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Abstract. For a Gromov-Hausdorff convergent sequence of closed manifolds

Mn
i

GH
−→ X with Ric g −(n − 1), diam(Mi) f D, and vol(Mi) g v > 0, we

study the relation between Ã1(Mi) and X. It was known before that there is

a surjective homomorphism ϕi : Ã1(Mi) → Ã1(X) by the work of Pan-Wei.

In this paper, we construct a surjective homomorphism from the interior of

the effective regular set in X back to Mi, that is, Èi : Ã1(R◦

ϵ,¶
) → Ã1(Mi).

These surjective homomorphisms ϕi and Èi are natural in the sense that their

composition ϕi ◦ Èi is exactly the homomorphism induced by the inclusion

map R◦

ϵ,¶
↪→ X.

1. Introduction

For a Gromov-Hausdorff convergent sequence Mi
GH
−→ X with curvature bounds,

it is crucial to understand the relationship between Mi and X. For example, when

Mi are closed n-manifolds with

sec g −1, diam(Mi) f D, vol(Mi) g v > 0,

Perelman proved thatMi is homeomorphic to X for all i large [14]. For the context

of this paper, let us consider a convergent sequence of closed n-manifoldsMi
GH
−→ X

with Ricci curvature lower bounds

(1.1) Ric g −(n− 1), diam(Mi) f D, vol(Mi) g v > 0

Under this weaker condition, one cannot expect X to be homeomorphic to Mi.

By the work of Wei and the author [13], the limit space X is semi-locally simply

connected. This was later generalized to the collapsing case by Wang [16]. As a

consequence, there is a forward surjective homomorphism from Ã1(Mi) to Ã1(X).

Theorem 1.2. [13] Let Mi be a sequence of closed n-manifolds with (1.1) and

Gromov-Hausdorff converging to a limit space X. Let xi ∈ Mi be a sequence of

points converging to x ∈ X. Then for all i large, there is a surjective homomorphism

ϕi : Ã1(Mi, xi) → Ã1(X,x).

For an element [Ãi] ∈ Ã1(Mi, xi) represented by a loop Ãi based at xi, its image

under this forward homomorphism ϕi is constructed by drawing a loop Ã in X that

is sufficiently close to Ãi; see [15, 13]. While ϕi is surjective, in general it is not

injective even under the noncollapsing condition. In fact, there could be shorter and

shorter non-contractible loops at xi with length tending to 0, then by construction
1
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ϕi sends them to identity. We will review an example by Otsu [11] in Section 3

regarding this.

From Theorem 1.2, because ϕi may have a kernel, it appears that some elements

in Ã1(Mi) are lost in the limit X. As the main result of this paper, we show that all

elements in Ã1(Mi) are still retained in X; more specifically, in the effective regular

set Rϵ,¶ of X. In fact, we will construct a backward surjective homomorphism

from Ã1(R
◦
ϵ,¶, x) to Ã1(Mi, xi), where R◦

ϵ,¶ is the interior of Rϵ,¶ and x ∈ X is a

regular point. By the regularity theory developed by Cheeger-Colding [4], R◦
ϵ,¶ is

a connected topological manifold of dimension n for all 0 < ϵ f ϵ(n) and ¶ > 0.

Theorem A. Let

(Mi, xi)
GH
−→ (X,x)

be a convergent sequence of closed n-manifolds with (1.1), where x is a regular

point. Then

(1) for any 0 < ϵ < ϵ(n) and sufficiently small 0 < ¶ < ¶(ϵ, x), there is a surjective

homomorphism

È¶i : Ã1(R
◦
ϵ,¶, x) → Ã1(Mi, xi)

for all i large;

(2) the composition of È¶i and ϕi in Theorem 1.2

ϕi ◦ È
¶
i : Ã1(R

◦
ϵ,¶, x) → Ã1(X,x)

is exactly the homomorphism º⋆ induced by the inclusion map º : R◦
ϵ,¶ ↪→ X.

The construction of this backward homomorphism Èi is natural and similar to

that of ϕi: namely, by drawing nearby loops. The surjectivity of Èi requires a

complete different and more involved argument than that of ϕi. We remark that

Èi is not injective in general. In fact, we will review an example by Anderson [1]

in Section 3; in this example, both Mi and X are simply connected but Ã1(R
◦
ϵ,¶) is

isomorphic to Z2.

As an application of Theorem 1.2, we show that if the inclusion map R◦
ϵ ↪→ X

induces an injective homomorphism º⋆ : Ã1(R
◦
ϵ , x) → Ã1(X,x), then Ã1(Mi) is

isomorphic to Ã1(X) for all i large. Note that we are considering the ϵ-regular set

in this statement; in other words, the involvement of ¶ is dropped.

Theorem B. Let

(Mi, xi)
GH
−→ (X,x)

be a convergent sequence of closed n-manifolds with (1.1), where x is a regular

point. Suppose that for some 0 < ϵ < ϵ(n), the induced homomorphism

º⋆ : Ã1(R
◦
ϵ , x) → Ã1(X,x)

is injective, then Ã1(Mi) is isomorphic to Ã1(X) for all i large. In particular, if R◦
ϵ

is simply connected, then so is Mi.

The work in this paper is motivated by the Ã1-stability problem:

Question 1.3. Given n,D, v > 0, is there a positive constant ϵ(n,D, v) > 0 such

that if two closed n-manifolds M1 and M2 satisfy (1.1) and dGH(M1,M2) f ϵ, then

are Ã1(M1) and Ã1(M2) isomorphic?
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As a comparison, if one replaces Ricci curvature in (1.1) by a sectional curvature

lower bound sec g −1, thenM1 andM2 are homeomorphic when they are Gromov-

Hausdorff close; see the works by Grove-Petersen-Wu [10] and Perelman [14].

