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Abstract

Despite the potential of generative AI (GenAl) design tools to en-
hance design processes, professionals often struggle to integrate
Al into their workflows. Fundamental cognitive challenges include
the need to specify all design criteria as distinct parameters upfront
(intent formulation) and designers’ reduced cognitive involvement
in the design process due to cognitive offloading, which can lead to
insufficient problem exploration, underspecification, and limited
ability to evaluate outcomes. Motivated by these challenges, we
envision novel metacognitive support agents that assist designers
in working more reflectively with GenAlI To explore this vision,
we conducted exploratory prototyping through a Wizard of Oz
elicitation study with 20 mechanical designers probing multiple
metacognitive support strategies. We found that agent-supported
users created more feasible designs than non-supported users, with
differing impacts between support strategies. Based on these find-
ings, we discuss opportunities and tradeoffs of metacognitive sup-
port agents and considerations for future Al-based design tools.
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1 Introduction

Generative Al (GenAl) models offer increasing capabilities in sup-
porting design workflows by generating images [84], videos [48],
or complex mechanical parts [41, 102]. In mechanical design, work-
ing with AT allows designers to co-create designs that would be
extremely tedious or even infeasible without Al support, such as
reducing the weight of an electric wheelchair component [41] or
generating parts using emerging manufacturing processes [102]
with 3D geometric GenAl solvers. However, despite the growing
promise of Al design tools to augment design processes, profession-
als often struggle to effectively integrate Al into their workflows
[42, 107]. GenAl demands new (computational) workflows that re-
quire designers to work differently than they are used to or trained
in [42, 69, 91, 101]. Current GenAlI-supported workflows pose a set
of unique cognitive challenges, including:

(1) Intent Formulation: Designers have to specify all design
criteria necessary for generating feasible parts as distinct pa-
rameters upfront instead of iteratively modeling, testing, and
visualizing a part’s 3D geometry [42, 89]. This is a particular
challenge for GenAl systems with lengthy and expensive
inference times, such as complex 3D geometric solvers (e.g.,
(5]

(2) Problem Exploration: To tackle design problems suffi-
ciently, designers must thoroughly think through and con-
sider many aspects, but GenAl workflow automation can
reduce cognitive engagement and foster overreliance due
to "cognitive offloading," making problem exploration more
challenging [64, 106, 107].

(3) Outcome Evaluation: Designers are also required to evalu-
ate generated designs according to the problem, but when
their problem understanding is limited due to cognitive of-
floading, they won’t be able to effectively evaluate and refine
generated designs [91, 107].

Motivated by such cognitive challenges, we explore interaction
patterns and interfaces to support professionals in more effectively
working with Al-driven design tools. In this work, we follow an
exploratory prototyping approach [105] to explore the potential
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of voice-based agents that support designers’ metacognition [40]*
while working on a manufacturing design task in a 3D GenAI CAD
tool, where the designer specifies their goals as parameters and
geometry within a graphical CAD interface. Broadly, we ask: What
interfaces and interaction patterns can support designers in better
thinking through and formulating design problems, and evaluating
generated outcomes, when working with GenAl-based design tools?

Informed by theories and findings from human-AlI interaction,
learning sciences, and the study of design processes, we engaged in
exploratory prototyping [105] to explore a design space for metacog-
nitive support agents through three different design probes [14] and
observe how each influences designers’ processes and outcomes in
a GenAl-based design task. In this prototyping process, we used the
“Wizard of Oz” (WoZ) technique [29, 105], in which a human op-
erator controlled the agent probes in a flexible manner but within
certain probe-dependent constraints. Each probe followed a dif-
ferent support approach: (1) SocratAls asks reflective questions to
prompt deeper reflection-in-action and (2) HephAIstus prompts task
planning and diagramming supported by suggestions for design
strategies and software operation. While the first author enacted
these two agents, we also included (3) external experts in mechani-
cal and generative design from Autodesk to act as wizards in some
sessions, who we invited to provide their own interpretations of
metacognitive support strategies in a freeform manner.

Since CAD-based work is highly visual-spatial, we explore all
support agents through voice modality to reduce cognitive load.
Inspired by the concept of "think-aloud computing” [59], we prompt
designers to verbalize their thoughts while working on the design
task to foster deeper reflection-in-action and to elicit their knowl-
edge and situational intentions for the support agents.

We conducted a formative study with 20 trained mechanical en-
gineers new to working with generative Al systems. The designers
were supported by one agent probe (or received no support in a
control condition) while working on a realistic mechanical design
task in the "Generative Design" extension of the commercial CAD
software Autodesk Fusion 360 [5].

By comparing the design processes, outcome quality, and partic-
ipant post-task interviews through video interaction and thematic
analysis, we investigate the following research questions:

RQ1 How do different agent support strategies impact the design
process?

RQ2 What are the perceived benefits and challenges of metacogni-
tive support agents?

Overall, we found that agent-supported users created more fea-
sible designs than unsupported users. Most users actively engaged
with and appreciated the agent’s support in helping them think
through the design task and operate the software. We also identified
that different agent strategies had different impacts. For example,
question-asking strategies that prompted mental simulations or
visualizations through sketching helped designers with intent for-
mulation and problem exploration regarding the part’s mechanical
loads. However, we also observed that asking questions alone was
less impactful when users had solidified incorrect assumptions, and

! Metacognition refers to mental processes of thinking about one’s own thinking, en-
abling individuals to regulate and improve their cognitive strategies by reflecting on
their decisions and problem-solving approaches.
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that sometimes agent support could lead to additional overreliance.
Finally, our findings provide insight into design trade-offs and dif-
ferences in user preferences for metacognitive support agents.

We conclude by discussing design implications for future metacog-
nitive support agents for GenAl-based design tools. While our paper
explores support for mechanical design tasks, we discuss how our
findings may generalize to other GenAl design activities. In sum,
this paper makes three main contributions:

(1) Opening a design space for metacognitive think-aloud sup-
port agent interfaces for computational design tasks;

(2) Sharing empirical insights into how designers interact with
metacognitive think-aloud support interfaces in the context
of GenAl-based manufacturing design workflows;

(3) Proposing design considerations for future metacognitive
support interfaces for GenAl-assisted design tasks.

2 Related Work

2.1 Challenges of Al-Assisted Design Workflows

Many GenAlI design tools operate as black boxes—designers specify
objectives and then examine one or more generated designs. This
poses key barriers to iterative trial-and-error design workflows,
especially for GenAl systems with lengthy and expensive inference
times, such as geometric solvers (e.g., [5]). Therefore, research has
explored the design of systems that facilitate faster, more interactive
design exploration paired with computational design techniques
[23, 31, 54, 56, 66, 104]. However, recent research has also identified
several unique cognitive challenges professionals face when using
Al-based design tools:

Intent formulation: GenAl tools demand designers to specify
all design criteria required for generating feasible parts upfront,
shifting focus to careful upfront planning of design requirements
and formulating design intents in distinct parameters instead of
iteratively modeling, testing, and visualizing a part’s 3D geometry
[42, 89]. This design process demands a shift in designers’ atti-
tudes, skills, and mental processes compared with traditional (CAD
modeling) practices [69, 101].

Problem exploration: Design typically requires designers to
think carefully through many different facets (explicit and implicit)
to tackle design problems sufficiently. However, GenAl workflow
automation can foster reduced cognitive involvement in the de-
sign process and overreliance due to "cognitive offloading" [81, 91],
making it more challenging to explore and define design problems
adequately [64, 106, 107]. For example, empirical research found
that designers in geometric "traditional” modeling environments en-
gaged more in semantic-level actions, leading to unexpected discov-
eries and diverse design solutions. In contrast, those in parametric
environments followed a top-down process with fewer exploration
and goal changes [18].

Outcome evaluation: Designers need to assess generated de-
signs in relation to the design problem at hand. However, if their
understanding of the problem is limited due to Al-imposed cogni-
tive offloading, their capacity to effectively evaluate and refine the
generated designs will also be constrained [91, 107].

Motivated by such challenges, recent research highlights the
need to rethink parametric design tools and develop systems that
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better support designers in parametric modeling and computa-
tional thinking [98]. Similarly, other recent work has emphasized
better support for the metacognitive challenges imposed by GenAI-
based workflows [91]. Metacognition [40] involves reflecting on and
regulating one’s own thinking to improve decision-making and
problem-solving strategies. For GenAl workflows, Tankelevitch et
al. [91] highlight three critical phases that demand more explicit
metacognitive support: (1) "prompting” GenAlI (formulating inputs),
(2) evaluating GenAlI outputs, and (3) deciding on if and how to
incorporate GenAl into one’s workflow best.

Motivated and building atop prior work identifying (meta)cognitive
challenges of GenAl-assisted design workflows, we explore novel
support interfaces to help users work better with GenAlI-assisted
workflows. In the next sections, we will review metacognitive sup-
port strategies from learning science and design, and then highlight
the role of asking questions in design and problem-solving as a
distinct metacognitive support strategy.

