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Abstract
Motivated by optimal allocation models with relative performance criteria, we introduce a
mean field game in which the terminal expected utility of the representative agent depends on
her own state aswell as the average of her peers.We derive themaster equation,which, in view
of the presence of controls in the volatility, needs to be coupled with a compatibility condition
for the mean field optimal feedback control. We concentrate on the class of separable payoffs
under both general utilities and couplings. We derive a solution to the master equation and
find the associated optimal feedback control expressed via the value function in the absence
of competition and a dynamic coupling function solving a non-local quasilinear equation.
In turn, we construct the related optimal state and control processes, and give representative
examples. Projecting the mean field solutions on finite dimensions, we recover the solution
of the N -game for linear couplings and arbitrary utilities, and we study the proximity of these
approximations to their N -player game counterparts.

Keywords Mean field games · Master equation · Unbounded controlled common noise ·
Portfolio choice · Relative performance

1 Introduction

We introduce a mean field game (MFG) arising in optimal investment models with relative
performance concerns. In such models, each player is concerned with both her own and the
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performance of her peers at the end of the optimization horizon. This interdependence is
modeled via expected terminal payoffs that depend on the individual as well as the average
population state, which creates a stochastic coupling among all agents.

There is a rich literature in financial economics on optimal allocation/fund management
problems with relative performance concerns as fund management is always performed in
relation to a benchmark (index, returns of competitors, clustered financial targets, etc.). The
prevailing way to classify these models is based on whether agents compete while invest-
ing in a common market (asset diversification) or, more generally, also include individual
assets inaccessible to their competitors (asset specialization). For both categories, the existing
applied papers primarily consider only two player games, single period models, and linear
or quadratic criteria (see, among others, [1–3, 8, 9, 13, 14, 31, 34, 39]).

The literature for continuous time is relatively recent. An N -player asset diversification
game for players with common exponential utility and linear competition functionswas intro-
duced in [15]. This work was extended by Lacker and the second author in [24] who provided
the first MFG formulation under asset specialization but, still, under linear competition and
exponential utilities; they also studied the case of power utilities and geometric competi-
tion function to accommodate non-negative state constraints, which is also rather restrictive
and can be solved similarly. The mean field game in [24] was defined probabilistically, and
static (random) equilibria were constructed when both common noise (common assets) and
individual noise (specialized assets) were included in a log normal market.

Thework in [24]was extended in a number of papers, allowing, among others, for interme-
diate consumption, external habit formation, systemic risk, non-linear price impact, forward
utilities, relaxed controls and learning (see, for example, [4–7, 16, 17, 23, 33, 40]. In all these
works, the MFG were defined probabilistically, directly following the definition in [24],
and considered either exponential or quadratic payoffs with linear coupling, or geometric
mean/power type couplings with power utilities or recursive Epstein-Zin utilities. An asymp-
totic result for utilities close to CARA with power type coupling can be found in [38]. As
in [24], in the works to date the combination of homothetic payoffs and couplings, together
with the linearity of state dynamics in the control variables, lead to dimensionality reduction
and considerable tractability.

Herein, we allow for both general utilities and general couplings, which to the best of our
knowledge has not been done before. We, also, depart from the probabilistic definition and
introduce the MFG directly through the stochastic PDE game system and its master equation
(see (2), (3) and (4)).

To ease the presentation, we only focus on unconstrained problems, allowing for the state
process to be in the entire space. The case of general utilities and arbitrary couplings in the
half space is being currently investigated by the authors in [36].

We consider a model in which the players control both the drift and volatility of their state,
with controls appearing linearly therein. We make this more precise next but without laying
out the technical details which are presented later.

The MFG is the natural limit of the following N -player game. Consider N agents, labeled

by i = 1, . . . , N ,with respective individual state
(
Xπi
i,s

)
0≤t≤s≤T

solving the controlled SDE

dXπi
i,s = bπi,sds + σπi,sdWs, Xπi

t = xi ,

with x1, . . . , xN ∈ R
N , and having, for fixed policies (π j,s)0≤t≤s≤T , j=1,...,N , j �=i , value

function

vi (x1, . . . , xN , t)
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= sup
πi∈A

E
[
J
(
Xπi
i,T ,

1

N − 1

N∑
j=1, j �=i

X
π j
j,T

)∣∣X1
t = x1, . . . , X

N
t = xN

]
. (1)

The set of admissible policies A and the terminal payoff function J are common across
players. For the generic player i, her expected terminal payoff depends on both the individual

state Xπi
i,T and the average

1

N − 1

N∑
j=1, j �=i

X
π j
j,T of the rest of the population. This is, in general,

a non-tractable problem and, for this, we consider its limit as N → ∞.
To study the emerging mean field game, we first derive the associated master equation

together with a compatibility condition for the candidate MFG optimal control. The resulting
equation is new and outside the reach of the current theory. It is given, for (x,m, t) ∈
(R,P, [0, T ]), where P denotes the set of probability measures on R, by

Ut (x,m, t) + 1

2
σ 2 (

π∗ (x,m, t)
)2
Uxx (x,m, t) + bπ∗ (x,m, t)Ux (x,m, t)

+ σ 2π∗ (x,m, t)
∫

π∗ (z,m, t)Uxm (x,m, z, t) dm (z)

+ 1

2
σ 2

∫ ∫
π∗ (z,m, t) π∗(y,m, t)Umm (x,m, z, y, t) dm (z) dm (y)

+ b
∫

π∗(z,m, t)Um (x,m, z, t) dm (z) = 0,

(2)

with terminal condition

U (x,m, T ) = J (x,m) . (3)

The optimality condition for the mean field feedback control π∗ : R × P × [0, T ] → R

is given, for λ = b

σ
, by

π∗ (x,m, t)Uxx (x,m, t)

+
∫

π∗(z,m, t)Uxm(x,m, z, t)dm (z) = − λ

σ
Ux (x,m, t) .

(4)

In (2) and (4), them-subscripts inUm,Uxm andUmm stand for the so-called Lions derivative;
(see [11] for its definition).

We refer to the coupled Eqs. (2) and (4 ) as the “master system”.
The presence of the control π∗ in (2) in front of the second derivatives of U and the

compatibility condition (4) puts the problemoutside the existing theory of themaster equation
developed in [11] and the subsequent references.

To gain tractability and further investigate the MFG, we consider the general class of
separable payoffs J (x,m) given by

J (x,m) = G
(
x − F

(∫
xdm (x)

) )
, (5)

where G represents the utility of the representative agent and F models the coupling with
the population average. We introduce minimal assumptions on G and F, thus substantially
extending the rather restrictive cases of exponential G and linear F that have been studied
so far.
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The first step in our analysis is to produce closed form solutions for the master system (2)
and (4). Specifically, we show that a solution U to (2) is given by

U (x,m, t) = v
(
x − f

( ∫
xdm(x), t

)
, t

)
, (6)

where v and f are two auxiliary functions representing respectively the value of the game in
the absence of competition and the "backward in time" evolution of the coupling interaction.

Indeed we show that v = v(x, t) : R× [0, T ] → R is given by (1) and (5) for N = 1 and
F ≡ 0, and satisfies the well known equation (see, for example, [30])

vt − 1

2
λ2

v2x

vxx
= 0 in R × [0, T ) and v(x, T ) = G(x). (7)

The function f = f (x̃, t;m) : R×[0, T ]×P → R satisfies the terminal value problem

ft + 1

2
λ2

(∫
r (y − f , t) dm (y)

)2
(1 − fx̃ )

2 fx̃ x̃ = 0 in R × [0, T ),

f (x̃, T ;m) = F (x̃) ,

(8)

where r (x, t) = − vx (x, t)

vxx (x, t)
.

In turn, (4) yields that the optimal feedback control is given by

π∗(x,m, t) = λ

σ
r
(
x − f

( ∫
xdm(x), t

)
, t

)

+ λ

σ

fx̃
(∫

xdm(x), t
)

1 − fx̃
(∫

xdm(x), t
)

∫
r
(
y − f

( ∫
xdm(x), t

)
, t

)
dm (y) .

