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Abstract—Neuromorphic computing describes the hardware
implementation of biological neurons and synapses of spiking
neural networks (SNNs). We introduce SONIC, a software-
defined hardware design methodology to make neuromorphic
computing accessible to the general computing community.
SONIC is designed using three main components. First, SONIC
integrates QUANTISENC, a parameterized SNN hardware writ-
ten in Verilog HDL. This design consists of leaky integrate-and-
fire (LIF) neurons and current-based (CUBA) synapses that are
configured using Python to implement different SNN topologies.
Second, SONIC integrates PRONTO, a SystemVerilog testbench
that can be automatically synthesized using Python to benchmark
this hardware against existing designs for different learning tasks
and datasets. Finally, SONIC introduces a system software to
interface with QUANTISENC, making it programmable and
easy to prototype on FPGA and ASIC, starting from SNN
specifications written in Python. Overall, SONIC offers a com-
plete framework for simultaneously defining and training SNN
models in software, generating its Verilog design, deploying
model parameters to hardware, performing inference on live
data, evaluating hardware performance, and visualizing inference
results. We evaluate SONIC using three spiking datasets. Our
results show the scalability and superior performance of SONIC
in terms of area, throughput, and power compared to existing
designs. SONIC is available as an open-source framework for the
neuromorphic community to use without restriction.

Index Terms—spiking neural networks (SNNs), design method-
ology, neuromorphic computing, PyTorch.

I. INTRODUCTION

Neuromorphic computing describes the hardware imple-
mentation of biological neurons and synapses [1]. They are
efficient in implementing Spiking Neural Networks (SNNs),
which are emerging computing models based on the third
generation of neural networks [2]. Over the years, architects
and designers have created neuromorphic computing systems
using analog and digital components, offering lower power
consumption, reduced latency, and several other benefits seen
in biological systems [3]–[7]. Although analog designs im-
prove energy efficiency by taking advantage of electronic and
physical laws in implementing neurons and synapses, we focus
on digital designs because they are faster to implement on
FPGA and ASIC due to the maturity of their design flows,
while benefiting from technology scaling [8].

Most digital neuromorphic designs are still in the initial
design exploration phase within a select few organizations
around the world. Recent efforts to commercialize neuro-
morphic designs include Brainchip’s Akida [9] and SynSense
DYNAP [10] development boards. In addition to their high

cost of ownership, these platforms are not easily accessible
to the general computing community. We introduce SONIC
(SOftware-defined NeuromorphIC), an open-source software-
defined hardware design methodology to make neuromorphic
computing accessible to all. The key idea is to enable the
user to define and train an SNN model using a high-level
language such as Python, generate the corresponding register
transfer level (RTL) description of the hardware, and create the
hardware-software interface to improve programmability when
the RTL is prototyped on FPGA and ASIC. Simultaneously,
its open-source design methodology can be used to teach
both software and hardware of neuromorphic systems towards
building a robust workforce specializing in AI systems.

SONIC consists of three key components. First, SONIC in-
tegrates QUANTISENC [7], a layer-based neuromorphic hard-
ware design written in Verilog hardware description language,
integrating leaky integrate-and-fire (LIF) neurons with current-
based (CUBA) synapses. It allows configuring the number
of layers, neurons per layer, and layer-to-layer connectivity
using Verilog parameters that can be programmed via software.
Second, SONIC integrates PRONTO [11], a SystemVerilog
testbench to verify QUANTISENC and benchmark it against
existing neuromorphic designs for different learning tasks
and datasets. Finally, SONIC introduces a hardware-software
interface to improve programmability of QUANTISENC when
prototyped on FPGA and ASIC.

The following are our key contributions.
1) Configurability: SONIC is designed to make neuro-

morphic hardware configurable via software. Given its
flexibility, expressiveness, GPU acceleration of training
algorithms, and a large user base, the front-end of
SONIC is designed to directly interface with simulators
such as snnTorch [12] and SpikingJelly [13], which use
the torch dialect to specify and train SNNs. We design
an application programming interface (API) to generate
the Verilog hardware description language (HDL) of
QUANTISENC for a target SNN model specified in
Python using torch dialects. This API allows to configure
layer architectures, neurons per layer, and connection
between layers of QUANTISENC. It also allows to set
separate quantization and precision policies for synaptic
weights and state variables of neurons.

