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Abstract—Spiking neural networks (SNNs) are bioplausible
machine learning models that use discrete spikes to encode,
compute, and transmit information. Combined with event-driven
low-power hardware, SNNs can improve the energy efficiency of
learning tasks. Although there have been several efforts to build
SNN hardware, there is no uniform framework to verify and

and evaluation methodology to compare against other designs
for a select few classification datasets. For instance, Table I
compares existing designs for the MNIST dataset.

TABLE 1. SNN FPGA hardware for MNIST dataset.

[16] [17] [18] [19] [20]
benchmark these designs in terms of key hardware performance SNN Hardware  784-1024-10 784-2048-10 256-128-10 784-500-500-10 784-1024-1024-10
metrics such as inference accuracy, area, power consumption, and Power (W) 34 1.03 0.623 L5 0477

Accuracy (%) 98.4 930 96.5 942 97.06

throughput. We propose PRONTO, an open-source and extensible
framework to verify SNN hardware for different learning tasks
and datasets. Given the ubiquity of PyTorch in the machine learn-
ing community and for demonstration purposes, the frontend of
PRONTO is integrated with a torch-based SNN simulator for
model specification and training. Its backend is integrated with an
open-source quantized SNN hardware. PRONTO interfaces with
a torch code to generate input stimuli which are then driven to
SNN hardware through a configurable SystemVerilog testbench,
verifying the design across various SNN-specific configurations.
PRONTO utilizes a dataflow-based approach to validate SNN
models that are segmented and run on a mix of software and
hardware platforms. We describe PRONTO and evaluate it using
six datasets spanning image, audio, and text classification. We
present benchmark results for various input settings. PRONTO
is available under an open-source licensing to provide a platform
to evaluate all current and future SNN hardware designs. We
believe PRONTO will substantially reduce the design verification
effort, thus facilitating fast design prototyping.

Index Terms—spiking neural networks (SNNs), verification,
testbench, SystemVerilog, PyTorch.

I. INTRODUCTION

Unlike classical machine learning algorithms, where neu-
rons are characterized by single-, static-, and continuous-
valued activation, biological neurons use discrete spikes to
compute and transmit information. Spiking Neural Networks
(SNNs), which use these neurons, are therefore more biolog-
ically realistic and efficient mechanisms for spatio-temporal
information processing [1]. Like other machine learning mod-
els, SNNs can run in software on general-purpose hardware
such as a CPU or GPU. However, SNNs achieve energy
efficiency when implemented on event-driven hardware such
as pBrain [2], DYNAPs [3], Loihi [4], TrueNorth [5], Neuro-
Grid [6], NeuRRAM [7], and SpiNNaker [8]. These systems
are not easily accessible to the general computing community.
Therefore, FPGAs remain the de facto platform for fast
prototyping and benchmarking of SNN designs [9].

Recently, several SNN designs have been proposed targeting
FPGA platforms [10]-[20]. There are also High-Level Syn-
thesis (HLS) approaches to implement SNN models on an
FPGA [21]-[24]. Each design comes with its own verification

A limitation of such an evaluation is that the verification
framework that includes SNN-specific settings is typically
not exposed, meaning that they may not be uniform across
these designs. We put the spike encoding mechanism into
perspective, which defines how each input is encoded to
generate spike trains that are driven to SNN hardware. Rate
coding, which encodes an input value as the frequency of
spikes, generates more spikes than inter-spike interval (ISI)
coding, which encodes it as the latency between spikes.
Designs that use ISI coding consume less power/energy as a
result of processing sparse spike events. This sparsity depends
on (1) the time duration for which an input is presented to
hardware (called time steps) and (2) the number of spikes
generated in a time interval (called spike rate). We evaluate
these input parameters for an SNN hardware design targeted
for FPGA [18] and show that these parameters significantly
impact hardware performance, such as inference accuracy,
area, power, and throughput per watt (see Section V).

Furthermore, verification of SNN designs is a crucial step,
as it directly influences production performance on ASIC and
FPGA, and ultimately determines product functionality and
customer perception. Currently, design verification accounts
for a substantial portion of the product development life
cycle and is expected to become a critical bottleneck as the
complexity of SNNs increases. The SNN hardware community
lacks an engineering setup that can be easily customized and
used for fast verification and prototyping of SNN designs.

Contributions — To address these research needs, we pro-
pose PRONTO, an open-source and extensible framework for
the interface between software and hardware, allowing fast
prototyping and benchmarking of SNN hardware on FPGA.

The following are our key contributions.