(9)

Using this feedback control, we construct explicitly the optimal mean field state and control
processes,

(
X∗
t

)
t∈[0,T ] and

(
π∗
t

)
t∈[0,T ], and study their properties.

Among others, we show that the former is given by

X∗
t = x∗,x− f (x̃0,0)

t + f
( ∫

xdm∗
t (x), t

)
,

where x∗,x− f (x̃0,0)
t is the optimal state process of the single-agent optimization problem

starting at x − f (x̃0, 0), x̃0 = ∫
xdm0(x) with m0 being the initial population distribution,

and m∗
t is the conditional on FW

t law of X∗
t .

We, in turn, provide representative examples for the general class of arbitrary utilities
and linear couplings, and for exponential utilities and general couplings. The intersection of
these two families provides the only unconstrained domain case that has been so far studied
(exponential utility and linear coupling).

Finally, we investigate how the mean field solution U and π∗ approximate their
counterparts in the N -player game. For this, we consider, for each i = 1, . . . , N , themeasure

μN ,i = 1

N − 1

N∑
j=1, j �=i

δx j , (10)

and compare U
(
xi , μN ,i , t

)
to vi (x1, . . . , xN , t) , and π∗(xi , μN ,i , t) to the optimal

feedback control π∗
N ,i (x1, . . . , xN , t), of the i th player.
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When the coupling is linear, that is, F(z) = θ z, for some θ ∈ (0, 1) , we find that the
associated values coincide and the controls differ by order 1

N−1 . In particular we show that,

in R
N × [0, T ] and for i = 1, . . . , N ,

vi (x1, . . . , xN , t) = U (xi , μ
N ,i , t) = v

(
xi − θ

N − 1

N∑
j=1, j �=i

x j , t
)
,

and, for a universal constant C ,∣∣∣π∗
N ,i (x1, . . . , xN , t) − π∗(xi , μN ,i , t)

∣∣∣

≤ K
λ

σ

θ

1 − θ

(
1 + 1 − θ

N

N∑
j=1

|x j | + 1

N

N∑
j=1

|xi − x j |
)
.

We conclude the introduction with a brief summary about MFG. The MFG theory were
introduced by Lasry and Lions in [26–28] and, at the same time, by Caines, Huang, and
Malhamé in [18] for a particular setting. In the presence of both idiosyncratic and common
noise, the stochastic MFG system was first investigated by Cardaliaguet, Delarue, Lasry and
Lions in [11]. This reference considered games with the space being the torus, and showed
the existence and uniqueness of a strong solution for strictly monotone coupling functions
and non-degenarate diffusions. The results of [11] were extended to R

d by Carmona and
Delarue in the monograph [12]. An alternative analytic approach to study MFG equilibria
with a common noise is the master equation, introduced by Lasry and Lions and presented by
Lions in [29]. The master equation is a deterministic nonlinear nonlocal transport equation in
the space of measures, which encompasses all the information about the game and provides
suitable approximations to Nash equilibria of the finite player game. The existence and the
uniqueness of a classical solution to this equation was first established in [11] (see also
[12]). By now, the MFG literature has expanded with many important contributions. Listing
references is beyond the scope of this paper.

Most of the existing theory about the master equation so far applies to dynamics
with uncontrolled and homogeneous noises. Extending the theory to inhomogeneous and,
especially, unbounded controlled noises remains as one of the main open problems.

Themaster equation studied in this paper is newandnogeneral theory exists for its analysis.
In addition, several standard existing assumptions, like Lipschitz regularity of the criterion
and compactness of the control policies, are lacking. The monotonicity assumption in terms
of the measure in the final data is also lacking, as one may consider both the competitive and
the homophilous case of interaction.

The paper is organized as follows. In Sect. 2, we introduce the finite population game and
the related MFG, and derive formally the master system (master equation and the compati-
bility condition). In Sect. 3, we focus on payoffs of form (5) and construct a solution to the
master system. In Sect. 4, we produce the associated optimal allocation and state processes
while in Sect. 5 we give representative examples. In Sect. 6, we examine the approximation
of the mean field solution and policies to their finite game counterparts.

2 The N-player game, themean field game and themaster system

2.1 The N-player game

We consider a game of N players with controlled state processes (Xi
s)0≤t≤s≤T evolving, for

each i = 1, . . . , N , according to the SDE
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dXπi
i,s = bπi,sds + σπi,sdWs in (t, T ) Xi,t = xi , xi ∈ R, (11)

with b, σ > 0 fixed constants and (Wt )t≥0 a standard Brownian motion on (�,F,P) with
natural filtration F = {FW

t

}
t≥0.

Each player i controls the evolution of her state using πi ∈ A, with

A = {
π : πt is FW

t − adapted and E

∫ T

0
π2
s ds < ∞}

, (12)

and has value function

vi (x1, . . . , xN , t)

= sup
πi∈A

E
[
J
(
Xπi
i,T ,

1

N − 1

N∑
j=1, j �=i

X
π j
j,T

)|X1
t = x1, . . . , X

N
t = xN

]
,

(13)

The payoff function J : R
2 → R is common across players and depends on both their

terminal individual state and the average performance of their peers.

Remark 1 The assumption that there is a single stock is introduced for mere simplicity. The
analysis can be readily extended to the multi-stock case with lognormal dynamics, as long
as the enlarged market remains common for all players.

Remark 2 Criterion (13) may be generalized by allowing intermediate payoffs. Then, the
dynamics (11) take the form

dXπi
i,s = bπi,sds − Ci,sds + σπi,sdW

i
s Xπi

i,t = xi ,

and, in turn, for i = 1, . . . , N ,

vi (x, t) = sup
Ci ,πi

E
[ ∫ T

t
J1

(
Ci,s

)
ds + J2

(
Xπi
i,T ,

1

N − 1

N∑
j=1, j �=i

X
π j
j,T

)|Xπ
t = x

]
,

with x = (x1, . . . , xN ) and Xπ
t = (Xπ1

1,t , . . . , X
πN
N ,t ) and common, across players, payoff

functions J1 and J2. This case is being currently studied in [35].

We recall that a strategy
(
π∗
1,s, . . . , π

∗
N ,s

)
s∈[0,T ] is a Nash equilibrium of the game, if, for

each i = 1, . . . , N and all πi ∈ A,

E
[
J
(
Xπi
i,T ,

1

N − 1

N∑
j=1, j �=i

X
π∗
j

j,T

)|Xπ∗
1

1,t = x1, . . . , X
πi
i,t = xi , . . . , X

π∗
N

N ,t = xN
]

≤ E
[
J
(
X

π∗
i

i,T ,
1

N − 1

N∑
j=1, j �=i

X
π∗
j

j,T

)|Xπ∗
1

1,t = x1, . . . , X
π∗
i

i,t = xi , . . . , X
π∗
N

N ,t = xN
]
.