2) Verification Architecture: We engineer a modular Sys-
temVerilog testbench to verify QUANTISENC for dif-
ferent learning tasks and datasets. We design an API
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to extract input stimuli for the hardware by interfacing
with Python code. This is then driven to QUANTISENC
using a design-specific interface designed inside the
testbench. The interface is also used to record the output
and verify design functionalities. Finally, the testbench
compares the performance of the hardware with respect
to its software implementation.

3) Hardware-Software Interface: We design the software
stacks for QUANTISENC neuromorphic hardware con-
sisting of the application software and the system soft-
ware. The hardware-software interface is used to load
synaptic weights in memory, drive input, and visualize
hardware output. We architect this interface for both
FPGA and ASIC based designs.

4) Open-Source Release: SONIC is developed to foster
research and education in neuromorphic computing.
SONIC is available at https://github.com/drexel-DISCO/
SONIC.git under the MIT license to allow academia and
industry to access the framework without restriction. We
believe that our open-source methodology will allow this
framework to undergo public peer review, which will
make it comprehensive over time through community
contributions and feedback.

We evaluate SONIC using Spiking MNIST, DVS Gesture,
and Spiking Heidelberg Digit (SHD) datasets [14]. Our results
show scalability and superior performance in terms of area,
throughput, and power. Finally, we demonstrate an educational
curriculum that integrates SONIC to teach the co-design of
applications and hardware for neuromorphic computing.

Overall, our philosophy behind SONIC is to make neuro-
morphic hardware programmable, efficient, and easy-to-use for
the broader scientific community.

II. HIGH-LEVEL OVERVIEW OF SONIC

Figure 1a shows a high-level overview of SONIC.
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Fig. 1: (a) High-level overview of SONIC integrating QUAN-
TISENC (right), its system software and verification interface
(middle), and a torch-based framework to specify and train
SNN models (left). (b) Computation using spike trains for
synaptic weights programmed inside QUANTISENC memory.

SONIC integrates the following.
1) QUANTISENC [7], a layer-based parameterized neuro-

morphic design written in Verilog HDL.

2) PRONTO [11], a modular SystemVerilog testbench to
verify and benchmark QUANTISENC.

3) Software stacks, including the application software and
system software to interface with QUANTISENC.

In our prior work [7], we introduce details of QUAN-
TISENC. Here, we introduce key architectural aspects nec-
essary to understand SONIC.

QUANTISENC consists of layers of LIF neurons. The
number of layers, neurons per layer, the connection between
layers, and the quantization and precision policy of each layer
are Verilog parameters that can be configured via software
to implement an SNN model. LIF parameters are stored in
the control registers. They can be configured at run-time via
system software to explore power and performance trade-offs.

Synaptic memory of QUANTISENC is distributed among
its layers such that all pre-synaptic weights are stored in
the layer where the post-synaptic neurons are implemented.
In this way, once a neuron in a layer fires a spike, all its
post-synaptic neurons can start processing the spike at the
same time. SONIC exploits this massively parallel processing
architecture with distributed memory organization to enable
pipelining in processing layer computations through intelligent
task scheduling [15], which increases throughput.

We illustrate a fully connected layer in Figure 1b, where
a neuron in layer L (post-synaptic neuron) receives input
from all neurons in layer (L − 1) (pre-synaptic neurons). The
output spikes of this neuron are routed to all neurons in the
layer (L + 1). At a finer granularity, synaptic memory is an
M × N weight matrix. This weight matrix corresponds to
a design configuration of N neurons in the layer with M

pre-synaptic connections per neuron. Spike trains from pre-
synaptic connections are weighed using synaptic weights to
generate output spike trains as illustrated in the figure. The
access granularity of a layer’s synaptic memory is that of
a synaptic weight between a pair of pre-synaptic and post-
synaptic neurons. Therefore, each weight can be addressed
and programmed individually.

The I/O interface to QUANTISENC is as follows.
• wt_in: This interface is used to program synaptic

memory by specifying weight addresses and data.
• cfg_in: This interface is used to configure the neuron

parameters and their dynamics. We implement control
registers inside the decoder module to store these
parameters.

• spk_in/out: This interface is used for data input and
output of SONIC.

