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Abstract
Despite the potential of generative AI (GenAI) design tools to en-
hance design processes, professionals often struggle to integrate
AI into their work!ows. Fundamental cognitive challenges include
the need to specify all design criteria as distinct parameters upfront
(intent formulation) and designers’ reduced cognitive involvement
in the design process due to cognitive o"oading, which can lead to
insu#cient problem exploration, underspeci$cation, and limited
ability to evaluate outcomes. Motivated by these challenges, we
envision novel metacognitive support agents that assist designers
in working more re!ectively with GenAI. To explore this vision,
we conducted exploratory prototyping through a Wizard of Oz
elicitation study with 20 mechanical designers probing multiple
metacognitive support strategies. We found that agent-supported
users created more feasible designs than non-supported users, with
di%ering impacts between support strategies. Based on these $nd-
ings, we discuss opportunities and tradeo%s of metacognitive sup-
port agents and considerations for future AI-based design tools.

CCS Concepts
• Human-centered computing → Empirical studies in HCI; •
Computing methodologies→ Arti!cial intelligence.
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1 Introduction
Generative AI (GenAI) models o%er increasing capabilities in sup-
porting design work!ows by generating images [84], videos [48],
or complex mechanical parts [41, 102]. In mechanical design, work-
ing with AI allows designers to co-create designs that would be
extremely tedious or even infeasible without AI support, such as
reducing the weight of an electric wheelchair component [41] or
generating parts using emerging manufacturing processes [102]
with 3D geometric GenAI solvers. However, despite the growing
promise of AI design tools to augment design processes, profession-
als often struggle to e%ectively integrate AI into their work!ows
[42, 107]. GenAI demands new (computational) work!ows that re-
quire designers to work di%erently than they are used to or trained
in [42, 69, 91, 101]. Current GenAI-supported work!ows pose a set
of unique cognitive challenges, including:

(1) Intent Formulation: Designers have to specify all design
criteria necessary for generating feasible parts as distinct pa-
rameters upfront instead of iteratively modeling, testing, and
visualizing a part’s 3D geometry [42, 89]. This is a particular
challenge for GenAI systems with lengthy and expensive
inference times, such as complex 3D geometric solvers (e.g.,
[5]).

(2) Problem Exploration: To tackle design problems su#-
ciently, designers must thoroughly think through and con-
sider many aspects, but GenAI work!ow automation can
reduce cognitive engagement and foster overreliance due
to "cognitive o"oading," making problem exploration more
challenging [64, 106, 107].

(3) Outcome Evaluation: Designers are also required to evalu-
ate generated designs according to the problem, but when
their problem understanding is limited due to cognitive of-
!oading, they won’t be able to e%ectively evaluate and re$ne
generated designs [91, 107].

Motivated by such cognitive challenges, we explore interaction
patterns and interfaces to support professionals in more e%ectively
working with AI-driven design tools. In this work, we follow an
exploratory prototyping approach [105] to explore the potential
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of voice-based agents that support designers’ metacognition [40]1
while working on a manufacturing design task in a 3D GenAI CAD
tool, where the designer speci$es their goals as parameters and
geometry within a graphical CAD interface. Broadly, we ask: What
interfaces and interaction patterns can support designers in better
thinking through and formulating design problems, and evaluating
generated outcomes, when working with GenAI-based design tools?

Informed by theories and $ndings from human-AI interaction,
learning sciences, and the study of design processes, we engaged in
exploratory prototyping [105] to explore a design space formetacog-
nitive support agents through three di%erent design probes [14] and
observe how each in!uences designers’ processes and outcomes in
a GenAI-based design task. In this prototyping process, we used the
“Wizard of Oz” (WoZ) technique [29, 105], in which a human op-
erator controlled the agent probes in a !exible manner but within
certain probe-dependent constraints. Each probe followed a dif-
ferent support approach: (1) SocratAIs asks re!ective questions to
prompt deeper re!ection-in-action and (2) HephAIstus prompts task
planning and diagramming supported by suggestions for design
strategies and software operation. While the $rst author enacted
these two agents, we also included (3) external experts in mechani-
cal and generative design from Autodesk to act as wizards in some
sessions, who we invited to provide their own interpretations of
metacognitive support strategies in a freeform manner.

Since CAD-based work is highly visual-spatial, we explore all
support agents through voice modality to reduce cognitive load.
Inspired by the concept of "think-aloud computing" [59], we prompt
designers to verbalize their thoughts while working on the design
task to foster deeper re!ection-in-action and to elicit their knowl-
edge and situational intentions for the support agents.

We conducted a formative study with 20 trained mechanical en-
gineers new to working with generative AI systems. The designers
were supported by one agent probe (or received no support in a
control condition) while working on a realistic mechanical design
task in the "Generative Design" extension of the commercial CAD
software Autodesk Fusion 360 [5].

By comparing the design processes, outcome quality, and partic-
ipant post-task interviews through video interaction and thematic
analysis, we investigate the following research questions:
RQ1 How do di"erent agent support strategies impact the design

process?
RQ2 What are the perceived bene!ts and challenges of metacogni-

tive support agents?
Overall, we found that agent-supported users created more fea-

sible designs than unsupported users. Most users actively engaged
with and appreciated the agent’s support in helping them think
through the design task and operate the software. We also identi$ed
that di%erent agent strategies had di%erent impacts. For example,
question-asking strategies that prompted mental simulations or
visualizations through sketching helped designers with intent for-
mulation and problem exploration regarding the part’s mechanical
loads. However, we also observed that asking questions alone was
less impactful when users had solidi$ed incorrect assumptions, and

1Metacognition refers to mental processes of thinking about one’s own thinking, en-
abling individuals to regulate and improve their cognitive strategies by re!ecting on
their decisions and problem-solving approaches.

that sometimes agent support could lead to additional overreliance.
Finally, our $ndings provide insight into design trade-o%s and dif-
ferences in user preferences for metacognitive support agents.

We conclude by discussing design implications for futuremetacog-
nitive support agents for GenAI-based design tools.While our paper
explores support for mechanical design tasks, we discuss how our
$ndings may generalize to other GenAI design activities. In sum,
this paper makes three main contributions:

(1) Opening a design space for metacognitive think-aloud sup-
port agent interfaces for computational design tasks;

(2) Sharing empirical insights into how designers interact with
metacognitive think-aloud support interfaces in the context
of GenAI-based manufacturing design work!ows;

(3) Proposing design considerations for future metacognitive
support interfaces for GenAI-assisted design tasks.

2 Related Work
2.1 Challenges of AI-Assisted DesignWork!ows
Many GenAI design tools operate as black boxes—designers specify
objectives and then examine one or more generated designs. This
poses key barriers to iterative trial-and-error design work!ows,
especially for GenAI systems with lengthy and expensive inference
times, such as geometric solvers (e.g., [5]). Therefore, research has
explored the design of systems that facilitate faster, more interactive
design exploration paired with computational design techniques
[23, 31, 54, 56, 66, 104]. However, recent research has also identi$ed
several unique cognitive challenges professionals face when using
AI-based design tools:

Intent formulation: GenAI tools demand designers to specify
all design criteria required for generating feasible parts upfront,
shifting focus to careful upfront planning of design requirements
and formulating design intents in distinct parameters instead of
iteratively modeling, testing, and visualizing a part’s 3D geometry
[42, 89]. This design process demands a shift in designers’ atti-
tudes, skills, and mental processes compared with traditional (CAD
modeling) practices [69, 101].

Problem exploration: Design typically requires designers to
think carefully through many di%erent facets (explicit and implicit)
to tackle design problems su#ciently. However, GenAI work!ow
automation can foster reduced cognitive involvement in the de-
sign process and overreliance due to "cognitive o"oading" [81, 91],
making it more challenging to explore and de$ne design problems
adequately [64, 106, 107]. For example, empirical research found
that designers in geometric "traditional" modeling environments en-
gaged more in semantic-level actions, leading to unexpected discov-
eries and diverse design solutions. In contrast, those in parametric
environments followed a top-down process with fewer exploration
and goal changes [18].

Outcome evaluation: Designers need to assess generated de-
signs in relation to the design problem at hand. However, if their
understanding of the problem is limited due to AI-imposed cogni-
tive o"oading, their capacity to e%ectively evaluate and re$ne the
generated designs will also be constrained [91, 107].

Motivated by such challenges, recent research highlights the
need to rethink parametric design tools and develop systems that
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better support designers in parametric modeling and computa-
tional thinking [98]. Similarly, other recent work has emphasized
better support for the metacognitive challenges imposed by GenAI-
based work!ows [91].Metacognition [40] involves re!ecting on and
regulating one’s own thinking to improve decision-making and
problem-solving strategies. For GenAI work!ows, Tankelevitch et
al. [91] highlight three critical phases that demand more explicit
metacognitive support: (1) "prompting" GenAI (formulating inputs),
(2) evaluating GenAI outputs, and (3) deciding on if and how to
incorporate GenAI into one’s work!ow best.

Motivated and building atop priorwork identifying (meta)cognitive
challenges of GenAI-assisted design work!ows, we explore novel
support interfaces to help users work better with GenAI-assisted
work!ows. In the next sections, we will review metacognitive sup-
port strategies from learning science and design, and then highlight
the role of asking questions in design and problem-solving as a
distinct metacognitive support strategy.

2.2 Metacognitive (Design) Support Strategies
In the cognitive and learning sciences, metacognitive support has
been shown to play a crucial role in enhancing problem-solving
abilities by enabling individuals to re!ect upon and actively regulate
their own cognitive processes [45, 60]. Self-regulated learning (SRL)
is closely tied to metacognition and involves studying and support-
ing learners’ ability to manage and direct their learning processes
through metacognitive skills like planning, monitoring, and evalu-
ating their actions, typically occurring in distinct cyclical phases
[10, 47, 73, 97]. Prior research has identi$ed e%ective metacognitive
support strategies such as "self-explanation", where prompting in-
dividuals to articulate their reasoning and underlying assumptions
to themselves supports them in clarifying and organizing their own
understanding [96]. This process, often in combination with think-
aloud-style verbalizations of thoughts, promotes the integration of
new information with prior knowledge, fostering critical thinking
and cognitive engagement in a task [45, 46]. Research has studied
metacognitive support strategies and interactive systems to pro-
mote re!ection and problem-solving in various contexts, including
software debugging [32, 57, 61, 75, 90], data analysis [36], learning
computational skills [22] and exploratory learning [21].

Design research increasingly emphasizes the central role of
metacognitive monitoring and control processes for design activ-
ities. For example, Ball and Christensen [9, p. 49] explicitly draw
parallels between metacognitive processes and prior design the-
ories, such as the role of "re#ection in and on action" in design
practice [35, 85, 86]. Furthermore, research has found evidence for
the importance of metacognition for learning and mastering design
skills [53, 62, 76, 78]. Building on this understanding of metacog-
nition in design, the following section explores how questioning
strategies can foster metacognitive engagement, critical thinking,
and deeper cognitive exploration while supporting designers in
tackling complex design challenges.

