RICCI CURVATURE AND FUNDAMENTAL GROUPS OF
EFFECTIVE REGULAR SETS

JIAYIN PAN

ABSTRACT. For a Gromov-Hausdorff convergent sequence of closed manifolds
M SH X% with Ric > —(n — 1), diam(M;) < D, and vol(M;) > v > 0, we
study the relation between m1(M;) and X. It was known before that there is
a surjective homomorphism ¢; : w1 (M;) — 71 (X) by the work of Pan-Wei.
In this paper, we construct a surjective homomorphism from the interior of
the effective regular set in X back to M;, that is, 1i : m1(R¢ 5) — m1(M;).
These surjective homomorphisms ¢; and 1; are natural in the sense that their
composition ¢; o 1; is exactly the homomorphism induced by the inclusion
map RS s — X.

1. INTRODUCTION

For a Gromov-Hausdorff convergent sequence M; SH X with curvature bounds,
it is crucial to understand the relationship between M; and X. For example, when
M; are closed n-manifolds with

sec > —1, diam(M;) < D, vol(M;) > v >0,

Perelman proved that M; is homeomorphic to X for all ¢ large [14]. For the context

of this paper, let us consider a convergent sequence of closed n-manifolds M; SR x
with Ricci curvature lower bounds

(1.1) Ric > —(n —1), diam(M;) < D, vol(M;)>v>0

Under this weaker condition, one cannot expect X to be homeomorphic to M;.
By the work of Wei and the author [13], the limit space X is semi-locally simply
connected. This was later generalized to the collapsing case by Wang [16]. As a
consequence, there is a forward surjective homomorphism from 71 (M;) to w1 (X).

Theorem 1.2. [13] Let M; be a sequence of closed n-manifolds with (1.1) and
Gromov-Hausdorff converging to a limit space X. Let x; € M; be a sequence of
points converging to x € X. Then for alli large, there is a surjective homomorphism

(,ZSZ‘ : ’/Tl(MZ‘,.’Ei) — 7T1(X,IL’).

For an element [o;] € w1 (M;, x;) represented by a loop o; based at x;, its image
under this forward homomorphism ¢; is constructed by drawing a loop ¢ in X that
is sufficiently close to o;; see [15, 13]. While ¢; is surjective, in general it is not
injective even under the noncollapsing condition. In fact, there could be shorter and
shorter non-contractible loops at x; with length tending to 0, then by construction
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¢; sends them to identity. We will review an example by Otsu [11] in Section 3
regarding this.

From Theorem 1.2, because ¢; may have a kernel, it appears that some elements
in 71 (M;) are lost in the limit X. As the main result of this paper, we show that all
elements in 71 (M;) are still retained in X; more specifically, in the effective regular
set R.s of X. In fact, we will construct a backward surjective homomorphism
from (Rg’g,x) to m (M;, x;), where R¢ s is the interior of Res and z € X is a
regular point. By the regularity theory developed by Cheeger-Colding [4], Res s
a connected topological manifold of dimension n for all 0 < € < ¢(n) and 6 > 0.

Theorem A. Let
(M;, ;) S (X, 2)

be a convergent sequence of closed n-manifolds with (1.1), where x is a regular
point. Then
(1) for any 0 < € < e(n) and sufficiently small 0 < 6 < §(e, ), there is a surjective
homomorphism

U m(RE g, @) = m(My, ;)
for all i large;
(2) the composition of ¢ and ¢; in Theorem 1.2

®; 0 ¢f s ( (;5,1') - 71—1()(7‘%')
is exactly the homomorphism v, induced by the inclusion map v : R¢ 5 — X.

The construction of this backward homomorphism 1); is natural and similar to
that of ¢;: namely, by drawing nearby loops. The surjectivity of 1; requires a
complete different and more involved argument than that of ¢;. We remark that
1; is not injective in general. In fact, we will review an example by Anderson [1]
in Section 3; in this example, both M; and X are simply connected but 7y (Rg 5) 1s
isomorphic to Zs.

As an application of Theorem 1.2, we show that if the inclusion map R — X
induces an injective homomorphism ¢, : 7 (RS, z) — 71 (X, ), then m (M;) is
isomorphic to 1 (X) for all ¢ large. Note that we are considering the e-regular set
in this statement; in other words, the involvement of § is dropped.

Theorem B. Let
GH
(M;,z;) — (X, 2)
be a convergent sequence of closed n-manifolds with (1.1), where x is a regular
point. Suppose that for some 0 < € < €(n), the induced homomorphism
ty :m(Re,x) = m (X, x)
is injective, then m(M;) is isomorphic to m (X) for all i large. In particular, if RS
is simply connected, then so is M;.