III. QUANTISENC HARDWARE DESIGN

A. Neuron Design

QUANTISENC uses leaky integrated-and-fire (LIF) neurons
defined by the first-order ordinary differential equation (ODE)

τ
dU(t)

dt
= −U(t) +R · Iin(t) (1)

where U(t) is the membrane potential, τ = R ·C is the neuron’s
time constant defined using its membrane capacitance C and
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resistance R, and Iin(t) is the input current. With the forward
Euler method, Equation 1 can be solved as

U(t+∆t) = U(t) +
∆t

τ

(
− U(t) +R · Iin(t)

)
(2)

Equation 2 can be rewritten using neuron parameters as

U(t+∆t) = U(t)−decay_rate·U(t)+growth_rate·Iin(t), where
(3)

decay_rate =
∆t

τ
=

∆t

R · C
and growth_rate = R ·

∆t

τ
=

∆t

C
(4)

Decay and growth rates are stored in control registers. The
input current Ij(t) to the neuron j is calculated as the weighted
sum of input spikes from all its pre-synaptic connections for
current-based synapse (CUBA) as

Ij(t) =
∑
i

xij · wij , (5)

where xij is the spike from neuron i to neuron j and wij is the
synaptic weight between these neurons. A spike is produced
when membrane potential U(t) exceeds the threshold voltage
Vth, which is stored in the control register. After producing a
spike, the following two mechanisms are triggered.

1) Reset Mechanism: It controls the recovery phase of the
membrane potential using the following configurations.

U(t) =


Vreset Reset-to-Constant
0 Reset-to-Zero
U(t)− Vth Reset-by-Subtraction
U(t)− decay_rate ∗ U(t) Default

(6)
2) Refractory Mechanism: It controls the maximum firing

frequency of a neuron.

fMax ≤
1

refractory_period
(7)

Reset mechanism and refractory period are also stored in
the control registers.

B. Synapse Design

QUANTISENC supports different architectures to connect
its layers. These are defined using the following parameters.

1) Network Topology: QUANTISENC can be configured
to implement all-to-all, one-to-one, and Gaussian con-
nection between layers.

2) Synaptic Polarity: Synaptic weights in QUANTISENC
can be positive or negative, implementing excitatory and
inhibitory effect of synaptic activation, respectively.

These synaptic configurations are defined as Verilog param-
eters, which can be programmed via software.

C. Variable Quantization and Mixed Precision

QUANTISENC uses fixed-point representation Qn.q (inte-
ger bits = n and precision bits = q) with variable quantization
and mixed decimal precision for synaptic weights, activation,
and neuron membrane potential. These settings are provided
as Verilog parameters and configured via software.

D. Configuration Summary

Table I summarizes different configurations of QUAN-
TISENC and their corresponding enabler in SONIC. We
divide these into static and dynamic configurations. Static
configurations are defined as Verilog parameters. We develop
an API to configure them for the SNN model defined in the
Python code. The dynamic configurations are stored in control
registers. We use the proposed system software to program
these registers using the QUANTISENC’s IO interface.

Configuration Parameters Implementation SONIC Enabler

static

number of layers

Verilog parameter Python API
number of neurons per layer

synaptic connections

quantization and precision

dynamic

growth rate

control register system software

decay rate

threshold voltage

reset mechanism

refractory period

TABLE I. Configuring QUANTISENC using SONIC.

IV. HARDWARE-SOFTWARE INTERFACE

Figure 2a shows the hardware-software interface of SONIC
designed for an FPGA-based computing system.
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Fig. 2: Hardware-software interface of SONIC.
The Python code of a user forms the application software.

This code is used to specify an SNN model, a target dataset,
and the training algorithm. Using the torch dialect, users can
specify a wide range of SNN models, such as convolution-
based [16], Hopfield-based [17], and reservoir-based [18].
Similarly, users can also specify a wide range of learning
algorithms [19]–[23]. Without loss of generality, we describe
SONIC for the FPGA development boards and the hardware
simulation infrastructure of AMD (formerly Xilinx).

The application software is executed on the processing
system (PS) of an FPGA board. It interfaces with the QUAN-
TISENC hardware implemented in the programmable logic
(PL). We evaluate SONIC for two state-of-the-art FPGA plat-
forms. For AMD’s Virtex Ultrascale evaluation board, the PS
is composed of the MicroBlaze soft core with the PetaLinux
OS. For AMD’s Zynq MPSoC products, the MicroBlaze soft
core can be replaced with an ARM Cortex core.

The following is the proposed design flow of SONIC.
1) We develop a Python API to interface with the SNN

model code implemented in the application software
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to extract the static design configurations. These set-
tings are then programmed in the Verilog parameter
file of QUANTISENC. Once these configurations are
programmed, the QUANTISENC hardware becomes
equivalent to the SNN model of the application software.