2.3 The Role of Asking Questions in Design and
Problem-Solving

Questioning can support thinking and foster deeper cognitive en-
gagement during problem-solving. In educational contexts, deep-
level reasoning questions (e.g., questions probing underlying princi-
ples or causal relationships) or inquiry-based prompts (e.g., prompts
encouraging student-led questioning and investigation) have been
shown to enhance learning outcomes by stimulating critical think-
ing and deeper exploration of complex concepts [12, 27, 33, 44, 92].
A speci$c strategy is the Socratic Method, which employs guided
open-ended questioning to stimulate critical thinking and re!ec-
tion [38]. This approach has been used e%ectively across various
$elds, such as in healthcare education to develop critical thinking
skills among students [49], programming to aid novice debuggers
in identifying and resolving code issues [2, 3, 57, 100], supporting
academic career development [74], and in creativity research to
foster co-creativity between humans [88].

Similarly, asking questions plays a central role in guiding de-
signers’ thinking in exploring and re$ning ideas by challenging
their assumptions as they work through complex, evolving prob-
lems [39]. When tackling ill-de$ned problems, designers must nav-
igate the solution and problem spaces simultaneously, often using
abductive reasoning to reframe problems and synthesize new in-
sights and possibilities [28, 34, 58]. Research analyzing design team
communication has shown the crucial role of question asking for
problem-solving [4], idea generation [26], design reviews [19], and
design studio education [51]. Other work has explored ways of
supporting designers through targeted questioning to enhance the
design process by helping them articulate product requirements
[99], stimulate idea generation [83], and highlight awareness of
bias in designerly thinking [79].

Eris developed a taxonomy of questions asked during design
teamwork [39], building on prior taxonomies by Lehnert [65] and
Graesser [44]. Eris’s taxonomy outlines three types of questions
for design: 1. Low-level questions for clari$cation, 2. Deep reasoning
questions for causal explanations, and 3. Generative design questions
for exploring alternative solutions. Research showed that student
teams asking more Deep Reasoning and Generative Design ques-
tions achieved more innovative design outcomes [39].

2.4 Multimodal and Collaborative CAD Systems
Current computer-aided design (CAD) tools primarily rely onWIMP
(Windows, Icons, Menus, Pointer) interfaces, using pointer move-
ments and keystrokes as input [70] to modify geometry in visual-
spatial interfaces. However, multimodal inputs for CAD work, such
as gestures or speech in combination with WIMP [55], can o%er
advantages, as experimentally demonstrated by Ren et al. [80]. This
combination—leveraging the split-attention [6] and the modality
e%ect [20]—allows users to process visual and auditory informa-
tion simultaneously, which can reduce cognitive load and enhance
performance in complex tasks.

Similarly, user research studies often utilize the concurrent think-
aloud protocol [63] to understand participants’ thoughts and actions
by encouraging them to speak about their thoughts as they perform
a task. Concurrent verbalization can o%er rich insights into users’
knowledge and intents while only slightly increasing cognitive
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Figure 1: Overview of the Fusion 360 design task (A-E), work!ow (F-G), common user mistakes (H), and cognitive challenges (I).
The task involves (A) designing an engine bracket that connects the engine to a damper. (B) A starter "le containing connection
holes and bounding dimensions is provided to the users to initiate the design in (C) Fusion 360. The user is prompted to create
(D) a viable design while minimizing weight and avoiding (E) infeasible features. (F–G) The work!ow involves six steps, and
based on the AI system’s solutions, the user may iterate the design by adjusting the design constraints and criteria to produce
new solutions. Task taken from [42]. (Image A: © Rolls-Royce Power Systems)

load during complex tasks [95], such as annotating existing CAD
models through speech [77]. Inspired by the think-aloud protocol,
Krosnick et al. [59] propose the interaction paradigm of think-
aloud computing where computer users are encouraged to speak
while working on a CAD design task to transcribe and capture rich
knowledge with relatively low e%ort in real-time.

Other empirical research shows how conversation and real-time
support during CAD sessions can improve problem-solving. For
example, revealing unique communication patterns thatmakemulti-
disciplinary engineering design work more e%ective [82] or systems
for supporting CAD users by connecting themwith human CAD ex-
perts in real-time [25, 52] or automatically provide context-sensitive
learning resources [67].

In this study, we aim to explore voice-based agent support in-
terfaces and think-aloud user interactions for augmenting GenAI-
driven CAD work!ows by enabling low-e%ort continuous speech-
based user intent and context-elicitation.

3 Case Study: Challenges of AI-Assisted
Mechanical Design Tasks in Fusion360
Generative Design

Our work aims to develop support agents that help designers over-
come the cognitive challenges they face when working with AI-
assisted design tools. We replicate our previous study of mechanical
designers working with AI assistance [42], which found that de-
signers working with AI for the $rst time often failed to create
feasible mechanical parts despite being familiar with the design
tasks and CAD tools in general. In that study, designers worked
with the "Generative Design" feature of Autodesk Fusion360 [5],
which helps designers create lightweight and strong parts through
topology optimization and genetic algorithms [66]. In the task (Fig-
ure 1A–E), the designer is asked to design a material-e#cient and
structurally sound engine mounting bracket by considering the
optimal manufacturing and material combination from a large pool
of possibilities. While designing mounting brackets is common for
mechanical engineers, optimizing designs for di%erent manufactur-
ing methods and materials is di#cult without simulation and AI
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Table 1: Overview of agent probes’ support strategies and behaviors.

support. Traditionally, engineers build a part and then gradually
remove or add material based on structural analysis to derive a
weight-optimized part. Exploring di%erent manufacturing options
is necessary for every material and manufacturing process—a time-
consuming and tedious task. In contrast, Generative Design can
automatically generate many options based on speci$ed require-
ments, which the designer can explore and choose from.

Concretely, in Autodesk Generative Design, designers specify
the structural loads a part has to hold, the GenAI solver’s obstacle
geometry (part areas that must remain free of material, such as clear-
ances for bolt holes), and the material and manufacturing properties
(Figure 1 F). Designers then optionally request a preview simulation
before running the solver and then evaluate many AI-generated
solutions to identify viable designs (Figure 1 G). If no outcomes are
deemed satisfactory, designers might iterate the design by adjusting
the input criteria.

In our prior study [42], we observed thatwhile most designers
learned to specify some of these input parameters success-
fully over time, many failed to correctly specify structural
loads and obstacle geometry for su#cient part clearances. As
a result, most of the submitted designs were unfeasible because they
were either too heavy or weak, larger than the allowable, or had
insu#cient clearances around bolt holes, preventing the bracket
from being mounted.

Figure 1 H lists common errors that occur during the task of
designing a ship engine mounting bracket using Generative De-
sign related to insu#ciently speci"ed loads, obstacle geometry,
materials and manufacturing options (DFM), and during out-
come evaluation. These observed common mistakes relate to key
cognitive GenAI work!ow challenges of intent formulation, prob-
lem exploration, and outcome evaluation (see Figure 1 I and Section

2.1). In the following section, we describe how we probe di%er-
ent support strategies aimed at helping designers overcome these
challenges.

4 Constructing Support Agent Design Probes
Our motivation was to prototype, study and compare di%erent
metacognitive support strategies in the context of GenAI-supported
design tasks. Previous studies have shown that existing support
resources and strategies (such as help menus, online forums, or
video tutorials) seem to be ine%ective in helping designers overcome
the cognitive challenges involved in workingwith GenAI [42]. Thus,
we speculated that metacognitive support strategies, such as asking
re!ective questions to prompt self-explanation or planning and
sketching activities, might be more e%ective. Inspired by previous
work and $ndings on metacognitive support, we therefore asked:

1) What if a support agent simply asked questions? Could this in
itself be enough to promote productive re#ection-in-action and
improve human-AI co-creation?

2) What if an agent prompted designers to plan and sketch while
supporting these activities through suggestions?

To explore these metacognitive support strategies prior to de-
veloping functional AI-based agent systems, we engaged in ex-
ploratory prototyping [105] and constructed two di%erent agents
as design probes [14]: (1) SocratAIs, a Socratic agent that asks re!ec-
tive questions to prompt deeper re!ection-in-action, and (2) Hep-
hAIstus that prompts task planning and diagramming supported
by suggestions for design strategies and software operation (see
Table 1). These two agent probes were enacted by the $rst author
using an exploratory "Wizard of Oz" [29, 105] approach. The wizard
followed guidelines to adhere to the general rules for each agent
while also having !exibility over when to send messages and the
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exact phrasing of messages given the in-the-moment context of
each participant’s session (see 5.4 for details).

We hypothesized that each of these support strategies could be
e%ective in supporting designers on their own, but also likely in
combination. However, as a start, we wanted to investigate how
certain strategies would work in isolation to better understand
their impact, bene$ts, and tradeo%s on designers’ metacognition
and design process.

In addition to these two probes, to move beyond our research
team’s assumptions, we also asked:

3) How would human experts in generative design support de-
signers new to working with GenAI in this task?

To answer this question, we also invited (3) external experts from
Autodesk to act as wizards during some sessions, to observe and
compare their natural strategies of supporting other designers in
this task (freeform). The following sections describe our three agent
probes SocratAIs, HephAIstus, and Expert-Freeform in more detail.

4.1 SocratAIs Probe – Asking Questions
Inspired by previous research on prompting self-explanation [45,
96], SocratAIs proactively asks users questions as they complete
a design task to prompt self-explanation and re!ection on
their design decisions. Speci$cally, this agent follows a Socratic
questioning approach to support designers’ metacognition by
constructing questions relevant to the phase of a design task that a
designer is currently working on, such as specifying the part’s loads,
obstacle geometry, manufacturing considerations, or evaluating
outcomes (see Appendix for agent guide). In line with a Socratic
questioning approach, SocratAIs only responds to user requests
with further questions and refuses to provide direct answers.

4.2 HephAIstus Probe – Planning, Sketching,
with Suggestions

To explore our second question (what if an agent prompted de-
signers to plan and sketch while supporting these activities through
suggestions?), we constructed HephAIstus (referencing Hephaestus,
the Greek god of craftsmanship). This agent provides metacognitive
support in the form of planning and sketching and by supporting
these activities with suggestions around design strategies and tool
operation. Inspired by prior research on the bene$ts of externaliza-
tion activities in design [7, 42], the agent o%ers deliberate planning
and sketching activities parallel to the CADworkspace to help users
think through the design problem more strategically and visually.
For planning, the agent suggests the user engage in a project plan-
ning activity by sharing a pre-generated text document outlining
critical project-relevant aspects with the user (see Appendix A.1.4
for an example document). This strategy aims to encourage users
to think through the design task more deeply before switching to
the CAD interface.