2.2 Metacognitive (Design) Support Strategies

In the cognitive and learning sciences, metacognitive support has
been shown to play a crucial role in enhancing problem-solving
abilities by enabling individuals to reflect upon and actively regulate
their own cognitive processes [45, 60]. Self-regulated learning (SRL)
is closely tied to metacognition and involves studying and support-
ing learners’ ability to manage and direct their learning processes
through metacognitive skills like planning, monitoring, and evalu-
ating their actions, typically occurring in distinct cyclical phases
[10, 47, 73, 97]. Prior research has identified effective metacognitive
support strategies such as "self-explanation”, where prompting in-
dividuals to articulate their reasoning and underlying assumptions
to themselves supports them in clarifying and organizing their own
understanding [96]. This process, often in combination with think-
aloud-style verbalizations of thoughts, promotes the integration of
new information with prior knowledge, fostering critical thinking
and cognitive engagement in a task [45, 46]. Research has studied
metacognitive support strategies and interactive systems to pro-
mote reflection and problem-solving in various contexts, including
software debugging [32, 57, 61, 75, 90], data analysis [36], learning
computational skills [22] and exploratory learning [21].

Design research increasingly emphasizes the central role of
metacognitive monitoring and control processes for design activ-
ities. For example, Ball and Christensen [9, p. 49] explicitly draw
parallels between metacognitive processes and prior design the-
ories, such as the role of "reflection in and on action” in design
practice [35, 85, 86]. Furthermore, research has found evidence for
the importance of metacognition for learning and mastering design
skills [53, 62, 76, 78]. Building on this understanding of metacog-
nition in design, the following section explores how questioning
strategies can foster metacognitive engagement, critical thinking,
and deeper cognitive exploration while supporting designers in
tackling complex design challenges.
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2.3 The Role of Asking Questions in Design and
Problem-Solving

Questioning can support thinking and foster deeper cognitive en-
gagement during problem-solving. In educational contexts, deep-
level reasoning questions (e.g., questions probing underlying princi-
ples or causal relationships) or inquiry-based prompts (e.g., prompts
encouraging student-led questioning and investigation) have been
shown to enhance learning outcomes by stimulating critical think-
ing and deeper exploration of complex concepts [12, 27, 33, 44, 92].
A specific strategy is the Socratic Method, which employs guided
open-ended questioning to stimulate critical thinking and reflec-
tion [38]. This approach has been used effectively across various
fields, such as in healthcare education to develop critical thinking
skills among students [49], programming to aid novice debuggers
in identifying and resolving code issues [2, 3, 57, 100], supporting
academic career development [74], and in creativity research to
foster co-creativity between humans [88].

Similarly, asking questions plays a central role in guiding de-
signers’ thinking in exploring and refining ideas by challenging
their assumptions as they work through complex, evolving prob-
lems [39]. When tackling ill-defined problems, designers must nav-
igate the solution and problem spaces simultaneously, often using
abductive reasoning to reframe problems and synthesize new in-
sights and possibilities [28, 34, 58]. Research analyzing design team
communication has shown the crucial role of question asking for
problem-solving [4], idea generation [26], design reviews [19], and
design studio education [51]. Other work has explored ways of
supporting designers through targeted questioning to enhance the
design process by helping them articulate product requirements
[99], stimulate idea generation [83], and highlight awareness of
bias in designerly thinking [79].

Eris developed a taxonomy of questions asked during design
teamwork [39], building on prior taxonomies by Lehnert [65] and
Graesser [44]. Eris’s taxonomy outlines three types of questions
for design: 1. Low-level questions for clarification, 2. Deep reasoning
questions for causal explanations, and 3. Generative design questions
for exploring alternative solutions. Research showed that student
teams asking more Deep Reasoning and Generative Design ques-
tions achieved more innovative design outcomes [39].

2.4 Multimodal and Collaborative CAD Systems

Current computer-aided design (CAD) tools primarily rely on WIMP
(Windows, Icons, Menus, Pointer) interfaces, using pointer move-
ments and keystrokes as input [70] to modify geometry in visual-
spatial interfaces. However, multimodal inputs for CAD work, such
as gestures or speech in combination with WIMP [55], can offer
advantages, as experimentally demonstrated by Ren et al. [80]. This
combination—leveraging the split-attention [6] and the modality
effect [20]—allows users to process visual and auditory informa-
tion simultaneously, which can reduce cognitive load and enhance
performance in complex tasks.

Similarly, user research studies often utilize the concurrent think-
aloud protocol [63] to understand participants’ thoughts and actions
by encouraging them to speak about their thoughts as they perform
a task. Concurrent verbalization can offer rich insights into users’
knowledge and intents while only slightly increasing cognitive
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| Cognitive Challenges of GenAl-supported Workflow '
To tackle design problems sufficiently, designers must
thoroughly think through and consider many
aspects, but GenAl workflow automation can reduce
cognitive engagement and foster overreliance due to

“cognitive offloading,” making problem exploration
more challenging [64, 105, 108].

b

Outcome Evaluation

Intent Formulation Problem Exploration

Designers have to specify all design criteria
necessary for generating feasible parts as distinct
parameters upfront instead of iteratively modeling,
testing, and visualizing a part's 3D geometry [42].

Designers are also required to evaluate generated designs
according to the problem, but when their problem
understanding is limited due to cognitive offloading, they
won't be able to effectively evaluate and refine generated
designs [91, 106].

Figure 1: Overview of the Fusion 360 design task (A-E), workflow (F-G), common user mistakes (H), and cognitive challenges (I).
The task involves (A) designing an engine bracket that connects the engine to a damper. (B) A starter file containing connection
holes and bounding dimensions is provided to the users to initiate the design in (C) Fusion 360. The user is prompted to create
(D) a viable design while minimizing weight and avoiding (E) infeasible features. (F-G) The workflow involves six steps, and
based on the Al system’s solutions, the user may iterate the design by adjusting the design constraints and criteria to produce
new solutions. Task taken from [42]. (Image A: © Rolls-Royce Power Systems)

load during complex tasks [95], such as annotating existing CAD
models through speech [77]. Inspired by the think-aloud protocol,
Krosnick et al. [59] propose the interaction paradigm of think-
aloud computing where computer users are encouraged to speak
while working on a CAD design task to transcribe and capture rich
knowledge with relatively low effort in real-time.

Other empirical research shows how conversation and real-time
support during CAD sessions can improve problem-solving. For
example, revealing unique communication patterns that make multi-
disciplinary engineering design work more effective [82] or systems
for supporting CAD users by connecting them with human CAD ex-
perts in real-time [25, 52] or automatically provide context-sensitive
learning resources [67].

In this study, we aim to explore voice-based agent support in-

3 Case Study: Challenges of AI-Assisted
Mechanical Design Tasks in Fusion360
Generative Design

Our work aims to develop support agents that help designers over-
come the cognitive challenges they face when working with AI-
assisted design tools. We replicate our previous study of mechanical
designers working with Al assistance [42], which found that de-
signers working with Al for the first time often failed to create
feasible mechanical parts despite being familiar with the design
tasks and CAD tools in general. In that study, designers worked
with the "Generative Design" feature of Autodesk Fusion360 [5],
which helps designers create lightweight and strong parts through
topology optimization and genetic algorithms [66]. In the task (Fig-

terfaces and think-aloud user interactions for augmenting GenAlI-
driven CAD workflows by enabling low-effort continuous speech-
based user intent and context-elicitation.
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ure 1A-E), the designer is asked to design a material-efficient and
structurally sound engine mounting bracket by considering the
optimal manufacturing and material combination from a large pool
of possibilities. While designing mounting brackets is common for
mechanical engineers, optimizing designs for different manufactur-
ing methods and materials is difficult without simulation and Al
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Table 1: Overview of agent probes’ support strategies and behaviors.

SocratAls HephAlIstus Expert Freeform
. . . . . . . . Freeform: Determined by
Main Strategies Asking Questions Planning, Sketching, with Suggestions Invited Experts
. . Providing planning and sketching support
Support Asking questlo.ns to prompt [7, 42] while supporting these activities by Determined by invited expert
A self-explanation and . . R . .
Principles suggesting design strategies and acting as wizard

reflection [45, 96].

workflows [25, 52].

Response to

User Queries Responding with questions only

Answering factual user questions

Determined by wizard

Modalities Voice

Voice, link sharing, screen annotations

Voice, screen annotations

Timing and

Frequency of Determined by wizard

Determined by wizard

Determined by wizard

Messages
Wizard Generative Design experts
Enacted by Researcher (first author) Researcher (first author) from Autodesk
Example “What might be reasons why “Can you walk me through your load cases

the GenAI system generated
the shapes this way?”

and constraints by sketching a free-body
diagram? I shared a link to a board for

you to sketch on in the chat.”

support. Traditionally, engineers build a part and then gradually
remove or add material based on structural analysis to derive a
weight-optimized part. Exploring different manufacturing options
is necessary for every material and manufacturing process—a time-
consuming and tedious task. In contrast, Generative Design can
automatically generate many options based on specified require-
ments, which the designer can explore and choose from.

