) < J(A), a contradiction with the optimality

of A. Thus uAδ(0, a) = uA(0, a).
Using again dynamic programming with test trajectory γ = 0, for any a− δ < t < t′ < a, we have

uAδ(0, t′) ≤ −
� t′

t

Aδ(s)ds+ uAδ(0, t) = uAδ(0, t).

Hence uAδ(0, ·) is nonincreasing on (a− δ, a). However, uAδ(0, ·) is nondecreasing because uAδ
t = −HR(uAδ

x ) ≥ 0
a.e. in (0,∞)× (0, T ). Thus uAδ(0, ·) is constant on (a− δ, a). Then

uA0(a− δ) ≤ uA0(a) = uA(0, a) = uAδ(0, a) = uAδ(0, a− δ),

so that uA0(a− δ) = uA(a− δ) = uA(0, a) = uA0(0, a). Since uA0(0, ·) and uA(0, ·) are both nondecreasing, this
implies that they are constant and equal on (a− δ, a).

In view of the fact that uA0(0, ·) = uA(0, ·) in [a − δ, a], we have A ≡ A0 on (a − δ, a). If (a′, b′) is another

connected component of {uA < uA0} such that (a′, b′)∩ (a− δ, a) ̸= ∅, then, by Lemma 5.7, we necessarily have
a′ < a− δ.

This shows that (a − δ, a) intersects at most one connected component of {uA < uA0}, with δ independent
of (a, b). Therefore, the number of connected components (a, b) such that a ≤ α− ε is finite.

We now investigate further the last statement in Lemma 5.19.
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Lemma 5.20. Assume (5.14) and let α be defined as above. Let (a, b) be a connected component of {uA(0, ·) <
uA0(0, ·)} such that b < α, and δ > 0 be such that uA0(0, ·) = uA(0, ·) = uA0(0, a) on (a− δ, a). Then, for any
t ∈ (a− δ, a),

either uA0(0, t) = u0(−t(HR)′(−RR)) or uA0(0, t) = u0(−t(HL)′(0)).

In addition, if there exists t ∈ (a− δ, a) such that uA0(0, t) = u0(−t(HR)′(−RR)), then, for any other connected

component (a′, b′) of {uA(0, ·) < uA0(0, ·)} with b′ ≤ a, we have

a− a′ ≥ ax1/(−t(HR)′(−RR)).

Otherwise,

u0,x(−t(HL)′(0)) = 0 for a.e. t ∈ (a− δ, a).

Remark 5.21. Let

E+ = {t ∈ (a− δ, a), uA0(0, t) = u0(−t(HR)′(−RR))}

and

E− = {t ∈ (a− δ, a), uA0(0, t) = u0(−t(HL)′(0))},

and note that (a − δ, a) = E+ ∪ E−. Then the proof below also shows that u0,x(−t(HR)′(−RR)) = −RR for
a.e. t ∈ E+ and u0,x(−t(HL)′(0)) = 0 for a.e. t ∈ E−. Thus, if 0 < u0,x a.e. in (−∞, 0) and u0,x > −RR a.e. in

(0,∞), the set {uA(0, ·) < uA0(0, ·)} consists at most of the last connected component, together with the one
before last if it touches the last one.

Proof. Let γ be optimal for uA0(0, t) for t ∈ (a− δ, a). We know that γ is a straight line and that y = γ(0) ̸= 0.
Thus γ(s) = y(t− s)/t.

For any h small, γh(s) = y(t+ h− s)/(t+ h) is a possible path for uA0(0, t+ h) and, thus,

uA0(0, t) = tL(−y/t) + u0(y) = uA0(0, t+ h) ≤ (t+ h)L(−y/(t+ h)) + u0(y),

where L = LR if y > 0 and L = LL if y < 0. As this holds for any h small, we get

L(−y/t) + (y/t)L′(−y/t) = 0.

Recalling that L(z) − zL′(z) = −H(L′(z)), where H = HR if y > 0 and H = HL if y < 0, we infer that
H(L′(−y/t)) = 0. Thus L′(−y/t) = 0 or L′(−y/t) = −R. In the former case, −y/t = H ′(0) > 0, so that y < 0
and y = −t(HL)′(0). In the later one, −y/t = H ′(−R) < 0, so that y > 0 and y = −t(HR)′(−RR).

Assume now that there exists t ∈ (a− δ, a) such that uA0(0, t) = u0(−t(HR)′(−RR)), so that γ(s) = y(t−s)/t
with y = −t(HR)′(−RR) is optimal for uA0(0, t). As uA(0, t) = uA0(0, t) and γ vanishes only at t, γ is also

optimal for uA(0, t).