The work in this paper is motivated by the m-stability problem:

Question 1.3. Given n, D,v > 0, is there a positive constant e(n, D,v) > 0 such
that if two closed n-manifolds My and My satisfy (1.1) and dgr(My, Ms) < ¢, then
are w1 (My) and 71 (Ms) isomorphic?
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As a comparison, if one replaces Ricci curvature in (1.1) by a sectional curvature
lower bound sec > —1, then M; and M, are homeomorphic when they are Gromov-
Hausdorfl close; see the works by Grove-Petersen-Wu [10] and Perelman [14].

Question 1.3 is a stronger version of the celebrated finiteness result by Anderson
[1] below. In fact, if Question 1.3 has an affirmative answer, then finiteness would
easily follow by a standard contradicting argument.

Theorem 1.4. [1] Given n,D,v > 0, there are finitely many isomorphism classes
of fundamental groups among closed n-manifolds with (1.1).

To resolve Question 1.3, it is equivalent to answer:

Question 1.5. For a convergent sequence of closed n-manifolds M; GH X with
(1.1), is it possible to determine w1 (M;) solely from X ¢

Theorems A and B provide partial answers to Question 1.5.

Remarks 1.6. Let us mention other related results regarding Questions 1.3 and 1.5.
(1) When X satisfies a local half-volume lower bound, we have a positive answer;
see [13, Section 3.

(2) If one considers the equivariant Gromov-Hausdorff convergence of the Riemann-
ian universal covers, then it holds that m (M;, p;) is isometric to the limit group
for all i large (see [12, Section 2.3] for details). However, because a subsequence
was chosen to derive equivariant convergence, this result does not provide direct
answers to Question 1.3.

The proof of Theorem A consists of two steps. The first step is to construct
the map ¢¢ and show that it is well-defined for small §. The second step is to
show its surjectivity. The proofs relies on several ingredients. The first one is the
regularity theory of non-collapsing Ricci limit spaces developed by Cheeger-Colding
[7, 4, 5, 3]. The second ingredient is the equivariant convergence under Ricci and
volume lower bounds; in particular, we utilize some of the results by Pan-Rong [12]
and Chen-Rong-Xu [6]. Lastly, we use some of the methods in Pan-Wei’s work [13]
on loops and homotopies under Gromov-Hausdorff convergence; these techniques
can be traced back to the work of Borsuk [2] and Tuschman [15].

2. PRELIMINARIES

2.1. Regularity theory of noncollapsing Ricci limit spaces. Throughout the
paper, we always use U(e|n) to represent some nonnegative function depending on
€ and n with

lim ¥(e|n) = 0.
e—0
We may use the same symbol ¥(e|n) though dependence on € or n may be different.
Given n € N, k > 0, and v > 0, we denote M(n,—x,v) the set of all pointed

Ricei limit spaces (X, ) coming from some GH convergent sequence of complete
n-manifolds (M;, p;) with

(2.1) Ric > —(n — 1)k, vol(Bi(p;)) > v > 0.
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The regularity theory about these noncollapsing Ricci limit spaces are mainly de-
veloped by Cheeger, Colding, and Naber. Below, we review some of the results that
will be used later. The main references are [5, 3].

Definition 2.2. [5, 3] Let ¢,d > 0. For a Ricci limit space X € M(n,—1,v), we
define (¢, 0)-regular set, e-regular set, regular set, and singular set of X as below.

Res ={x € X | dgu(B(z), B;'(0)) <er for all 0 < r < §},

Re = U Re,&»
6>0
R={1Re=[) U Res-
>0 e>06>0
S=X-R.

Theorem 2.3. [7, 5] Let (M, p;) GH (X,x) be a convergent sequence with (2.1).
Then for all r > 0, we have volume convergence

vol(B,(p;)) = H"(B,(x))
as i — 0o, where H™ is the n-dimensional Hausdorff measure on X.

Theorem 2.4. [7, 5] Let X € M(n,—d,v) and z € X.

(1) If
deu(Bi(z), BY'(0)) <4,
then
H"(Bi(x)) = (1 = ¥(d[n))vol(By (0)).
(2) If
H™(Bi(z)) = (1 —0)vol(B1(0)),
then

dan(Bi(x), By'(0)) < ¥(d|n).
The following facts follow from Theorems 2.3 and 2.4.

Lemma 2.5. Let X € M(n,—1,v).

(1) Given €,6 > 0, there are € = W(e[n) and &' = 6/3 such that Res CRY 5.

(2) Let A be a compact subset of R. Then for any € > 0, there is 6 > 0 such that
ACRs.