Next, we assume that there exist Nash equilibrium control processes(
π∗
1,s, . . . , π

∗
N ,s

)
0≤t≤s≤T

in the feedback form

π∗
i,s = π∗

N ,i

(
X∗
1,s, . . . , X

∗
N ,s, s

)
,

for each i = 1, . . . , N and for some functions π∗
N ,i : R

N× [0, T ] → R and with the
(X∗

i,s)0≤t≤s≤T ,i=1,...,N , solving (11) with the processes π∗
i,s as controls.
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If the value functions vi
(
x1, . . . , xN , t

)
for i = 1, . . . , N are smooth, they are expected

to satisfy, for each i = 1, . . . , N and in R × [t, T ), the Hamilton-Jacobi-Bellman (HJB)
equation

vit + max
πN ,i

(1
2
σ 2π2

N ,iv
i
xi xi + πN ,i

(
bvixi + σ 2

N∑
j=1, j �=i

π∗
N , jv

i
xi x j

))

+ 1

2
σ 2

N∑
j=1, j �=i

N∑
k=1,k �=i

π∗
N , jπ

∗
N ,kv

i
x j xk + b

N∑
j=1, j �=i

π∗
N , jv

i
x j = 0,

(14)

with terminal condition

vi
(
x1, . . . , xN , T

) = J
(
xi ,

1

N − 1

N∑
j=1, j �=i

x j
)
. (15)

Furthermore, also if the maximum in (14) is well defined in each respective HJB equation,

we deduce that the optimal feedback functions
(
π∗
N ,1, . . . , π

∗
N ,N

)
must satisfy the linear

system

N∑
j=1

π∗
N , jv

i
xi x j = − λ

σ
vixi for i = 1, . . . , N and λ = b/σ. (16)

Although it appears simple, this linear system is not tractable due to the interlinked
dependence of theπ∗′

N ,i s and the coefficients vixi , v
i
xi xi and vixi x j .We also note that, in general,

it is not even known, although it is very likely, that the value functions vi ′s are smooth enough
for the latter partial derivatives to be well defined, except for very specific cases on which we
comment in Sect. 5 Motivated by the intractability and complications of the N -player game,
we introduce next a related mean field game.

2.2 Themean field game

The representative agent’s state (Xs)0≤t≤s≤T solves, for π ∈ A, the continuum analogue of
SDE (11), namely,

dXπ
s = bπsds + σπsdWs in (t, T ] and Xπ

t = x .

For each process m : � → C([t, T ];P), where C([t, T ];P) is the space of P valued
continuous functions in time, the value function of the representative player is defined as

u(x, t;m) = sup
π∈A

E[J (Xπ
T ,mT )|FW

t ].

Wesay that the game is at equilibrium, if there existsm ∈ C([t, T ];P)which is the conditional
law of the dynamics of the player associated with the optimal π in the above value function.

The definition above is translated to saying that the game has a value if there exists a
triplet of FW

t -progressively measurable processes (u, V ,m) satisfying, in R × (t, T ), the
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backward-forward system of stochastic PDE

du(x, s) = −max
π

(1
2
σ 2π2uxx (x, s) + π

(
bux (x, s) + σ 2Vx (x, s)

))
ds

+ σV (x, s) dWs,

dm(x, s) = −b∂x
(
π∗(x,m, s)m(x, s)

)
ds

+ 1

2
σ 2∂xx

((
π∗(x,m, s)

)2
m(x, s)

)
ds − σ∂x

(
π∗ (x,m, s)m (x, s)

)
dWs,

u(x, T ) = J (x,m(·, T )) and m(x, t) = m0,

(17)

where

π∗ (x,m, s) = argmax
π

(1
2
σ 2π2uxx (x, s) + π

(
bux (x, s) + σ 2Vx (x, s)

) )
.

Solving system (17) is rather complicated.When there is no control in front of the common
noise, the analogous systemwas studied in [11]. It is not known, however, if similar arguments
can be employed here.

2.2.1 The master system

We proceed with the derivation of a master system consisting of the master equation (2) and
(3) coupled with the optimality condition (4).

We begin with a formal argument passing to the limit at the HJB Eq. (14) of the N -player
game and, then, we briefly present a possible rigorous argument about how to go directly to
the master system from the stochastic PDE system (17).

To this end, we revert to (16) recalling that, at the optimum π∗
N ,i , we must have, for each

i = 1, . . . , N ,

σ 2(π∗
N ,iv

i
xi xi +

N∑
j=1, j �=i

π∗
N , jv

i
xi x j

) = −bvixi . (18)

Next, for large N , we suppose that the feedback control functions π∗
N ,i (x1, . . . , xN , t) and

the value functions vi (x1, . . . , xN , t) can be written as

π∗
N ,i (x1, . . . , xN , t) � π∗

N

(
xi , μ

N ,i , t
)
and vi (x1, . . . , xN , t) � vN (xi , μ

N ,i , t).

We assume then that, as N → ∞, μN ,i converges weakly to a measure m and, furthermore,

π∗
N

(
xi , μ

N ,i , t
)

→ π∗ (x,m, t) and vN (xi , μ
N ,i , t) → U (x,m, t) , (19)

where π∗ (x,m, t) will be the associated mean field equilibrium optimal feedback function
and U (x,m, t) a solution to the master equation.

From (18) and (19), we would then expect that π∗ (x,m, t) satisfies the optimal-
ity/compatibility condition

π∗ (x,m, t)Uxx (x,m, t)

+
∫

π∗(z,m, t)Uxm(x,m, z, t)dm (z) = − λ

σ
Ux (x,m, t) .

(20)
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Analogously, we expect that, as N → ∞,

N∑
j=1, j �=i

N∑
k=1,k �=i

π∗
N , jπ

∗
N ,kv

i
x j xk

→
∫ ∫

π∗(z,m, t)π∗(y,m, t)Umm (x,m, z, y, t) dm (z) dm (y) ,

and
N∑

j=1, j �=i

π∗
N , jv

i
x j →

∫
π∗(z,m, t)Um (x,m, z, t) dm (z) .

Combining the above, the formal limit, as N → ∞, of the HJB Eq. (14) is (2), which is
rewritten below for the reader’s convenience,

Ut (x,m, t) + 1

2
σ 2(π∗(x,m, t)

)2
Uxx (x,m, t) + bπ∗(x,m, t)Ux (x,m, t)

+ σ 2π∗ (x,m, t)
∫

π∗ (z,m, t)Uxm (x,m, z, t) dm (z)

+ 1

2
σ 2

∫ ∫
π∗(z,m, t)π∗(y,m, t)Umm(x,m, z, y, t)dm(z)dm(y)

+ b
∫

π∗(z,m, t)Um(x,m, z, t)dm(z) = 0 in R × P(R) × [0, T ),

(21)

and

U (x,m, T ) = J (x,m). (22)

Remark: Let

H (
Um,Umm, π∗)

= 1

2
σ 2

∫ ∫
π∗ (z,m, t) π∗(y,m, t)Umm (x,m, z, y, t) dm (z) dm (y)

+ b
∫

π∗(z,m, t)Um (x,m, z, t) dm (z) .

Then, combining (20) and (21), we may rewrite the master equation as

Ut (x,m, t) + max
π∈R

(1
2
σ 2π2Uxx (x,m, t)

+ π(σ 2
∫

π∗(z,m, t)Uxm(x,m, z, t)dm(z) + bUx (x,m, t))
)

+ H (
Um,Umm, π∗) = 0,

and, alternatively, as

Ut (x,m, t) − 1

2
σ 2 (

π∗ (x,m, t)
)2
Uxx (x,m, t) + H (

Um,Umm, π∗) = 0. (23)

Returning to the derivation of the master equation assuming that the forward-backward
stochastic PDE system (17) has a classical solution, we argue following the program outlined
in [11] about the derivation of the master equation with uncontrolled and homogeneous
common noise. However, since we do not know the existence of classical solutions to (17),
here we only show the beginning of the argument and spare the reader of tedious calculations.
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The main idea is to turn the forward Fokker-Planck equation to an ordinary PDE with
random coefficients and, at same time, identify the V part of the solution to (17) and turn the
backward SPDE for u to a stochastic PDE with a deterministic part plus a martingale.

For the problem in [11] the transformation needed is straightforward due to the uncon-
trolled and homogeneous common noise. However, when there are controls in front of the
common noise, it is necessary to perform a more sophisticated change.

We describe here the first step of this program. Fix t0 ∈ [0, T ) and let (Yt )0≤t0≤t≤T be
defined by

dYs = π∗(Ys,m(Ys, s), s)dWs in (t0, T ] and Yt0 = x .

The transformation we need to use is

m̃(x, t) =
(
exp

∫ t

t0
π∗
x (Ys,m(Ys, s), s)dWs

)
m(Yt , t),

and

ũ(x, t) = u(Yt ,m(Yt , t), t).

Making use of the Ito-Wentzell formula and the above transformationwe can nowproceed.