1) Given its flexibility, expressiveness, GPU acceleration
of training algorithms, and a large user base, the fron-
tend of PRONTO is designed to directly interface with
simulators such as snnTorch [25] and SpikinglJelly [26],
which use the torch dialect to specify and train SNNs.
PRONTO facilitates simulating several different SNN
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models, information encoding techniques, and classifi-
cation datasets. While PRONTO natively supports torch-
based SNN simulators, we provide hooks to extend
support for other standalone SNN simulators such as
CARLsim [27], ENLARGE [28], and Brian [29].
Given its open-source development methodology and
for demonstration purposes, the backend of PRONTO is
integrated with QUANTISENC [18], a software-defined
SNN hardware written in the Verilog hardware descrip-
tion language (HDL). PRONTO can be used to bench-
mark other designs in terms of hardware performance
for different SNN settings, such as the spike encoding
technique, time steps, and classification dataset.

We engineer a highly modular testbench written in
SystemVerilog to interface with a Python-based torch
code to extract model parameters (synaptic weights) and
generate input stimuli. PRONTO uses this testbench to
program synaptic weights in hardware memory, e.g., in
BRAM, and drives stimuli to hardware, one input at
a time via a design-under-test (DUT)-specific interface.
This interface can be easily customized for a target SNN
hardware. The testbench simulates an SNN design for a
certain time duration (a user configuration) and decodes
the hardware output for performance estimation.
Finally, we propose a dataflow-based design methodol-
ogy to validate SNN models that are segmented and run
on a mix of software and hardware platforms. In this
way, PRONTO provides support for SNN models that
perform certain operations such as batch normalization
and text embedding in software, due to lack of hard-
ware support [30]-[32]. Using this hardware-software
partitioning methodology, we show that PRONTO can
perform rapid hardware/software co-design and explore
performance and power trade-offs.

We describe PRONTO and evaluate it using six datasets
spanning vision, speech, and text classification. Our detailed
analysis shows that resource utilization is independent of
input SNN settings. Therefore, this metric can be directly
reported from published works when comparing different SNN
designs. However, accuracy, power, and throughput per watt
vary significantly based on the spike encoding mechanism
and time steps. Therefore, these performance metrics must be
individually evaluated for each design for a given SNN setting.
Furthermore, we show that PRONTO can be used to perform
Pareto analysis for a given SNN model and a target dataset.

PRONTO is available at https://github.com/drexel-DISCO/
PRONTO.git under the MIT license to allow academia and
industry to access the framework without restriction. !

2)

3)

4)

II. PRONTO: HIGH-LEVEL OVERVIEW

PRONTO does not introduce yet another SNN hardware
or a Python toolchain to automatically synthesize hardware.
Instead, PRONTO is a framework to benchmark current and
future SNN designs. Its automated testbench-based simulation

IPRONTO: A Framework for fast PROtotyping and benchmarking of SNN
hardware using TOrch-based machine learning dialects.
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methodology can simplify the effort required to verify a new
design, allowing rapid prototyping and deployment.

Figure 1 shows the building blocks of PRONTO. At a
high level, PRONTO consists of a frontend, middleware, and
backend. The frontend of PRONTO uses a Python code with
torch dialect to specify SNN model architectures, learning
rules, datasets, and SNN-specific input settings, which include
(1) spike encoding mechanism and (2) time steps. The mid-
dleware, which is the core of PRONTO, consists of an SNN
simulator such as snnTorch [25] @, workload synthesis and
stimuli generation @, dataflow analysis for model partition-
ing ®, and a testbench along with its interface to the DUT @.
Finally, the backend consists of SNN hardware platforms (the
DUT). We demonstrate PRONTO for three different backends
— (1) a conventional SNN hardware, e.g., QUANTISENC [18],
(2) a many-core SNN hardware with a shared interconnect,
e.g., uBrain [2], and (3) an SNN hardware generated using a
high-level synthesis (HLS) approach, e.g., SODA [21].
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Fig. 1: High-level overview of PRONTO’s design consisting
of a frontend, middleware, and backend.

PRONTO supports the following configurations.

e SNN architecture: Currently, PRONTO supports multi-
layer perceptron and convolution-based SNN models. Our
future work will address other models such as liquid state
machines [33], Reservoir-in-Reservoir [34] and Bayesian
networks [35].

Learning algorithms: PRONTO supports learning al-
gorithms that can be implemented using the torch
dialect. This includes spike-timing-dependent plastic-
ity (STDP) [36], surrogate gradient descent [37],
FORCE [38], full-FORCE [39], and spatial learning
through time (SLTT) [40], among others.

Dynamic confidence: PRONTO can be extended to im-
plement mechanisms such as dynamic confidence [41],
which terminates the inference based on the confidence
of the hardware output decoded by the testbench.

III. DETAILED DESIGN OF PRONTO

Without loss of generality, we describe PRONTO consid-
ering grayscale image input. A grayscale image is a two
dimensional matrix of pixels with width W and height H as
shown in Figure 2. A batch is formed by stacking B images @.