Proof. We include the proof here for readers’ convenience.
(1) Let € Re 5. By definition, this means

den (B,(2), BE(0)) < er
for all 0 < r < §. By Theorem 2.4 and Bishop-Gromov relative volume comparison,
H"(Bs(y)) = (1 — ¥(en))vol(B{(0))

holds for all y € B;,3(x) and all 0 < s < 0/3. Applying Theorem 2.4(2), we see
that
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that is, y € Ry(c|n),5/3 for all y € Bs 3(z). Therefore, z € Ry, 5/, where ¢ = ¥(e[n)
and 0’ = 0/3.
(2) Let € > 0. For each « € A, we pick d(z) > 0 as the largest J so that
den(Br(z), B (0)) < er

holds for all 0 < r < §. It suffices to show that §(x) has a uniform positive lower
bound for all x € A. We argue by contradiction. Suppose that there is a sequence
x; € A with 0(x;) — 0. Then by compactness of A, x; subconverges to some y € A,
which is also regular. Therefore, for ¢ > 0, which will be determined later, there is
do = do(€’,y) > 0 such that y € R 5,. Thus it follows from Theorem 2.4(1) that

H"(Bs, (y)) = (1 = T (€'|n))vol(B5,(0)).
By volume convergence,
H"(Bsy (1)) > (1 = 2¥(€’|n))vol(B, (0))
for i large, thus
dgu (B, (x;), B(0)) < V'('|n)r

for all 0 < 7 < §y. Now we choose € > 0 so that U'(¢'|n) < ¢, then z; € R s, for
all ¢ large. A contradiction to d(x;) — 0. This completes the proof. (]

Theorem 2.6. [5] Let X € M(n,—1,v). Then its singular set S has Hausdorff
dimension at most n — 2.

Theorem 2.7. [5] Let X € M(n,—1,v) and let A be a closed subset of X with
H"1(A) = 0. Then X — A is path connected. Moreover, given any § > 0 and any
pair of points x,y € X — A, a path o in X — A between x,y can be chosen that

length(o) < (14 6)d(z,y).

Theorem 2.8. [5] Given dimension n, there is a constant €o(n) > 0 such that the
following holds for all 0 < € < eg(n).
Let X € M(n,—1,v) and x € X such that

dan(B;(x), B5 (0)) < €,
where § > 0. Then By,(x) is contractible in By, (x) for all 0 < r < §/10.

2.2. Equivariant GH convergence with Ricci and volume lower bounds.
In the study of fundamental groups associated to a convergent sequence

(M;, ;) €5 (X, 2)

with conditions (2.1), it is natural to take the universal covers and their convergence
into account. A powerful tool is the equivariant Gromov-Hausdorff convergence
introduced by Fukaya-Yamaguchi [9]. After passing to a subsequence, we can obtain
convergence

~ GH
(M;,2;,T;) —— (Y,y,I)

(2.9) lm lﬂ

(M, z;)  —2 (X,2).
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Here T'; = 71 (M;, ;) acts isometrically, freely, and discretely on the universal cover
(]\Z, Z;). This sequence of T';-actions converges to a limit isometric T-action on the
limit space Y. Due to the noncollapsing condition on (M;, z;), the limit group T is
a discrete subgroup of Isom(Y'); see Corollary 5.2.

We below state a result by Chen-Rong-Xu [6], which roughly states that if a
point z € Y is sufficiently regular, then I'-action cannot fix z.

Theorem 2.10. [6, Theorem 2.1 and Corollary 2.2] Given n,v > 0, there is a
constant e(n,v) > 0 such that the following holds.

In the convergence (2.9) with conditions (2.1), if z € Y 1is (e, §)-regular, where
d >0, then I' acts freely on Bs/4(z).

We will also need a quantitative result describing the action of any non-trivial
subgroup of Isom(Y"), which is proved in a joint work by Rong and the author [12].
Given a subgroup H < Isom(Y'), we write its displacement on a 1-ball by

D, (H) = sup{d(hz,z)|z € Bi(y),h € H}.

Theorem 2.11. [12, Theorem 0.8] Given n,v > 0, there is a constant §(n,v) > 0
such that for any space (Y,y) € M(n,—1,v) and any nontrivial subgroup of H of
Isom(X), D1 4(H) > d(n,v) holds.

3. ILLUSTRATIVE EXAMPLES

In this short section, we briefly review some relevant examples of convergent
sequences M; <Y X with conditions (1.1) by Otsu [11] and Anderson [1]. In par-
ticular, we shall see that in general the homomorphisms ¢; in Theorem 1.2 and );
in Theorem A are not injective.

Example 3.1. Otsu [11] constructed a sequence of doubly warped metric products
on M = SP*! x S% where p > 2 and ¢ > 2:

[Oa bl] X fi SP Xh; qu gi = dTQ + sz(r)dsf) + hf(r)dsg
such that

Ric(g;) >n—1, diam(g;) =b; = m, vol(g;) > v > 0.
At s =0 or b;, f; and g; satisfies

fi(s) =0, fl(s)=1, hi(s)>0, lim hy(s)—0 hi(s)=0.
1—00
As i — o0, (M, g;) converges to Susp(SP x S?), a suspension over SP x S9.
Since the S9-factor is always the round sphere in the construction, we can take

the antipodal Zs-action on the S9-factor and consider the quotient (N;,g;) =
(M, g;)/Zs. The resulting (N;, g;) is Riemannian because the Zs-action is isometric

and free on (M, g;). Then as i — oo, N; converges to X = Susp(S? x RP?). In
terms of fundamental groups, we have