Let (a′, b′) be any other connected component of {uA < uA0} such that b′ ≤ a. From Lemma 5.12, we know

that there exists (x, t) ∈ (x1, x2)× (t1, t2) point of differentiability of uA(x, t) such that

s+ = sup{s : γ̂+x,t(s) = 0} ∈ (a′, b′).
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The optimal trajectories γ and γ̂+x,t cannot cross in {x > 0}× (0, T ). Since γ(s+) > 0 while γ̂+x,t(s
+) = 0, it follows

that γ − γ+x,t > 0 on (s+, t ∧ t). Thus t < t, since γ(t) = 0 and γ̂+x,t is positive on (s+, t), and γ(t) ≥ γ+x,t(t) = x.
Recalling the expression of γ and as t ≥ s+ > a′ and t < a, one gets

x1 ≤ x ≤ y(t− t)/t < y(a− a′)/a,

which gives the claim.
Assume now that uA0(0, t) = u0(−t(HL)′(0)) for any t ∈ (a − δ, a). Then for a.e. t ∈ (a − δ, a) such that

u0 is differentiable at −t(HL)′(0), y = −t(HL)′(0) is optimal in the cost z → −tLL(−z/t) + u0(z), so that
(LL)′(−y/t) + u0,x(y) = 0. This implies that u0,x(y) = −(LL)′((HL)′(0)) = 0.

We are now ready to prove that there is only finitely many connected components of {uA(0, ·) < uA0(0, ·)}.

Lemma 5.22. Assume (5.14) and (5.6). Then the set {uA(0, ·) < uA0(0, ·)} consists in only finitely many
intervals.

Proof. Assume on the contrary that the number of connected components of {uA(0, ·) < uA0(0, ·)} is infinite.
In view of Lemma 5.19, it is possible to order these connected components depending on whether there is

a last component (a, b) or not and whether, if there exists a last component, the component before the last
touches (a, b) at a or not.

If there is no last component, we have

{uA(0, ·) < uA0(0, ·)} =
⋃
n∈N

(an, bn),

where, for any n, an < bn ≤ an+1. If there exists a last connected component and the previous component does
not touch (a, b), then

{uA(0, ·) < uA0(0, ·)} =
⋃
n∈N

(an, bn) ∪ (a, b),

where the an, bn are as above. Finally, if the component before the last touches (a, b) at a, in which case we
denote this component as (a, a),

{uA(0, ·) < uA0(0, ·)} =
⋃
n∈N

(an, bn) ∪ (a, b) ∪ (a, b),

where, again, an, bn are as above.

Let ã > 0 be the limit of the an’s and bn’s and choose δn > 0 so that, for any n ∈ N , uA(0, ·) = uA0(0, ·) is
constant on [an − δn, an].

Assume that, along a subsequence nk, there exist tnk
∈ (ank

− δnk
, ank

) such that uA0(0, tnk
) =

u0(−tnk
(HR)′(−RR)). Then it follows from Lemma 5.20 that, for any k and any k′ < k, ank

− ank′ >
ank

x1/(−tnk
(HR)′(−RR)), a contradiction to the fact that the an’s has a positive limit.

It follows from Lemma 5.20 that, for any n large enough, say n ≥ n0, and θ = (HL)′(0),

u0,x(−tθ) = 0 for a.e. t ∈ (an − δ, an).

Since, in view of (5.6), the set {x ≤ 0 : u0,x(x) = 0} consists a.e. only of finitely many intervals, there exists
n1 > n2 ≥ n0 such that (−an1

θ,−(an1
− δn1

)θ) and (−an2
θ,−(an2

− δn2
)θ) belong to the same interval of

{x ≤ 0 : u0,x(x) = 0}, which implies that u0 is constant on [−an1θ,−(an2 − δn2)θ].
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It then follows, again by Lemma 5.20, that uA0(0, an1
) = uA0(0, an2

), and, since uA0(0, ·) is nondecreasing,

we find that uA0(0, ·) is constant on [an2
, an1

]. In view of the fact that uA(0, x) = uA0(0, x) for x = an1
and

x = an2 , and, since u
A(0, ·) is nondecreasing, uA(0, ·) must be constant and equal to uA0(0, ·) on [an2 , an1 ]. This

contradicts the fact that (an2
, bn2

) ⊂ (an2
, an1

) is a connected component of {uA(0, ·) < uA0(0, ·)}.
In conclusion, the number of connected components of {uA(0, ·) < uA0(0, ·)} must be finite.

We conclude the subsection with the remaining proof.

Proof of Theorem 5.1. Lemma 5.22 yields that the set {uA(0, ·) < uA0(0, ·)} consists of only finitely many

intervals. Since A ≡ A0 outside {uA(0, ·) < uA0(0, ·)} and, for any connected component (a, b), there exists
τ ∈ (a, b) such that A ≡ 0 in (a, τ) and A ≡ A0 in (τ, b), the set {A ≡ 0} consists of a finite number of disjoint
intervals.