Concretely, in Autodesk Generative Design, designers specify
the structural loads a part has to hold, the GenAlI solver’s obstacle
geometry (part areas that must remain free of material, such as clear-
ances for bolt holes), and the material and manufacturing properties
(Figure 1 F). Designers then optionally request a preview simulation
before running the solver and then evaluate many Al-generated
solutions to identify viable designs (Figure 1 G). If no outcomes are
deemed satisfactory, designers might iterate the design by adjusting
the input criteria.

In our prior study [42], we observed that while most designers
learned to specify some of these input parameters success-
fully over time, many failed to correctly specify structural
loads and obstacle geometry for sufficient part clearances. As
aresult, most of the submitted designs were unfeasible because they
were either too heavy or weak, larger than the allowable, or had
insufficient clearances around bolt holes, preventing the bracket
from being mounted.

Figure 1 H lists common errors that occur during the task of
designing a ship engine mounting bracket using Generative De-
sign related to insufficiently specified loads, obstacle geometry,
materials and manufacturing options (DFM), and during out-
come evaluation. These observed common mistakes relate to key
cognitive GenAl workflow challenges of intent formulation, prob-
lem exploration, and outcome evaluation (see Figure 11 and Section
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2.1). In the following section, we describe how we probe differ-
ent support strategies aimed at helping designers overcome these
challenges.

4 Constructing Support Agent Design Probes

Our motivation was to prototype, study and compare different
metacognitive support strategies in the context of GenAl-supported
design tasks. Previous studies have shown that existing support
resources and strategies (such as help menus, online forums, or
video tutorials) seem to be ineffective in helping designers overcome
the cognitive challenges involved in working with GenAlI [42]. Thus,
we speculated that metacognitive support strategies, such as asking
reflective questions to prompt self-explanation or planning and
sketching activities, might be more effective. Inspired by previous
work and findings on metacognitive support, we therefore asked:

1) What if a support agent simply asked questions? Could this in
itself be enough to promote productive reflection-in-action and
improve human-AlI co-creation?

2) What if an agent prompted designers to plan and sketch while
supporting these activities through suggestions?

To explore these metacognitive support strategies prior to de-
veloping functional Al-based agent systems, we engaged in ex-
ploratory prototyping [105] and constructed two different agents
as design probes [14]: (1) SocratAls, a Socratic agent that asks reflec-
tive questions to prompt deeper reflection-in-action, and (2) Hep-
hAIstus that prompts task planning and diagramming supported
by suggestions for design strategies and software operation (see
Table 1). These two agent probes were enacted by the first author
using an exploratory "Wizard of Oz" [29, 105] approach. The wizard
followed guidelines to adhere to the general rules for each agent
while also having flexibility over when to send messages and the
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exact phrasing of messages given the in-the-moment context of
each participant’s session (see 5.4 for details).

We hypothesized that each of these support strategies could be
effective in supporting designers on their own, but also likely in
combination. However, as a start, we wanted to investigate how
certain strategies would work in isolation to better understand
their impact, benefits, and tradeoffs on designers’ metacognition
and design process.

In addition to these two probes, to move beyond our research
team’s assumptions, we also asked:

3) How would human experts in generative design support de-
signers new to working with GenAl in this task?

To answer this question, we also invited (3) external experts from
Autodesk to act as wizards during some sessions, to observe and
compare their natural strategies of supporting other designers in
this task (freeform). The following sections describe our three agent
probes SocratAls, HephAlstus, and Expert-Freeform in more detail.

4.1 SocratAls Probe — Asking Questions

Inspired by previous research on prompting self-explanation [45,
96], SocratAls proactively asks users questions as they complete
a design task to prompt self-explanation and reflection on
their design decisions. Specifically, this agent follows a Socratic
questioning approach to support designers’ metacognition by
constructing questions relevant to the phase of a design task that a
designer is currently working on, such as specifying the part’s loads,
obstacle geometry, manufacturing considerations, or evaluating
outcomes (see Appendix for agent guide). In line with a Socratic
questioning approach, SocratAls only responds to user requests
with further questions and refuses to provide direct answers.

4.2 HephAlIstus Probe — Planning, Sketching,
with Suggestions

To explore our second question (what if an agent prompted de-
signers to plan and sketch while supporting these activities through
suggestions?), we constructed HephAlstus (referencing Hephaestus,
the Greek god of craftsmanship). This agent provides metacognitive
support in the form of planning and sketching and by supporting
these activities with suggestions around design strategies and tool
operation. Inspired by prior research on the benefits of externaliza-
tion activities in design [7, 42], the agent offers deliberate planning
and sketching activities parallel to the CAD workspace to help users
think through the design problem more strategically and visually.
For planning, the agent suggests the user engage in a project plan-
ning activity by sharing a pre-generated text document outlining
critical project-relevant aspects with the user (see Appendix A.1.4
for an example document). This strategy aims to encourage users
to think through the design task more deeply before switching to
the CAD interface.

For the sketching activity, the agent suggests that the designer
sketch out load case-relevant forces and constraints as a free-
body diagram? by sharing a link to a 2D drawing canvas containing

ZFree body diagrams are common mechanical visual representations to illustrate the
forces acting on physical objects in a given situation, helping to simplify complex
mechanical problems and reason about its structure.
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the side and top view of the bracket as a starting point (see Appendix
Figure 8 for an example).

To support these planning and sketching activities, the agent
proactively offers suggestions for the design task and software oper-
ation, inspired by work on supporting software learning and work
processes [25, 52]. This entails providing alternative design options,
highlighting overlooked software features, notifying about unin-
tentional execution errors, or recommending tools and techniques
to improve the overall design process.

In contrast to SocratAls’ question-asking approach, HephAls-
tus responds to user queries with direct answers, similar to chat
assistants such as ChatGPT. Lastly, the agent can visually highlight
areas on the user’s screen to direct their attention to what the agent
is talking about.

4.3 Expert-Freeform — Support from an External
Generative Design Expert

Lastly, we explored how human experts attempt to support design-
ers’ metacognition in this task, when provided agency over how
to do so. We invited experts in mechanical and generative design
from Autodesk (the maker of Fusion360)—who were not a part of
our research team—to serve as wizards, allowing them to provide
their own interpretation of metacognitive support (freeform). For
these sessions, we recruited wizards from Autodesk’s employee
pool via internal mailing lists and snowball sampling (see Appendix
Table 5). Participants ranged between 27 and 47 years of age, with
mechanical design experience between 3 and 15+ years. All experts
had high self-rated proficiency in Fusion360 Generative Design,
were closely involved with its development, and had substantial
experience training others to use the tool.

The expert wizards were instructed to support the other designer
in working with Generative Design and the design task by control-
ling the voice agent. We refrained from explicitly telling them to
follow a specific support strategy, and instead, they were asked to
provide real-time support in their preferred way, so long as they
did not directly instruct the other designer on what to do.

4.4 Common Agent Capabilities

Besides the differing support strategies outlined above, all support
agent probes shared the common capabilities:

o the agent possesses (non-exhaustive) knowledge of additive
manufacturing and generative design tasks

o the agent has access to the users’ screen and think-aloud
speech in real-time;

o the agent can identify inconsistencies between the require-
ments stated in the design brief and the GenAI parameters
specified by the designer by comparing the design brief
and screen activities (e.g., detecting over/under-constrained
load cases, infeasible material combinations, or wrong force
setup)3;

o the agent can send voice messages to the user and (in Heph-
Alstus and Expert-Freeform cases) annotate the user’s screen
and share links via chat.

3Such requirements could be explicit nature (e.g., the force the bracket needs to hold)
or implicit features, such as bolt clearances, which were not explicitly mentioned in
the design brief
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5 Study Design

To elicit the impacts, potential benefits, and drawbacks of the sup-
port agent probes, we conducted a formative between-subjects
study with trained mechanical designers new to working with gen-
erative Al Each designer was supported by a different agent probe
(facilitated by a human operator in the background) while working
with the Autodesk Generative Design tool to design a ship engine
mount 4,

We used an exploratory “Wizard of Oz” (WoZ) prototyping ap-
proach [105], where a human operator controlled the voice agent
probes in the background to simulate different support strategies.
Instead of only following strict predefined rules, the wizards had
certain degrees of freedom in enacting the agent probes’ support
strategies to explore broader design possibilities and implications
in response to emerging situations during user sessions [105] (see
5.4).

While working on the task, designers were asked to think aloud
to elicit their cognitive processes (e.g., mental models [24], learning
[103]) and knowledge and intents so that they could be used by the
(WoZ-controlled) voice-based support agents. Participants worked
between 31 and 99 minutes, then submitted their designs and com-
pleted a semi-structured interview to reflect on their experience
working with the support agent.