3 A solvable MFG class

The rest of the paper is dedicated to the analysis of the mean field game (20), (21) for payoffs
of the form

J (x,m) = G
(
x − F

( ∫
xdm(x)

))
, (24)

where G is the representative agent’s utility and F a coupling function modeling the relative
performance effects from the average of the continuum of the population.

As mentioned earlier in the introduction, the only case that has been examined so far in
unbounded domains is when G, F : R → R are of the G(x) = −e−δx and F(z) = θ z, for
some δ > 0 and θ ∈ (0, 1) . We recall that in these works, the definition of the MFG was
probabilistic and not through the MFG system (20) and (21); we revisit this case in Sect. 5.

3.1 Assumptions

For the utility function G : R → R, we assume that

i) G ∈ C4(R) is strictly concave and strictly increasing, and

lim
x→−∞G ′(x) = ∞ and lim

x→∞G ′(x) = 0,

i i) for some δ, K > 0, the map R = − G ′

G ′′ : R → R
+ satisfies

0 < δ ≤ R and |R′| ≤ K .

(25)

Note that (25) immediately yields that, for some K1, K2 > 0 and x ∈ R,

0 < δ ≤ R (x) ≤ K1 |x | + K2. (26)
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The above properties are satisfied by a large class of utility functions. Among others,
popular examples include the exponential case G(x) = −e−δx with δ > 0 for which R(x) =
δ, and the so-called SAHARA utilities, introduced in [32] (see, also, [41]) which are modeled
indirectly through the parametric family

R (x) = − G ′ (x)
G ′′ (x)

=
√

αx2 + δ, with α ≥ 0 and δ > 0. (27)

For the coupling function F : R → R, we assume that

F ∈ C2(R), F(0) = 0 and, for some k1, k2 > 0 and all z ∈ R,

0 < k1 < 1 − F ′ (z) < k2.
(28)

The assumptions above for the coupling function F , although general, are introduced for
technical reasons. So far, couplings have been taken to be linear for exponential utilities, and
of power type for power utilities, for mere tractability, without any modeling justification.
Some preliminary empirical results on fund manager interaction functionals may be found
in [21, 22] but a theoretical specification of a suitable class of F’s is still lacking.

3.2 Solving themaster system

We are seeking smooth functions v, f : R × [0, T ] → R, such that (21) has a solution of
the form

U (x,m, t) = v(x − f (x̃, t), t), (29)

with

x̃ =
∫

x m(dx). (30)

We proceed with formal calculations which will be made rigorous afterwards.
Differentiating the candidate solution in (29) gives

Ut (x,m, t) = − ft (x̃, t) vx (x − f (x̃, t) , t) + vt (x − f (x̃, t) , t) ,

Ux (x,m, t) = vx (x − f (x̃, t) , t) ,

Uxx (x,m, t) = vxx (x − f (x̃, t) , t)

Um (x,m, t) = − fx̃ (x̃, t) vx (x − f (x̃, t) , t) ,

Uxm (x,m, z, t) = − fx̃ (x̃, t) vxx (x − f (x̃, t) , t) ,

Umm (x,m, z, t) = − fx̃ x̃ (x̃, t) vx (x − f (x̃, t) , t)

+ f 2x̃ (x̃, t) vxx (x − f (x̃, t) , t) ,

(31)

while the optimality condition (20) becomes

σ 2π∗(x,m, t)vxx (x − f (x̃, t), t)

= σ 2(

∫
π∗(z,m, t)m(dz)) fx̃ (x̃, t)vxx (x − f (x̃, t), t) − bvx (x − f (x̃, t), t).

(32)
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Inserting these expressions in (21) and after some calculations, we find that we must have

vt + σ 2(1
2
(π∗)2 − π∗

∫
π∗(z,m, t)dm(z) fx̃

)
vxx + bπ∗vx

+ σ 2

2

( ∫
π∗(z,m, t)dm(z)

)2
f 2x̃ vxx − b

( ∫
π∗(z,m, t)dm(z)

)
fx̃vx

−
(
ft + σ 2

2

( ∫
π∗(z,m, t)dm(z)

)2
fx̃ x̃

)
vx = 0,

(33)

where to simplify the notation we omitted (except in the integrals) the dependence of vt ,
vx and vxx on x − f (x̃, t) and t , of ft , fx̃ and fx̃ x̃ on x̃ and t , and of π∗ on x,m and t .
Combining terms in (33) yields

vt + 1

2
σ 2(π∗ −

∫
π∗(z,m, t)dm(z) fx̃

)2
vxx

+ b
(
π∗ −

∫
π∗(z,m, t)dm(z) fx̃

)
vx

− (
ft + σ 2

2

( ∫
π∗(z,m, t)dm(z)

)2
fx̃ x̃

)
vx = 0,

(34)

and, after using (32) and recalling that λ = b/σ ,

vt − 1

2
λ2

v2x

vxx
− (

ft + σ 2

2

( ∫
π∗(z,m, t)dm(z)

)2
fx̃ x̃

)
vx = 0. (35)

We conclude that, for U defined by (29) to satisfy (21), it suffices for the functions v and f
to solve respectively

vt − 1

2
λ2

v2x

vxx
= 0 in R × [0, T ) and v(x, T ) = G(x), (36)

which is the equation appearing in the model for a single player in the absence of coupling,
and

ft + σ 2

2

( ∫
π∗(z,m, t)dm(z)

)2
fx̃ x̃ = 0 in R × [0, T ) and f (z, T ) = F(z). (37)

At this point, we also observe that, in view of (32), Eq. (37) can be written as

ft + 1

2
λ2

(∫
r (y − f , t) dm (y)

)2
(1 − fx̃ )

2 fx̃ x̃ = 0 in R × [0, T ) and f (z, T ) = F(z), (38)

where r : R× [0, T ] → R
+ is defined by

r(x, t) = − vx (x, t)

vxx (x, t)
. (39)

Indeed, using r , we can rewrite (32) as

π∗(x,m, t) = λ

σ
r (x − f (x̃, t), t) + fx̃ (x̃, t)

∫
π∗(y,m, t)dm(y). (40)

Integrating (40) yields

(1 − fx̃ (x̃, t))
∫

π∗ (x,m, t) dm (y) = λ

σ

∫
r (x − f (x̃, t) , t) dm (x) ,
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and, thus,∫
π∗ (x,m, t) dm (y) = λ

σ

1

1 − fx̃ (x̃, t)

∫
r (x − f (x̃, t) , t) dm (x) , (41)

which implies (38).
The next proposition,which is proved in the following subsection, establishes the existence

of the auxiliary functions v and f .

Proposition 3 Assume that G and F satisfy (25) and (28). Then, there exists a unique solution
v ∈ C4,1 (R × [0, T ]) to (36) which, for each t ∈ [0, T ], is strictly increasing and strictly
concave in x. Moreover, (38) has a unique solution f ∈ C2,1 (R × [0, T ]) .

With Proposition 3 and the previous formal computations, which are now rigorous, we
have shown the following theorem.

Theorem 4 Assume (25) and (28), let J be given by (24), and consider the solution v ∈
C2,1(R× [0, T ]) of (36), which is the value function of a single player model in the absence
of coupling solving (36), and f ∈ C2,1(R × [0, T ]) to (38) with r = − vx

vxx
.

Then, U : R × P × [0, T ] → R given by

U (x,m, t) = v(x − f (x̃, t), t),

and π∗ : R × P × [0, T ] → R given by

π∗(x,m, t) = λ

σ

(
r(x − f (x̃, t), t) + fx̃ (x̃, t)

1 − fx̃ (x̃, t)

∫
r(y − f (x̃, t), t)dm(y)),

are classical solutions to the master system (20), (21) and (22).

3.3 The auxiliary functions v, r and f and the proof of Proposition 3

We provide here the proof of Proposition 3 which, to ease the presentation, is divided in
several parts stated separately.