For the sketching activity, the agent suggests that the designer
sketch out load case-relevant forces and constraints as a free-
body diagram2 by sharing a link to a 2D drawing canvas containing

2Free body diagrams are common mechanical visual representations to illustrate the
forces acting on physical objects in a given situation, helping to simplify complex
mechanical problems and reason about its structure.

the side and top view of the bracket as a starting point (see Appendix
Figure 8 for an example).

To support these planning and sketching activities, the agent
proactively o%ers suggestions for the design task and software oper-
ation, inspired by work on supporting software learning and work
processes [25, 52]. This entails providing alternative design options,
highlighting overlooked software features, notifying about unin-
tentional execution errors, or recommending tools and techniques
to improve the overall design process.

In contrast to SocratAIs’ question-asking approach, HephAIs-
tus responds to user queries with direct answers, similar to chat
assistants such as ChatGPT. Lastly, the agent can visually highlight
areas on the user’s screen to direct their attention to what the agent
is talking about.

4.3 Expert-Freeform – Support from an External
Generative Design Expert

Lastly, we explored how human experts attempt to support design-
ers’ metacognition in this task, when provided agency over how
to do so. We invited experts in mechanical and generative design
from Autodesk (the maker of Fusion360)—who were not a part of
our research team—to serve as wizards, allowing them to provide
their own interpretation of metacognitive support (freeform). For
these sessions, we recruited wizards from Autodesk’s employee
pool via internal mailing lists and snowball sampling (see Appendix
Table 5). Participants ranged between 27 and 47 years of age, with
mechanical design experience between 3 and 15+ years. All experts
had high self-rated pro$ciency in Fusion360 Generative Design,
were closely involved with its development, and had substantial
experience training others to use the tool.

The expert wizards were instructed to support the other designer
in working with Generative Design and the design task by control-
ling the voice agent. We refrained from explicitly telling them to
follow a speci$c support strategy, and instead, they were asked to
provide real-time support in their preferred way, so long as they
did not directly instruct the other designer on what to do.

4.4 Common Agent Capabilities
Besides the di%ering support strategies outlined above, all support
agent probes shared the common capabilities:

• the agent possesses (non-exhaustive) knowledge of additive
manufacturing and generative design tasks

• the agent has access to the users’ screen and think-aloud
speech in real-time;

• the agent can identify inconsistencies between the require-
ments stated in the design brief and the GenAI parameters
speci$ed by the designer by comparing the design brief
and screen activities (e.g., detecting over/under-constrained
load cases, infeasible material combinations, or wrong force
setup)3;

• the agent can send voice messages to the user and (in Heph-
AIstus and Expert-Freeform cases) annotate the user’s screen
and share links via chat.

3Such requirements could be explicit nature (e.g., the force the bracket needs to hold)
or implicit features, such as bolt clearances, which were not explicitly mentioned in
the design brief
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5 Study Design
To elicit the impacts, potential bene$ts, and drawbacks of the sup-
port agent probes, we conducted a formative between-subjects
study with trained mechanical designers new to working with gen-
erative AI. Each designer was supported by a di%erent agent probe
(facilitated by a human operator in the background) while working
with the Autodesk Generative Design tool to design a ship engine
mount 4.

We used an exploratory “Wizard of Oz” (WoZ) prototyping ap-
proach [105], where a human operator controlled the voice agent
probes in the background to simulate di%erent support strategies.
Instead of only following strict prede$ned rules, the wizards had
certain degrees of freedom in enacting the agent probes’ support
strategies to explore broader design possibilities and implications
in response to emerging situations during user sessions [105] (see
5.4).

While working on the task, designers were asked to think aloud
to elicit their cognitive processes (e.g., mental models [24], learning
[103]) and knowledge and intents so that they could be used by the
(WoZ-controlled) voice-based support agents. Participants worked
between 31 and 99 minutes, then submitted their designs and com-
pleted a semi-structured interview to re!ect on their experience
working with the support agent.

We collected the following data:

• Video, screen, and audio recordings with machine-generated
transcripts of the agent-supported think-aloud design ses-
sions

• Audio recordings and machine-generated transcripts of the
post-task interviews

• 3D designs created during the think-aloud sessions
• Log $les with timestamps of all human-facilitated agent
messages

5.1 Participants
We recruited 20 designers (aged 20 to 42 (M = 26.1, SD = 5.9))withme-
chanical engineering backgrounds from engineering departments of
North American universities and through the Upwork freelance hir-
ing platform5 (see Appendix Table 4). Participants had between one
and ten years of Mechanical Design experience and between zero
to ten years of industry experience, as determined via a screening
questionnaire. All participants had at least two years of experience
using CAD and Autodesk Fusion360 but no experience working
with the Generative Design extension. We recruited participants
familiar with Fusion360 so that they could focus on learning to
work with the AI-driven Generative Design feature rather than
learning the CAD tool’s user interface. Participants included a mix
of undergraduates, graduate students, and professional engineers.
Before the study, all participants signed a consent form approved
by our institution’s IRB. Participants were compensated 20 USD
per hour.

4See Section 3 for a description of this task, previously used in [42].
5http://www.upwork.com

5.2 Design Task and System
Participants were instructed to design a light and strong engine
mounting bracket with Autodesk Fusion360’s [5] “Generative De-
sign” feature (see Section 3 and Figure 1 for a detailed description).
Since we adopted the task from an existing study [42], we veri$ed
the suitability of the task for our study by $rst piloting it with
mechanical engineers from our institution and an external user pro-
$cient with Generative Design, all of whom successfully completed
the task without receiving any support.

5.3 Procedure
The study was structured into four phases, split into two sessions:

1) Onboarding (30minutes):After an introduction to the study,
participants received a hands-on tutorial demonstrating Fusion360
Generative Design’s core functionalities through a step-by-step
example design task.

2) Design Task - Part 1 (up to 70 minutes): After onboarding,
participants were introduced to the design brief, task, and starter
$le containing prede$ned geometric constraints. They were also
told that a virtual AI agent would support them during the design
task (except for the members of the No Support group). Sessions
were conducted over video conference (Zoom) with audio, screen,
and video recording.

Participants worked while sharing their screens and thinking
aloud, with research team members following the video call re-
motely and operating the support agent. Participants were allowed
to use any available support resources, such as internal Autodesk
help $les, external video tutorials, or online user forums.

Participants worked until they completed specifying the gener-
ative design inputs. They then started the Generative Design ex-
tension’s solver, which completed the $rst session. Since the solver
required 30 minutes of runtime, participants took a 30-minute break
and then returned for the second session.

3) Design Task - Part 2 (up to 30 minutes): After the solver
$nished, participants evaluated the generated designs. If satis$ed
with the results, they could directly select three designs. Otherwise,
they could re-adjust the design criteria and restart the solver, in
which case they would return to evaluating the generated designs
after the exit interview and select their $nal designs.

4) Exit Interview and Debrie"ng (20min): After task comple-
tion, participants participated in a semi-structured remote interview
with a research team member. Participants were asked to re!ect on
their experience working with the Generative Design extension,
the think-aloud activity, and the agent support (see the Appendix
for interview protocol). Additionally, after the expert-facilitated
sessions, we interviewed the experts to gain further insight into
their support strategies and challenges they perceived. The inter-
view was audio and video recorded and the interviewer took notes.
At the end of the inteview, participants were debriefed about how
humans had actually controlled the AI support agents.

5.4 Wizard of Oz Setup
Overall, we followed an exploratory Wizard of Oz prototyping ap-
proach [105] as a design space exploration where wizards would
have some !exibility in enacting the agent probes. This allowed
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Figure 2: Process diagram of Wizard of Oz setup. The remotely located wizard (right) followed the designer’s actions (left) by
listening to their verbalizations and observing their screen and webcam stream. Using a web interface, the wizard could (1) type
messages and send these as (2) synthesized voice messages to the user as agent messages. (3) All agent messages were logged
with timestamps.

us to make meaningful comparisons between the support strate-
gies (asking questions vs. planning and sketching support vs. expert
freeform) while also giving wizards !exibility on how to enact the
di%erent agent probes in detail (such as the exact message timing
and phrasing). Below, we detail the instructions given to wizards
and the study setting.

5.4.1 Wizard Details. The SocratAIs, and HephAIstus agents were
facilitated by the $rst author with experience in mechanical engi-
neering, Fusion360, and generative gesign 6.

This wizard followed these general guidelines:
1) Follow the designer’s verbalizations and screen actions and

pay close attention to the task-speci$c design steps and chal-
lenges as outlined in Section 3.

2) Pay close attention to inconsistencies between the require-
ments stated in the design brief and the input parameters
set by the designer7.

3) Never directly tell the participant what to do, but rather pro-
vide supportive questions, hints, or suggestions (depending
on the enacted agent type).

4) You are free to send messages whenever and how often you
consider it helpful to the designer. However, pay special at-
tention to moments in which designers transition between
design sub-tasks (such as from specifying obstacle geom-
etry to specifying loads), as well as when designers show
hesitation or use hedging expressions.

6In some sessions, a second research team member with experience in mechanical
engineering and generative design was co-present, verbally supporting the wizard.
7Such requirements could be explicit (e.g., the force the bracket needs to hold) or
implicit features, such as bolt clearances, which were not explicitly mentioned in the
design brief.

5) You are free to formulate the messages in a way you consider
to be most helpful, while adhering to the agent’s support
strategy (e.g., only asking questions).

For the Expert-Freeform agent wizards, we did not provide spe-
ci$c guidelines, but only instructed them to provide support in
their preferred way, so long as they did not directly instruct the
supported designer on what to do (see Section 4.3).

5.4.2 Se!ing. For all sessions, participants and wizards were in
separate locations during the design task, and communication be-
tween the wizards and participants was established via Zoom video
conferencing software (see Figure 2). Although most sessions were
co-located, with participants and wizards in separate but neigh-
boring rooms of our research lab, eight sessions were conducted
remotely. In the lab sessions, participants completed the task on
a computer workstation running Fusion360 with the Generative
Design extension. Remote participants were provided access to a
web-based computer8 with the same setup for remote sessions.

Participants shared their screens via Zoom and wore an audio
headset during the task to capture their verbalizations and ensure
they could hear the agent’s voice. The wizard joined the same video
call using a generic name (‘Agent’) with a deactivated webcam to
follow the participant’s screen actions and verbalizations. In ad-
dition, the wizard could generate and send agent voice messages
using a self-developed web control interface (see Figure 2 right). For
the Expert-Freeform sessions, in addition to the researcher and the
designer, the external task expert from Autodesk anonymously at-
tended the conference call in the background and remote-controlled
the voice agent via the web interface.