Question 1.3 is a stronger version of the celebrated finiteness result by Anderson

[1] below. In fact, if Question 1.3 has an affirmative answer, then finiteness would

easily follow by a standard contradicting argument.

Theorem 1.4. [1] Given n,D, v > 0, there are finitely many isomorphism classes

of fundamental groups among closed n-manifolds with (1.1).

To resolve Question 1.3, it is equivalent to answer:

Question 1.5. For a convergent sequence of closed n-manifolds Mi
GH
−→ X with

(1.1), is it possible to determine Ã1(Mi) solely from X?

Theorems A and B provide partial answers to Question 1.5.

Remarks 1.6. Let us mention other related results regarding Questions 1.3 and 1.5.

(1) When X satisfies a local half-volume lower bound, we have a positive answer;

see [13, Section 3].

(2) If one considers the equivariant Gromov-Hausdorff convergence of the Riemann-

ian universal covers, then it holds that Ã1(Mi, pi) is isometric to the limit group

for all i large (see [12, Section 2.3] for details). However, because a subsequence

was chosen to derive equivariant convergence, this result does not provide direct

answers to Question 1.3.

The proof of Theorem A consists of two steps. The first step is to construct

the map È¶i and show that it is well-defined for small ¶. The second step is to

show its surjectivity. The proofs relies on several ingredients. The first one is the

regularity theory of non-collapsing Ricci limit spaces developed by Cheeger-Colding

[7, 4, 5, 3]. The second ingredient is the equivariant convergence under Ricci and

volume lower bounds; in particular, we utilize some of the results by Pan-Rong [12]

and Chen-Rong-Xu [6]. Lastly, we use some of the methods in Pan-Wei’s work [13]

on loops and homotopies under Gromov-Hausdorff convergence; these techniques

can be traced back to the work of Borsuk [2] and Tuschman [15].

2. Preliminaries

2.1. Regularity theory of noncollapsing Ricci limit spaces. Throughout the

paper, we always use Ψ(ϵ|n) to represent some nonnegative function depending on

ϵ and n with

lim
ϵ→0

Ψ(ϵ|n) = 0.

We may use the same symbol Ψ(ϵ|n) though dependence on ϵ or n may be different.

Given n ∈ N, » g 0, and v > 0, we denote M(n,−», v) the set of all pointed

Ricci limit spaces (X,x) coming from some GH convergent sequence of complete

n-manifolds (Mi, pi) with

(2.1) Ric g −(n− 1)», vol(B1(pi)) g v > 0.
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The regularity theory about these noncollapsing Ricci limit spaces are mainly de-

veloped by Cheeger, Colding, and Naber. Below, we review some of the results that

will be used later. The main references are [5, 3].

Definition 2.2. [5, 3] Let ϵ, ¶ > 0. For a Ricci limit space X ∈ M(n,−1, v), we

define (ϵ, ¶)-regular set, ϵ-regular set, regular set, and singular set of X as below.

Rϵ,¶ = {x ∈ X | dGH(Br(x), B
n
r (0)) f ϵr for all 0 < r f ¶},

Rϵ =
⋃

¶>0

Rϵ,¶,

R =
⋂

ϵ>0

Rϵ =
⋂

ϵ>0

⋃

¶>0

Rϵ,¶.

S = X −R.

Theorem 2.3. [7, 5] Let (Mn
i , pi)

GH
−→ (X,x) be a convergent sequence with (2.1).

Then for all r > 0, we have volume convergence

vol(Br(pi)) → Hn(Br(x))

as i→ ∞, where Hn is the n-dimensional Hausdorff measure on X.

Theorem 2.4. [7, 5] Let X ∈ M(n,−¶, v) and x ∈ X.

(1) If

dGH(B1(x), B
n
1 (0)) f ¶,

then

Hn(B1(x)) g (1−Ψ(¶|n))vol(Bn1 (0)).

(2) If

Hn(B1(x)) g (1− ¶)vol(Bn1 (0)),

then

dGH(B1(x), B
n
1 (0)) f Ψ(¶|n).

The following facts follow from Theorems 2.3 and 2.4.

Lemma 2.5. Let X ∈ M(n,−1, v).

(1) Given ϵ, ¶ > 0, there are ϵ′ = Ψ(ϵ|n) and ¶′ = ¶/3 such that Rϵ,¶ ¦ R◦
ϵ′,¶′ .

(2) Let A be a compact subset of R. Then for any ϵ > 0, there is ¶ > 0 such that

A ¦ Rϵ,¶.

Proof. We include the proof here for readers’ convenience.

(1) Let x ∈ Rϵ,¶. By definition, this means

dGH(Br(x), B
n
r (0)) f ϵr

for all 0 < r f ¶. By Theorem 2.4 and Bishop-Gromov relative volume comparison,

Hn(Bs(y)) g (1−Ψ(ϵ|n))vol(Bns (0))

holds for all y ∈ B¶/3(x) and all 0 < s f ¶/3. Applying Theorem 2.4(2), we see

that

dGH(Bs(y), B
n
s (0)) f Ψ(ϵ|n)s,
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that is, y ∈ RΨ(ϵ|n),¶/3 for all y ∈ B¶/3(x). Therefore, x ∈ R◦
ϵ′,¶′ , where ϵ

′ = Ψ(ϵ|n)

and ¶′ = ¶/3.

(2) Let ϵ > 0. For each x ∈ A, we pick ¶(x) > 0 as the largest ¶ so that

dGH(Br(x), B
n
r (0)) f ϵr

holds for all 0 < r f ¶. It suffices to show that ¶(x) has a uniform positive lower

bound for all x ∈ A. We argue by contradiction. Suppose that there is a sequence

xi ∈ A with ¶(xi) → 0. Then by compactness of A, xi subconverges to some y ∈ A,

which is also regular. Therefore, for ϵ′ > 0, which will be determined later, there is

¶0 = ¶0(ϵ
′, y) > 0 such that y ∈ Rϵ′,¶0 . Thus it follows from Theorem 2.4(1) that

Hn(B¶0(y)) g (1−Ψ(ϵ′|n))vol(Bn¶0(0)).