Wl(Ni):ZQ, 7T1(X):1d
The forward homomorphism ¢; : w1 (N;) — 71(X) has kernel Zy. The limit space

X has two singular points as the vertices of the suspension. For small € and § > 0,
R? 5 is homeomorphic to (0,1) x SP x RP?. In particular, m1(R¢ 5) = Za.
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Example 3.2. Modifying the Eguchi-Hanson metric [8] on T'S?, the tangent bundle
of S2, Anderson [1] constructed a sequence of metrics g; on M*, the double of the
disk bundle in 7.2, with

Ric(g;) > 0, diam(g;) < D, wvol(g;) > v > 0.

M is diffeomorphic to $2 x S2. Recall that the Eguchi-Hanson metric, written as h,
on T'S? is Ricci-flat and has Euclidean volume growth. It has a unique asymptotic
cone as C(RP3) = R*/Z,.

Let Z be the zero-section in T'S? and let B; = Ti(Z,r;%h) be the tubular
neighborhood of Z of radius 1 with respect to the metric ;" 2h, where r; — oo.
Modifying the metric around 0B; and then doubling it, one obtains the desired
metric g; on M. As i — oo, (M,g;) converges to X = Susp(RP?), a suspension
over RP3. X has two singular points as the vertices. For small ¢,§ > 0, Res is
homeomorphic to (0,1) x RP3. Hence

7T1(M):7T1(X):id, 7T1( 2’5)222.
The backward homomorphism v; : w1 (R¢ 5) — m1(M) has kernel Z,.

4. CONSTRUCTION OF ;

In this section, we always assume that M; is a sequence of closed n-manifolds
with (1.1) that Gromov-Hausdorff converges to X. Let 0 < € < €g(n)/2, where
eo(n) is the constant in Theorem 2.8. Let z be a regular point of X and z; in
M; converging to x. By the proof of Lemma 2.5(1), there is § > 0 such that
Bs(z) € Res, thus z € R¢ s+ We may further shrink this ¢ later. The main goal of
this section is to construct the group homomorphisms

z/Jf 1 (RE 5, w) — mi (M, x;)
for all ¢ large.
Lemma 4.1. Given any 0 < € < €(n)/2 and § > 0, the following holds for all
large i.

Let z; be a point in M; that is §/30-close to a point z € R¢ s Then any loop in
By 30(2i) is contractible in Bs(z;).

Proof. We set
Then for each z € X, we can choose a point w; € M; that is n;-close to z. By the

convergence M; SR X and the compactness of X, there is ig large such that

dan(Bs(w;), Bs(2)) < eoéin)(;

holds for all z € X, all w; € M; that is n;-close to z, and all i > iy, where €y(n) is
the constant in Theorem 2.8.
Now fixing a point z € R¢ 5, we have

dan(Bs(z), By (0)) < €.
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Thus by triangle inequality,
deu(Bs(w;), B§(0)) < (e 4+ €(n)/2)0 < €p(n)d.

Then by Theorem 2.8, every loop in Bs/o(w;) is contractible in Bj/s(w;). Let 2
be any point in M; that is §/30-close to z. We have

d(zi,w;) < d(zi,2) + d(z,w;) < §/30 + ;.

Thus when i is large with 7; < §/30, we see that Bs/30(2i) € Bs/10(w;). Therefore,
every loop in Bs/30(2;) is contractible in Bjs(w;) C Bs(2;). O

With Lemma 4.1, we follow a similar construction in [13, Lemma 2.4] (also
see [15]) to construct nearby loops and homotopies on M; from the ones on RS s
For two compact length metric spaces (X7,x1) and (Xa,22) that are close in the
Gromov-Hausdorff distance, we say that two curves o; : [0,1] — X, where j = 1,2,
are e-close, if

d(o1(t),o2(t)) < e
for all ¢ € [0, 1]; in other words, o1(t) € X is € Gromov-Hausdorff close to oa(t) €
X, for all t € [0,1].

Lemma 4.2. We write n; = dgu(M;,X) — 0. Then for sufficiently large i, the
followings hold.

(1) For any loop o : [0,1] — RZ 5, there is a loop o; in M; that is 51;-close to o.
(2) Let o; and o} be loops in M; that are both 6/300-close to a loop o in R 5, then
o; and o, are free homotopic in M;.

(3) Let o and T be two loops in R 5. Let oy and 7; be loops in M; that is 6 /300-close
to o and T, respectively. If o and T are free homotopic in RS 5, then oy and 7; are
free homotopic in M;.