8using Paperspace
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The agent control interface was developed in React.js and uses
Google’s text-to-speech API to generate the agent voice from the
wizard-typed text (see Figure 2). The interface features a button
to toggle the playback of an idle sound cue to sonically indicate
an ‘agent is processing’ state to the participant. Additionally, the
tool logs all generated messages with a timestamp and session
ID exportable in JSON format. We used audio-routing software9
on the wizard’s computer to inject the generated agent speech
audio into the video call. To mitigate possible gender bias e%ects,
we deliberately selected a gender-ambiguous voice option for the
agent, following suggested best practices from prior research [93].

5.5 Measures and Analysis
To gain insight into our research questions, RQ1 How do di"er-
ent support strategies impact the design process? and RQ2 What
are the perceived bene!ts and challenges of metacognitive support
agents?, we evaluated the design outcomes and analyzed ~19 hours
of think-aloud videos and ~6 hours of interview recordings using a
combination of video interaction analysis and re!exive thematic
analysis.

5.5.1 Design outcome evaluation. We evaluated the design
outcome feasibility by checking the submitted engine brackets
against the requirements in the design brief, rating across $ve
criteria, each yielding one point:

(1) The structural soundness was validated using $nite element
analysis (FEA).

(2) The feasible load case setup was checked in their Fusion360
project $le.

(3) The optimized mass was not extremely light or heavy.
(4) The part had feasible fastener clearance (i.e., clear bolt holes)
(5) The part’s mass and volume $t within the acceptable bound-

ing dimensions.
The GenAI solver generated around 20 designs, and to compensate
for possible variability in the generated outcomes, we asked partic-
ipants to choose three feasible parts from which we then selected
the highest-scoring part as their $nal design.

5.5.2 Video interaction analysis to determine agent impact.
We used video interaction analysis [11] of the think-aloud recordings
to understand how agent support impacted participants’ design pro-
cess. Speci$cally, to determine the impact of the agents’ messages
on the design process, we analyzed whether participants consid-
ered new design aspects after receiving a message based on their
verbal re!ections or concrete actions. The think-aloud video and
transcript data were equally distributed among three researchers
who applied the following coding procedure:

1) Tracking GenAI input speci"cations: First, the coders
tracked participants’ interactions with the Generative Design fea-
tures relevant to the design task and documented whether the
actions would produce satisfactory outcomes. Speci$cally, they
tracked how participants speci$ed (1) structural loads (forces), (2)
mechanical constraints, and the obstacle geometry feature to control
the bracket’s (3) bolt and (4) dampener pin clearances, and (5) overall
size.

9https://existential.audio/blackhole/

2) Coding message impact: Second, the coders tracked the
impact of the agent’s messages on the design process: For each
agent message, they coded if the message had an observable im-
pact on the participant considering a new aspect related to the
design task, which needed to be apparent from the designer’s ver-
balizations or actions (coded with ‘none,’ ‘weak,’ or ‘strong’). For the
design assistant agent probe (HephAIstus), they also tracked users’
direct messages to the agent and if agent messages were generally
observably helpful to the user (yes/no).

3) Coding planning and sketching interactions: Third, the
coders tracked when the agent sent the planning sheet or the free-
body diagram sketching board and when the designers interacted
with these.

Between these coding sessions, the researchers met frequently to
discuss edge cases and ensure consistency in their coding practices.
From this data, we then created time-series event plots for each
session with R and ggplot2 to visually identify patterns (see Ap-
pendix Figure 7). In addition, we created summary videos for each
participant, highlighting all situations featuring agent messages or
other interesting designer-agent interactions (please see the video
$gure in the supplementary material for an example).

5.5.3 Reflexive thematic analysis. To understand participants’
attitudes toward the agent support, we performed a re#exive the-
matic analysis [16] of the interview data (transcripts). We followed
an iterative inductive coding process and generated themes through
a#nity diagramming. We used ATLAS.ti to analyze transcripts, au-
dio, video, and Miro for a#nity diagramming.

First, the $rst author coded the interview transcript data utilizing
both a semantic (what people said) and latent (our interpretations
of the data) coding strategy. Next, the research team collectively
identi$ed initial codes and themes. Based on the time series plots
from the video interaction analysis and the summary videos, we
then associated the participant statements from the interviews with
speci$c situations in the design sessions to cross-validate the impact
of agent messages and identify additional qualitative themes and
interaction patterns. We iteratively reviewed and revised codes and
themes until we identi$ed a stable network of coherent and rich
themes.

6 Findings
All participants completed the task without abandoning it. Overall,
most agent-supported designers overcame more GenAI work!ow
challenges and produced more feasible designs than unsupported
designers (Table 2). However, di%erent agent strategies impacted
the design process in di%erent ways. Most designers saw bene$ts
in agent support, but we also elicited various trade-o%s and di%er-
ing preferences for support interactions. In the following sections,
we present our $ndings on the impact of di%erent support agent
strategies on the design process, along with the perceived bene$ts
and challenges associated with these.

6.1 Impact of di$erent support strategies on
design process (RQ1)

6.1.1 Design Outcome Comparison. Overall, participants with sup-
port produced notably higher-quality parts (see Table 2 and Figure
3 and 4), with an average outcome score of 𝐿 = 3.5 (𝑀𝑁 = 1.4),
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Table 2: Table summarizing participants’ outcome design scores across "ve criteria (checkmarks) and process statistics by
support group. Normalized Message Frequency represents the number of agent-initiated messages divided by the session
duration. Note that the number of agent-initiated messages is lower than the total agent messages for the HephAIstus and
Expert-Freeform groups since these exclude agent messages in response to user-initiated queries.

Support Condition SocratAIs HephAIstus Expert-Freeform No Support
Participant S1 S2 S3 S4 S5 H1 H2 H3 H4 H5 E1 E2 E3 E4 E5 B1 B2 B3 B4 B5

Passing Structural Analysis (FEA) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Correct Load Setup ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mass Optimized ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Feasible Fastener Clearances ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Feasible Part Size ✓ ✓ ✓ ✓ ✓ AVG ✓ ✓ ✓ ✓ ✓ AVG ✓ ✓ AVG ✓ ✓ ✓ AVG

Outcome Quality Score 2 3 5 5 4.0 2 3 4 5 2 3.2 5 3 1 4 4 3.4 1 1 1 1 1 1
 # Agent Messages 38 21 17 15 23.6 38 64 21 40 32 39 27 29 21 36 52 33

# User Messages 15 39 8 8 12 14.4 2 8 8 7 12 7.4
 # Triggered New Considerations 8 2 2 5 6.0 4 5 0 4 3 3.2 4 8 1 2 10 5.0

Duration (min) 74 32 42 56 55.5 92 89 59 99 70 81.7 37 47 31 43 55 42.5 53 37 63 83 59 59.0
Normalized Message Frequency 0.5
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Figure 3: Plot showing the design outcome scores between
agent-supported groups and no support.

Figure 4: Overview of engine bracket designs created by par-
ticipants grouped by quality score (1–5). White IDs indicate
participants from the No Support group (all one point).

compared to participants with no support who had an average
outcomes score of 𝐿 = 1.0 (𝑀𝑁 = 0.0). All participants in the No
Support group incorrectly speci$ed the bracket’s load case, and
consequently, no $nal design passed the structural analysis (see
designs with white labels in Figure 4). Additionally, brackets cre-
ated in the No Support group had inaccurately speci$ed obstacle
geometry, resulting in infeasible fastener clearances or material
exceeding the required package size. These low-quality outcomes
match our prior study’s results in the same unsupported task [42].

In contrast, while the outcome quality varied within and across
the agent-supported groups, the majority of supported designers
created brackets that passed the structural analysis and had feasible
fastener clearances while staying within the required space limita-
tions. Between supported groups, the average design score varied
slightly, with SocratAIs-supported users having the highest number
of designs ful$lling the load and spatial requirements. While the
small sample size per group prevents us from drawing conclusions

about statistically signi$cant di%erences between the support con-
ditions, the consistent gap between supported and unsupported
users points to clear bene$ts of having agent support.

6.1.2 Comparison of Agent Message Frequency and Impact (across
conditions). In terms of number of messages, agents sent be-
tween 15 and 64 messages per session, with the highest group
average being 𝐿 = 39(𝑀𝑁 = 15.8) in the HephAIstus group, 𝐿 =
33(𝑀𝑁 = 11.9) in the Expert-Freeform group, and𝐿 = 23.6(𝑀𝑁 = 9.3)
in the SocratAIs group (see Table 2). However, these counts of the
number of messages sent by HephAIstus and Expert-Freeform also
include responses to user-initiated queries and therefore are natu-
rally higher than for the SocratAIs group. To gain a normalized
comparison of message frequency between conditions, we
calculated the number of messages initiated by the agents divided
by the session duration (agent-initiated messages/session duration),
which revealed a similar message frequency perminute across agent
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Figure 5: Plot illustrating the total number of messages per
support topic category and agent type (unsaturated colored
bars) and the percentage of observable impactful messages
that triggered observable new considerations (saturated ar-
eas).

groups of 𝐿 = 0.4(𝑀𝑁 = 0.15) for SocratAIs, 𝐿 = 0.2(𝑀𝑁 = 0.03)
for HephAIstus, and𝐿 = 0.5(𝑀𝑁 = 0.14) for Expert-Freeform.

Regarding the messages’ impact on the design process, the
number of messages that triggered observable new considerations
(i.e., impactful messages, as de$ned in 5.5.2) ranged from zero to
13, with means ranging between 𝐿 = 6.0(𝑀𝑁 = 4.6) SocratAIs,
𝐿 = 5.0(𝑀𝑁 = 3.9) Expert-Freeform, and 𝐿 = 3.2(𝑀𝑁 = 1.9) Hep-
hAIstus. Interestingly, although the HephAIstus group had fewer
messages that triggered observable new considerations compared to
the other two groups, their $nal design outcomes were comparable.
This suggests that the planning and sketching activities prompted
by the HephAIstus agent may have supported productive design
reasoning, even when fewer individual messages were coded as
impactful.

Analyzing the messages’ topics across all agent groups,
most agent messages concerned intent formulation and problem
exploration in the Loads, Obstacle Geometry and DFM categories
followed by messages supporting Evaluation (see Figure 5). Fur-
ther analyzing the messages’ topics in terms of their impact on
considering new design-relevant aspects, the highest number of
impacts had messages supporting intent formulation and problem
exploration: Obstacle Geometry (between 32% to 46% across groups)
and Loads (41% SocratAIs and 33% Expert-Freeform).