By volume convergence,

Hn(B¶0(xi)) g (1− 2Ψ(ϵ′|n))vol(Bn¶0(0))

for i large, thus

dGH(Br(xi), B
n
r (0)) f Ψ′(ϵ′|n)r

for all 0 < r f ¶0. Now we choose ϵ′ > 0 so that Ψ′(ϵ′|n) f ϵ, then xi ∈ Rϵ,¶0 for

all i large. A contradiction to ¶(xi) → 0. This completes the proof. □

Theorem 2.6. [5] Let X ∈ M(n,−1, v). Then its singular set S has Hausdorff

dimension at most n− 2.

Theorem 2.7. [5] Let X ∈ M(n,−1, v) and let A be a closed subset of X with

Hn−1(A) = 0. Then X −A is path connected. Moreover, given any ¶ > 0 and any

pair of points x, y ∈ X −A, a path Ã in X −A between x, y can be chosen that

length(Ã) f (1 + ¶)d(x, y).

Theorem 2.8. [5] Given dimension n, there is a constant ϵ0(n) > 0 such that the

following holds for all 0 < ϵ f ϵ0(n).

Let X ∈ M(n,−1, v) and x ∈ X such that

dGH(B¶(x), B
n
¶ (0)) f ϵ¶,

where ¶ > 0. Then Br(x) is contractible in B2r(x) for all 0 < r f ¶/10.

2.2. Equivariant GH convergence with Ricci and volume lower bounds.

In the study of fundamental groups associated to a convergent sequence

(Mi, xi)
GH
−→ (X,x)

with conditions (2.1), it is natural to take the universal covers and their convergence

into account. A powerful tool is the equivariant Gromov-Hausdorff convergence

introduced by Fukaya-Yamaguchi [9]. After passing to a subsequence, we can obtain

convergence

(2.9)

(M̃i, x̃i,Γi)
GH

−−−−→ (Y, y,Γ)
yÃi

yÃ

(Mi, xi)
GH

−−−−→ (X,x).
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Here Γi = Ã1(Mi, xi) acts isometrically, freely, and discretely on the universal cover

(M̃i, x̃i). This sequence of Γi-actions converges to a limit isometric Γ-action on the

limit space Y . Due to the noncollapsing condition on (Mi, xi), the limit group Γ is

a discrete subgroup of Isom(Y ); see Corollary 5.2.

We below state a result by Chen-Rong-Xu [6], which roughly states that if a

point z ∈ Y is sufficiently regular, then Γ-action cannot fix z.

Theorem 2.10. [6, Theorem 2.1 and Corollary 2.2] Given n, v > 0, there is a

constant ϵ(n, v) > 0 such that the following holds.

In the convergence (2.9) with conditions (2.1), if z ∈ Y is (ϵ, ¶)-regular, where

¶ > 0, then Γ acts freely on B¶/4(z).

We will also need a quantitative result describing the action of any non-trivial

subgroup of Isom(Y ), which is proved in a joint work by Rong and the author [12].

Given a subgroup H f Isom(Y ), we write its displacement on a 1-ball by

D1,y(H) = sup{d(hz, z)|z ∈ B1(y), h ∈ H}.

Theorem 2.11. [12, Theorem 0.8] Given n, v > 0, there is a constant ¶(n, v) > 0

such that for any space (Y, y) ∈ M(n,−1, v) and any nontrivial subgroup of H of

Isom(X), D1,y(H) g ¶(n, v) holds.

3. Illustrative examples

In this short section, we briefly review some relevant examples of convergent

sequences Mi
GH
→ X with conditions (1.1) by Otsu [11] and Anderson [1]. In par-

ticular, we shall see that in general the homomorphisms ϕi in Theorem 1.2 and Èi
in Theorem A are not injective.

Example 3.1. Otsu [11] constructed a sequence of doubly warped metric products

on M = Sp+1 × Sq, where p g 2 and q g 2:

[0, bi]×fi S
p ×hi

Sq, gi = dr2 + f2i (r)ds
2
p + h2i (r)ds

2
q.

such that

Ric(gi) g n− 1, diam(gi) = bi → Ã, vol(gi) g v > 0.

At s = 0 or bi, fi and gi satisfies

fi(s) = 0, f ′i(s) = 1, hi(s) > 0, lim
i→∞

hi(s) → 0 h′i(s) = 0.

As i→ ∞, (M, gi) converges to Susp(Sp × Sq), a suspension over Sp × Sq.

Since the Sq-factor is always the round sphere in the construction, we can take

the antipodal Z2-action on the Sq-factor and consider the quotient (Ni, ḡi) =

(M, gi)/Z2. The resulting (Ni, ḡi) is Riemannian because the Z2-action is isometric

and free on (M, gi). Then as i → ∞, Ni converges to X = Susp(Sp × RP q). In

terms of fundamental groups, we have

Ã1(Ni) = Z2, Ã1(X) = id.

The forward homomorphism ϕi : Ã1(Ni) → Ã1(X) has kernel Z2. The limit space

X has two singular points as the vertices of the suspension. For small ϵ and ¶ > 0,

R◦
ϵ,¶ is homeomorphic to (0, 1)× Sp × RP q. In particular, Ã1(R

◦
ϵ,¶) = Z2.
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Example 3.2. Modifying the Eguchi-Hanson metric [8] on TS2, the tangent bundle

of S2, Anderson [1] constructed a sequence of metrics gi on M
4, the double of the

disk bundle in TS2, with

Ric(gi) g 0, diam(gi) f D, vol(gi) g v > 0.