2) We configure PRONTO to create the verification setup
for QUANTISENC. This setup includes a modular Sys-
temVerilog testbench to drive stimuli to QUANTISENC
and capture the output. PRONTO facilitates (1) behav-
ioral simulation (using the Verilog HDL), (2) functional
simulation (using synthesized netlist), and (3) timing
simulation (using implemented netlist) in AMD’s Vivado
tool suite. These simulations can be used to record the
switching activities of the internal design nets, which
can then be used to estimate the power consumption.

3) The MicroBlaze/ARM software stack including the
PetaLinux form the system software. It interfaces with
the PL block to program synaptic weights, drive input,
and visualize hardware results at run-time using the
high-speed AMBA AXI interconnect.

This power estimation framework can be integrated inside
a loop to do power/energy-aware co-design.

Figure 2b shows the design flow of SONIC for the ASIC
design. This flow consists of a front-end and a back-end
design step. The front-end includes synthesis and static timing
analysis. The back-end design step includes placement, rout-
ing, and layout. After fabrication and testing, a neuromorphic
accelerator is connected to the host CPU inside a system-
on-chip (SoC) using peripheral interconnect express (PCIe).
Brainchip’s Akida is an example of a neuromorphic system-
on-chip (NSoC) [9]. The hardware-software interface consists
of application software and system software, which includes
OS, compiler, and task scheduler [24]–[29].

A. Enabling Pipelining via Operation Scheduling

The synaptic memory of QUANTISENC is distributed
among its hardware layers such that all post-synaptic neurons
in a layer can simultaneously process spikes from their pre-
synaptic neurons implemented in its preceding layer. In terms
of end-to-end data processing, QUANTISENC is a dataflow
architecture, where each layer starts processing spikes when
its preceding layer finishes generating spikes.

SONIC takes advantage of the distributed computing and
memory architecture of QUANTISENC. As the layers of
QUANTISENC do not share resources (neuron logic or synap-
tic memory), SONIC can schedule these layers to operate
simultaneously on different data streams, essentially creating
a hardware pipeline using these layers.

We illustrate the hardware pipelining concept in Figure 3. To
initialize, SONIC loads the synaptic weights and configuration
registers in the QUANTISENC hardware using its IO interface.
Subsequently, SONIC schedules processing input data streams
in a streaming fashion as illustrated in the figure. At any given
time (after the pipeline is full), we see that the layers are all
operating in parallel on different data streams. The system
software schedules one stream after another with a latency

equal to the sum of the processing time of a layer (d) and the
waiting time (s). This waiting time ensures that the membrane
potential of a neuron resets to its resting potential before it
begins processing spike trains from the next input stream.
In steady state, the maximum throughput obtained using this
pipelined parallelism is 1/(d+ s).

weights config Layer 0 Layer (K-1)

input 1

input 2

ds

Layer 1

Layer 0 Layer (K-1)

input 2

Layer 1wait

Layer 0 Layer (K-1)

input 3

Layer 1wait

Fig. 3: Pipelined data processing in SONIC.

V. EDUCATION IN AI HARDWARE

Figure 4 describes a curriculum that we developed at Drexel
University, which integrates SONIC into existing courses to
teach neuromorphic computing. This curriculum is structured
into undergraduate and graduate content. At the undergraduate
level, students are introduced to machine learning (ML) en-
gineering based on the fundamentals of probability and data
analytics. Student projects involve ML training and inference
using the Python-based PyTorch framework. The Introduction
to VLSI course introduces HDL coding using the Verilog
HDL language with digital logic as background. Student
projects include designing adders and multipliers in Verilog
and verifying them using testbenches. On the analog front,
courses such as electronic devices introduce students to the
basics of semiconductors. Thereafter, the modern transistor
design course introduces CMOS technology.

Machine Learning 
Engineering  Introduction to VLSI

Digital LogicProbability & Data 
Analytics

Neuromorphic 
Computing

Machine Learning 
& AI ASIC Design FPGA Design

Systems 
Neuroscience 

Electronic Devices

Modern Transistors

Custom VLSI Design

Full‐Stack Co‐Design

graduate

undergraduate

QUANTISENC

Heterogeneous 
Integration

Fig. 4: Educational curriculum integrating SONIC.
At the graduate level, the Machine Learning and AI course

covers the mathematical foundation of AI and also intro-
duces different deep learning models. The system neuroscience
course is an interdisciplinary course that introduces the neu-
ronal and circuit basis underlying sensory processing and
perception. This course also introduces SNNs with simple
neuron and synapse models.