Proposition 5 Assume (25). The function v : R× [0, T ] → R given by

v (x, t) = sup
a∈A

E [G (xT )| xt = x] , (42)

with A as in (12) and

dxs = basds + σasdWs in (t, T ] and xt = x ∈ R, (43)

is the unique strictly increasing and strictly concave C4,1 (R × [0, T ]) solution of the HJB
equation

vt + max
a

(1
2
σ 2a2vxx + bavx

) = 0 in R × [0, T ) and v(x, T ) = G(x). (44)

The optimal feedback control a∗ (x, t) is given by

a∗ (x, t) = − λ

σ

vx (x, t)

vxx (x, t)
= λ

σ
r (x, t) , (45)

and the optimal policy process
(
α∗
s

)
s∈[t,T ] by

α∗
s = λ

σ
r
(
x∗
s , s

)
,
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with
(
x∗
s

)
s∈[t,T ] solving (43) with αs = α∗

s .

The function v, which is the single agent (N = 1) value function (13) in the absence of
interaction (F ≡ 0), was introduced in [30] and has been extensively studied since then; the
assertions of the proposition are well known results.

The auxiliary function r which represents the so-called dynamic risk tolerance function
is also well studied. The following result can be found in Kallblad and Zariphopoulou [20].

Proposition 6 Assume (25). The function r is the unique C2,1 (R × [0, T ]) solution to

rt + 1

2
λ2r2rxx = 0 in R × [0, T ) and r(x, T ) = R(x). (46)

Moreover, r is positive, strictly increasing in x, and Lipschitz continuous in x uniformly in
time, that is, for some K > 0 and all x, y ∈ R and t ∈ [0, T ],

|r(x, t) − r(y, t)| ≤ K |x − y|. (47)

Finally, the function h : R × [0, T ] → R defined by

r (h (x, t) , t) = hx (x, t) (48)

solves

ht + 1

2
λ2hxx = 0 in R × [0, T ) and h(x, T ) = (

G ′)(−1)
(e−x ). (49)

The Lipschitz continuity and positivity of r imply the existence of constants K1, K2 such
that, for all x ∈ R and t ∈ [0, T ],

r (x, t) ≤ K1 |x | + K2. (50)

Next we investigate the solvability of (38). To ease the notation, we introduce the function
H : R × [0, T ] → R+ given, for m ∈ P and r as in (39), by

H (p, t;m) =
∫

r (y − p, t) dm (y) . (51)

Lemma 7 Let R as in (25) and assume that either R ≡ δ or R ≥ δ. Then, for each m ∈ P
and all (x, t) in R × [0, T ],

either H (x, t) = δ or H (x, t) ≥ δ. (52)

Proof If R (x) = δ, (46) has the unique solution r (x, t) = δ. If R (x) ≥ δ, then the
comparison result for (46) yields r ≥ δ. �

Proposition 8 Assume (25) and (28), and let r be given by (39). Then, (38) has a unique
solution f ∈ C2,1 (R × [0, T ]) satisfying

0 < ε ≤ fx̃ (x̃, t) < 1. (53)

Furthermore,

f (x̃, t) = x̃ − g(−1) (x̃, t) 1, (54)

where g : R× [0, T ] → R is the unique C2,1 (R × [0, T ]) solution of

gt + 1

2
λ2H2(x̃ − g(−1), t

)
gzz = 0 in R × [0, T ] and

g(z, T ) = (z − F (z))(−1).

(55)

1 Here, g(−1) (x̃, t) denotes the inverse of g with respect to its first argument.
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Proof We write (38) as

ft + 1

2
λ2

H2( f (x̃, t), t)

(1 − fx̃ )2
fx̃ x̃ = 0 in R × [0, T ) and f (x̃, T ) = F(x̃). (56)

A straightforward application of the maximum principle yields that any smooth solution
of (56) will satisfy for some K > 0 the bound (53).

Lemma 7 and (25) also imply that (55) is uniformly elliptic. Moreover, (50) and (51) yield
that H is Lipschitz continuous and has at most linear growth in f . Hence, H2 grows at most
quadratically in f and, in view of (53), at most quadratically in z.

We may now apply the standard theory of parabolic PDE, see for example [25], to obtain
the existence of a smooth f . The rest of the proof follows easily. �


4 Optimal mean field equilibrium processes

We construct the optimal processes generated by themean field feedback control π∗ (x,m, t)
given in (40). Specifically, we seek

(
X∗
t

)
t∈[0,T ] and

(
π∗
t

)
t∈[0,T ] solving

dX∗
t = bπ∗

t dt + σπ∗
t dWt in (0, T ) and X∗

0 = x, (57)

with

π∗
t = π∗(X∗

t ,m
∗
t , t

) = λ

σ

(
r(X∗

t − f (X̃∗
t , t), t)

+ fx̃ (X̃∗
t , t)

1 − fx̃ (X̃∗
t , t)

∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)

)
.

(58)

Herein,
(
m∗

t

)
t∈[0,T ] is the conditional on FW

t law of X∗
t and

(
X̃∗
t

)
t∈[0,T ] is the related

conditional average

X̃∗
t =

∫
ydm∗

t (y) and X̃∗
0 = x̃0 =

∫
xdm0(x). (59)

We start with some auxiliary results.

Proposition 9 Let r be as in (39). Then, the SDE

dyt = λ2r (yt , t) dt + λr (yt , t) dWt in (0, T ] and y0 = y ∈ R, (60)

admits a unique strong solution given by

yt = h(h(−1) (y, 0) + Nt , t), (61)

where h solves (49) and, for t ∈ [0, T ],
Nt = λ2t + λWt . (62)

Furthermore,

r (yt , t) = hx (h
(−1) (y, 0) + Nt , t) . (63)

Proof The uniqueness follows from the uniform in time Lipschitz continuity of r in space.
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For the existence, we show that the process in (61) satisfies (60). To this end, let zt =
h(−1) (y, 0) + Nt . Then, using Ito’s formula and (49), we find

dyt = dh(zt , t) = λ2hx (zt , t)dt + λhx (zt , t)dWt

+ (
ht (zt , t) + 1

2
λ2hxx (zt , t)

)
dt = λ2hx (zt , t) dt + λhx (zt , t) dWt .

On the other hand, (48) yields that hx (zt , t) = r (h (zt , t) , t) and, thus,

dyt = dh (zt , t) = λ2r (h (zt , t) , t) dt + λr (h (zt , t) , t) dWt .

To establish (63), we observe that, by the definition of h, r (h (yt , t) , t) = hx (yt , t) and, in
turn,

r (yt , t) = hx
(
h(−1) (yt , t) , t

)
= hx

(
h(−1) (y, 0) + Nt , t

)
.

�

Next, we present the optimal processes

(
x∗,x
t

)
t∈[0,T ] and

(
a∗,x
t

)
t∈[0,T ] ; for convenience,

we have added in the notation their dependence on the initial condition.

Proposition 10 The optimal processes
(
x∗,x
t

)
t∈[0,T ] and

(
a∗,x
t

)
t∈[0,T ] for problem (42) (single

agent and no coupling) are given by

x∗,x
t = h

(
h(−1) (x, 0) + Nt , t

)
and a∗,x

t = λ

σ
hx

(
h(−1) (x, 0) + Nt , t

)
. (64)

Proof Using the optimal feedback policy (45), we find that x∗,x
t solves (60), that is,

dx∗,x
t = λ2r

(
x∗,x
t , t

)
dt + λr

(
x∗,x
t , t

)
dWt and x∗,x

0 = x ∈ R.

Then, the first equality in (64) follows. To show the second equality, we use that

a∗,x
t = λ

σ
r
(
x∗,x
t , t

) = λ

σ
r
(
h

(
h(−1) (x, 0) + Nt , t

)
, t

)

= λ

σ
hx

(
h(−1) (x, 0) + Nt , t

)
.