In terms of the contrast between the number of messages
and impact on design considerations, agents varied drastically
between the support aim topics: HephAIstus’ Loads and DFM cat-
egories had only half or a third of the impact (18% and 5%) as
SocratAIs while having a similar or larger number of total messages.
Similarly, the Expert-Freeform’s messages supporting Evaluating
had only half of the impact (8%) as the other support agents, while
having a similar number of total messages. In contrast, for the
Obstacle Geometry and Evaluating categories, messages in the Hep-
hAIstus group had the highest consideration impact while having

the lowest number of messages compared to the other groups (46%
and 29%).

6.1.3 SocratAIs’ E"ects on the Design Process.
A) User-Agent Interaction Dynamics: Overall, participants
paused their think-aloud verbalizations when listening to agent
messages (118/118 questions). However, depending on the user’s sit-
uation, they responded di%erently: immediately responding to the
agent’s questions by giving an answer (61/118 questions); $nishing
their line of thought and sub-task before replying (28/118); pausing
to think and re!ect silently before verbally replying (13/118); or
directly responded with simple acknowledgments after thinking
for a while in silence, such as "Yeah, you are right," or "That’s a
good point," even if the message was not a direct suggestion but
an open-ended question (11/118); or providing no response (5/118).
Some participants (2/5) asked the agent a question at the beginning
of the session, but they stopped asking the agent more questions
afterward, recognizing that it would not provide an answer but
reply to user requests only with questions.

B) Agent Impact on Overcoming GenAI-Related Challenges:
SocratAIs had mixed impacts on helping designers overcome
design challenges across participant sessions (see example
timelines in Figure 6 and Appendix Figure 7 for all sessions). In
some sessions (2/5), agent messages had an observable strong im-
pact on helping designers overcome design challenges (S2, S5).
Meanwhile, in other sessions (2/5), we could only observe weak
evidence of impact, where some agent messages had a positive
impact, but overall, designers were unable to overcome most major
challenges (S1, S3). In one session (S4), the designer created feasible
outcomes without facing major challenges or showing observable
agent impact, but SocratAIs helped them to consider additional
design-task-related factors.

C) SocratAIs’ Positive E$ects:
Inmost sessions (S2, S3, S4, S5), re!ective agent questions helped
users with more precise intent formulation and problem ex-
ploration. For example, an agent question probing re!ection on
potential additional shape requirements of the part helped S5 think
through the part’s clearance requirements and consider and specify
additional important details, leading to a feasible bracket design:
SocratAIs: When specifying the bolt clearances,

how do these impact the assembly and

servicing of the bracket?

S5: [Looks at the preview simulation] So

this part won’t be serviceable [...]

you’d need enough clearance for the

socket. So I will go back to edit

model...! [user adds more obstacle

geometry].

(see also timeline S5 in Figure 6). Later, S5 re!ected on the helpful-
ness of the agent’s message: "It was asking something about how
the obstacle geometry a"ects the serviceability of the part. That was
basically telling me that I needed to leave some clearance for tools
and for maintenance. That was very helpful" (S5).

We also noticed in several cases that questions were espe-
cially e$ective in helping designers formulate intent and specify
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is also what you sketched in your diagram, 
right?
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body diagram it looks 
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engine is acting 
sideways. However, 
typically the weight 
of the engine is a 
downward force.
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horizontal force on the engine 
connection points [...] Typically, 
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Figure 6: Timeline excerpts visualizing participant and agent interactions throughout the design task; timelines are divided
into lanes, each showing (in)correct GenAI input speci"cations (diamond shapes) for (1) forces, (2) constraints, (3) bolt and, (4)
dampener clearances, (5) bounding box (from top to bottom); black and orange vertical lines represent exchanged agent and
user messages with purple and black triangles indicating an observable impact on the design process.

the design problem more accurately when prompting users to
mentally simulate the real-world aspects of the bracket. For
example, S3 had mistakenly modeled the load case reversed to
the real-world situation ("!ipped" load case), causing the solver to
build a structurally unstable bracket. An agent question prompting
them to re!ect on the part’s function from a real-world perspective
(Which side of the bracket is holding the engine weight?

The bolt connections or the dampener connection side?)
helped the user update their mental model and load case.

In two sessions (S2, S5), re!ective questions during the pre-
view and outcome evaluation phases helped designers better
evaluate and correct faulty designs. For example, S2 generated
brackets based on incorrectly speci$ed loads (forces and constraints
assigned to the wrong sides). While evaluating the design, the user
noticed the structurally weak parts but was unsure about the cause.
An agent question probing deeper thought about the GenAI solver’s
mechanism caused the designer to realize their !awedmental model
and correct the load speci$cation:

SocratAIs: What might be the reasons why the

solver generated the shapes this way?

S2: [user thinks] Yeah, because it did

not consider building material between

these three [bolt connections] ...

maybe because of the forces... [user

checks forces again] It should be

acting downward based on the weight

of the engine [user corrects load

case].

For con"dent users, questions helped in problem explo-
ration by considering additional design factors.

In one session, S4 did not encounter major challenges, and while
the agents also asked similar questions as in the other sessions,
these also had no observable impact on supporting critical cognitive
challenges. However, agent questions (such as "Considering the

engine’s environment, what alternative or additional

assumptions might we make about the load cases?") helped
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the user to consider additional relevant factors, such as suitable
materials for the bracket’s maritime environment or additional
forces resulting from ship movements. Later, S4 re!ected in the
interview: "I think it was pretty useful [...] it prompted me about the
assumptions about the loading. And I was like: ’oh yeah, this is on
a ship, so it has to survive lateral loads and not just ground loads’." (S4)

D) SocratAIs’ Negative E$ects:
In one session (S3), repeated questioning ampli"ed cognitive
o$loading, leading to !awed results. At $rst, SocratAIs’ ques-
tions during the initial setup phase helped S3 correct their overcon-
strained load case. However, a later question (What would happen

if the load cases were set up incorrectly?) made them
doubt their initially correctly speci$ed load case setting and change
it for the worse (see S3 in Figure 6).

In another case, questions were less impactful in correcting
a user’s solidi"ed wrong assumptions. S1 had incorrectly set
up a load case with $xed constraints and forces assigned to the
same geometry, which would cancel out the impact of the force
on the bracket’s structure in the solver. An agent question (Can
you walk me through your intention of assigning a force

and a fixed constraint to the same geometry?) caused S1
to provide an explanation of their reasoning, eliciting their incor-
rect assumptions. But, instead of realizing misconceptions, their
explanations reinforced their assumptions, preventing them from
correcting issues.

6.1.4 HephAIstus’ E"ects on the Design Process.
A) User-Agent Interaction Dynamics:
Besides proactive support, HephAIstus also responded to user re-
quests like a voice-based chat assistant such as Alexa or Siri, and
users addressed the agent between 8 to 39 (M=14.4) times per
session (see Table 2 and orange vertical lines in Figures 6 and
7). These user-initiated requests included asking the agent about
manufacturing-related facts, such as material properties, or asking
for help with load case-related tasks, such as calculating forces.
Some users requested con$rmation or feedback from the agent on
the design process ("Am I missing anything, agent?") or requested
guidance ("Ok, what’s next?"). Overall, these sessions were charac-
terized by phases of active back-and-forth conversations between
the user and agent, as apparent from the clusters of dense orange
and black vertical lines in the event timelines in Figures 6 and 7.
The proactive messages initiated by the agent included suggestions
regarding Fusion360 operation (such as speci$c tools within the
Generative Design extension) and overcoming design challenges
(such as reminding users to use the preview or pointing out mis-
matches between the design brief and their setup).

B) Agent Impact on Overcoming GenAI-Related Challenges:
Overall, we found that HephAIstus had mixed impacts on help-
ing designers overcome design challenges across participant
sessions. In 1/5 sessions, the agent messages had an observable
strong impact on helping designers overcome design challenges
(H4), while in 3/5 sessions, weak impacts on overcoming design
challenges were observable (H1, H2, H5). In 1/5 sessions, a designer
created almost feasible outcomes without facing major challenges
or observable agent impact (H3), but it was clearly observable that

the agent helped the user operate the software more e%ectively.

C) HephAIstus’ Positive E$ects:
The agent-provided sketching board helped some designers
in loads-related problem speci"cation and intent formula-
tion. When the agent prompted designers to explain the bracket’s
load case by sketching a free-body diagram (FBD) and sharing a link
to a prepared drawing board, all users followed the link and used
the board to sketch out diagrams while verbalizing their thoughts
(see blue triangles and highlighted passages in Figure 6 and 7 and
example board in Appendix). In several cases, the sketched free-
body diagram served as a conversational anchor and reference point
between the user and the agent. For example, while H4 had $rst
sketched an FBD with feasible load cases, they then incorrectly
speci$ed the load case in Fusion360. Later, the agent pointed out
the inconsistency between the sketched FBD and the load case
setup in the CAD tool, which led the designer to correct the input
speci$cation (see H4 in Figure 6).

All designers explored the agent’s project planning sheet,
but few revisited it during the session. While 2/5 users quickly
went through the document at the beginning, 3/5 users (H2, H3,
H5) spent between 3–10 minutes in the document, utilizing its
provided structure to talk through, re!ect on and plan the design
process step by step before starting to work in Fusion360 (see
yellow triangles and highlighted passages in Figure 6 and 7). For
example, the planning sheet supported H5 in re!ecting on and
exploring suitable material options while using the document to
add notes about di%erent material characteristics (see H5 in Figure
6). However, only two users revisited the document later in the
session (H4, H5).

We also observed that in many cases, proactive agent sug-
gestions reminded designers about overlooked steps, unin-
tentional execution errors (slips), or software features. For
example, the agent reminded H2 to run a preview simulation to
better assess bolt clearances before starting the solver (You might

run a preview simulation at a later point to evaluate

the clearances before starting the solver). This message
led H2 to run a preview and realize insu#cient bolt clearance.

D) HephAIstus’ Negative E$ects:
While 52% of agent messages had an observable impact on help-
ing the user work on the task and operating the software (101/196
messages, see black triangles in Figure 6), only a fraction (0.06%)
directly helped overcome cognitive design challenges by consid-
ering new design-task relevant aspects (16/196 messages, purple
triangles in Figure 7). We also observed that directly pointing
out inconsistencies in the users’ setup only helped some
users correct existing issues. For example, in two cases (H1, H5),
designers repeatedly failed to correct ill-de$ned load case setups
despite the agent directly pointing these out and providing concrete
suggestions for correcting them (see H5 in Figure 6). In those situ-
ations, participants decided not to follow the agent’s suggestions
and instead followed their own (partially incorrect) intuition.
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6.1.5 Expert-Freefrom Observed Support Strategies.
From analyzing the session videos and post-task interviews with

the expert facilitators, we identi$ed several support strategies that
helped designers similar to our support agent probes.

We observed that experts frequently supported designerly
thinking and metacognition while also highlighting over-
looked design issues to guide users. Similar to HephAIstus, ex-
perts proactively highlighted potential issues, such as missing or
misrepresented GenAI parameters, to ensure critical considerations
were addressed early.