Proof. (1) The construction of o; is the same as the proof of [13, Lemma 2.4(1)].
Namely, using the uniform continuity of o, we choose a suitable partition of [0, 1].
Then for each intermediate point in the partition, we can pick nearby points in M;
and then join them by minimal geodesics.
(2) By uniform continuity of o, we choose [ > 0 such that
d(o(t),o(t)) <6/300
for all ¢,¢" € [0,1] with |t —¢'| <. Let {to = 0,t1,...,t;,....,tx = 1} be a partition
of [0,1] with |t;41 +¢t;| < for all j. By triangle inequality, it is clear that
d(oi(t;), oi(tj+1)) < 3-6/300, d(oj(t;),0i(tj41)) < 3-3/300.
Let ¢; ; be the loop obtained by joining o], ;
to o;(tj+1), the inverse of o}l
o;(t;). Since

+1]» @ minimal geodesic from o;(;41)

;t;41], and lastly a minimal geodesic from o}(t;) to

d((fi(tj), Ug(tj)) S 2. 5/300
for all i. By construction, one can verify that
image of ¢; j € Bs/s0(04(t;)).

Because o;(t;) is 4/300-close to o(t;) € R¢ 5, by Lemma 4.1, ¢; ; is contractible in
M, for all j. Thus o; and o} are free homotopic.
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(3) Let H : S' x [0,1] = R 5 be a homotopy between ¢ and 7. We follow the
method in [13, Lemma 2.4] to construct a homotopy H; between o; and 7; as below.
By the uniform continuity of H, we can choose a finite triangular decomposition X
of S x [0,1] so that

diam(H (A)) < §/300

for each triangle A of . For any vertex v of ¥, if v is on the boundary of S x [0, 1],
then H;(v) is naturally defined as a point on o; or 7;; if not, then we define H;(v)
as a point in M; that is n;-close to H(v). Next, we define H; on every edge of
¥: for an edge that is on the boundary of S* x [0,1], H; on this edge is naturally
defined as part of o; or 7;; for an edge not on the boundary with vertices v and w,
we map it to a minimal geodesic between H;(v) and H;(w). If n; < §/300, then by
construction, every triangle A satisfies

H;(0A) C Bs30(H;i(v)),

where v is a vertex of A. Since H;(v) is §/300-close to H(v) € R 5, we can apply
Lemma 4.1 to contract the loop H;(A). Applying this to all the triangles of 3, we
result in the desired homotopy between o; and ;. [l

Now we construct the backward homomorphism ¢ .

Definition 4.3. Let [o] € m1(RZ 5, %) represented by a loop o based at z in R ;.
For i large that fulfills Lemma 4.2, we draw a loop o; in M; based at x; that is
§/300-close to o. We define

¢ T (RE 5, ) = i (Mg, ),
0] = [o3].

Theorem 4.4. The above constructed ¢ is well-defined and is a group homomor-
phism for all © large.

Proof. By Lemma 4.2(2), ¥¢[0] = [0;] is independent of the choice of o;. It also
follows from Lemma 4.2(3) that the definition is independent of the choice of o.

It is straightforward to check that 1/)? is a group homomorphism. In fact, let o
and 7 be two loops in R¢ ; based at z, and let o; and 7; be loops in M; that is 4/300-
close to o and 7, respectively. Since the the product o; - 7; is clearly 4/300-close to
o - T, by definition, we have

Wilol - yilr] = [oi] - [m] = [o3 - 7] = ¢ [o - 7] = ¥ ([o] - [7]).

For 0 < e <€ and 0 < ¢’ < 4, we have inclusion
Res SR g

For both R¢ ;5 and R, 5, we have backward homomorphisms defined; they are
indeed related by the inclusion map, as stated in Lemma 5.7 below. Due to the
dependence on €, we will write 1] 9 instead of Y? for clarity.
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Lemma 4.5. Let 0 < e < ¢ < ¢y(n)/2 and 0 < §' < §. Suppose that i is large such
that both homomorphisms

! ’
1/’;’5 : Wl(R:,éax) — m(Mi, i), by o 7T1(R§/,5/793) — m1 (M, ;)

are defined. Then @/}f’a coincides with the composition

&5’

* w‘l.
Wl(R:ﬁ,x) LN Wl(R:/ﬁ/,IL‘) “— (M, x;),
where v is the inclusion map R 5 — RY 5.
Proof. Let [o] € m1(RZ 5, %), where o is a loop in R¢ s based at z. Then too

naturally represents an element of m1(R¢, 5, 7). Let o; be a loop in M; based at x;
that is ¢’/300-close to ¢ o 0. According to Definition 4.3, we have

v onfo] = v " froo] =[]

Since ¢’ < 6, the loop o; is also §/300-close to t o 0 = o in R 5. Therefore,

Vo) = [od] = ¥ o t.[o].

5. SURJECTIVITY OF ;

The main goal of this section is to prove Theorem A. The proof of surjectivity
of 1? is a contradicting argument and we shall apply equivariant GH convergence
to the contradicting sequence.