On the hardware front, the ASIC and FPGA design courses
form the prerequisite to the neuromorphic computing course.
For the ASIC design course, we plan to use QUANTISENC as
a design reference to introduce the design and automation of
digital CMOS Application Specific Integrated Circuit (ASIC)
systems. The physical design flow of ASIC will introduce
logic synthesis, floorplanning, placement, clock tree synthesis,
routing, and verification of QUANTISENC. These back-end
physical design flow steps will also be covered through hands-
on practice using industrial VLSI CAD tools. The project-
based digital FPGA design course will teach students how to
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Fig. 5: A classification example with the spiking MNIST dataset using the handwritten digit 8.

implement SONIC on the AMD FPGA. Students will learn to
perform simulations using the testbench.

The neuromorphic computing course will utilize all key con-
cepts in prerequisite courses to introduce hardware-software
co-design in the area of AI. The course is structured into
three sections. In the first section, the course will introduce
key concepts in SNNs, including different types of neuron
and synapse, and learning approaches using SNNs, e.g.,
supervised, unsupervised, and reinforcement learning. The
projects in this section will include developing time series
and image-based applications using SNNs. In the second
section, the course will introduce the QUANTISENC and its
implementation on FPGA. The projects will include extending
QUANTISENC to support different neuron models, exploring
the trade-off in hardware and software performance. The third
section is planned to be project-based, where students will
learn the implementation of application-specific neuromorphic
systems. Students will use SONIC to perform full-system
emulation for the selected applications.

The neuromorphic computing course will form the prerequi-
site for a full stack co-design-oriented course that will integrate
all compute stacks into the curriculum, teaching students to
explore design points that span these stacks. The proposed
course will facilitate both a top-down understanding, where
new(er) applications can create the need for architectural
features/assists, which in turn can drive innovations in circuits
leveraging and optimizing newer materials/devices, and a
bottom-up understanding, where novel material/device features
and challenges can open up new architectural features that can
enable/enhance new(er) applications.

We believe that the proposed educational curriculum will
address the specific need to build a robust semiconductor
workforce that specializes in AI systems.

VI. RESULTS

We use Spiking MNIST, DVS Gesture, and Spiking Heidel-
berg Digit (SHD) [14] datasets to evaluate SONIC on AMD’s
Virtex Ultrascale (primary), Virtex 7, and Zynq Ultrascale
FPGA boards. Table II summarizes these settings.

SONIC is built using three key components – (1)
QUANTISENC hardware [7], (2) a SystemVerilog testbench
(PRONTO [11]), and (3) a system software for QUAN-
TISENC. We use snnTorch [12] to specify and train SNN

models in software. SONIC’s open API is used to configure
QUANTISENC to implement the SNN model in hardware.
Subsequently, the SONIC’s SystemVerilog testbench is used
to verify the design for the three evaluated datasets.

For full-system emulation, the trained model weights are
programmed in the QUANTISENC hardware (in its synaptic
memory) using SONIC’s system software. The system soft-
ware is also used to record the output of SONIC to perform
classification and evaluate accuracy.

Datasets Classes
Training
Examples

Test
Examples

Evaluation
Board

Technology Resources

Spiking MNIST 10 60,000 100
Virtex

UltraScale
16nm FinFET

LUTs: 537,600
FFs: 1,075,200
BRAMs: 1728
DSPs: 768

DVS Gesture 11 1176 288 Virtex 7 28nm
LUTs: 303,600
FFs: 607,200
BRAMs: 1030
DSPs: 2800

Spiking Heidelberg
Digit (SHD)

20 8156 2264
Zynq

UltraScale
16nm FinFET

LUTs: 230,400
FF: 460,800
BRAM: 312
DSP: 1728

TABLE II. Datasets and FPGA boards used for evaluation.

Figure 5 shows a classification example using the spiking
MNIST dataset for the handwritten digit 8. The configuration
of SONIC is set to (256×128×10).1 This baseline configuration
gives the best trade-off for the Spiking MNIST dataset in terms
of application performance, e.g., accuracy of digit recognition
(96.5%), and hardware performance, e.g., area, power, latency,
and throughput. In Figure 5, the image is presented to SONIC
for a time duration of 150 ms. This is a user-defined parameter
and is controlled through the application software. The figure
shows the spikes generated by neurons of the three layers
(input, hidden, and output). We use a spike counter on the
output layer to decode and visualize the classification result.