M is diffeomorphic to S2×S2. Recall that the Eguchi-Hanson metric, written as h,

on TS2 is Ricci-flat and has Euclidean volume growth. It has a unique asymptotic

cone as C(RP 3) = R
4/Z2.

Let Z be the zero-section in TS2 and let Bi = T1(Z, r
−2
i h) be the tubular

neighborhood of Z of radius 1 with respect to the metric r−2
i h, where ri → ∞.

Modifying the metric around ∂Bi and then doubling it, one obtains the desired

metric gi on M . As i → ∞, (M, gi) converges to X = Susp(RP 3), a suspension

over RP 3. X has two singular points as the vertices. For small ϵ, ¶ > 0, R◦
ϵ,¶ is

homeomorphic to (0, 1)× RP 3. Hence

Ã1(M) = Ã1(X) = id, Ã1(R
◦
ϵ,¶) = Z2.

The backward homomorphism Èi : Ã1(R
◦
ϵ,¶) → Ã1(M) has kernel Z2.

4. Construction of Èi

In this section, we always assume that Mi is a sequence of closed n-manifolds

with (1.1) that Gromov-Hausdorff converges to X. Let 0 < ϵ < ϵ0(n)/2, where

ϵ0(n) is the constant in Theorem 2.8. Let x be a regular point of X and xi in

Mi converging to x. By the proof of Lemma 2.5(1), there is ¶ > 0 such that

B¶(x) ¦ Rϵ,¶, thus x ∈ R◦
ϵ,¶. We may further shrink this ¶ later. The main goal of

this section is to construct the group homomorphisms

È¶i : Ã1(R
◦
ϵ,¶, x) → Ã1(Mi, xi)

for all i large.

Lemma 4.1. Given any 0 < ϵ < ϵ0(n)/2 and ¶ > 0, the following holds for all

large i.

Let zi be a point in Mi that is ¶/30-close to a point z ∈ R◦
ϵ,¶. Then any loop in

B¶/30(zi) is contractible in B¶(zi).

Proof. We set

¸i = dGH(Mi, X) → 0.

Then for each z ∈ X, we can choose a point wi ∈ Mi that is ¸i-close to z. By the

convergence Mi
GH
−→ X and the compactness of X, there is i0 large such that

dGH(B¶(wi), B¶(z)) f
ϵ0(n)

2
¶

holds for all z ∈ X, all wi ∈ Mi that is ¸i-close to z, and all i g i0, where ϵ0(n) is

the constant in Theorem 2.8.

Now fixing a point z ∈ R◦
ϵ,¶, we have

dGH(B¶(z), B
n
¶ (0)) f ϵ¶.
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Thus by triangle inequality,

dGH(B¶(wi), B
n
¶ (0)) f (ϵ+ ϵ0(n)/2)¶ < ϵ0(n)¶.

Then by Theorem 2.8, every loop in B¶/10(wi) is contractible in B¶/5(wi). Let zi
be any point in Mi that is ¶/30-close to z. We have

d(zi, wi) f d(zi, z) + d(z, wi) f ¶/30 + ¸i.

Thus when i is large with ¸i < ¶/30, we see that B¶/30(zi) ¦ B¶/10(wi). Therefore,

every loop in B¶/30(zi) is contractible in B¶/5(wi) ¦ B¶(zi). □

With Lemma 4.1, we follow a similar construction in [13, Lemma 2.4] (also

see [15]) to construct nearby loops and homotopies on Mi from the ones on R◦
ϵ,¶.

For two compact length metric spaces (X1, x1) and (X2, x2) that are close in the

Gromov-Hausdorff distance, we say that two curves Ãj : [0, 1] → Xj , where j = 1, 2,

are ϵ-close, if

d(Ã1(t), Ã2(t)) f ϵ

for all t ∈ [0, 1]; in other words, Ã1(t) ∈ X1 is ϵ Gromov-Hausdorff close to Ã2(t) ∈

X2 for all t ∈ [0, 1].

Lemma 4.2. We write ¸i = dGH(Mi, X) → 0. Then for sufficiently large i, the

followings hold.

(1) For any loop Ã : [0, 1] → R◦
ϵ,¶, there is a loop Ãi in Mi that is 5¸i-close to Ã.

(2) Let Ãi and Ã
′
i be loops in Mi that are both ¶/300-close to a loop Ã in R◦

ϵ,¶, then

Ãi and Ã
′
i are free homotopic in Mi.

(3) Let Ã and Ä be two loops in R◦
ϵ,¶. Let Ãi and Äi be loops inMi that is ¶/300-close

to Ã and Ä , respectively. If Ã and Ä are free homotopic in R◦
ϵ,¶, then Ãi and Äi are

free homotopic in Mi.

Proof. (1) The construction of Ãi is the same as the proof of [13, Lemma 2.4(1)].

Namely, using the uniform continuity of Ã, we choose a suitable partition of [0, 1].

Then for each intermediate point in the partition, we can pick nearby points in Mi

and then join them by minimal geodesics.

(2) By uniform continuity of Ã, we choose l > 0 such that

d(Ã(t), Ã(t′)) f ¶/300

for all t, t′ ∈ [0, 1] with |t− t′| f l. Let {t0 = 0, t1, ..., tj , ..., tN = 1} be a partition

of [0, 1] with |tj+1 + tj | f l for all j. By triangle inequality, it is clear that

d(Ãi(tj), Ãi(tj+1)) f 3 · ¶/300, d(Ã′
i(tj), Ã

′
i(tj+1)) f 3 · ¶/300.