Before starting the proof of Theorem A, we prove some results about the equi-
variant GH convergence.

Lemma 5.1. Let us consider the diagram (2.9) with conditions (2.1). Suppose that
z € R 5, where 0 < e < €(n) and 0 < 6 < 0(n) are sufficiently small. Then there
is a constant l(n,d) > 0 such that any nontrivial element in 71 (M;, x;) has length
at least l(n,d), where i is large.

Proof. The proof is a localized version of an argument by Anderson [1].
Let g; € m(M;, z;) with d(g;Z;,%;) = I; > 0. We shall prove a lower bound for
liminfl; :=[. Let F; be the Dirichlet domain of M; centered at Z;. Since
9i(Fi N Bs(%;)) C Biyvs(2:),  gi(Fi N Bs(F;)) N (Fi N Bs(;)) = 0,
we have volume estimate
2V01(B§($2)) = VOl(Fi n Bg(i‘l)) + VOl(gi(Fi n Bg(i‘l)))

< vol(Bi, +5(%))

< U(n7 _la lZ + 5)7
where v(n, —k,r) means the volume of an r-ball in the n-dimensional space form
of constant curvature —x. By volume convergence, as i — oo, we have

VOl(Bg(a?i)) —H" (35 ($))
> (1= W(el) - o(n,0,5)
> (1= W(eln)) - (1 — W(e[n)) - vln, ~1,0).
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These lead to
v(n,—1,1; +9)
U(nv 7175)

for all 7 large, which gives a universal lower bound I(n,d) for liminf ;. O

> 1.9(1 — (e, 8|n)) > 1.5.

Corollary 5.2. In the diagram (2.9) with conditions (2.1), the limit group T' is
discrete.

Proof. Let z € X be a regular point. We choose small 0 < € < ¢(n) and § > 0
such that z € R¢ 5. Let z; € M; converging to z and let z; € J\Z be a lift of z;. By
Lemma 5.1, the orbit T'; - Z; is I(n, §)-discrete. Passing this to the limit, we see that
T" is a discrete group. (I

Lemma 5.3. Let (N;,x;) € M(n,—1,v) with an isometric T';-action on each Nj.
Suppose that the sequence converges

(Ni i, T3) <5 (V,9,G)
and the limit group G is discrete. Let g € G be an element of finite order k and let
v; € T'; converging to g. Then
(1) ~; has order k for all i large;
(2) {v:) GH (g9), where (-) means the subgroup generated by that element.

Proof. (1) First note that ¥ K g* = e asi — co. We claim that (v¥) GH {e}.
In fact, let H be the limit of <'yzk> and suppose that H has a non-identity element
h. We pick a point z € Y with d(hz,2) > 0. Since d(yFz;, 2;) — 0, where z; € M;
converging to z, for any 0 <! < d(hz, z), we can find a sequence m; such that

d((’yf)mizi, z) = L.

The sequence (%k)m would converge to an element of H with displacement [ at z.
Because [ € (0,d(hz, z)) is arbitrary, we result in a contradiction to the discreteness
of GG. This proves the claim.

By this claim, we have Dj ,,({7F)) — 0. On the other hand, by Theorem 2.11

Dl,$i(<’72k>) > 6(”) 'U) >0

if (7F) is nontrivial. We conclude that 7% = e. It is clear that ; cannot have order

m strictly less than k; otherwise /" GH ¢ # ¢g™. We complete the proof that ;
has order k.
(2) is a direct consequence of (1). O

Let v be an isometry of Y. We write
Fix(y) ={z € Y|vz = =z}
as the fixed point set of ~.

Proposition 5.4. In the convergence (2.9) with conditions (1.1), Fix(vy) has Haus-
dorff dimension at most n — 2 for all non-identity v € T".
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Proof. Suppose the contrary dimy (Fix(7y)) > n—2. Then H!(Fix(v)) > 0 for some
real number n — 2 < I < n. Let S be the singular set of Y. By Theorem 2.6,
C := Fix(y) — S also satisfies H!(C) > 0. Let z be an [-density point of C, that is,
z € RN Fix(vy) such that

L(€nB,
lim sup M > 27!
r—0 wir
Let r; — co be a sequence that realizes the above limsup and let
(r;Y,2) €8 (C.Y =R",0)

be a corresponding tangent cone at z. With respect to this convergent sequence,
~ subconverges to a limit isometry g of R™, and C subconverges to a closed subset
C, CR". It is clear that by construction, g fixes every point in C,. By a standard
covering argument, C, N B;(v), and thus Fix(¢g) N By (v), have positive I-dimensional
Hausdorff measure.