�

With h and f solving (49) and (38), x̃0 as in (59), Nt given in (62) and for each ini-

tial population distribution m0 ∈ P, we introduce the auxiliary processes (Yt )t∈[0,T ] and
(Ỹt )t∈[0,T ]

Yt = h
(
h(−1) (x − f (x̃0, 0) , 0) + Nt , t

)
, (65)

and

Ỹt =
∫

h
(
h(−1) (x − f (x̃0, 0) , 0) + Nt , t

)
dm0(x). (66)

We are now ready to present the main result in this section.

Proposition 11 Let f be the solution to (38), g (z, t) = (z − f (z, t))(−1) , and processes
(Yt )t∈[0,T ], (X̃∗

t )t∈[0,T ] and (Ỹ ∗
t )t∈[0,T ] as in (65), (59) and (66). Then, the optimal mean field

process
(
X∗,x
t

)
t∈[0,T ] satisfies

X∗,x
t = Yt + f

(
X̃∗
t , t

)
. (67)
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Furthermore,

X̃∗
t = g

(
Ỹt , t

)
, (68)

and, in turn,

X∗,x
t = h

(
h(−1)(x − f

(
x̃0, 0

)
, 0

) + Nt , t
)

+ f
(
g
( ∫

h
(
h(−1)(x − f

(
x̃0, 0

)
, 0

) + Nt , t
)
dm0(x), t

)
, t

)
.

(69)

Proof From (57) and (58) we have

dX∗
t = λ2

(
r(X∗

t − f (X̃∗
t , t), t)

+ fx̃ (X̃∗
t , t)

1 − fx̃ (X̃∗
t , t)

∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)dt

)

+ λ
(
r(X∗

t − f (X̃∗
t , t), t)

+ fx̃ (X̃∗
t , t)

1 − fx̃ (X̃∗
t , t)

∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)dWt

)
.

(70)

Therefore,

d X̃∗
t = λ2

( ∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)

+ fx̃ (X̃∗
t , t)

1 − fx̃ (X̃∗
t , t)

∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)

)
dt

+ λ
( ∫

r
(
y − f

(
X̃∗
t , t

)
, t

)
dm∗

t (y)

+ fx̃ (X̃∗
t , t)

1 − fx̃ (X̃∗
t , t)

∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)

)
dWt

)

= λ2
∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)

1 − fx̃ (X̃
∗,x
t , t

) dt

+ λ

∫
r(y − f (X̃∗,x

t , t), t)dm∗
t (y)

1 − fx̃ (X̃∗
t , t)

dWt .

(71)

If f satisfies (38), Ito’s formula gives

d f
(
X̃∗
t , t

)
= (

ft (X̃
∗
t , t) + 1

2
λ2

( ∫
r(y − f (X̃∗

t , t), t)dm
∗
t (y)

)2
(
1 − fx̃ (X̃∗

t , t)
)2 fx̃ x̃

(
X̃∗
t , t

) )
dt

+λ2
fx̃

(
X̃∗
t , t

)

1 − fx̃
(
X̃∗,x
t , t

)
(∫

r
(
y − f

(
X̃∗
t , t

)
, t

)
dm∗

t (y)

)
dt

+λ
fx̃

(
X̃∗
t , t

)

1 − fx̃
(
X̃∗,x
t , t

)
(∫

r
(
y − f

(
X̃∗
t , t

)
, t

)
dm∗

t (y)

)
dWt
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= λ2
fx̃

(
X̃∗
t , t

)

1 − fx̃
(
X̃∗,x
t , t

)
(∫

r
(
y − f

(
X̃∗
t , t

)
, t

)
dm∗

t (y)

)
dt

+λ
fx̃

(
X̃∗
t , t

)

1 − fx̃
(
X̃∗,x
t , t

)
(∫

r
(
y − f

(
X̃∗
t , t

)
, t

)
dm∗

t (y)

)
dWt .

Therefore, the process X̂t = X∗,x
t − f (X̃∗

t , t) satisfies the autonomous SDE

d X̂t = λ2r(X̂t , t)dt + λr(X̂t , t)dWt in (0, T ) and X̂0 = x − f (x̃0, 0) .

Then, from Proposition 9 and (65), we find that

X∗,x
t − f

(
X̃∗
t , t

)
= h

(
h(−1) (x − f (x̃0, 0) , 0) + Nt , t

)
,

and obtain (67).
The rest of the proof follows. �

The following proposition follows directly from (58) and (67).

Proposition 12 The optimal mean field equilibrium policy
(
π∗
t

)
t∈[0,T ] is given by

π∗
t = λ

σ

(
r (Yt , t) +

fx̃
(
X̃∗
t , t

)

1 − fx̃
(
X̃∗
t , t

)
∫

r
(
y − f

(
X̃∗
t , t

)
, t

)
dm∗

t (y)
)
,

with X̃∗
t as in (71).

5 Examples

Weprovide two families of representative examples. In the first, we allow for general coupling
and exponential utility while in the second we assume general utility and linear coupling. To
the best of our knowledge, these cases have not been examined before.

5.1 General coupling and exponential utility

Assume that the coupling function F satisfies (28) and the utility G : R → R is given, for
some δ > 0, by

G (x) = −e−x/δ. (72)

Direct calculations in (44) give that

v (x, t) = − exp

(
−1

δ
x − 1

2
λ2 (T − t)

)
.

Then, (29) implies that

U (x,m, t) = − exp

(
−1

δ

(
x − f

(∫
xdm(x), t

))
− 1

2
λ2 (T − t)

)
. (73)
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Furthermore, from (39)we get that r (x, t) = δ and, thus, H (x,m, t) = δ. Then, (38) reduces
to

ft + 1

2

λ2δ2

(1 − fx̃ )
2 fx̃ x̃ = 0 in R × [0, T ) and f (x, T ) = F (x) . (74)

Therefore, the auxiliary function g in (54) solves the heat equation

gt + 1

2
λ2δ2gzz = 0 in R × [0, T ) and g (z, T ) = (z − F (z))(−1) . (75)

It also has the probabilistic representation

g (z, t) = E
′ [ (wT − F (wT ))(−1)

∣∣∣ wt = z
]
,

where dws = λδdW ′
s and wt = z, with

(
W ′

t

)
t≥0 being a standard Brownian motion under

measure P′, and, therefore,

f (z, t) = z −
(
E

′ [ (wT − F (wT ))(−1)
∣∣∣ wt = z

])(−1)
. (76)

From (40), we deduce that the optimal feedback policy π∗ (x,m, t) takes the form

π∗ (x,m, t) = λ

σ

δ

1 − fx̃
(∫

xdm(x), t
) .

Thus, the optimal process
(
X∗
t

)
t∈[0,T ] satisfies

dX∗
t = λ2δ

1 − fx̃
(
X̃∗
t , t

)dt + λδ

1 − fx̃
(
X̃∗
t , t

)dWt and X∗
t = x0,

and, therefore,

d X̃∗
t = λ2δ

1 − fx̃
(
X̃∗
t , t

)dt + λδ

1 − fx̃
(
X̃∗
t , t

)dWt and X̃∗
0 = x̃0,

which implies that X∗
t = x + X̃∗

t − x̃0.

With G as in (72), we deduce from the terminal condition in (49) that

h (x, T ) = δx − δ ln δ.

It follows from (49) that h (x, t) = δx − δ ln δ and, therefore, h(−1) (x, t) = 1
δ
x + ln δ.

In turn, Yt = x − f (x̃0, 0) + δNt and Ỹt = x̃0 − f (x̃0, 0) + δNt , and then (67) implies
that

X∗
t = x − f (x̃0, 0) + δNt + f (g (x̃0 − f (x̃0, 0) + δNt , t) , t) .