Output decoding is illustrated in Figure 6. We observe
that output neuron 8 has the highest spike count, so the
SONIC result is correctly interpreted as 8 corresponding to the
image. However, neuron 3 has the second highest number of
spikes, followed by neuron 0. This is because of the structural

1We scale the original 28× 28 images to 16× 16 images to reduce model
size. This is the maximum scaling that can be performed on handwritten
images from the dataset without affecting the classification accuracy.

43

Authorized licensed use limited to: Drexel University. Downloaded on August 01,2025 at 12:50:37 UTC from IEEE Xplore.  Restrictions apply. 



Configuration Neurons Synapses
Quantization
& Precision

LUTs
(of 537,600)

∆
FFs

(of 1,075,200)
∆

BRAMs
(of 1728)

∆
DSPs

(of 768)
∆

Dynamic
Power (W)

∆

1 256 × 128 × 10 394 34,048 Q5.3 7.6% – 0.66% – 3.99% – 0% – 0.390 –

2 256 × 128 × 10 394 34,048 Q9.7 9.38% 1.2× 1.39% 2.1× 3.99% 0% 35.93% – 0.738 1.9×

3 256 × 256 × 10 522 68,096 Q5.3 17.44% 2.3× 1.85% 2.8× 7.69% 1.9× 0% – 1.241 3.2×

4 256 × 256 × 256 × 10 778 133,632 Q5.3 34.08% 4.5× 3.55% 5.4× 15.10% 3.8× 0% – 2.172 5.6×

TABLE III. Resource utilization and dynamic power of SONIC for different SNN architectures.

similarity of the handwritten digit 8 to digits 3 and 0. SONIC
allows to perform such analysis for different datasets.
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Fig. 6: Counting spikes to decode results.

A. Design Scalability Analysis using SONIC

SONIC can be used to analyze the scalability of neuro-
morphic designs and perform fast design space exploration.
To illustrate this, we provide resource utilization and dynamic
power of QUANTISENC for the Spiking MNIST dataset. The
key idea is to use the SONIC’s API to configure QUAN-
TISENC and synthesize and implement it on a target FPGA
board. Subsequently, the SONIC’s PRONTO framework is
used to simulate the design using the dataset, recording the
switching activities in the switching activity interface format
(SAIF). This SAIF file is then used to report the dynamic
power using AMD’s Vivado tool.

Row 1 of Table III reports the resource utilization and dy-
namic power of QUANTISENC for the baseline configuration
of 256 × 128 × 10 and a quantization and precision policy of
Q5.3 for neurons and Q1.3 for synaptic weights (reported
as Q5.3/Q1.3). The design consists of 394 LIF neurons and
34,048 synapses. It uses BRAMs to implement synaptic mem-
ory. The resource utilization for the Virtex UltraScale FPGA is
as follows: 40,767 (= 7.6%) LUTs, 7,085 (= 0.66%) FFs, and
69 (= 3.99%) BRAMs. No DSP slices are used. The dynamic
power consumption is 390 mW using a spike frequency of 600
KHz. This frequency gives the maximum performance per watt
for the design (see Section VI-C). Row 2 reports the utilization
using Q9.7/Q1.7. Increasing quantization and precision results
in an increase of 1.2× in LUTs and 2.1× in FFs compared to
the baseline configuration in row 1. The number of BRAMs
remains the same, but the design uses 276 (= 35.93%) DSPs.
The dynamic power increases by 1.9×.

Rows 3 & 4 show the utilization and dynamic power for two
additional design configurations. The configuration in row 3

has 522 neurons (32.5% higher than baseline) and 68,096
synapses (2× higher than baseline). For this configuration,
the design requires 2.3× more LUTs, 2.8× more FFs, and
1.9× more BRAMs than the baseline. The dynamic power is
3.2× higher. On the other hand, the configuration in row 4 has
778 neurons (2× higher than baseline) and 133,632 synapses
(4× higher than baseline). For this configuration, the design
requires 4.5× more LUTs, 5.4× more FFs, and 3.8× more
BRAMs than the baseline. The dynamic power is 5.6× higher.

These results show scalability with the number of neurons
and synapses. One way to utilize this scalability result in
SONIC is to quickly evaluate the utilization of FPGA re-
sources for a specific configuration of the hardware, without
having to synthesize the design, which often takes a consid-
erable amount of time. This is useful when conducting design
space exploration, where multiple iterations may be necessary
before making a final design choice.