We collected the following data:

e Video, screen, and audio recordings with machine-generated
transcripts of the agent-supported think-aloud design ses-
sions

e Audio recordings and machine-generated transcripts of the
post-task interviews

o 3D designs created during the think-aloud sessions

e Log files with timestamps of all human-facilitated agent
messages

5.1 Participants

We recruited 20 designers (aged 20 to 42 (M = 26.1, SD = 5.9)) with me-
chanical engineering backgrounds from engineering departments of
North American universities and through the Upwork freelance hir-
ing platform® (see Appendix Table 4). Participants had between one
and ten years of Mechanical Design experience and between zero
to ten years of industry experience, as determined via a screening
questionnaire. All participants had at least two years of experience
using CAD and Autodesk Fusion360 but no experience working
with the Generative Design extension. We recruited participants
familiar with Fusion360 so that they could focus on learning to
work with the Al-driven Generative Design feature rather than
learning the CAD tool’s user interface. Participants included a mix
of undergraduates, graduate students, and professional engineers.
Before the study, all participants signed a consent form approved
by our institution’s IRB. Participants were compensated 20 USD
per hour.

4See Section 3 for a description of this task, previously used in [42].
Shttp://www.upwork.com
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5.2 Design Task and System

Participants were instructed to design a light and strong engine
mounting bracket with Autodesk Fusion360’s [5] “Generative De-
sign” feature (see Section 3 and Figure 1 for a detailed description).
Since we adopted the task from an existing study [42], we verified
the suitability of the task for our study by first piloting it with
mechanical engineers from our institution and an external user pro-
ficient with Generative Design, all of whom successfully completed
the task without receiving any support.

5.3 Procedure

The study was structured into four phases, split into two sessions:

1) Onboarding (30 minutes): After an introduction to the study,
participants received a hands-on tutorial demonstrating Fusion360
Generative Design’s core functionalities through a step-by-step
example design task.

2) Design Task - Part 1 (up to 70 minutes): After onboarding,
participants were introduced to the design brief, task, and starter
file containing predefined geometric constraints. They were also
told that a virtual AI agent would support them during the design
task (except for the members of the No Support group). Sessions
were conducted over video conference (Zoom) with audio, screen,
and video recording.

Participants worked while sharing their screens and thinking
aloud, with research team members following the video call re-
motely and operating the support agent. Participants were allowed
to use any available support resources, such as internal Autodesk
help files, external video tutorials, or online user forums.

Participants worked until they completed specifying the gener-
ative design inputs. They then started the Generative Design ex-
tension’s solver, which completed the first session. Since the solver
required 30 minutes of runtime, participants took a 30-minute break
and then returned for the second session.

3) Design Task - Part 2 (up to 30 minutes): After the solver
finished, participants evaluated the generated designs. If satisfied
with the results, they could directly select three designs. Otherwise,
they could re-adjust the design criteria and restart the solver, in
which case they would return to evaluating the generated designs
after the exit interview and select their final designs.

4) Exit Interview and Debriefing (20 min): After task comple-
tion, participants participated in a semi-structured remote interview
with a research team member. Participants were asked to reflect on
their experience working with the Generative Design extension,
the think-aloud activity, and the agent support (see the Appendix
for interview protocol). Additionally, after the expert-facilitated
sessions, we interviewed the experts to gain further insight into
their support strategies and challenges they perceived. The inter-
view was audio and video recorded and the interviewer took notes.
At the end of the inteview, participants were debriefed about how
humans had actually controlled the Al support agents.

5.4 Wizard of Oz Setup

Overall, we followed an exploratory Wizard of Oz prototyping ap-
proach [105] as a design space exploration where wizards would
have some flexibility in enacting the agent probes. This allowed
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listening to their verbalizations and observing their screen and webcam stream. Using a web interface, the wizard could (1) type
messages and send these as (2) synthesized voice messages to the user as agent messages. (3) All agent messages were logged

with timestamps.

us to make meaningful comparisons between the support strate-
gies (asking questions vs. planning and sketching support vs. expert
freeform) while also giving wizards flexibility on how to enact the
different agent probes in detail (such as the exact message timing
and phrasing). Below, we detail the instructions given to wizards
and the study setting.

5.4.1 Wizard Details. The SocratAls, and HeEhAIstus agents were
facilitated by the first author with experience in mechanical engi-
neering, Fusion360, and generative gesign .

This wizard followed these general guidelines:

1) Follow the designer’s verbalizations and screen actions and
pay close attention to the task-specific design steps and chal-
lenges as outlined in Section 3.

2) Pay close attention to inconsistencies between the require-
ments stated in the design brief and the input parameters
set by the designer’.

3) Never directly tell the participant what to do, but rather pro-
vide supportive questions, hints, or suggestions (depending
on the enacted agent type).

4) You are free to send messages whenever and how often you
consider it helpful to the designer. However, pay special at-
tention to moments in which designers transition between
design sub-tasks (such as from specifying obstacle geom-
etry to specifying loads), as well as when designers show
hesitation or use hedging expressions.

%In some sessions, a second research team member with experience in mechanical
engineering and generative design was co-present, verbally supporting the wizard.
7Such requirements could be explicit (e.g., the force the bracket needs to hold) or
implicit features, such as bolt clearances, which were not explicitly mentioned in the
design brief.
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5) You are free to formulate the messages in a way you consider
to be most helpful, while adhering to the agent’s support
strategy (e.g., only asking questions).

For the Expert-Freeform agent wizards, we did not provide spe-
cific guidelines, but only instructed them to provide support in
their preferred way, so long as they did not directly instruct the
supported designer on what to do (see Section 4.3).

5.4.2  Setting. For all sessions, participants and wizards were in
separate locations during the design task, and communication be-
tween the wizards and participants was established via Zoom video
conferencing software (see Figure 2). Although most sessions were
co-located, with participants and wizards in separate but neigh-
boring rooms of our research lab, eight sessions were conducted
remotely. In the lab sessions, participants completed the task on
a computer workstation running Fusion360 with the Generative
Design extension. Remote participants were provided access to a
web-based computer® with the same setup for remote sessions.

Participants shared their screens via Zoom and wore an audio
headset during the task to capture their verbalizations and ensure
they could hear the agent’s voice. The wizard joined the same video
call using a generic name (‘Agent’) with a deactivated webcam to
follow the participant’s screen actions and verbalizations. In ad-
dition, the wizard could generate and send agent voice messages
using a self-developed web control interface (see Figure 2 right). For
the Exeert—Freeiorm sessions, in addition to the researcher and the
designer, the external task expert from Autodesk anonymously at-
tended the conference call in the background and remote-controlled
the voice agent via the web interface.

8using Paperspace
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The agent control interface was developed in React.js and uses
Google’s text-to-speech API to generate the agent voice from the
wizard-typed text (see Figure 2). The interface features a button
to toggle the playback of an idle sound cue to sonically indicate
an ‘agent is processing’ state to the participant. Additionally, the
tool logs all generated messages with a timestamp and session
ID exportable in JSON format. We used audio-routing software’
on the wizard’s computer to inject the generated agent speech
audio into the video call. To mitigate possible gender bias effects,
we deliberately selected a gender-ambiguous voice option for the
agent, following suggested best practices from prior research [93].

5.5 Measures and Analysis

To gain insight into our research questions, RQ1 How do differ-
ent support strategies impact the design process? and RQ2 What
are the perceived benefits and challenges of metacognitive support
agents?, we evaluated the design outcomes and analyzed ~19 hours
of think-aloud videos and ~6 hours of interview recordings using a
combination of video interaction analysis and reflexive thematic
analysis.

5.5.1 Design outcome evaluation. We evaluated the design
outcome feasibility by checking the submitted engine brackets
against the requirements in the design brief, rating across five
criteria, each yielding one point:

(1) The structural soundness was validated using finite element
analysis (FEA).

(2) The feasible load case setup was checked in their Fusion360
project file.

(3) The optimized mass was not extremely light or heavy.

(4) The part had feasible fastener clearance (i.e., clear bolt holes)

(5) The part’s mass and volume fit within the acceptable bound-
ing dimensions.

The GenAl solver generated around 20 designs, and to compensate
for possible variability in the generated outcomes, we asked partic-
ipants to choose three feasible parts from which we then selected
the highest-scoring part as their final design.

5.5.2 Video interaction analysis to determine agent impact.
We used video interaction analysis [11] of the think-aloud recordings
to understand how agent support impacted participants’ design pro-
cess. Specifically, to determine the impact of the agents’ messages
on the design process, we analyzed whether participants consid-
ered new design aspects after receiving a message based on their
verbal reflections or concrete actions. The think-aloud video and
transcript data were equally distributed among three researchers
who applied the following coding procedure:

1) Tracking GenAlI input specifications: First, the coders
tracked participants’ interactions with the Generative Design fea-
tures relevant to the design task and documented whether the
actions would produce satisfactory outcomes. Specifically, they
tracked how participants specified (1) structural loads (forces), (2)
mechanical constraints, and the obstacle geometry feature to control
the bracket’s (3) bolt and (4) dampener pin clearances, and (5) overall
size.

https://existential.audio/blackhole/
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2) Coding message impact: Second, the coders tracked the
impact of the agent’s messages on the design process: For each
agent message, they coded if the message had an observable im-
pact on the participant considering a new aspect related to the
design task, which needed to be apparent from the designer’s ver-
balizations or actions (coded with ‘none,’ ‘weak,’ or ‘strong’). For the
design assistant agent probe (HephAlstus), they also tracked users’
direct messages to the agent and if agent messages were generally
observably helpful to the user (yes/no).