Additionally, we observed that some experts used a question-
asking strategy to support users in intent formulation, problem
exploration, and outcome evaluation similar to SocratAIs.

Some experts also deliberately delayed messages when the
user moved on to a di%erent sub-task too quickly and waited to
reintroduce the topic later at a more opportune moment (see E1 in
Figure 6).

Lastly, we observed that experts also frequently supported
users in navigating CAD software features, helping them by
o%ering guidance on Generative Design functions, recommending
work!ow optimizations, helping with calculations such as load dis-
tribution, and providing help to locate tools and options as needed.

6.2 Perceived bene"ts and challenges of
metacognitive support agents (RQ2)

Overall, participants appreciated the support from the agents. S2
stated that "it’s doing a good job [...] by assisting you throughout the
whole design work" and H1 noted a perceived e#ciency gain: "I feel
like without [the agent], [...] it would have de!nitely taken a longer
amount of time." Besides positive aspects, participants highlighted
trade-o%s and challenges, which we present in the following sec-
tions, organized around the di%erent support strategies and general
agent interactions.

6.2.1 User Feedback on SocratAIs (#estion-Asking).
Participants consistently found the agents’ questions valu-

able, particularly those that prompted re!ection on key de-
sign aspects, such as load cases and clearances. These questions
helped re$ne GenAI input speci$cations by encouraging them to
reconsider functional details and correct initial assumptions, as one
participant noted, “The questions [...] helped me re#ect and go back
over my train of thought and see, ‘Am I missing something? Does this
look like I’m doing what I’m supposed to do?’” (S5).

Participants also reported that questions encouraged them to
slow down and critically evaluate their thinking, much like a pro-
fessor would in a one-on-one setting, as S1 explained: "when [..]
you’re just sitting down designing by yourself, you don’t often run
through those things. So having someone to stop you and say, ’Why
do you think that works?’ is a good check every now and then" (S1).

Some users found agent questions redundant but preferred
them over missing important steps. For example, one partic-
ipant noted that while "25% of the questions actually helped," the
rest pulled their attention away from the current task (S1). Others
mentioned that the agents sometimes asked questions about actions
they were already performing, which felt unnecessary as they were

already thinking through those steps. However, participants ac-
knowledged that redundancy was preferable to missing something
important and found the frequency of questions appropriate.

Some found the questions more useful for problem explo-
ration and intent formulation: "It did a good job [during] the
initial part of the setting up of the design" (S3). Others saw more
bene"t in supporting outcome evaluation, particularly when
analyzing and comparing designs: "[Questions during outcome eval-
uation phase were more] valuable because when you’re comparing
this many designs, it’s good to be reminded of what’s most important
to compare and prioritize" (S2).

6.2.2 User Feedback on HephAIstus (Planning, Sketching, with Sug-
gestions).

The agent-provided project planning sheet was generally
perceived as helpful, giving users a structured way to approach
their tasks and a document to guide their process, as this participant
stated: "To show you an actual work plan from the design to the
actual fabrication and production of the piece is good. [It helps you
to] separate [the design process] into di"erent steps and how we’re
going to work from here" (H2).

Designers found that sketching helped themvisually think
through the design problem: "Sketching a free body diagram was
de!nitely helpful. I mean, it was just good to see before I had set it up in
Fusion, sort of my plan for where the loads and constraints were gonna
go" (H3). Several participants suggested that the sketching feature
could be improved by making it more interactive—for example, by
providing real-time calculations, augmenting sketches with force
vectors, and o%ering a library of example diagrams—to support
thinking through a part’s design requirements.

Many participants valued the agent’s proactive sugges-
tions, and when the agent pointed out possible inconsisten-
cies in their load speci"cations, as H1 described: "I wasn’t sure
why [the solver] was generating so thin [parts] and having the agent
explain to me, ’hey, it’s probably because of the constraints that you
set, you have canceling loads, you should not do that.’ That was good
feedback to modify the constraints" (H1).

Designers also liked when HephAIstus helped them catch
slips and correct mismatches in real-time. For example, one
user appreciated a hint that pointed out a mismatch between the
force requirements in the design brief and the load setup: “I thought
it was extremely helpful. I [mis]read the instructions with the weight
capacity [...] I’m glad I received a prompt to make sure that the weight
distribution was accurate because it knew there was a di"erence
between the weight the bracket was supposed to hold and the engine’s
total weight. I was impressed that the agent provided me that prompt
to check and make that design change” (H1).

Additionally, participants also found the agent more e#-
cient than searching online or sifting through video tutorials
for answers. Being able to ask the agent questions directly about
speci$c software functions or design issues saved time and allowed
them to stay focused on the task without interrupting their work-
!ow: "I didn’t have to stop what I was doing [...] to go to Google and
!nd information" (H3).

The fact that the agent would also annotate the screen and
highlight relevant interface elements was widely appreciated
for reducing the need to search for tool functions manually,

1257



Exploring the Potential of Metacognitive Support Agents for Human-AI Co-Creation DIS ’25, July 05–09, 2025, Funchal, Portugal

as one participant noted: “when I had doubts about speci!c functions
in Fusion, I asked the agent and it was very helpful in that. And the
fact that it would highlight the word to click, that was very useful”
(H2).

6.2.3 Reflections and Suggestions of the Expert-Freeform Wizards.
In the post-task wizard interview (after supporting a designer),

the task experts re!ected on their support strategies and challenges.
Some experts emphasized the di$erence between operating
Fusion360 and thinking through design problems, underscor-
ing that while both of these tasks are equally important, they
often require two distinct "mindsets": "I was thinking of it from
a ’how do I use Fusion’ standpoint. [But it’s ] kind of like two parts
of the brain: One is like, ’I know where the buttons are, I know the
work#ow,’ and there is like, really creative problem-solving" (Expert
4).

Furthermore, some also suggested that agent-initiated “design
reviews” during outcome evaluation could help users in crit-
ical evaluation of GenAI outcomes. Similarly, others suggested
to introducing deliberate "checkpoints" or re!ection phases
between design task steps (e.g., when the user transitions from
specifying loads to obstacle geometry), which could allow for better
sca%olding of (metacognitive) support throughout the process.

Several experts also saw the potential to pre-structurework-
!ows by o$ering early guidance on problem exploration and
setting up generative design inputs. Some highlighted the value
of “preemptive” planning activities, similar to HephAIstus’ planning
sheet—suggesting that preparing a clear design plan before switch-
ing to the GenAI tool could improve the overall design process.

Some experts deliberately focused on supporting users in
outcome evaluation and also suggested that designers run a solver
preview early to obtain visual feedback, helping users quickly assess
if their setup was correct. Another observed recurring strategy was
that during outcome evaluation, Expert-Freeform agents suggested
looking back to realize !awed load speci$cations, as this expert
described in the interview: "If we get really hefty results like blocky
stu", then as the agent, I can say, ’Do these parts seem over-designed?
Let’s look back at our load cases!’ And then we can recognize, ’okay,
we applied that load to the full load to every entity’" (Expert 1).

Lastly, experts also suggested instead of directly speaking agent
messages, to annotate screen elements to signal available feed-
back from the agent, for example, by circling critical parts, to
provide users opportunities to initiate a conversation with the agent
when desired by clicking on these highlighted regions.

6.2.4 Feedback on General Interactions With Agent Probes . Here
we summarize participants’ feedback on general aspects of interact-
ing with the support agents. Participants generally appreciated
the voice modality of the agent, "nding it faster and more
e#cient than typing, as H2 described, "talking is more time e$-
cient because in chat I’ll !rst have to explain the issue and it will take
longer and be less clear" (H2).

Others highlighted the bene"t of voice-based interactions
for complex tasks that required creative or visual exploration:
"In a software like this, I could de!nitely see use in [voice]. Text can be
convenient, [but] youmight miss it. Having a voice is helpful [for] any-
thing that requires an exploratory or creative process" (H1). However,
some users noted that voice interaction could be impractical in

shared or public workspaces, such as o#ces or labs, and would
prefer an additional text-based alternative in such environments.

Users also shared di$ering opinions about the overall ben-
e"ts of the question-asking and support suggestion strategies.
Designers in the SocratAIs group generally valued open-ended ques-
tions rather than providing direct answers, as it encouraged them
to think critically about their design decisions and allowed for !ex-
ibility in their approach, as S5 shared: "I don’t think it should have
pulled me straight up the answer. I think it was better to tell me, ’Hey,
you should think about this,’ because not every part is going to be
maintained the same way or serviced the same way [...] By asking
you a more open-ended question, it pointed you in a direction, but
it also left open the possibility to ignore it" (S5). However, a few
users also suggested thatmore direct educational sca$olding
with explanations could be more helpful for less experienced
users, while other, more experienced users could prefer shorter
prompts to ensure that their work!ow stayed on track. Some par-
ticipants in the HephAIstus group also emphasized that to fully rely
on the agent, they would need to trust its understanding of complex
design contexts and ensure that its recommendations are accurate,
especially for critical engineering tasks.

7 Discussion
In the following sections, we discuss our $ndings and their impli-
cations for metacognitive design support systems and agent-based
CAD support while highlighting key learnings, design considera-
tions, and open questions for future GenAI design support systems
(see Table 3).

7.1 Toward Metacognitive Design Support
Systems

Our $ndings indicate that agent-facilitated metacognitive support
can play a positive role in helping designers overcome the cognitive
challenges of GenAI work!ows: Designers receiving some form of
support often had improved design outcomes compared to those
without assistance10. In our exploratory prototyping study, we
categorized support strategies into distinct agent probes to reveal
nuanced bene$ts and tradeo%s, but also saw that none of our agents
served as a one-size-$ts-all solution. This suggests that combining
multiple strategies may ultimately prove more e"ective in practice,
and future work should explore systems with blended approaches.

Below we re!ect on the $ndings of this study and highlight
design considerations for future metacognitive GenAI support sys-
tems (Table 3). Regarding speci$c metacognitive support strate-
gies, our $ndings indicate that (A1) cueing users with thought-
provoking open-ended questions can help with intent formu-
lation, problem exploration, and outcome evaluation, lead-
ing to improved AI-generated outcomes (see 6.1.2—6.1.3, 6.1.5).
These $ndings align with prior evidence on the crucial role of ques-
tions within design processes [19, 39, 79]. Similar to other recent
work [30, 74], our $ndings also emphasize AI agents’ possible role
as facilitators that can stimulate users’ critical thinking, which

10Our result in the unsupported group aligns with previous $ndings using the same
task with a similar population [42], and statistical tests also showed no signi$cant
di%erences in population characteristics between supported and unsupported groups
in our study.
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Table 3: Overview of design considerations and key learnings.