B. Benchmarking State-of-the-Art Designs using SONIC

SONIC can be used to compare and benchmark state-of-
the-art neuromorphic designs. Table IV compares SONIC with
other designs, for a single neuron and for SNN architectures.

A Single Neuron (Q3.0) SNN Architecture

Euler [30] Euler [31] Ours
Best

Accuracy [32]
Best Hard-
ware [33]

Ours

Configuration – – – 784-1024-10 784-2048-10 256-128-10
LUTs 95 76 80 78,679 16,813 40,767
FFs 85 20 23 16,864 7,559 7,085

BRAMs 0 0 0 174 129 69
Norm. Resource 1.43 1.0 1.05 2.02 1.0 0.92

Power (W) 0.25 NR 0.05 3.4 1.03 0.390
Accuracy – – – 98.4% 93.0% 96.5%

TABLE IV. Comparison to state-of-the-art.

We observe that the normalized resource utilization of a
single neuron of QUANTISENC is 5% higher than [31]
and 26.5% lower than [30]. For the SNN architecture of
the Spiking MNIST dataset, QUANTISENC requires 2.2×
lower resources than [32] and 8% lower resources than [33].
These improvements are due to the efficient implementation
of QUANTISENC using variable quantization and precision
policies for its neurons and synaptic weights [7].

C. Throughput Improvement using SONIC

Figure 7 plots the worst setup slack (in ns) of QUAN-
TISENC obtained using SONIC as we increase the spike
frequency from 100 KHz to 1.2 MHz using the baseline
configuration of (256 × 128 × 10) and Q5.3/Q1.3 quantization
and precision policies. Setup slack is defined as the difference
between the required time and the arrival time of the data at
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an endpoint (typically a register). During static timing analysis
(STA), a negative setup slack indicates timing violations. The
peak frequency is one that results in the least positive setup
slack. The subplot reports the dynamic power of SONIC for
these memory settings. We make the following observations.
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Fig. 7: Maximum frequency and power trade-off.
First, the setup slack is positive for a spike frequency of

100, 200, and 400 KHz for all three memory implementations.
As we increase the frequency to 600 KHz, there are multiple
timing violations for distributed LUT-based synaptic memory.
The peak frequency for this implementation is 450 KHz. Sec-
ond, the setup slack for distributed LUT-based implementation
is 61% lower than for BRAM-based, which means that the
latter supports a higher peak frequency. Our results show that
the peak spike frequencies for register-based and BRAM im-
plementations are 850 and 925 KHz, respectively. Finally, the
register-based implementation has the least dynamic power for
all spike frequencies. It is 23% and 79% lower than the BRAM
and distributed LUT-based implementations, respectively.

In addition to the peak frequency, we also evaluate QUAN-
TISENC based on its real-time performance, which is mea-
sured as the number of images inferred per second, and
throughput per watt, which is measured as the number of fixed-
point operations performed per watt.

Real-time Performance =
1

exposure time +Nreset/f
(see Sec. IV) (8)

where exposure time is the time interval for which each
image is exposed to the SNN model for inference, Nreset is
the number of clock cycles needed to reset the membrane
potential, and f is the spike frequency. The value Nreset depends
on the membrane time constant (τ). Our empirical studies
show that Nreset = 4 clock cycles at f = 1 KHz for τ = 5

ms. This results in a real-time performance of 41.67 frames
per second (fps) for an exposure time of 20 ms. This is
the performance obtained by exploiting pipelined parallelism
using SONIC. In previous works such as [34], such parallelism
has not been exploited. Therefore, real-time performance is

1
exposure time+(K×L)/f

, where K is the number of layers and L

is the latency (in the number of clock cycles) of each layer.
For the baseline design (256 × 128 × 10) with three layers,
the maximum performance obtained using [34] is 31.25 fps.
SONIC improves the real-time performance by 33.3% by
exploiting pipelined parallelism.

Figure 8 shows the performance per watt for the three
designs analyzed in Table III as the spike frequency ranges

from 100 KHz to 1 MHz. We observe that the performance
per watt increases with an increase in frequency until it
reaches the maximum. This is because at lower frequencies
the increase in performance exceeds the increase in dynamic
power, resulting in an overall increase in performance per watt
for all evaluated designs. With a further increase in frequency,
the dynamic power starts to dominate the performance-power
ratio, resulting in a reduction in performance per watt. The
maximum performance per watt is indicated with a circle,
which occurs at a frequency much lower than the highest
frequency supported by the respective design.
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Fig. 8: Performance per watt.