Let ci,j be the loop obtained by joining Ãi|[tj ,tj+1], a minimal geodesic from Ãi(tj+1)

to Ã′
i(tj+1), the inverse of Ã′

i|[tj ,tj+1], and lastly a minimal geodesic from Ã′
i(tj) to

Ãi(tj). Since

d(Ãi(tj), Ã
′
i(tj)) f 2 · ¶/300

for all i. By construction, one can verify that

image of ci,j ¦ B¶/30(Ãi(tj)).

Because Ãi(tj) is ¶/300-close to Ã(tj) ∈ R◦
ϵ,¶, by Lemma 4.1, ci,j is contractible in

Mi for all j. Thus Ãi and Ã
′
i are free homotopic.
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(3) Let H : S1 × [0, 1] → R◦
ϵ,¶ be a homotopy between Ã and Ä . We follow the

method in [13, Lemma 2.4] to construct a homotopy Hi between Ãi and Äi as below.

By the uniform continuity of H, we can choose a finite triangular decomposition Σ

of S1 × [0, 1] so that

diam(H(∆)) f ¶/300

for each triangle ∆ of Σ. For any vertex v of Σ, if v is on the boundary of S1× [0, 1],

then Hi(v) is naturally defined as a point on Ãi or Äi; if not, then we define Hi(v)

as a point in Mi that is ¸i-close to H(v). Next, we define Hi on every edge of

Σ: for an edge that is on the boundary of S1 × [0, 1], Hi on this edge is naturally

defined as part of Ãi or Äi; for an edge not on the boundary with vertices v and w,

we map it to a minimal geodesic between Hi(v) and Hi(w). If ¸i f ¶/300, then by

construction, every triangle ∆ satisfies

Hi(∂∆) ¦ B¶/30(Hi(v)),

where v is a vertex of ∆. Since Hi(v) is ¶/300-close to H(v) ∈ R◦
ϵ,¶, we can apply

Lemma 4.1 to contract the loop Hi(∆). Applying this to all the triangles of Σ, we

result in the desired homotopy between Ãi and Äi. □

Now we construct the backward homomorphism È¶i .

Definition 4.3. Let [Ã] ∈ Ã1(R
◦
ϵ,¶, x) represented by a loop Ã based at x in R◦

ϵ,¶.

For i large that fulfills Lemma 4.2, we draw a loop Ãi in Mi based at xi that is

¶/300-close to Ã. We define

È¶i : Ã1(R
◦
ϵ,¶, x) → Ã1(Mi, xi),

[Ã] 7→ [Ãi].

Theorem 4.4. The above constructed È¶i is well-defined and is a group homomor-

phism for all i large.

Proof. By Lemma 4.2(2), È¶i [Ã] = [Ãi] is independent of the choice of Ãi. It also

follows from Lemma 4.2(3) that the definition is independent of the choice of Ã.

It is straightforward to check that È¶i is a group homomorphism. In fact, let Ã

and Ä be two loops in R◦
ϵ,¶ based at x, and let Ãi and Äi be loops inMi that is ¶/300-

close to Ã and Ä , respectively. Since the the product Ãi · Äi is clearly ¶/300-close to

Ã · Ä , by definition, we have

È¶i [Ã] · È
¶
i [Ä ] = [Ãi] · [Äi] = [Ãi · Äi] = È¶i [Ã · Ä ] = È¶i ([Ã] · [Ä ]).

□

For 0 < ϵ f ϵ′ and 0 < ¶′ f ¶, we have inclusion

R◦
ϵ,¶ ¦ R◦

ϵ′,¶′ .

For both R◦
ϵ,¶ and R◦

ϵ′,¶′ , we have backward homomorphisms defined; they are

indeed related by the inclusion map, as stated in Lemma 5.7 below. Due to the

dependence on ϵ, we will write Èϵ,¶i instead of È¶i for clarity.
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Lemma 4.5. Let 0 < ϵ f ϵ′ < ϵ0(n)/2 and 0 < ¶′ f ¶. Suppose that i is large such

that both homomorphisms

Èϵ,¶i : Ã1(R
◦
ϵ,¶, x) → Ã1(Mi, xi), Èϵ

′,¶′

i : Ã1(R
◦
ϵ′,¶′ , x) → Ã1(Mi, xi)

are defined. Then Èϵ,¶i coincides with the composition

Ã1(R
◦
ϵ,¶, x)

º⋆−→ Ã1(R
◦
ϵ′,¶′ , x)

Èϵ′,¶′

i−→ Ã1(Mi, xi),

where º is the inclusion map R◦
ϵ,¶ ↪→ R◦

ϵ′,¶′ .

Proof. Let [Ã] ∈ Ã1(R
◦
ϵ,¶, x), where Ã is a loop in R◦

ϵ,¶ based at x. Then º ◦ Ã

naturally represents an element of Ã1(R
◦
ϵ′,¶′ , x). Let Ãi be a loop in Mi based at xi

that is ¶′/300-close to º ◦ Ã. According to Definition 4.3, we have

Èϵ
′,¶′

i ◦ º⋆[Ã] = Èϵ
′,¶′

i [º ◦ Ã] = [Ãi].

Since ¶′ f ¶, the loop Ãi is also ¶/300-close to º ◦ Ã = Ã in R◦
ϵ,¶. Therefore,

Èϵ,¶i [Ã] = [Ãi] = Èϵ
′,¶′

i ◦ º⋆[Ã].

□

5. Surjectivity of Èi

The main goal of this section is to prove Theorem A. The proof of surjectivity

of È¶i is a contradicting argument and we shall apply equivariant GH convergence

to the contradicting sequence.

Before starting the proof of Theorem A, we prove some results about the equi-

variant GH convergence.