The limit isometry g, which an isometry of R™, satisfies dimy (Fix(g)) > n — 2.
Since g € O(n), by linear algebra we conclude that g must be a reflection of R™
that fixes a hyperplane. In particular, g has order 2. By Lemma 5.3(1), v has order
2 as well. Let ~; € I'; that converges to v and let M; = M; /{7vi). Lemma 5.3 allows
us to consider the convergence

(Miyzi, () =2 (Y2, (7)) (Ya2() — (R0, (g))

(5.5) lm lw l” lw
(fz) —Fo Y =Y/0)2), (Y2 2 RY(g),0).
Because ¢ is a reflection in R™, the quotient R™/(g) is isometric to the Euclidean
halfspace H" = {(a1, ..., an)|a, > 0}. In particular, H” appears as a tangent cone
of a non-collapsing Ricci limit space Y at . This is a contradiction to Theorem
2.6 and thus completes the proof. O

If one seeks a weaker statement of Theorem A that requires e(n,v) instead of
e(n), there is an alternative and shorter proof of Theorem 5.4 based on a result by
Chen-Rong-Xu [6], that is, Theorem 2.10 which we have recalled in Section 2. We
also include this short proof here since it may have some independent interest.

Proof. We shall show that Fix(y) C S; then the Hausdorff dimension estimate
follows from Theorem 2.6. In fact, let z € Y be a regular point and let 0 < € <
€(n,v), the constant in Theorem 2.10. Then there is some ¢ > 0 such that z is
(e,8)-regular. Applying Theorem 2.10 to the first diagram of (5.5), we conclude
that (y)-action, and thus v, does not fix z. O

We are in a position to prove Theorem A. For reader’s convenience, we restate
the surjectivity part in Theorem A as below.

Theorem 5.6. Let ¢ : (R s, x) — mi(Mi,xi) be the group homomorphism
constructed in Definition 4.3. When § is sufficiently small, 19 is surjective for all
i large.
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Proof. We argue by contradiction. Suppose that for each 1/, where j € N, we can
find some i(j) > i and some element g;(;y € 71 (M;(;), i(j)) such that g;;) is not in
the image of wil(/J ]) Since diam(M;) < D, 71(M;,x;) can be generated by elements
of length at most 2D. Together with Lemma 5.1, without loss of generality, we will
assume that each g;(;) has length between i(n,d) and 2D at x;(;).

For this sequence i(j), after passing to a subsequence if necessary, we consider
the equivariant Gromov-Hausdorff convergence:

. GH
(Mg, Zig), Vi), 9i) ——— (Y,u,1,9)

GH
(Migj)s i) —  (X,2).
Because x is regular, so is y. Under the isometry g, gy is regular as well with
d(gy,y) € [l(n,d),2D]. By Lemma 5.1, the points y and gy are not fixed by any
v € I' — {e} because they are lifts of z € R¢ ;. Let

C=(Y -R(Y)U U Fix(y)
yET—{e}
By Theorem 2.6, C has Hausdorff dimension at most n — 2.

We claim that C is closed. It suffices to show that Uer_ ) Fix(y) is closed. In
fact, let z; be a convergent sequence U, cp_(.}Fix(y) with limit z. Each z; is fixed
by some element v; € I' — {e}. Because each ~;, where i large, moves z at most by
distance 1, «; is precompact in I". By the discreteness of I', we see that all ; are
the same after passing to a subsequence: v; = g € I' — {e}. Hence

gz = lim gz; = lim z; = z.
i— 00 i—00

This shows that z € U,ep—_{e}Fix(7). As a result, U,ep_ ) Fix(y) is closed.

We note that y, gy € Y —C because they are in 71 (x) and thus not fixed by any
v € I' = {e} according to Lemma 5.1. As a result of Theorem 2.7, we can connect
y and gy by a path o that is contained in Y — C. In particular, ¢ is in the regular
set and avoids any point that is fixed by some nontrivial element of I". Because the
image of ¢ is compact and C is closed. The distance ¢; = d(c,C) is positive. Let

T:=T;s,2(0) ={z€Y | d(z,0) <01/2}

be the closed tubular neighborhood of ¢ with radius ¢; /2. By construction, T' does
not intersect Fix(y) for all non-identity v € I". Because T is compact,

02:= aGT,';Ielf‘f{e} d(a.va)
is positive.

Setting 03 = min{d,/2, d2/4}, we claim that Bs, (2) is isometric to By, (7(z)) € X
for all z € o, where 7 : Y — X = Y/T is the quotient map. In fact, first note that
for any two points a,b € Bs,(2), we clearly have a,b € T. Then for any other orbit
point @’ € Ta — {a}, it follows from triangle inequality that

d(a’,b) > d(d’,a) — d(a,b) > 63 — 263 > 62/2 > d(a,b).
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This verifies the claim: for all a,b € By, (z),
dy(a, b) = dy(Fa, Fb) = dx(ﬂ'(a), T(b))