D. Prototyping QUANTISENC Configurations using SONIC

Table V reports the largest QUANTISENC hardware that
can be implemented on three evaluated FPGA platforms
using SONIC. We report the configuration for a wide design
using a single hidden layer and a deep design using multiple
hidden layers. We also report the power consumption of these
configurations. SONIC allows to easily evaluate and prototype
different design configurations on different FPGA platforms.

Platform
Wide Design (Single Hidden Layer) Deep Design (Multiple Hidden Layers)

Configuration Power (W) Configuration Power (W)

Virtex UltraScale 256-1470-10 9.557 256-28(64)-10 6.371

Virtex 7 256-704-10 5.818 256-20(64)-10 4.833

Zynq UltraScale 256-640-10 3.349 256-12(64)-10 1.854

TABLE V. Configuration on three FPGA platforms.

E. Evaluating Different Datasets using SONIC

Table VI summarizes the QUANTISENC results for the
three datasets evaluated using SONIC.

Configuration
Resource Utilization

Accuracy

Dynamic
Peak

Power

Peak
Performance

per Watt
LUTs FFs BRAMs (W) (GOPS/W)

1.
Spiking
MNIST

256-128-10 7.6% 0.66% 3.99% 96.5% 0.390 22.91

2.
DVS

Gesture
400-300-300-11 60% 15% 18% 85.07% 1.827 24.45

3. SHD 700-256-256-20 65% 20% 24% 87.8% 1.629 16.09

TABLE VI. Design summary for different datasets.

Row 2 summarizes our design exploration for the DVS
Gesture dataset. QUANTISENC requires a configuration of
(400 × 300 × 300 × 11), which uses 60% LUTs, 15% FFs, and
18% BRAMs on VirtexUltraScale. The accuracy obtained is
85.07% compared to an snnTorch accuracy of 87.1% [35].
The implemented design has a peak dynamic power of 1.827
W and a performance per watt of 24.45 GOPS/W. Row
3 summarizes our design exploration for the SHD dataset.
The design requires a configuration of (700 × 256 × 256 × 20),
which uses 65% LUTs, 20% FFs, and 24% BRAMs on
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VirtexUltraScale. The accuracy obtained is 87.8% compared to
the snnTorch accuracy of 90.3% [36]. The implemented design
has a peak dynamic power of 1.629 W and a performance per
watt of 16.09 GOPS/W.

F. Early ASIC Synthesis Results using SONIC

Table VII reports the results of the early ASIC synthesis
of LIF design of QUANTISENC using the Synopsys Design
Compiler for a spike frequency of 100 MHz. The design uses
1,574 nets, 944 combinatorial cells, 35 sequential cells (Flip-
Flops), and 309 buffers & inverters, occupying a total area of
2894 µm2. The design consumes 101.7 µ W of power, divided
into 23.2 µ W of switching (dynamic) power and 78.5 µW of
leakage power. Our future work will explore other stages of
the ASIC design of QUANTISENC.

Technology Nets
Comb.
Cells

Seq.
Cells

Buf/Inv Area
Switching

Power
Leakage
Power

Total
Power

32nm 1574 944 35 309 2894 µm2 23.2 µW 78.5 µW 101.7 µW

TABLE VII. Early ASIC synthesis results of a neuron.

VII. CONCLUSION

We propose SONIC, an open-source software-defined neu-
romorphic design methodology to make neuromorphic com-
puting accessible to all. SONIC is built using three core
components. First, it integrates QUANTISENC, a layer-based
neuromorphic hardware design with LIF neurons and CUBA
synapses. We design API for SONIC to configure layer ar-
chitectures, neurons per layer, and connection between lay-
ers, alongside setting quantization and precision policies for
neurons and synaptic weights. Second, it integrates PRONTO,
a framework for fast verification and prototyping of SNN
hardware on FPGA. Finally, it integrates a system software to
perform operation scheduling on QUANTISENC by exploiting
its distributed computing and memory architecture. Overall,
SONIC is a generalized framework to configure LIF dynamics,
deploy model parameters to hardware, perform inference on
live data, evaluate hardware performance, and visualize infer-
ence results. We evaluate SONIC’s capabilities using datasets
like Spiking MNIST, DVS Gesture, and Spiking Heidelberg
Digit (SHD) on different FPGA development boards. We
analyze different design configurations and show SONIC’s
ability to perform design space exploration. These explorations
show superior resource utilization, power efficiency, latency,
and throughput of QUANTISENC compared to other designs.
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