Lemma 5.1. Let us consider the diagram (2.9) with conditions (2.1). Suppose that

x ∈ R◦
ϵ,¶, where 0 < ϵ f ϵ(n) and 0 < ¶ f ¶(n) are sufficiently small. Then there

is a constant l(n, ¶) > 0 such that any nontrivial element in Ã1(Mi, xi) has length

at least l(n, ¶), where i is large.

Proof. The proof is a localized version of an argument by Anderson [1].

Let gi ∈ Ã1(Mi, xi) with d(gix̃i, x̃i) = li > 0. We shall prove a lower bound for

lim inf li := l. Let Fi be the Dirichlet domain of M̃i centered at x̃i. Since

gi(Fi ∩B¶(x̃i)) ¦ Bli+¶(x̃i), gi(Fi ∩B¶(x̃i)) ∩ (Fi ∩B¶(x̃i)) = ∅,

we have volume estimate

2vol(B¶(xi)) = vol(Fi ∩B¶(x̃i)) + vol(gi(Fi ∩B¶(x̃i)))

f vol(Bli+¶(x̃i))

f v(n,−1, li + ¶),

where v(n,−», r) means the volume of an r-ball in the n-dimensional space form

of constant curvature −». By volume convergence, as i→ ∞, we have

vol(B¶(xi)) → Hn(B¶(x))

g (1−Ψ(ϵ|n)) · v(n, 0, ¶)

g (1−Ψ(ϵ|n)) · (1−Ψ(¶|n)) · v(n,−1, ¶).
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These lead to
v(n,−1, li + ¶)

v(n,−1, ¶)
g 1.9(1−Ψ(ϵ, ¶|n)) > 1.5.

for all i large, which gives a universal lower bound l(n, ¶) for lim inf li. □

Corollary 5.2. In the diagram (2.9) with conditions (2.1), the limit group Γ is

discrete.

Proof. Let z ∈ X be a regular point. We choose small 0 < ϵ < ϵ(n) and ¶ > 0

such that z ∈ R◦
ϵ,¶. Let zi ∈Mi converging to z and let z̃i ∈ M̃i be a lift of zi. By

Lemma 5.1, the orbit Γi · z̃i is l(n, ¶)-discrete. Passing this to the limit, we see that

Γ is a discrete group. □

Lemma 5.3. Let (Ni, xi) ∈ M(n,−1, v) with an isometric Γi-action on each Ni.

Suppose that the sequence converges

(Ni, xi,Γi)
GH
−→ (Y, y,G)

and the limit group G is discrete. Let g ∈ G be an element of finite order k and let

µi ∈ Γi converging to g. Then

(1) µi has order k for all i large;

(2) ïµið
GH
−→ ïgð, where ï·ð means the subgroup generated by that element.

Proof. (1) First note that µki
GH
−→ gk = e as i → ∞. We claim that ïµki ð

GH
−→ {e}.

In fact, let H be the limit of ïµki ð and suppose that H has a non-identity element

h. We pick a point z ∈ Y with d(hz, z) > 0. Since d(µki zi, zi) → 0, where zi ∈ Mi

converging to z, for any 0 < l < d(hz, z), we can find a sequence mi such that

d((µki )
mizi, zi) → l.

The sequence (µki )
mi would converge to an element of H with displacement l at z.

Because l ∈ (0, d(hz, z)) is arbitrary, we result in a contradiction to the discreteness

of G. This proves the claim.

By this claim, we have D1,xi
(ïµki ð) → 0. On the other hand, by Theorem 2.11

D1,xi
(ïµki ð) g ¶(n, v) > 0

if ïµki ð is nontrivial. We conclude that µki = e. It is clear that µi cannot have order

m strictly less than k; otherwise µmi
GH
−→ e ̸= gm. We complete the proof that µi

has order k.

(2) is a direct consequence of (1). □

Let µ be an isometry of Y . We write

Fix(µ) = {z ∈ Y |µz = z}

as the fixed point set of µ.

Proposition 5.4. In the convergence (2.9) with conditions (1.1), Fix(µ) has Haus-

dorff dimension at most n− 2 for all non-identity µ ∈ Γ.
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Proof. Suppose the contrary dimH(Fix(µ)) > n−2. Then Hl(Fix(µ)) > 0 for some

real number n − 2 < l < n. Let S be the singular set of Y . By Theorem 2.6,

C := Fix(µ) − S also satisfies Hl(C) > 0. Let z be an l-density point of C, that is,

z ∈ R ∩ Fix(µ) such that

lim sup
r→0

Hl
∞(C ∩Br(z))

Élrl
g 2−l.

Let rj → ∞ be a sequence that realizes the above limsup and let

(rjY, z)
GH
−→ (CzY = R

n, v)

be a corresponding tangent cone at z. With respect to this convergent sequence,

µ subconverges to a limit isometry g of Rn, and C subconverges to a closed subset

Cz ¦ R
n. It is clear that by construction, g fixes every point in Cz. By a standard

covering argument, Cz∩B1(v), and thus Fix(g)∩B1(v), have positive l-dimensional

Hausdorff measure.

The limit isometry g, which an isometry of Rn, satisfies dimH(Fix(g)) > n − 2.

Since g ∈ O(n), by linear algebra we conclude that g must be a reflection of Rn

that fixes a hyperplane. In particular, g has order 2. By Lemma 5.3(1), µ has order

2 as well. Let µi ∈ Γi that converges to µ and let Mi = M̃i/ïµið. Lemma 5.3 allows

us to consider the convergence

(5.5)

(M̃i, zi, ïµið)
GH

−−−−→ (Y, z, ïµð)
yÃi

yÃ

(Mi, z̄i)
GH

−−−−→ (Y = Y/ïµð, z̄),

(rjY, z, ïµð)
GH

−−−−→ (Rn, v, ïgð)
yÃi

yÃ

(rjY , z̄)
GH

−−−−→ (Rn/ïgð, v̄).