Moreover,

X̃∗
t = x̃0 − f (x̃0, 0) + δNt + f (g (x̃0 − f (x̃0, 0) + δNt , t) , t) and π∗

t = λ

σ

δ

1 − fx̃
(
X̃∗
t , t

) .
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5.2 General utility and linear coupling

Let the utility function G satisfy (25) and the coupling given by

F(z) = θ z, z ∈ R,θ ∈ (0, 1) . (77)

Then (38) yields

f (z, t) = θ z in R× [0, T ] . (78)

Therefore, the solution to the master system (20) and (21) is given by

π∗(x,m, t) = λ

σ

(
r
(
x − θ x̃, t

) + θ

1 − θ

∫
r
(
y − θ x̃, t

)
dm (y)

)
(79)

and

U (x,m, t) = v (x − θ x̃, t) , (80)

where x̃ = ∫
xdm(x).

The optimal process
(
X∗
t

)
t∈[0,T ] is given by

X∗
t = Yt + θ

1 − θ
Ỹ ∗
t

= h
(
h(−1) (x − θ x̃0, 0) + Nt , t

)
+ θ

1 − θ

∫
h

(
h(−1) (x − θ x̃0, 0) + Nt , t

)
dm0(x).

Therefore,

X̃∗
t = 1

1 − θ

∫
h

(
h(−1) (x − θ x̃0, 0) + Nt , t

)
dm0(x),

and, thus,

X∗
t − θ X̃∗

t = h
(
h(−1) (x − θ x̃0, 0) + Nt , t

)
. (81)

The optimal policy
(
π∗
t

)
t∈[0,T ] is, in turn, given by

π∗
t = λ

σ

(
r
(
X∗
t − θ X̃∗

t , t
)

+ θ

1 − θ

∫
r
(
y − θ X̃∗

t , t
)
dm∗

t (y)

)
.

From (48) and (81) we obtain that

r
(
X∗
t − θ X̃∗

t , t
)

= r
(
h

(
h(−1) (x − θ x̃0, 0) + Nt , t

)
, t

)

= hx
(
h(−1) (x − θ x̃0, 0) + Nt , t

)
,

and, then,
∫

r
(
y − θ X̃∗

t , t
)
dm∗

t (y) =
∫

hx
(
h(−1) (x − θ x̃0, 0) + Nt , t

)
dm0(x).

Therefore,

π∗
t =hx

(
h(−1) (x − θ x̃0, 0) + Nt , t

)

+ θ

1 − θ

∫
hx

(
h(−1) (x − θ x̃0, 0) + Nt , t

)
dm0(x).

(82)
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Comparing (67) and (82) to (64), we see that the optimal state and control processes can
be written as

X∗
t = x∗,x−θ x̃0

t + θ

1 − θ

∫
x∗,x−θ x̃0
t dm0 (x) ,

and

π∗
t = a∗,x−θ x̃0

t + θ

1 − θ

∫
a∗,x−θ x̃0
t dm0 (x) .

In otherwords, the optimal process X∗
t , starting at x is represented as the sumof the optimal

state process in the absence of coupling, but withmodified initial condition x−θ
∫
xdm0 (x) ,

and the average of all such optimal processes
∫
x∗,x−θ x̃0
t dm0 (x) with respect to the initial

measure m0, multiplied by factor θ
1−θ

.

The optimal policy π∗
t is, similarly, decomposed as the sum of the optimal policy a∗,x−θ x̃0

t

that generates x∗,x−θ x̃0
t and the average θ

1−θ

∫
a∗,x−θ x̃0
t dm0 (x) of all such processes, which

generates θ
1−θ

∫
x∗,x−θ x̃0
t dm0 (x).

We stress that this interpretation is universal, independently of the type of utility function.

5.2.1 Asymptotically linear risk tolerance functions

This class of risk tolerance functions was first introduced in [32]; see also [41], and were
also considered in [10] under the name SAHARA (see, also, [37]).

They are represented by the two-parameter family

R(x) =
√

αx2 + δ for x ∈ R, α ≥ 0, δ > 0. (83)

The corresponding utility function is given by

G(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−C1e
− x√

δ + C2 if α = 0,

C1

(
x

x+√
x2+δ

+ log
(
x + √

x2 + δ
))

+ C2 if α = 1,

C1(
x(

x+√
x2+δ

) 1√
α

+ 1√
α−1

(
x + √

x2 + δ
)1− 1√

α
) + C2 otherwise,

where C1 > 0, C2 ∈ R are two generic constants.
To ease the presentation, we only assume α = 1, since the case α > 0 follows similarly

and the exponential utility, α = 0, is presented afterwards.
To this end, without loss of generality we choose the constants C1 = √

δ/2 and C2 = 0.

From (49), we deduce that h(x, T ) = √
δ sinh x and, in turn, h(x, t) = √

δe
1
2 λ2(T−t) sinh x

and h(−1)(x, 0) = arcsinh
(√

δe
1
2 λ2T x

)
.

Therefore, x∗,x
t = √

δe
1
2 λ2(T−t) sinh(arcsinh(

√
δe

1
2 λ2T x) + Nt ) and, thus, the optimal

mean field state process is given by

X∗
t = √

δe
1
2 λ2(T−t) sinh

(
arcsinh

(√
δe

1
2 λ2T (x − θ x̃0) + Nt

))

+ θ

1 − θ

√
δe

1
2 λ2(T−t)

∫
sinh

(
arcsinh

(√
δe

1
2 λ2T (x − θ x̃0)

)
+ Nt

)
dm0 (x) .
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Furthermore, the related optimal policy process is given by

π∗
t = √

δe
1
2 λ2(T−t) cosh

(
arcsinh

(√
δe

1
2 λ2T (x − θ x̃0

)
+ Nt

)

+ θ

1 − θ

√
δe

1
2 λ2(T−t)

∫
cosh

(
arcsinh

(√
δe

1
2 λ2T (x − θ x̃0) + Nt

))
dm0(x).

We also deduce that

r (x, t) =
√
x2 + δeλ2(T−t) in R

N × [0, T ],
which can be, in turn, used to recover (integrating twice) the value function v and, in turn,
U .

5.3 Exponential utility and linear coupling

The intersection of the aforementioned families is when

G(x) = −e− 1
δ
x and F(z) = θ z.

Using either (73) for F(z) = θ z or (80) for G (x) = −e− 1
δ
x , we deduce that

U (x,m, t) = − exp

(
−1

δ
(x − θ x̃0) − 1

2
λ2(T − t)

)
and π∗ (x,m, t) = λ

σ

δ

1 − θ
.

Furthermore, we easily obtain that

X∗
t = x + δ

1 − θ
Nt .

Similar quantities were, also, derived in [24] for the asset diversification case (see Corollary
11 when ν = 0).

6 TheMFG approximation to the N-player game

Having produced a solution U (x,m, t) and π∗ (x,m, t) to the mean field system (21) and
(20), we examine how well it approximates the analogous solutions of the N -player game.

For this, we let, for i = 1, . . . , N ,

x̂−i = 1

N − 1

N∑
j=1, j �=i

x j and μN ,i = 1

N − 1

N∑
j=1, j �=i

δx j ,

and compare U (xi , μN ,i , t) to vi (x1, . . . , xN , t) (the value function of the i th player) and
π∗(xi , μN ,i , t) to π∗

N ,i (x1, . . . , xN , t) (the optimal feedback control of the i th player).

For i = 1, . . . , N , let f i : R × [0, T ] → R be the solution of (38) evaluated at μN ,i ,

which satisfies in R × [0, T ),

f it
(
x̂−i , t

)
+ 1

2
λ2

( 1

N − 1

N∑
j=1, j �=i

r
(
x j − f i

(
x̂−i , t

)
, t

))2 f ix̃ x̃
(
x̂−i , t

)
(
1 − f ix̃

(
x̂−i , t

))2 = 0

(84)

and f i
(
x̂−i , T

) = F
(
x̂−i

)
.
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It follows from Theorem 4 that

U (xi , μ
N ,i , t) = v

(
xi − f i

(
x̂−i , t

)
, t

)
, (85)

and

π∗(xi , μN ,i , t) = λ

σ

(
r
(
xi − f i

(
x̂−i , t

)
, t

)

+ f ix̃
(
x̂−i , t

)

1 − f ix̃
(
x̂−i , t

) 1

N − 1

N∑
j=1, j �=i

r
(
x j − f i

(
x̂−i , t

)
, t

) )
.