Design Considerations / Key Learnings Seen in

Opportunities for agent-basedmetacognitive support

A1 Cueing users with thought-provoking open-ended questions can help with intent formulation,
problem exploration, and outcome evaluation in GenAI-assisted design tasks.

6.1.2, 6.1.3,
6.1.5

A2 Prompting mental simulations through questions and sketching can assist designers in
thinking through design problems and more accurately formulating intents and specifying GenAI
model inputs (supporting intent formulation and problem exploration).

6.1.3, 6.1.4

A3 O%ering metacognitive support in key moments of GenAI-based design processes can enhance
cognitive engagement, for example, by o%ering users agent-driven “design review sessions”
during part evaluation or introducing dedicated "re!ection checkpoints" when transitioning
between subtasks.

6.1.3, 6.2.3

A4 Giving users control over the type of metacognitive support depending on their needs and
experience level.

6.2.4

A5 Providing designers custom-generated user-editable design checklists to support planning
and re!ection of design decisions.

6.1.4, 6.2.2

Opportunities for agent-based CAD support

B1 O%ering suggestions for design decision and tool operation in combination withmetacogni-
tive support to help improve users’ tool !uency and overcome cognitive GenAI work!ow
challenges.

6.1.5, 6.2.3

B2 Enabling users to verbally request support from agents can help to maintain focus and reduce
context-switching in complex and visual-heavy CAD tasks.

6.1.4, 6.2.2

B3 In addition to voice agent feedback, utilizing visual screen annotations and text can reduce
cognitive load.

6.2.2

B4 Agents that follow user behavior over time o%er the potential for proactively providing re-
minders, hinting at inconsistencies, and suggestions for metacognitive support, tool
operation, and design task considerations.

6.2.2, 6.1.5

B5 Visually signaling available agent feedback for users to optionally engage in can reduce task
interruptions.

6.2.3

challenges the common notion of GenAI systems as “oracles” that
only provide de$nitive (but possibly inaccurate) solutions or an-
swers. However, going further, a challenge will lie in determining
when “asking” versus “telling” the user would be most appropriate.
Further investigations could draw on principles from learning sci-
ence, suggesting metacognitive processing may only be e%ective if
preceded by adequate knowledge or initial instruction [13, 45].

Also, we saw that asking questions alone can have limitations:
In our study, questions were less e%ective at challenging ingrained
incorrect assumptions, indicating that guidance beyond question-
ing may sometimes be required, especially when users hold deep
misconceptions. Similarly, repeated questioning also presented a
dual e%ect: while it often helped users to repair !awed inputs, it
sometimes led to over-reliance, with designers thinking the AI
might know something more than them or that the AI is right,
rather than engaging in deeper re!ection. This risk of dependency
aligns with other $ndings on in-action feedback during design tasks,
where excessive guidance was observed to diminish self-re!ection
and critical evaluation [37, 107]. Future work should, therefore, ex-
plore when and how metacognitive support systems could provide
assistance without increasing automation reliance.

From a technical perspective, recent advancements in natural
language processing (NLP) have enabled automated generation of

Socratic questions for teaching math [87] or debugging [2] and
generating domain-speci$c educational questions by pre-training
LLMs [17]. Building atop such technical foundations, future re-
search should explore design task-speci$c question generation to
prompt designers’ self-re!ection and critical thinking aligned to
speci$c design domains. Furthermore, inspired by emerging process
mining techniques focused on metacognition and self-regulated
learning phases [1, 15, 108], future work could investigate ways
to further optimize systems, for example by tailoring prompts to
designers’ speci$c situational metacognitive needs, such as intent
formulation, problem exploration or outcome evaluation phases.

Regarding speci$c metacognitive strategies, our analysis indi-
cates that (A2) prompting mental simulations through ques-
tions and sketching can assist designers to think through
and more accurately formulate intents and specify GenAI
model inputs (see 6.1.3, 6.1.4). These $ndings align with previous
research on design cognition, suggesting that mental simulation
presents a vital metacognitive process in design activities [8, 9].
In addition, we saw that providing distinct support for thought
externalization and visualization through sketching (a known cog-
nitive ampli$cation strategy in design [7]) helped designers more
carefully think through input speci$cations for the GenAI solver,
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thus improving designers’ intent formulation and problem speci$-
cation. Overall, metacognitive agent support might potentially be
helpful for many design processes, whether GenAI-supported or
not. Based on these $ndings, future work should explore further
metacognitive support mechanisms relevant to design within and
outside of GenAI-assisted tasks, such as prompting mental simu-
lations through questions or guiding users in gradually sketching
and eliciting relevant input criteria.

While many questions may not have directly helped designers11,
we saw that the right re!ective question at the right time can have
a signi$cant impact on the design process. However, anticipating
and catching the right moment can be tricky, but some situations
seemed to be more opportune than others. For example, during the
GenAI preview and outcome evaluation phases, re!ective questions
helped designers in assessing and correcting generated parts by
linking back components’ structural errors to insu#ciently speci-
$ed model inputs (see 6.1.3). Likewise, some external expert wizards
and users also emphasized that support during evaluation phases
would be especially useful (see 6.2.3 and 6.2.1). Building atop this
learning, future systems could (A3) o$er users agent-driven
“design review sessions” during part evaluation (similar to
reviews in design education or professional collaborations [43, 72])
and introducing dedicated "re!ection checkpoints" between
GenAI setup steps (e.g., when the user transitions from specify-
ing loads to obstacle geometry) to better sca%old (metacognitive)
support throughout GenAI-based design processes (see 6.2.3).

Our $ndings also revealed di%erences in user preferences be-
tween more con$dent and inexperienced designers regarding ques-
tions versus suggestions (see 6.2.4), highlighting the desire for sys-
tems to give users (A4) control over the type of metacognitive
support depending on their needs and experience level.

Lastly, future metacognitive support systems could provide (A5)
custom-generated user-editable design checklists to support
planning and sca$olding of design decisions (see 6.1.4, 6.2.2).

7.2 Opportunities for Agent-based CAD Support
While our study primarily focused on supporting designers working
with GenAIwithin CAD environments, the $ndings also revealed in-
teresting insights and opportunities for designing agent-based CAD
support systems that can complement metacognitive strategies. For
example, in our study, HephAIstus—in addition to its metacognitive
planning and sketching support—had a positive impact on helping
users work on the design task and software operation. However,
HephAIstus’ suggestions helped designers less to overcome GenAI-
related cognitive challenges than SocratAIs’ questions. Especially
for supporting intent formulation and problem exploration related to
load cases, SocratAIs was twice as e%ective as HephAIstus (see Sec-
tion 6.1.2 and Figure 5), indicating that for intent formulation and
problem exploration, questions paired with planning and sketching
support might be more e%ective than suggestions. Consequently,
we conclude that (B1) metacognitive support through re!ec-
tive questions, planning, and sketching is equally crucial for
e$ectively supporting designers in GenAI tasks as providing

11On average only 6 out of 23 questions of SocratAIs’ sessions had an observable
positive impact on the design process where the designer considered a new relevant
aspect after receiving the message (see Table 2).

suggestions for design decision and tool operation 12 (see 6.1.5,
6.2.3).

Furthermore, based on the insights derived from HephAIstus and
Expert-Freeform, we see various opportunities for systems providing
real-time support for design tasks and software operation, along
with metacognitive support in CAD and GenAI design work!ows.
Notably, we see opportunities for (B2) enabling users to directly
request information and metacognitive support from agents
verbally while working on a task, which seemed to have helped
users maintain focus while reducing context-switching (see 6.1.4,
6.2.2).

Similarly, users also appraised the agent’s (B3) visual tool guid-
ance by directly highlighting relevant GUI elements (see
6.2.2). Recent NLP advancements in speech processing and syn-
thesis [68, 94], as well as the increasing ability of multimodal AI
models to visually understand and operate software GUIs [50, 71],
provide promising foundations for future research to explore such
multimodal conversational support agents further.

Additionally, by capturing and responding to user behavior, ver-
balizations, and (screen) context over time, (B4) agents can proac-
tively provide reminders, hinting at inconsistencies and sug-
gestions for metacognitive support, tool operation, and de-
sign task considerations (see 6.2.2, 6.1.5). With multimodal LLM’s
increasing context windows, such contextual longitudinal support
seems to become increasingly feasible.

Lastly, instead of support agents always directly verbalizing
their messages, future support systems could instead (B5) visually
signal available agent feedback for users to engage in if and
when desired, which could reduce task interruptions (see 6.2.3).

7.3 Limitations
We highlight the following limitations: The study followed an ex-
ploratory prototyping approach [105] that enabled us to compare
the di%erent agents’ metacognitive strategies while allowing !ex-
ibility in how support was delivered (e.g., message timing and
phrasing). As a result, our design insights are partially shaped by
the individual wizards (the $rst author and four external experts),
and repeating the study with di%erent wizards may yield slightly
di%erent outcomes. Furthermore, to analyze the impact of agents
on the design process, we used video interaction analysis to iden-
tify moments when participants visibly considered new, relevant
aspects in response to agent messages. While this yielded valuable
$ndings, future work could incorporate additional user-agent in-
teraction dynamics to further surface complementary insights. In
terms of population, our participants represent only a subset of
engineering designers. While all participants had relevant train-
ing in design and experience with 3D CAD software, many had
limited industry exposure. To address this imbalance, we included
$ve professionals with more extensive industry experience. Most of
these professional users were part of the expert-facilitated agents,
which might have biased the results. However, we disregarded this
potential bias since the observed behaviors were similar across all
supported groups. Furthermore, as the participants in our study
were self-selected, they were likely interested in or receptive to

12This is also indicated by the comparable quality of outcomes across the di%erent
agent-supported groups.

1260



DIS ’25, July 05–09, 2025, Funchal, Portugal Gmeiner et al.

GenAI systems. This openness to AI-supported work may have
in!uenced some of our $ndings. Additionally, although we aimed
to ensure the design tasks felt realistic, participants knew they
were part of a research study and that their designs wouldn’t be
produced. They might have invested more time learning the tool
and thinking through the problem to create practical designs in a
real-world setting.

8 Conclusion
While GenAI tools promise to enhance design processes, many
professionals struggle to work e%ectively with AI. Key challenges
include specifying all design criteria upfront (intent formulation)
and reduced cognitive engagement due to cognitive o"oading,
which can limit problem exploration and outcome evaluation. To
address this, we explored metacognitive support agents in a Wizard
of Oz user study. Our $ndings show that users with agent support
developed more viable designs, though outcomes varied depending
on support strategy. While designers recognized the bene$ts of
such assistance, we also uncovered trade-o%s and di%ering user
preferences. Based on these results, we highlight opportunities and
trade-o%s of metacognitive support agents and implications for AI-
based design tools. While this work explores metacognitive support
agents for GenAI-assisted mechanical part creation, the $ndings
and design considerations o%er promising avenues for research
in other AI-assisted work!ows and insights for developing new
support techniques for AI-based design applications.
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A Additional Materials

Table 4: Overview of study participants.