We choose a small ¢ > 0 such that U(e;jn) < e, where ¥ is the function in

Lemma 2.5(1). With this €;, by Lemma 2.5(2), there is 64 > 0 such that
0 CRey5,(Y).
Let d5 := min{ds,d4} > 0. Since Bys,(z) is isometric to Bs, (w(z)) for all z € o,
together with Lemma 2.5(1), we conclude that
G :=7(0) C Rey 655(X) C IntR 5,73

Now we go back to the sequence of manifolds. Along ]\Z(j), let o;(;) be a sequence
of paths from Z;(;) to g;(;)Zi(;) that converges uniformly to o. Then its projection
iy (Ti(j)) =: Ti(j) is a loop that represents g;(;) and uniformly converges to a loop
m(o) in X as j — co. By the construction in Definition 4.3, when j is large we have

d5 . 65/3 —
Wi M (It R 5, 5, 0) = mi (M, i) with 00 [576)] = gigs)-

Applying Lemma 4.5 with € = ¢/, we obtain
55/3 (— 1/j _
9i5) = ¥igy) 18] = wi{f) o ),
where ¢ is the inclusion map IntR s, /3 < IntR.;/;. In particular, g;;) is in the
image of wil(/j J) This contradicts with our choice in the beginning that g;(;) is not
in the image of 1/)11(/] J) and thus completes the proof. O

With Theorems 4.4 and 5.6, now we complete the proof of Theorem A by Lemma
5.7 below.

Lemma 5.7. Let
@it m (M, x;) = m (X, x), ¢? cm1(Re 5 @) — w1 (M, ;)
be the surjective homomorphisms in Theorems 1.2 and 5.6, respectively. Then
pioh) 1 m(RY 5 x) = m(X, )
coincides with vy for all i large, where ¢ : Re s = X s the inclusion map.

Proof. Because X is semi-locally simply connected [13], there is o > 0 such that
every loop contained in a §p-ball of X is contractible in X. We set

&, = min{6,/20,5/300}.

We recall that the forward homomorphism ¢; can be constructed as follows (see
[15] or [13] for details). When i is large such that dgg(M;, X) < 01, for any loop
o; in M; based at x;, we can draw a loop o in X based at x such that o is 5d;-close
to o;. Then one can define the desired ¢; by sending [o;] to [o]. The choice of §
assures that ¢; is well-defined and a surjective homomorphism.

Now let [0] € m1(R¢ 5, ) represented by a loop o based at z in R¢ 5. When i is
large, let o; be a loop based at z; € M; that is d;-close to o. By the constructions
of ¢; and 1/)? , we have

¢i 0} [o] = ¢iloi] = [o] € m (X, x).
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O
Next, we prove Theorem B.

Proof of Theorem B. We choose a sufficiently small § > 0 so that we can apply
Theorem A to construct surjective group homomorphisms
’(ﬂ? : Wl(R:,é,LL') — 7T1(MZ‘7!EZ‘)
for all 7 large. If the inclusion map ¢0 : R¢ s < X induces an injective homomor-
phism
2 (R s, 7) — mi(X, 2),

then by Theorem A(2), the composition

v? ¢
ﬂl(RS,&x) — 7r1(]\42'71'2') — ﬂ_l(Xa I)
is an isomorphism. Together with the surjectivity of 1/)? and ¢;, we clearly have
isomorphism m (X) ~ m (M;).
In general, if ¢ is not injective, we shall analyze its kernel. We claim that
ker 12 = kere)?.
If this claim holds, then
Wl(Rg,évx) . Wl(RS,aax)
kery?  kerd

7T1(MZ‘7.’EZ'>: :ﬂ'l(X,{E).

One side of the inclusion ker ¢ C ker:? is clear due to Theorem A(2). It remains
to prove the other direction.
Let us consider a composition of inclusion maps ¢ o j = 1%:

REs <5 RS X.

They induce
71'1(7%‘;5,30) AN T (RS, x) LN T (X, x)
with ¢, 0 j, = ¢ being surjective. By the assumption that ¢, is injective, ¢, is an
isomorphism and
ker 10 = ker j,.

Let [o] € ker j, represented by a loop o at x in R¢ ;. Then o is contractible in
RC. Let H : [0,1]> — R? be a nullhomotopy of o. By Lemma 2.5(1,2), there are
¢ = U(eln) > e and 0 < ¢’ < ¢ such that

H([0,1]*) C R 5.
When ¢ is large, we draw a loop o; based at xz; € M, that is 6’/300-close to o. It
follows from Lemma 4.2(3) that o; is contractible in M;. By the construction of

U MR g @) = m (M, 0)

and Lemma 5.7, we have

Vo] = 45 ¥ o] = [o7] = id € w1 (M;, z,).

This shows that
ker 1[1:’6 D ker j, = ker:?
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and hence completes the proof.
When R? is simply connected, because ¢, is an isomorphism as shown above, X
is also simply connected. Consequently, 71 (M;) ~ 71(X) is simply connected. O
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