Because g is a reflection in R
n, the quotient R

n/ïgð is isometric to the Euclidean

halfspace H
n = {(a1, ..., an)|an g 0}. In particular, Hn appears as a tangent cone

of a non-collapsing Ricci limit space Y at ȳ. This is a contradiction to Theorem

2.6 and thus completes the proof. □

If one seeks a weaker statement of Theorem A that requires ϵ(n, v) instead of

ϵ(n), there is an alternative and shorter proof of Theorem 5.4 based on a result by

Chen-Rong-Xu [6], that is, Theorem 2.10 which we have recalled in Section 2. We

also include this short proof here since it may have some independent interest.

Proof. We shall show that Fix(µ) ¦ S; then the Hausdorff dimension estimate

follows from Theorem 2.6. In fact, let z ∈ Y be a regular point and let 0 < ϵ <

ϵ(n, v), the constant in Theorem 2.10. Then there is some ¶ > 0 such that z is

(ϵ, ¶)-regular. Applying Theorem 2.10 to the first diagram of (5.5), we conclude

that ïµð-action, and thus µ, does not fix z. □

We are in a position to prove Theorem A. For reader’s convenience, we restate

the surjectivity part in Theorem A as below.

Theorem 5.6. Let È¶i : Ã1(R
◦
ϵ,¶, x) → Ã1(Mi, xi) be the group homomorphism

constructed in Definition 4.3. When ¶ is sufficiently small, È¶i is surjective for all

i large.
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Proof. We argue by contradiction. Suppose that for each 1/j, where j ∈ N, we can

find some i(j) g i and some element gi(j) ∈ Ã1(Mi(j), xi(j)) such that gi(j) is not in

the image of È
1/j
i(j). Since diam(Mi) f D, Ã1(Mi, xi) can be generated by elements

of length at most 2D. Together with Lemma 5.1, without loss of generality, we will

assume that each gi(j) has length between l(n, ¶) and 2D at xi(j).

For this sequence i(j), after passing to a subsequence if necessary, we consider

the equivariant Gromov-Hausdorff convergence:

(M̃i(j), x̃i(j),Γi(j), gi(j))
GH

−−−−→ (Y, y,Γ, g)
yÃi

yÃ

(Mi(j), xi(j))
GH

−−−−→ (X,x).

Because x is regular, so is y. Under the isometry g, gy is regular as well with

d(gy, y) ∈ [l(n, ¶), 2D]. By Lemma 5.1, the points y and gy are not fixed by any

µ ∈ Γ− {e} because they are lifts of x ∈ R◦
ϵ,¶. Let

C = (Y −R◦
ϵ (Y )) ∪


 ⋃

µ∈Γ−{e}

Fix(µ)


 .

By Theorem 2.6, C has Hausdorff dimension at most n− 2.

We claim that C is closed. It suffices to show that ∪µ∈Γ−{e}Fix(µ) is closed. In

fact, let zi be a convergent sequence ∪µ∈Γ−{e}Fix(µ) with limit z. Each zi is fixed

by some element µi ∈ Γ− {e}. Because each µi, where i large, moves z at most by

distance 1, µi is precompact in Γ. By the discreteness of Γ, we see that all µi are

the same after passing to a subsequence: µi = g ∈ Γ− {e}. Hence

gz = lim
i→∞

gzi = lim
i→∞

zi = z.

This shows that z ∈ ∪µ∈Γ−{e}Fix(µ). As a result, ∪µ∈Γ−{e}Fix(µ) is closed.

We note that y, gy ∈ Y −C because they are in Ã−1(x) and thus not fixed by any

µ ∈ Γ− {e} according to Lemma 5.1. As a result of Theorem 2.7, we can connect

y and gy by a path Ã that is contained in Y − C. In particular, Ã is in the regular

set and avoids any point that is fixed by some nontrivial element of Γ. Because the

image of Ã is compact and C is closed. The distance ¶1 = d(Ã, C) is positive. Let

T := T¶1/2(Ã) = {z ∈ Y | d(z, Ã) f ¶1/2}

be the closed tubular neighborhood of Ã with radius ¶1/2. By construction, T does

not intersect Fix(µ) for all non-identity µ ∈ Γ. Because T is compact,

¶2 := inf
a∈T,µ∈Γ−{e}

d(a, µa)

is positive.

Setting ¶3 = min{¶1/2, ¶2/4}, we claim that B¶3(z) is isometric to B¶3(Ã(z)) ¦ X

for all z ∈ Ã, where Ã : Y → X = Y/Γ is the quotient map. In fact, first note that

for any two points a, b ∈ B¶3(z), we clearly have a, b ∈ T . Then for any other orbit

point a′ ∈ Γa− {a}, it follows from triangle inequality that

d(a′, b) g d(a′, a)− d(a, b) g ¶2 − 2¶3 g ¶2/2 > d(a, b).
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This verifies the claim: for all a, b ∈ B¶3(z),

dY (a, b) = dY (Γa,Γb) = dX(Ã(a), Ã(b)).

We choose a small ϵ1 > 0 such that Ψ(ϵ1|n) f ϵ, where Ψ is the function in

Lemma 2.5(1). With this ϵ1, by Lemma 2.5(2), there is ¶4 > 0 such that

Ã ¦ Rϵ1,¶4(Y ).

Let ¶5 := min{¶3, ¶4} > 0. Since B¶5(z) is isometric to B¶5(Ã(z)) for all z ∈ Ã,

together with Lemma 2.5(1), we conclude that

Ã := Ã(Ã) ¦ Rϵ1,¶5(X) ¦ IntRϵ,¶5/3.