3) Coding planning and sketching interactions: Third, the
coders tracked when the agent sent the planning sheet or the free-
body diagram sketching board and when the designers interacted
with these.

Between these coding sessions, the researchers met frequently to
discuss edge cases and ensure consistency in their coding practices.
From this data, we then created time-series event plots for each
session with R and ggplot2 to visually identify patterns (see Ap-
pendix Figure 7). In addition, we created summary videos for each
participant, highlighting all situations featuring agent messages or
other interesting designer-agent interactions (please see the video
figure in the supplementary material for an example).

5.5.3 Reflexive thematic analysis. To understand participants’
attitudes toward the agent support, we performed a reflexive the-
matic analysis [16] of the interview data (transcripts). We followed
an iterative inductive coding process and generated themes through
affinity diagramming. We used ATLAS.ti to analyze transcripts, au-
dio, video, and Miro for affinity diagramming.

First, the first author coded the interview transcript data utilizing
both a semantic (what people said) and latent (our interpretations
of the data) coding strategy. Next, the research team collectively
identified initial codes and themes. Based on the time series plots
from the video interaction analysis and the summary videos, we
then associated the participant statements from the interviews with
specific situations in the design sessions to cross-validate the impact
of agent messages and identify additional qualitative themes and
interaction patterns. We iteratively reviewed and revised codes and
themes until we identified a stable network of coherent and rich
themes.

6 Findings

All participants completed the task without abandoning it. Overall,
most agent-supported designers overcame more GenAl workflow
challenges and produced more feasible designs than unsupported
designers (Table 2). However, different agent strategies impacted
the design process in different ways. Most designers saw benefits
in agent support, but we also elicited various trade-offs and differ-
ing preferences for support interactions. In the following sections,
we present our findings on the impact of different support agent
strategies on the design process, along with the perceived benefits
and challenges associated with these.

6.1 Impact of different support strategies on
design process (RQ1)
6.1.1  Design Outcome Comparison. Overall, participants with sup-

port produced notably higher-quality parts (see Table 2 and Figure
3 and 4), with an average outcome score of M = 3.5 (SD = 1.4),
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Table 2: Table summarizing participants’ outcome design scores across five criteria (checkmarks) and process statistics by
support group. Normalized Message Frequency represents the number of agent-initiated messages divided by the session
duration. Note that the number of agent-initiated messages is lower than the total agent messages for the HephAIstus and
Expert-Freeform groups since these exclude agent messages in response to user-initiated queries.

Support Condition SocratAls HephAlstus Expert-Freeform No Support
Participant | S1 S2 83 S4 S5 H1 H2 H3 H4 H5 E1 E2 E3 E4 E5 B1 B2 B3 B4 B5
Passing Structural Analysis (FEA) v Vv Vv v v v v v v v v
Correct Load Setup v v Vv v Vv v v Vv
Mass Optimized v Vv Vv Vv v v v v Vv
Feasible Fastener Clearances | v v v v v v v v v VvV Vv VvV v v
Feasible Part Size | v v v Vv V v V. Vv VvV YV v v v v v
Outcome Quality Score 2 5 3 5 5 40 2 3 4 5 2 3.2 5 3 1 4 4 34| 1 1 1 1 1 1
# Agent Messages | 38 27 21 17 15 23.6| 38 64 21 40 32 39| 27 29 21 36 52 33

# User Messages 15 39 8 8 12 144 2 8 8 7 12 74
# Triggered New Considerations 8 13 2 2 5 60| 4 5 0 4 3 32 4 8 1 2 10 5.0
Duration (min) | 74 74 32 42 56 55.5| 92 89 59 99 70 81.7 | 37 47 31 43 55 42.5| 53 37 63 83 59 59.0
Normalized Message Frequency | 0.5 0.4 0.7 04 03 0402 02 02 02 02 0206 03 05 05 06 05
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Figure 3: Plot showing the design outcome scores between Figure 4: Overview of engine bracket designs created by par-
agent-supported groups and no support. ticipants grouped by quality score (1-5). White IDs indicate
participants from the No Support group (all one point).
compared to participants with no support who had an average about statistically significant differences between the support con-
outcomes score of M = 1.0 (SD = 0.0). All participants in the No ditions, the consistent gap between supported and unsupported
Support group incorrectly specified the bracket’s load case, and users points to clear benefits of having agent support.

consequently, no final design passed the structural analysis (see
designs with white labels in Figure 4). Additionally, brackets cre-
ated in the No Support group had inaccurately specified obstacle
geometry, resulting in infeasible fastener clearances or material
exceeding the required package size. These low-quality outcomes
match our prior study’s results in the same unsupported task [42].

In contrast, while the outcome quality varied within and across
the agent-supported groups, the majority of supported designers
created brackets that passed the structural analysis and had feasible
fastener clearances while staying within the required space limita-
tions. Between supported groups, the average design score varied
slightly, with SocratAls-supported users having the highest number
of designs fulfilling the load and spatial requirements. While the
small sample size per group prevents us from drawing conclusions

6.1.2  Comparison of Agent Message Frequency and Impact (across
conditions). In terms of number of messages, agents sent be-
tween 15 and 64 messages per session, with the highest group
average being M = 39(SD = 15.8) in the HephAlstus group, M =
33(SD = 11.9) in the Expert-Freeform group, and M = 23.6(SD = 9.3)
in the SocratAls group (see Table 2). However, these counts of the
number of messages sent by HephAlIstus and Expert-Freeform also
include responses to user-initiated queries and therefore are natu-
rally higher than for the SocratAls group. To gain a normalized
comparison of message frequency between conditions, we
calculated the number of messages initiated by the agents divided
by the session duration (agent-initiated messages/session duration),
which revealed a similar message frequency per minute across agent
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Figure 5: Plot illustrating the total number of messages per
support topic category and agent type (unsaturated colored
bars) and the percentage of observable impactful messages
that triggered observable new considerations (saturated ar-
eas).

groups of M = 0.4(SD = 0.15) for SocratAls, M = 0.2(SD = 0.03)
for HephAlstus, and M = 0.5(SD = 0.14) for Expert-Freeform.

Regarding the messages’ impact on the design process, the
number of messages that triggered observable new considerations
(i.e., impactful messages, as defined in 5.5.2) ranged from zero to
13, with means ranging between M = 6.0(SD = 4.6) SocratAls,
M = 5.0(SD = 3.9) Expert-Freeform, and M = 3.2(SD = 1.9) Hep-
hAIstus. Interestingly, although the HephAlstus group had fewer
messages that triggered observable new considerations compared to
the other two groups, their final design outcomes were comparable.
This suggests that the planning and sketching activities prompted
by the HephAlstus agent may have supported productive design
reasoning, even when fewer individual messages were coded as
impactful.

Analyzing the messages’ topics across all agent groups,
most agent messages concerned intent formulation and problem
exploration in the Loads, Obstacle Geometry and DFM categories
followed by messages supporting Evaluation (see Figure 5). Fur-
ther analyzing the messages’ topics in terms of their impact on
considering new design-relevant aspects, the highest number of
impacts had messages supporting intent formulation and problem
exploration: Obstacle Geometry (between 32% to 46% across groups)
and Loads (41% SocratAls and 33% Expert-Freeform).

In terms of the contrast between the number of messages
and impact on design considerations, agents varied drastically
between the support aim topics: HephAlstus’ Loads and DFM cat-
egories had only half or a third of the impact (18% and 5%) as
SocratAls while having a similar or larger number of total messages.
Similarly, the Expert-Freeform’s messages supporting Evaluating
had only half of the impact (8%) as the other support agents, while
having a similar number of total messages. In contrast, for the
Obstacle Geometry and Evaluating categories, messages in the Hep-
hAIstus group had the highest consideration impact while having
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the lowest number of messages compared to the other groups (46%
and 29%).

6.1.3  SocratAls’ Effects on the Design Process.

A) User-Agent Interaction Dynamics: Overall, participants
paused their think-aloud verbalizations when listening to agent
messages (118/118 questions). However, depending on the user’s sit-
uation, they responded differently: immediately responding to the
agent’s questions by giving an answer (61/118 questions); finishing
their line of thought and sub-task before replying (28/118); pausing
to think and reflect silently before verbally replying (13/118); or
directly responded with simple acknowledgments after thinking
for a while in silence, such as "Yeah, you are right,” or "That’s a
good point," even if the message was not a direct suggestion but
an open-ended question (11/118); or providing no response (5/118).
Some participants (2/5) asked the agent a question at the beginning
of the session, but they stopped asking the agent more questions
afterward, recognizing that it would not provide an answer but
reply to user requests only with questions.