Each pixel is encoded into spike trains for a time duration 7
equal to the value of time steps @. Therefore, spike encoding
converts a (B x W x H) input matrix to a binary (T x B x
W x H) matrix. We represent the image dimension D = (W x
H).2 In the analog domain, a spike is represented by a voltage

’In this way, we extend the representation to RGB images with 3 dimen-
sional input matrices encoding intensities for red, green, and blue channels.
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1) Power consumption: The DUT power is estimated con-
sidering switching activities of internal nets in the DUT.

2) Real-time classification result: PRONTO facilitates ob-
serving the real-time classification of each input by
counting the number of spikes for each output neuron
in the time interval 7 (time steps) and identifying the
winner (predicted class) as the neuron with the most
spikes. This is performed in Python using the command
output.sum(dim=0) .max (1) and by reading the
DUT output which is saved in a file.

3) Overall classification accuracy: PRONTO can also re-
port overall classification accuracy by calculating the
fraction of inputs where the hardware output label
matches the target label. This can be performed in
Python using the command np .mean (act== pred).

Figure 6 shows the flowchart describing the working of the
proposed testbench of PRONTO to verify an SNN design.
Simulation settings such as runtime and power switches are
setup at the start of the simulation @. A finite state machine
(FSM) @ is designed to read synaptic weights (address and
data) from a file (output from Section III-B) and drive them
to the DUT using the weight driver of the DUT interface.

Simulation
S
setup | @

@ Yes O
®
weights IV stimuli
@—» Read | 7 Spike
Weights Read Stimulus «No @ Yes—»| Output

DUT Interface @ @

[ Weight Driver | [Stimulus Driver]

Fig. 6: Flowchart describing the proposed testbench.

Once synaptic weights are loaded into the synaptic memory
of the DUT, a second FSM @ is initiated to read spike trains
(stimulus) from a file (also an output from Section III-B) and
drive them to the DUT using the interface @, one input per
clock instance. The DUT output is monitored and recorded in
a SystemVerilog array. This is then saved in a file at the end
of the simulation to estimate performance @.

IV. CO-DESIGN AND MODEL PARTITIONING

SNN hardware comes in a wide variety of flavors in terms
of operations that are supported on them. For example, the
design in [16] implements fully connected layers, while that
in [17] implements both convolution and fully connected
layers. For PRONTO to work with different SNN architectures,
we propose an automated model partitioning approach, as
illustrated in Figure 7 for (a) image classification and (b)
text classification. In Figure 7a, we illustrate three mapping
scenarios: (1) mapping the entire model to hardware @, (2)
mapping convolution layers to software and fully connected
layers to hardware @, and (3) mapping all convolution layers
and a subset of fully connected layers to software and the
remaining layers to hardware @. The last scenario is for an

SNN hardware that cannot map all fully connected layers due
to limited on-chip neurons and synaptic memory.

In Figure 7b, we also illustrate three mapping scenarios:
(1) text embedding in software with all other layers mapped to
hardware @, (2) text embedding and feature extraction (convo-
lution layers) in software and classification in hardware ®, and
(3) text embedding, feature extraction (convolution layers), and
a few of the classification layers in software and the remaining
classification layers in hardware ®.

@] |

hardware

@l I |

software hardware

ol I |

software hardware
(a) software/hardware partitioning of image classification

@l I |

software hardware
6] | | |

@ | software hardware

software hardware

(b) software/hardware partitioning of text classification
Fig. 7: Model partitioning between software and hardware for
classifying (a) images and (b) texts.

Let G = (V, E) be an SNN graph [32]. Let the first « layers
are mapped to software, i.e., Vs = {vo,v1, -+ ,vs—1}, and the
remaining layers to hardware, i.e., Vg = {vi,vat1, -+, vjv 1}
with V = Vs U V. The input stimulus for the hardware is the
output of layer v,_1, while the synaptic weights programmed
to the hardware are those belonging to layers v; € Vy.
Algorithm 1 shows the pseudocode for co-design.

Algorithm 1: Partitioning SNN graph for co-design.

Input: SNN graph G = (V, E)
Output: Pareto points P
P = 0; /+ Initialize Pareto points. %/
Vi =Vand Vs =0 ; /+ Assign all layers to hardware. =*/
(sti, wts) = partition(Vs,Vg); /* Partition the model. x/
(acc, area, lat, pwr) = simulate(sti, wts); /* Simulate and
evaluate performance. */
P.append ({acc, area, pwr, thr}) ; /* Insert Pareto point. */
for v; € V do /* For each layer of SNN x/
Vs =VsgU{v;}and Vg =V \ Vs; /» Assign v; layer to
software. =/
(sti, wts) = partition(Vs, Vy); /+ Partition the model.

RO ) B oW o=

®

x/

9 (acc, area, lat, pwr) = simulate(sti, wts); /* Simulate and
evaluate performance. =/

10 ‘P.append ({acc, area, lat, pwr}) ;  /+ Insert Pareto point.
*/

11 end
12 return P

The algorithm starts by (1) defining an empty Pareto array
(line 1), (2) assigning all layers to hardware (line 2), (3)
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