(86)

6.1 General utility functions and linear coupling

If F(z) = θ z with θ ∈ (0, 1) , then f i (z, t) = θ z, and, thus,

U (xi , μ
N ,i , t) = v

(
xi − θ x̂−i , t

)
,

and

π∗(xi , μN ,i , t) = λ

σ

(
r(xi − θ x̂−i , t) + θ

1 − θ

1

N − 1

N∑
j=1, j �=i

r(x j − θ x̂−i , t)
)
.

6.1.1 Solution of the N-player game

We present the following result, which is of independent interest and yields a solution to the
N -player game.

Proposition 13 The N-player game has a solution vi given, for i = 1, . . . , N , by

vi (x1, . . . , xN , t) = v
(
xi − θ x̂−i , t

)
, (87)

and optimal strategies, given, for each i = 1, . . . , N , by

π∗
N ,i (x1, . . . , xN , t) = λ

σ

N − 1

N − 1 + θ
r
(
xi − θ x̂−i , t

)

+ λ

σ

1

N − 1 + θ

θ

1 − θ

N∑
j=1

r(x j − θ x̂− j , t).
(88)

Proof For the vi ’s to be a solution to (14), it is necessary to find π∗
N , j (x1, . . . , xN , t)’s which

satisfy the optimality condition (16) and to show that, for each i = 1, . . . , N , the vi satisfies
the i th HJB equation in (14).

We begin with the latter claim observing that, given α j : RN × [0, T ], each vi defined by
(87) solves

vit + max
π

(1
2
σ 2π2vixi xi + π

(
bvixi + σ 2

N∑
j=1, j �=i

α jv
i
xi x j

)

+ 1

2
σ 2

N∑
j=1, j �=i

N∑
k=1,k �=i

α jαkv
i
x j xk + b

N∑
j=1, j �=i

α jv
i
x j = 0,

(89)
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provided there exists π∗
i such that

π∗
i vixi xi −

N∑
j=1, j �=i

α jv
i
xi x j = λ

σ
vixi . (90)

We show next that the above holds for the particular vi ’s and π∗
N , j ’s defined by (87) and

(88) respectively.
A straightforward computation shows that, for each vi given by (87), we have

vit + max
π

(1
2
σ 2π2vixi xi + π

(
bvixi + σ 2

N∑
j=1, j �=i

α jv
i
xi x j

)

+ 1

2
σ 2

N∑
j=1, j �=i

N∑
k=1,k �=i

α jαkvx j xk + b
N∑

j=1, j �=i

α jv
i
x j

= vt + max
π

(1
2
σ 2(π −

N∑
j=1, j �=i

α j
)2

vxx + b(π −
N∑

j=1, j �=i

α j )vx

)
,

(91)

with the second equation above evaluated at (xi − θ x̂−i , t).
In view of the choice of v, the right hand side of (91) equals 0 provided the maximization is
happening at some αi which is related to α1, . . . , αi−1, αi+1, . . . ,. . . , αN by

αi − θ

N − 1

N∑
j=1, j �=i

α j = λ

σ
r(xi − θ x̂−i , t), (92)

which is the form that (91) has for the particular vi we use here. We continue showing that
it is possible to find such α1, . . . , αN . Specifically, we prove that they are the claimed π∗

N ,i ’s
given in (88).
This amounts to solving, for each i = 1, . . . , N , the system

π∗
N ,i − θ

N − 1

N∑
j=1, j �=i

π∗
N , j = λ

σ
r(xi − θ x̂−i , t). (93)

We fix such i and observe that, by rewriting (93) as

(1 + θ

N − 1
)π∗

N ,i − θ

N − 1

N∑
j=1

π∗
N , j = λ

σ
r(xi − θ x̂−i , t), (94)

and summing over all i’s we get

(1 − θ)

N∑
j=1

π∗
N , j = λ

σ

N∑
j=1

r(x j − θ x̂− j , t). (95)

Using (94) in (95) leads to

(1 + θ

N − 1
)π∗

N ,i = λ

σ

(
r(xi − θ x̂−i , t) + θN

N − 1

N∑
j=1

r(x j − θ x̂− j , t)
)
,

and we may easily conclude. �
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We are now ready to provide the following approximation result. Since its proof is an
immediate consequence of (87) and (88) and the upper bound on r , we omit it.

Proposition 14 For each i = 1, . . . , N ,

vi (x1, . . . , xN , t) = U (xi , μ
N ,i , t), (96)

and, for some independent of N , K > 0,

∣∣∣π∗
N ,i (x1, . . . , xN , t) − π∗(xi , μN ,i , t)

∣∣∣

≤ K
λ

σ

θ

1 − θ

(
1 + 1 − θ

N

N∑
j=1

|x j | + 1

N

N∑
j=1

|xi − x j |
)
.

(97)

We conclude with a model where the mean field game solution is also a solution of the
N -player game.

Corollary 15 If G(x) = −e−x/δ for some δ > 0, then

U (xi , μ
N ,i , t) = vi (x1, . . . , xN , t) = − exp

(
−1

δ

(
xi − θ x̂−i

)
− 1

2
λ2 (T − t)

)

and

π∗(xi , μN ,i , t) = π∗
N ,i (x1, . . . , xN , t) = λ

σ

δ

1 − θ
.

We stress that, for each i = 1, . . . , N , the approximation U (xi , μN ,i , t) and the value
function vi (x1, . . . , xN , t) coincide even though they solve different HJB equations with the
same terminal condition.

Indeed, it follows from the master Eq. (21) that if we let

wi (x1, . . . , xN , t) = U (xi , μ
N ,i , t),

then

wi
t + max

ai

(1
2
σ 2a2i w

i
xi xi + ai

(
bwi

xi + σ 2
N∑

j=1, j �=i

π∗(x j , μN ,i , t)wi
xi x j

))

+ 1

2
σ 2

N∑
j=1, j �=i

N∑
k=1,k �=i

π∗(x j , μN ,i , t)π∗(xk, μN ,i , t)wi
x j xk

+ b
N∑

j=1, j �=i

π∗(x j , μN ,i , t)wi
x j = 0,
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while vi (x1, . . . , xN , t) solves

vit + max
πi

(1
2
σ 2π2

i vixi xi + πi
(
bvixi + σ 2

N∑
j=1, j �=i

N∑
k=1,k �=i

π∗
N , j (x1, . . . , xN , t)vixi x j

))

+ 1

2
σ 2

N∑
j=1, j �=i

N∑
k=1,k �=i

π∗
N , j (x1, . . . , xN , t)π∗

N ,k(x1, . . . , xN , t)vix j xk

+ b
N∑

j=1, j �=i

π∗
N , j (x1, . . . , xN , t)vix j = 0.

On the other hand, aswehave shownabove, the respective control coefficients do not coincide,
that is,

π∗(xi , μN ,i , t) �= π∗
i (x1, . . . , xN , t) .

Note, however, that in the case of exponential utilities, both π∗(xi , μN ,i , t) and
π∗
i (x1, . . . , xN , t) are constants and coincide, and the above HJB equations are identical.

7 Conclusions

We introduced a mean field game arising in optimal allocation models with relative perfor-
mance concerns. The terminal expected utility of the representative agent depends on both
her own state and the average state of her peers. We derived the master equation together
with a compatibility condition for the mean field optimal feedback control. For the class
of separable payoffs under both general utilities and couplings, we derived a solution to
the master equation, expressed via the value function in the absence of competition and a
dynamic coupling function solving a non-local quasilinear equation. We also constructed the
associated optimal feedback control as well as the related optimal state and control processes.

Evaluating the mean filed solutions on
(
xi ,

1
N−1�

N
j �=iδx j , t

)
we constructed the solution of

the N -player game for linear couplings and arbitrary utilities, and we studied the proximity
of these approximations to their N -player game counterparts.
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