B) Agent Impact on Overcoming GenAI-Related Challenges:
SocratAls had mixed impacts on helping designers overcome
design challenges across participant sessions (see example
timelines in Figure 6 and Appendix Figure 7 for all sessions). In
some sessions (2/5), agent messages had an observable strong im-
pact on helping designers overcome design challenges (S2, S5).
Meanwhile, in other sessions (2/5), we could only observe weak
evidence of impact, where some agent messages had a positive
impact, but overall, designers were unable to overcome most major
challenges (S1, S3). In one session (S4), the designer created feasible
outcomes without facing major challenges or showing observable
agent impact, but SocratAls helped them to consider additional
design-task-related factors.

C) SocratAlIs’ Positive Effects:

In most sessions (S2, S3, S4, S5), reflective agent questions helped
users with more precise intent formulation and problem ex-
ploration. For example, an agent question probing reflection on
potential additional shape requirements of the part helped S5 think
through the part’s clearance requirements and consider and specify
additional important details, leading to a feasible bracket design:

SocratAls: When specifying the bolt clearances,
how do these impact the assembly and
servicing of the bracket?
S5: [Looks at the preview simulation] So
this part won’t be serviceable [...]
you’d need enough clearance for the
socket. So I will go back to edit
model..." [user adds more obstacle
geometry].
(see also timeline S5 in Figure 6). Later, S5 reflected on the helpful-
ness of the agent’s message: "It was asking something about how
the obstacle geometry affects the serviceability of the part. That was
basically telling me that I needed to leave some clearance for tools
and for maintenance. That was very helpful"” (S5).
We also noticed in several cases that questions were espe-
cially effective in helping designers formulate intent and specify
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Figure 6: Timeline excerpts visualizing participant and agent interactions throughout the design task; timelines are divided
into lanes, each showing (in)correct GenAl input specifications (diamond shapes) for (1) forces, (2) constraints, (3) bolt and, (4)
dampener clearances, (5) bounding box (from top to bottom); black and orange vertical lines represent exchanged agent and
user messages with purple and black triangles indicating an observable impact on the design process.

the design problem more accurately when prompting users to
mentally simulate the real-world aspects of the bracket. For
example, S3 had mistakenly modeled the load case reversed to
the real-world situation ("flipped" load case), causing the solver to
build a structurally unstable bracket. An agent question prompting
them to reflect on the part’s function from a real-world perspective
(Which side of the bracket is holding the engine weight?
The bolt connections or the dampener connection side?)
helped the user update their mental model and load case.

In two sessions (S2, S5), reflective questions during the pre-
view and outcome evaluation phases helped designers better
evaluate and correct faulty designs. For example, S2 generated
brackets based on incorrectly specified loads (forces and constraints
assigned to the wrong sides). While evaluating the design, the user
noticed the structurally weak parts but was unsure about the cause.
An agent question probing deeper thought about the GenAl solver’s
mechanism caused the designer to realize their flawed mental model
and correct the load specification:
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SocratAls: What might be the reasons why the
solver generated the shapes this way?
[user thinks] Yeah, because it did
not consider building material between
these three [bolt connections]
maybe because of the forces... [user
checks forces again] It should be
acting downward based on the weight
of the engine [user corrects load
case].

S2:

For confident users, questions helped in problem explo-
ration by considering additional design factors.

In one session, S4 did not encounter major challenges, and while
the agents also asked similar questions as in the other sessions,
these also had no observable impact on supporting critical cognitive
challenges. However, agent questions (such as "Considering the
engine’s environment, what alternative or additional
assumptions might we make about the load cases?") helped
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the user to consider additional relevant factors, such as suitable
materials for the bracket’s maritime environment or additional
forces resulting from ship movements. Later, S4 reflected in the
interview: I think it was pretty useful [...] it prompted me about the
assumptions about the loading. And I was like: ‘oh yeah, this is on
a ship, so it has to survive lateral loads and not just ground loads’" (S4)

D) SocratAls’ Negative Effects:
In one session (S3), repeated questioning amplified cognitive
offloading, leading to flawed results. At first, SocratAIs’ ques-
tions during the initial setup phase helped S3 correct their overcon-
strained load case. However, a later question (What would happen
if the load cases were set up incorrectly?) made them
doubt their initially correctly specified load case setting and change
it for the worse (see S3 in Figure 6).

In another case, questions were less impactful in correcting
a user’s solidified wrong assumptions. S1 had incorrectly set
up a load case with fixed constraints and forces assigned to the
same geometry, which would cancel out the impact of the force
on the bracket’s structure in the solver. An agent question (Can
you walk me through your intention of assigning a force
and a fixed constraint to the same geometry?) caused S1
to provide an explanation of their reasoning, eliciting their incor-
rect assumptions. But, instead of realizing misconceptions, their
explanations reinforced their assumptions, preventing them from
correcting issues.

6.1.4  HephAlstus’ Effects on the Design Process.

A) User-Agent Interaction Dynamics:

Besides proactive support, HephAlstus also responded to user re-
quests like a voice-based chat assistant such as Alexa or Siri, and
users addressed the agent between 8 to 39 (M=14.4) times per
session (see Table 2 and orange vertical lines in Figures 6 and
7). These user-initiated requests included asking the agent about
manufacturing-related facts, such as material properties, or asking
for help with load case-related tasks, such as calculating forces.
Some users requested confirmation or feedback from the agent on
the design process ("Am I missing anything, agent?") or requested
guidance ("Ok, what’s next?"). Overall, these sessions were charac-
terized by phases of active back-and-forth conversations between
the user and agent, as apparent from the clusters of dense orange
and black vertical lines in the event timelines in Figures 6 and 7.
The proactive messages initiated by the agent included suggestions
regarding Fusion360 operation (such as specific tools within the
Generative Design extension) and overcoming design challenges
(such as reminding users to use the preview or pointing out mis-
matches between the design brief and their setup).

B) Agent Impact on Overcoming GenAl-Related Challenges:

Overall, we found that HephAlstus had mixed impacts on help-
ing designers overcome design challenges across participant
sessions. In 1/5 sessions, the agent messages had an observable
strong impact on helping designers overcome design challenges
(H4), while in 3/5 sessions, weak impacts on overcoming design
challenges were observable (H1, H2, H5). In 1/5 sessions, a designer
created almost feasible outcomes without facing major challenges
or observable agent impact (H3), but it was clearly observable that
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the agent helped the user operate the software more effectively.

C) HephAlstus’ Positive Effects:

The agent-provided sketching board helped some designers
in loads-related problem specification and intent formula-
tion. When the agent prompted designers to explain the bracket’s
load case by sketching a free-body diagram (FBD) and sharing a link
to a prepared drawing board, all users followed the link and used
the board to sketch out diagrams while verbalizing their thoughts
(see blue triangles and highlighted passages in Figure 6 and 7 and
example board in Appendix). In several cases, the sketched free-
body diagram served as a conversational anchor and reference point
between the user and the agent. For example, while H4 had first
sketched an FBD with feasible load cases, they then incorrectly
specified the load case in Fusion360. Later, the agent pointed out
the inconsistency between the sketched FBD and the load case
setup in the CAD tool, which led the designer to correct the input
specification (see H4 in Figure 6).

All designers explored the agent’s project planning sheet,
but few revisited it during the session. While 2/5 users quickly
went through the document at the beginning, 3/5 users (H2, H3,
HS5) spent between 3-10 minutes in the document, utilizing its
provided structure to talk through, reflect on and plan the design
process step by step before starting to work in Fusion360 (see
yellow triangles and highlighted passages in Figure 6 and 7). For
example, the planning sheet supported H5 in reflecting on and
exploring suitable material options while using the document to
add notes about different material characteristics (see H5 in Figure
6). However, only two users revisited the document later in the
session (H4, H5).

We also observed that in many cases, proactive agent sug-
gestions reminded designers about overlooked steps, unin-
tentional execution errors (slips), or software features. For
example, the agent reminded H2 to run a preview simulation to
better assess bolt clearances before starting the solver (You might
run a preview simulation at a later point to evaluate
the clearances before starting the solver). This message
led H2 to run a preview and realize insufficient bolt clearance.

D) HephAlIstus’ Negative Effects:

While 52% of agent messages had an observable impact on help-
ing the user work on the task and operating the software (101/196
messages, see black triangles in Figure 6), only a fraction (0.06%)
directly helped overcome cognitive design challenges by consid-
ering new design-task relevant aspects (16/196 messages, purple
triangles in Figure 7). We also observed that directly pointing
out inconsistencies in the users’ setup only helped some
users correct existing issues. For example, in two cases (H1, H5),
designers repeatedly failed to correct ill-defined load case setups
despite the agent directly pointing these out and providing concrete
suggestions for correcting them (see H5 in Figure 6). In those situ-
ations, participants decided not to follow the agent’s suggestions
and instead followed their own (partially incorrect) intuition.



DIS °25, July 05-09, 2025, Funchal, Portugal

6.1.5 Expert-Freefrom Observed Support Strategies.
From analyzing the session videos and post-task interviews with

the expert facilitators, we identified several support strategies that
helped designers similar to our support agent probes.