ID Agent
Group Age Role

MechDes
Exp.
Years

Indus.
Exp.
Years

CAD
Exp.
Years

FEA
Prof.

DFM
Prof.

B1 No Support 22 Student, MA Mechanical Engineering 3–5 0 2–4 5 2
B2 No Support 28 Student, PhD Mechanical Engineering 3–5 1–2 5+ 6 2
B3 No Support 27 Researcher, Mechanical Engineering 6–10 0 5+ 7 5
B4 No Support 23 Student, MA Mechanical Engineering 3–5 3–5 2–4 7 5
B5 No Support 39 Researcher, Mechanical Engineering 3–5 0 5+ 1 1
S1 SocratAIs 26 Student, BS Mechanical Engineering 6–10 0 5+ 4 1
S2 SocratAIs 23 Student, MS Mechanical Engineering 3–5 0 2–4 5 5
S3 SocratAIs 22 Student, MS Mechanical Engineering 1–2 1–2 2–4 4 1
S4 SocratAIs 26 Student, PhD Mechanical Engineering 6–10 1–2 5+ 1 5
S5 SocratAIs 20 Student, BA Mechanical Engineering 3–5 0 2–4 4 6
H1 Hephaistus 30 Student, PhD Mechanical Engineering 3–5 3–5 5+ 4 4
H2 Hephaistus 42 Student, PhD Mechanical Engineering 6–10 6–10 5+ 4 1
H3 Hephaistus 22 Student, BA Mechanical Engineering 1–2 1–2 2–4 3 2
H4 Hephaistus 26 Mechanical Engineer 3–5 3–5 5+ 2 2
H5 Hephaistus 21 Student, BA Mechanical Engineering 1–2 1–2 2–4 3 5
E1 Expert-Freeform 38 Mechanical Engineer 10+ 10+ 5+ 7 7
E2 Expert-Freeform 26 Mechanical Engineer 1–2 3–5 5+ 4 6
E3 Expert-Freeform 29 Mechanical Designer 10+ 3–5 5+ 5 7
E4 Expert-Freeform 29 Mechanical Engineer 6–10 6–10 5+ 5 5
E5 Expert-Freeform 23 Student, MS Mechanical Engineering 3–5 0 5+ 2 5

Table 5: Overview of demographics of Autodesk Fusion360 Generative Design experts who acted as wizards in the Expert-
Freeform condition. Fusion360 Generative Design software pro"ciency was self-rated on a 1–7 scale.

ID Age Role MechDes
Exp. Years

F360
GenDes
Prof.

F360
GenDes
Training Exp.

Paired
with

Expert 1 31 Senior Research Engineer 3 – 5 6/7 Trained customers, students, colleagues E2, E5
Expert 2 35 Sr. Research & Design Engineer 6 – 10 7/7 Taught lectures, trained colleagues E1
Expert 3 47 Principal Research Engineer 15+ 7/7 Trained customer support teams E4
Expert 4 27 Research and Design Engineer 3 – 5 6/7 Trained customers and colleagues E3
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Figure 7: Timeline plots visualizing participant and agent interactions throughout the design task; timelines are divided into
lanes, each showing (in)correct GenAI input speci"cations (diamond shapes) for (1) forces, (2) constraints, (3) bolt and, (4)
dampener clearances, (5) bounding box (from top to bottom); black and orange vertical lines represent exchanged agent and
user messages with purple and black triangles indicating an observable impact on the design process.

A.1 Wizard Guidelines
The agents SocratAIs and HephAIstus were facilitated by the $rst author, with experience in mechanical engineering, Fusion360, and
Generative Design. In some sessions, a second research team member with experience in mechanical engineering and Generative Design
was co-present to provide additional verbal support for the main wizard.

A.1.1 Guidelines for the SocratAIs and HephAIstus wizard.
The wizard of SocratAIs and HephAIstus followed these general guidelines:

1) Follow the designer’s verbalizations and screen actions and pay close attention to the task-speci$c design steps and challenges as
outlined in Section 3, such as specifying the bracket’s load cases (forces and structural constraints), modeling appropriate geometry
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for keeping bolts and dampeners free of material (obstacle geometry), de$ning DFM parameters such as materials and manufacturing
options, and also to support users in evaluating the design previews and generated outcomes.

2) Pay close attention to inconsistencies between the requirements stated in the design brief and the input parameters set by the designer.
Such requirements could be explicit (e.g., the force the bracket needs to hold) or implicit features, such as bolt clearances, which were
not explicitly mentioned in the design brief.

3) Never directly tell the participant what to do, but rather provide supportive questions, hints, or suggestions (depending on the enacted
agent type).

4) You are free to send messages whenever and how often you consider it helpful to the designer. However, pay special attention to
moments in which designers transition between design sub-tasks (such as from specifying obstacle geometry to specifying loads), as
well as when designers show hesitation or use hedging expressions (e.g., “I am unsure if...” ).

5) You are free to formulate the messages in a way you consider to be most helpful, while adhering to the agent’s support strategy (e.g.,
only asking questions).

A.1.2 Guidelines for the Expert-Freeform wizards.
The Expert-Freeform wizards (external experts not part of the research team) received fewer instructions since we wanted to observe their
natural support behavior. However, experts were told not to directly tell the participant what to do, but rather to help them work on the
design task and with the GenAI system.

A.1.3 SocratAIs Agent Introduction .
SocratAIs: Hey! I am a voice agent here to support you during the design task. I can hear what you are

saying, and I can see your screen and follow along with you while you work on the task. From

time to time, I will ask you questions that are supposed to help you think through the design

task. You can also ask me questions at any time.

A.1.4 HephAIstus.

Agent introduction:
HephAIstus : Hey! I am a voice agent here to support you during the design task. I can hear what you are

saying, and I can see your screen and follow along with you while you work on the task. Feel

free to ask me any questions, and I’ll do my best to provide you with answers. From time to time,

I’ll also chime in with tips and guidance to help you along the way.

Project Planning Activity:
HephAIstus provided metacognitive support by suggesting the user engage in a project planning activity by sharing a pre-generated text
document outlining critical project-relevant aspects with the user:

HephAIstus : Hey! I noticed you are working on designing a ship engine mounting bracket and that you are planning

to use Autodesk Fusion 360 Generative Design to explore different materials and manufacturing

options. Before you start working on the task, I suggest having a planning session together to

help you walk through the steps and design considerations in designing the bracket. What do you

think?

(waiting for confirmation from user)

HephAIstus : I created a shared doc with a high-level breakdown of the steps and design considerations to be

discussed. You can find the link in the chat.
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Planning Sheet Document:

1) Project Scope and Requirements
• De$ne the objectives of the bracket design.
• Understand the operational conditions of the ship engine.
• Identify load types (static, dynamic, thermal) and magnitudes.
• Clarify space constraints and installation considerations.

2) Material Selection
• Discuss di%erent material options (metal alloys, composites, etc.).
• Consider material properties such as strength, weight, corrosion resistance, and cost.
• Review the material performance under extreme marine conditions.

3) Manufacturing Method
• Determine feasible manufacturing methods (casting, machining, additive manufacturing, etc.).
• Evaluate the pros and cons of each method concerning the design objectives.
• Discuss generative design constraints for each manufacturing process.

4) Generative Design Parameters
• Set up load cases and boundary conditions in Fusion 360.
• De$ne the design space and apply necessary constraints and conditions.
• Choose the resolution of the generative design mesh.

5) Design Constraints and Criteria
• Set criteria for minimum safety factors.
• De$ne requirements for vibration dampening.
• Consider access for maintenance and installation.

6) Simulation and Analysis
• Plan for simulations to predict performance under various loads.
• Analyze stress distribution, deformation, and fatigue life.
• Review thermal and !uid !ow analysis if necessary.

7) Optimization Objectives
• Establish the optimization goals, such as weight reduction, strength optimization, cost e#ciency, etc.
• Discuss trade-o%s between di%erent optimization objectives.

8) Compliance and Standards
• Ensure the design meets marine industry standards and regulatory compliance.
• Consider classi$cation society requirements and certi$cations.

9) Integration with Existing Systems
• Discuss how the bracket will integrate with the ship's engine and surrounding structures.
• Plan for interfaces with other systems and parts.

10) Lifecycle Considerations
• Consider the lifecycle impacts, such as ease of manufacture, sustainability, recyclability, and end-of-life disposal.
• Maintenance.
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Free-body Diagram Sketching Activity:
The agent can suggest that the designer sketch out load case-relevant forces and constraints as a free-body diagram by sharing a link to a 2D
drawing canvas containing the side and top view of the bracket as a starting point:

HephAIstus : Can you walk me through your load cases and constraints by sketching a free-body diagram? I

shared a link to a board for you to sketch on in the chat (see Fig. 8).

Figure 8: Screenshot of the sketching board HephAIstus sent to users (with scribbles from H3 on it).

A.1.5 Expert-Freeform Agent Introduction.
Expert Agent: Hey! I am a voice agent here to support you during the design task. I can hear what you are

saying, and I can see your screen and follow along with you while you work on the task. Feel

free to ask me any questions, and I’ll do my best to provide you with answers. From time to time,

I’ll also chime in with tips and guidance to help you along the way.
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Table 6: Interview protocol with questions of the semi-structured post-task interview.

Nr Question

General Feedback on task and thinking aloud

Q1 Did you encounter any technical di culties during the design session(s) that limited your 
ability to work on the task?

Q2 How challenging was the design task of designing an engine bracket for you in general?

Q3 How did it feel to think aloud during the task? Do you think that thinking aloud impacted your 
ability to complete the task in any way?

Feedback on working with the Generative Design feature

Q4 Could you tell me what it was like to work with the Fusion 360 Generative Design feature in 
general?

Q5 Are you satisfied with the final design in general? How closely does it match the design brief?

Q6 Did you encounter any challenges in designing the engine bracket using the generative design 
feature?

Q7 Could you imagine using this tool in the future?

Q8 How much do you trust the results from the design tool?

Feedback on Support Agent

Q9 Could you tell me what it was like to work with the design support agent in general?

Q10 Do you remember situations in which you found the agent's support helpful? In which not?

Q11 What would you want the design support agent to do more of?

Q12 What would you want the design support agent to do di erently?

Q13 Would you use a tool like the design support agent in your work? Why or why not?

Q14 How did you like the frequency of messages?

Q15 How did you like the planning doc and sketching board?

Q16 In which phases did you find the support more or less helpful?

Q17 How useful did you find the questions that the agent asked you? Do you remember specific 
questions that you found helpful or unhelpful? Please explain.

Q18 Is there anything else you would like to share with us, or do you think we should know about?
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