5.4. An example

We present here a class of examples for which the optimal controls cannot be constant and equal to 0 or to
A0.

For simplicity of notation, we assume here that HL = HR and thus remove the exponents “L” and “R” in
the notation. We recall that H : [−R, 0] → R is strictly convex with H(0) = H(−R) = 0 and H has a minimum
at p̂.

Proposition 5.23. Assume in addition to (5.14) that u0(x) = px, where p ∈ (−R, p̂). If

(i) x2 ≤ H(p)t1/p, (ii) t2H
′(0)/(H ′(0)−H(p)/p) < t3, and

(iii) − t2A0/(H(p)−A0) < t3,
(5.19)

then A ≡ A0 and A ≡ 0 are not optimal.

We strongly use below that the traffic is congested in the entry line, that is, p ∈ (−R, p̂). As we show in the
following proof, the first condition in (5.19) implies that the control is active on the whole set {ϕ ̸= 0}, which
is a natural condition. Conditions (ii) and (iii) hold if t3 is large enough.

Proof. Define the control

A =

{
0 on [0, t2],

A0 in (t2, T ].

Recall that uA ≤ uA0 and uA0(x, t) = px −H(p)t. Then, using dynamic programming for the interval (t2, T ),
we find

uA(x, t) = min{−Rx1{x≤0}, px−H(p)t} if (x, t) ∈ R× [0, t2],

min{ min
y∈[0,H(p)t2/p]

(t− t2)L((x− y)/(t− t2)) , px− tH(p)} if (x, t) ∈ [0,∞)× [t2, T ].
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We first claim that J(A) < J(A0). Note that

J(A0)− J(A) =

� t2

0

� H(p)t/p

0

ϕ(x, t)(px−H(p)t)dxdt

+

� T

t2

�
R+

ϕ(x, t)(uA0(x, t)− uA(x, t))dxdt.

(5.20)

Since, by (5.19)(i), x2 ≤ H(p)t1/p, it follows that

(x1, x2)× (t1, t2) = {ϕ > 0} ⊂ {(x, t) ∈ R+ × [0, t2], x < H(p)t/p}
= {(x, t) ∈ R+ × [0, t2], u

A(x, t) < uA0(x, t)},

and, thus, the first integral in (5.20) is positive.
We now fix (x, t) such that t > t2 and uA(x, t) < uA0(x, t). Then,

uA(x, t) = min
y∈[0,H(p)t2/p]

(t− t2)L((x− y)/(t− t2)) < px− tH(p).

Let y be a minimum point miny∈[0,H(p)t2/p](t− t2)L((x−y)/(t− t2)). In view of the facts that uA(x, t) < uA0(x, t)
and uA(H(p)t2/p, t2) = uA0(H(p)t2/p, t2), it follows that y ∈ [0, H(p)t2/p).

In the case where the minimum point y is in (0, H(p)t2/p), we have L′((x − y)/(t − t2)) = 0, and thus
miny≥0(t − t2)L(x − y/(t − t2)) = 0 and x − y = (t − t2)H

′(0). Then 0 = uA(x, t) and uA(x, t) < uA0(x, t)
implies that 0 ≤ x < H(p)t/p and x > (t − t2)H

′(0). It follows that H ′(0)(t − t2) < H(p)t/p, which in turn
yields that t < t2H

′(0)/(H ′(0)−H(p)/p)), and, in view of (5.19)-(ii), that t < t3.
If the minimum point y is zero, then uA(x, t) < uA0(x, t) implies, using the convexity of L, px −H(p)t >

(t− t2)L(x/(t− t2)) ≥ p̂x− (t− t2)H(p̂) = p̂x− (t− t2)A0, so that (p̂− p)x+ (H(p)−A0)t < −t2A0. Since, in
view of (5.19)-(iii), we have t3 > −t2A0/(H(p)−A0) and, hence, t ≤ t3.

The considerations above show that {uA < uA0} ∩ (R+ × [t2, T ]) ⊂ {ϕ ≥ 0}, and, hence, the second integral
in (5.20) is nonnegative. Thus J(A0) > J(A) and the constant control A0 is not optimal.

We check next that the constant control 0 is not optimal. Note that

u0(x, t) = min{−Rx1{x≤0}, px−H(p)t} for (x, t) ∈ R× [0, T ].

Hence, since x2 ≤ H(p)t1/p,

{ϕ ̸= 0} ⊂ [x1, x2]× [t1, t4] ⊂ {(x, t) ∈ R+ × [0, t2], x ≤ H(p)t/p} ⊂ {u0(x, t) = 0}.

One the other hand we have seen that uA = u0 in R× [0, t2], while, in (x1, x2)× [t3, t4], u
A = uA0 > u0. This

proves that J(0) > J(A) and, thus, the constant control 0 is not optimal.
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