We observed that experts frequently supported designerly
thinking and metacognition while also highlighting over-
looked design issues to guide users. Similar to HephAlstus, ex-
perts proactively highlighted potential issues, such as missing or
misrepresented GenAl parameters, to ensure critical considerations
were addressed early.

Additionally, we observed that some experts used a question-
asking strategy to support users in intent formulation, problem
exploration, and outcome evaluation similar to SocratAls.

Some experts also deliberately delayed messages when the
user moved on to a different sub-task too quickly and waited to
reintroduce the topic later at a more opportune moment (see E1 in
Figure 6).

Lastly, we observed that experts also frequently supported
users in navigating CAD software features, helping them by
offering guidance on Generative Design functions, recommending
workflow optimizations, helping with calculations such as load dis-
tribution, and providing help to locate tools and options as needed.

6.2 Perceived benefits and challenges of
metacognitive support agents (RQ2)

Overall, participants appreciated the support from the agents. S2
stated that "it’s doing a good job [...] by assisting you throughout the
whole design work" and H1 noted a perceived efficiency gain: I feel
like without [the agent], [...] it would have definitely taken a longer
amount of time." Besides positive aspects, participants highlighted
trade-offs and challenges, which we present in the following sec-
tions, organized around the different support strategies and general
agent interactions.

6.2.1 User Feedback on SocratAls (Question-Asking).

Participants consistently found the agents’ questions valu-
able, particularly those that prompted reflection on key de-
sign aspects, such as load cases and clearances. These questions
helped refine GenAl input specifications by encouraging them to
reconsider functional details and correct initial assumptions, as one
participant noted, “The questions [...] helped me reflect and go back
over my train of thought and see, ‘Am I missing something? Does this
look like I'm doing what I'm supposed to do?”” (S5).

Participants also reported that questions encouraged them to
slow down and critically evaluate their thinking, much like a pro-
fessor would in a one-on-one setting, as S1 explained: "when [..]
you’re just sitting down designing by yourself, you don’t often run
through those things. So having someone to stop you and say, "Why
do you think that works?’ is a good check every now and then" (S1).

Some users found agent questions redundant but preferred
them over missing important steps. For example, one partic-
ipant noted that while "25% of the questions actually helped,” the
rest pulled their attention away from the current task (S1). Others
mentioned that the agents sometimes asked questions about actions
they were already performing, which felt unnecessary as they were
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already thinking through those steps. However, participants ac-
knowledged that redundancy was preferable to missing something
important and found the frequency of questions appropriate.

Some found the questions more useful for problem explo-
ration and intent formulation: "It did a good job [during] the
initial part of the setting up of the design" (S3). Others saw more
benefit in supporting outcome evaluation, particularly when
analyzing and comparing designs: "[Questions during outcome eval-
uation phase were more] valuable because when you’re comparing
this many designs, it’s good to be reminded of what’s most important
to compare and prioritize" (S2).

6.2.2  User Feedback on HephAlstus (Planning, Sketching, with Sug-
gestions).

The agent-provided project planning sheet was generally
perceived as helpful, giving users a structured way to approach
their tasks and a document to guide their process, as this participant
stated: "To show you an actual work plan from the design to the
actual fabrication and production of the piece is good. [It helps you
to] separate [the design process] into different steps and how we’re
going to work from here" (H2).

Designers found that sketching helped them visually think
through the design problem: "Sketching a free body diagram was
definitely helpful. I mean, it was just good to see before I had set it up in
Fusion, sort of my plan for where the loads and constraints were gonna
go" (H3). Several participants suggested that the sketching feature
could be improved by making it more interactive—for example, by
providing real-time calculations, augmenting sketches with force
vectors, and offering a library of example diagrams—to support
thinking through a part’s design requirements.

Many participants valued the agent’s proactive sugges-
tions, and when the agent pointed out possible inconsisten-
cies in their load specifications, as H1 described: "I wasn’t sure
why [the solver] was generating so thin [parts] and having the agent
explain to me, ’hey, it’s probably because of the constraints that you
set, you have canceling loads, you should not do that. That was good
feedback to modify the constraints” (H1).

Designers also liked when HephAlstus helped them catch
slips and correct mismatches in real-time. For example, one
user appreciated a hint that pointed out a mismatch between the
force requirements in the design brief and the load setup: T thought
it was extremely helpful. I [mis]Jread the instructions with the weight
capacity [...] I'm glad I received a prompt to make sure that the weight
distribution was accurate because it knew there was a difference
between the weight the bracket was supposed to hold and the engine’s
total weight. I was impressed that the agent provided me that prompt
to check and make that design change” (H1).

Additionally, participants also found the agent more effi-
cient than searching online or sifting through video tutorials
for answers. Being able to ask the agent questions directly about
specific software functions or design issues saved time and allowed
them to stay focused on the task without interrupting their work-
flow: "I didn’t have to stop what I was doing [...] to go to Google and
find information” (H3).

The fact that the agent would also annotate the screen and
highlight relevant interface elements was widely appreciated
for reducing the need to search for tool functions manually,
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as one participant noted: “when I had doubts about specific functions
in Fusion, I asked the agent and it was very helpful in that. And the

fact that it would highlight the word to click, that was very useful”

(H2).

6.2.3 Reflections and Suggestions of the Expert-Freeform Wizards.

In the post-task wizard interview (after supporting a designer),
the task experts reflected on their support strategies and challenges.
Some experts emphasized the difference between operating
Fusion360 and thinking through design problems, underscor-
ing that while both of these tasks are equally important, they
often require two distinct "mindsets": "I was thinking of it from
a "how do I use Fusion’ standpoint. [But it’s | kind of like two parts
of the brain: One is like, ’I know where the buttons are, I know the
workflow,” and there is like, really creative problem-solving" (Expert
4).

Furthermore, some also suggested that agent-initiated “design
reviews” during outcome evaluation could help users in crit-
ical evaluation of GenAl outcomes. Similarly, others suggested
to introducing deliberate "checkpoints” or reflection phases
between design task steps (e.g., when the user transitions from
specifying loads to obstacle geometry), which could allow for better
scaffolding of (metacognitive) support throughout the process.

Several experts also saw the potential to pre-structure work-
flows by offering early guidance on problem exploration and
setting up generative design inputs. Some highlighted the value
of “preemptive” planning activities, similar to HephAIstus’ planning
sheet—suggesting that preparing a clear design plan before switch-
ing to the GenAlI tool could improve the overall design process.

Some experts deliberately focused on supporting users in
outcome evaluation and also suggested that designers run a solver
preview early to obtain visual feedback, helping users quickly assess
if their setup was correct. Another observed recurring strategy was
that during outcome evaluation, Expert-Freeform agents suggested
looking back to realize flawed load specifications, as this expert
described in the interview: "If we get really hefty results like blocky
stuff, then as the agent, I can say, ‘Do these parts seem over-designed?
Let’s look back at our load cases!” And then we can recognize, ‘okay,
we applied that load to the full load to every entity’" (Expert 1).

Lastly, experts also suggested instead of directly speaking agent
messages, to annotate screen elements to signal available feed-
back from the agent, for example, by circling critical parts, to
provide users opportunities to initiate a conversation with the agent
when desired by clicking on these highlighted regions.

6.2.4 Feedback on General Interactions With Agent Probes . Here
we summarize participants’ feedback on general aspects of interact-
ing with the support agents. Participants generally appreciated
the voice modality of the agent, finding it faster and more
efficient than typing, as H2 described, "talking is more time effi-
cient because in chat I'll first have to explain the issue and it will take
longer and be less clear" (H2).

Others highlighted the benefit of voice-based interactions
for complex tasks that required creative or visual exploration:
"In a software like this, I could definitely see use in [voice]. Text can be
convenient, [but] you might miss it. Having a voice is helpful [for] any-
thing that requires an exploratory or creative process” (H1). However,
some users noted that voice interaction could be impractical in
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shared or public workspaces, such as offices or labs, and would
prefer an additional text-based alternative in such environments.

Users also shared differing opinions about the overall ben-
efits of the question-asking and support suggestion strategies.
Designers in the SocratAls group generally valued open-ended ques-
tions rather than providing direct answers, as it encouraged them
to think critically about their design decisions and allowed for flex-
ibility in their approach, as S5 shared: "I don’t think it should have
pulled me straight up the answer. I think it was better to tell me, "Hey,
you should think about this, because not every part is going to be
maintained the same way or serviced the same way [...] By asking
you a more open-ended question, it pointed you in a direction, but
it also left open the possibility to ignore it" (S5). However, a few
users also suggested that more direct educational scaffolding
with explanations could be more helpful for less experienced
users, while other, more experienced users could prefer shorter
prompts to ensure that their workflow stayed on track. Some par-
ticipants in the HephAlstus group also emphasized that to fully rely
on the agent, they would need to trust its understanding of complex
design contexts and ensure that its recommendations are accurate,
especially for critical engineering tasks.

7 Discussion

In the following sections, we discuss our findings and their impli-
cations for metacognitive design support systems and agent-based
CAD support while highlighting key learnings, design considera-
tions, and open questions for future GenAl design support systems
(see Table 3).