Now we go back to the sequence of manifolds. Along M̃i(j), let Ãi(j) be a sequence

of paths from x̃i(j) to gi(j)x̃i(j) that converges uniformly to Ã. Then its projection

Ãi(j)(Ãi(j)) =: Ãi(j) is a loop that represents gi(j) and uniformly converges to a loop

Ã(Ã) in X as j → ∞. By the construction in Definition 4.3, when j is large we have

È
¶5/3
i(j) : Ã1(IntRϵ,¶5/3, x) → Ã1(Mi, xi) with È

¶5/3
i(j) [Ãi(j)] = gi(j).

Applying Lemma 4.5 with ϵ = ϵ′, we obtain

gi(j) = È
¶5/3
i(j) [Ã] = È

1/j
i(j) ◦ º⋆[Ã],

where º is the inclusion map IntRϵ,¶5/3 ↪→ IntRϵ,1/j . In particular, gi(j) is in the

image of È
1/j
i(j). This contradicts with our choice in the beginning that gi(j) is not

in the image of È
1/j
i(j) and thus completes the proof. □

With Theorems 4.4 and 5.6, now we complete the proof of Theorem A by Lemma

5.7 below.

Lemma 5.7. Let

ϕi : Ã1(Mi, xi) → Ã1(X,x), È¶i : Ã1(R
◦
ϵ,¶, x) → Ã1(Mi, xi)

be the surjective homomorphisms in Theorems 1.2 and 5.6, respectively. Then

ϕi ◦ È
¶
i : Ã1(R

◦
ϵ,¶, x) → Ã1(X,x)

coincides with º⋆ for all i large, where º : R◦
ϵ,¶ ↪→ X is the inclusion map.

Proof. Because X is semi-locally simply connected [13], there is ¶0 > 0 such that

every loop contained in a ¶0-ball of X is contractible in X. We set

¶1 = min{¶0/20, ¶/300}.

We recall that the forward homomorphism ϕi can be constructed as follows (see

[15] or [13] for details). When i is large such that dGH(Mi, X) f ¶1, for any loop

Ãi in Mi based at xi, we can draw a loop Ã in X based at x such that Ã is 5¶1-close

to Ãi. Then one can define the desired ϕi by sending [Ãi] to [Ã]. The choice of ¶0
assures that ϕi is well-defined and a surjective homomorphism.

Now let [Ã] ∈ Ã1(R
◦
ϵ,¶, x) represented by a loop Ã based at x in R◦

ϵ,¶. When i is

large, let Ãi be a loop based at xi ∈Mi that is ¶1-close to Ã. By the constructions

of ϕi and È
¶
i , we have

ϕi ◦ È
¶
i [Ã] = ϕi[Ãi] = [Ã] ∈ Ã1(X,x).
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□

Next, we prove Theorem B.

Proof of Theorem B. We choose a sufficiently small ¶ > 0 so that we can apply

Theorem A to construct surjective group homomorphisms

È¶i : Ã1(R
◦
ϵ,¶, x) → Ã1(Mi, xi)

for all i large. If the inclusion map º¶ : R◦
ϵ,¶ ↪→ X induces an injective homomor-

phism

º¶⋆ : Ã1(R
◦
ϵ,¶, x) → Ã1(X,x),

then by Theorem A(2), the composition

Ã1(R
◦
ϵ,¶, x)

È¶
i−→ Ã1(Mi, xi)

ϕi
−→ Ã1(X,x)

is an isomorphism. Together with the surjectivity of È¶i and ϕi, we clearly have

isomorphism Ã1(X) ≃ Ã1(Mi).

In general, if º¶⋆ is not injective, we shall analyze its kernel. We claim that

ker º¶⋆ = kerÈ¶i .

If this claim holds, then

Ã1(Mi, xi) =
Ã1(R

◦
ϵ,¶, x)

kerÈ¶i
=
Ã1(R

◦
ϵ,¶, x)

ker º¶⋆
= Ã1(X,x).

One side of the inclusion kerÈ¶i ¦ ker º¶⋆ is clear due to Theorem A(2). It remains

to prove the other direction.

Let us consider a composition of inclusion maps º ◦ j = º¶:

R◦
ϵ,¶

j
↪→ R◦

ϵ

º
↪→ X.

They induce

Ã1(R
◦
ϵ,¶, x)

j⋆
−→ Ã1(R

◦
ϵ , x)

º⋆−→ Ã1(X,x)

with º⋆ ◦ j⋆ = º¶⋆ being surjective. By the assumption that º⋆ is injective, º⋆ is an

isomorphism and

ker º¶⋆ = ker j⋆.

Let [Ã] ∈ ker j⋆ represented by a loop Ã at x in R◦
ϵ,¶. Then Ã is contractible in

R◦
ϵ . Let H : [0, 1]2 → R◦

ϵ be a nullhomotopy of Ã. By Lemma 2.5(1,2), there are

ϵ′ = Ψ(ϵ|n) > ϵ and 0 < ¶′ < ¶ such that

H([0, 1]2) ¦ R◦
ϵ′,¶′ .

When i is large, we draw a loop Ãi based at xi ∈ Mi that is ¶′/300-close to Ã. It

follows from Lemma 4.2(3) that Ãi is contractible in Mi. By the construction of

Èϵ
′,¶′

i : Ã1(R
◦
ϵ′,¶′ , x) → Ã1(Mi, xi)

and Lemma 5.7, we have

Èϵ,¶i [Ã] = Èϵ
′,¶′

i [Ã] = [Ãi] = id ∈ Ã1(Mi, xi).

This shows that

kerÈϵ,¶i § ker j⋆ = ker º¶⋆



16 JIAYIN PAN

and hence completes the proof.

When R◦
ϵ is simply connected, because º⋆ is an isomorphism as shown above, X

is also simply connected. Consequently, Ã1(Mi) ≃ Ã1(X) is simply connected. □
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