7.1 Toward Metacognitive Design Support
Systems

Our findings indicate that agent-facilitated metacognitive support
can play a positive role in helping designers overcome the cognitive
challenges of GenAl workflows: Designers receiving some form of
support often had improved design outcomes compared to those
without assistance!®. In our exploratory prototyping study, we
categorized support strategies into distinct agent probes to reveal
nuanced benefits and tradeoffs, but also saw that none of our agents
served as a one-size-fits-all solution. This suggests that combining
multiple strategies may ultimately prove more effective in practice,
and future work should explore systems with blended approaches.

Below we reflect on the findings of this study and highlight
design considerations for future metacognitive GenAl support sys-
tems (Table 3). Regarding specific metacognitive support strate-
gies, our findings indicate that (A1) cueing users with thought-
provoking open-ended questions can help with intent formu-
lation, problem exploration, and outcome evaluation, lead-
ing to improved Al-generated outcomes (see 6.1.2—6.1.3, 6.1.5).
These findings align with prior evidence on the crucial role of ques-
tions within design processes [19, 39, 79]. Similar to other recent
work [30, 74], our findings also emphasize Al agents’ possible role
as facilitators that can stimulate users’ critical thinking, which

00ur result in the unsupported group aligns with previous findings using the same
task with a similar population [42], and statistical tests also showed no significant
differences in population characteristics between supported and unsupported groups
in our study.



DIS °25, July 05-09, 2025, Funchal, Portugal

Table 3: Overview of design considerations and key learnings.

Gmeiner et al.

Design Considerations / Key Learnings Seen in

Opportunities for agent-based metacognitive support

A1l Cueing users with thought-provoking open-ended questions can help with intent formulation, 6.1.2,6.1.3,
problem exploration, and outcome evaluation in GenAl-assisted design tasks. 6.1.5

A2 Prompting mental simulations through questions and sketching can assist designers in  6.1.3, 6.1.4
thinking through design problems and more accurately formulating intents and specifying GenAI
model inputs (supporting intent formulation and problem exploration).

A3  Offering metacognitive support in key moments of GenAl-based design processes can enhance 6.1.3, 6.2.3
cognitive engagement, for example, by offering users agent-driven “design review sessions”
during part evaluation or introducing dedicated "reflection checkpoints" when transitioning
between subtasks.

A4 Giving users control over the type of metacognitive support depending on their needs and 6.2.4
experience level.

A5 Providing designers custom-generated user-editable design checklists to support planning  6.1.4, 6.2.2
and reflection of design decisions.

Opportunities for agent-based CAD support

B1 Offering suggestions for design decision and tool operation in combination with metacogni- 6.1.5, 6.2.3
tive support to help improve users’ tool fluency and overcome cognitive GenAl workflow
challenges.

B2 Enabling users to verbally request support from agents can help to maintain focus and reduce  6.1.4, 6.2.2
context-switching in complex and visual-heavy CAD tasks.

B3 In addition to voice agent feedback, utilizing visual screen annotations and text can reduce 6.2.2
cognitive load.

B4 Agents that follow user behavior over time offer the potential for proactively providing re- 6.2.2,6.1.5
minders, hinting at inconsistencies, and suggestions for metacognitive support, tool
operation, and design task considerations.

B5 Visually signaling available agent feedback for users to optionally engage in can reduce task  6.2.3

interruptions.

challenges the common notion of GenAl systems as “oracles” that
only provide definitive (but possibly inaccurate) solutions or an-
swers. However, going further, a challenge will lie in determining
when “asking” versus “telling” the user would be most appropriate.
Further investigations could draw on principles from learning sci-
ence, suggesting metacognitive processing may only be effective if
preceded by adequate knowledge or initial instruction [13, 45].

Also, we saw that asking questions alone can have limitations:
In our study, questions were less effective at challenging ingrained
incorrect assumptions, indicating that guidance beyond question-
ing may sometimes be required, especially when users hold deep
misconceptions. Similarly, repeated questioning also presented a
dual effect: while it often helped users to repair flawed inputs, it
sometimes led to over-reliance, with designers thinking the Al
might know something more than them or that the Al is right,
rather than engaging in deeper reflection. This risk of dependency
aligns with other findings on in-action feedback during design tasks,
where excessive guidance was observed to diminish self-reflection
and critical evaluation [37, 107]. Future work should, therefore, ex-
plore when and how metacognitive support systems could provide
assistance without increasing automation reliance.

From a technical perspective, recent advancements in natural
language processing (NLP) have enabled automated generation of
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Socratic questions for teaching math [87] or debugging [2] and
generating domain-specific educational questions by pre-training
LLMs [17]. Building atop such technical foundations, future re-
search should explore design task-specific question generation to
prompt designers’ self-reflection and critical thinking aligned to
specific design domains. Furthermore, inspired by emerging process
mining techniques focused on metacognition and self-regulated
learning phases [1, 15, 108], future work could investigate ways
to further optimize systems, for example by tailoring prompts to
designers’ specific situational metacognitive needs, such as intent
formulation, problem exploration or outcome evaluation phases.
Regarding specific metacognitive strategies, our analysis indi-
cates that (A2) prompting mental simulations through ques-
tions and sketching can assist designers to think through
and more accurately formulate intents and specify GenAIl
model inputs (see 6.1.3, 6.1.4). These findings align with previous
research on design cognition, suggesting that mental simulation
presents a vital metacognitive process in design activities [8, 9].
In addition, we saw that providing distinct support for thought
externalization and visualization through sketching (a known cog-
nitive amplification strategy in design [7]) helped designers more
carefully think through input specifications for the GenAl solver,
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thus improving designers’ intent formulation and problem specifi-
cation. Overall, metacognitive agent support might potentially be
helpful for many design processes, whether GenAl-supported or
not. Based on these findings, future work should explore further
metacognitive support mechanisms relevant to design within and
outside of GenAl-assisted tasks, such as prompting mental simu-
lations through questions or guiding users in gradually sketching
and eliciting relevant input criteria.

While many questions may not have directly helped designers!!,
we saw that the right reflective question at the right time can have
a significant impact on the design process. However, anticipating
and catching the right moment can be tricky, but some situations
seemed to be more opportune than others. For example, during the
GenAl preview and outcome evaluation phases, reflective questions
helped designers in assessing and correcting generated parts by
linking back components’ structural errors to insufficiently speci-
fied model inputs (see 6.1.3). Likewise, some external expert wizards
and users also emphasized that support during evaluation phases
would be especially useful (see 6.2.3 and 6.2.1). Building atop this
learning, future systems could (A3) offer users agent-driven
“design review sessions” during part evaluation (similar to
reviews in design education or professional collaborations [43, 72])
and introducing dedicated "reflection checkpoints" between
GenAl setup steps (e.g., when the user transitions from specify-
ing loads to obstacle geometry) to better scaffold (metacognitive)
support throughout GenAlI-based design processes (see 6.2.3).

Our findings also revealed differences in user preferences be-
tween more confident and inexperienced designers regarding ques-
tions versus suggestions (see 6.2.4), highlighting the desire for sys-
tems to give users (A4) control over the type of metacognitive
support depending on their needs and experience level.

Lastly, future metacognitive support systems could provide (A5)
custom-generated user-editable design checklists to support
planning and scaffolding of design decisions (see 6.1.4, 6.2.2).

7.2 Opportunities for Agent-based CAD Support

While our study primarily focused on supporting designers working
with GenAI within CAD environments, the findings also revealed in-
teresting insights and opportunities for designing agent-based CAD
support systems that can complement metacognitive strategies. For
example, in our study, HeEhAIstus—in addition to its metacognitive
planning and sketching support—had a positive impact on helping
users work on the design task and software operation. However,
HephAlstus’ suggestions helped designers less to overcome GenAl-
related cognitive challenges than SocratAls’ questions. Especially
for supporting intent formulation and problem exploration related to
load cases, SocratAls was twice as effective as HthAIstus (see Sec-
tion 6.1.2 and Figure 5), indicating that for intent formulation and
problem exploration, questions paired with planning and sketching
support might be more effective than suggestions. Consequently,
we conclude that (B1) metacognitive support through reflec-
tive questions, planning, and sketching is equally crucial for
effectively supporting designers in GenAl tasks as providing

110n average only 6 out of 23 questions of SocratAls’ sessions had an observable
positive impact on the design process where the designer considered a new relevant
aspect after receiving the message (see Table 2).
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suggestions for design decision and tool operation ' (see 6.1.5,
6.2.3).

Furthermore, based on the insights derived from HeehAIstus and
Expert-Freeform, we see various opportunities for systems providing
real-time support for design tasks and software operation, along
with metacognitive support in CAD and GenAlI design workflows.
Notably, we see opportunities for (B2) enabling users to directly
request information and metacognitive support from agents
verbally while working on a task, which seemed to have helped
users maintain focus while reducing context-switching (see 6.1.4,
6.2.2).

Similarly, users also appraised the agent’s (B3) visual tool guid-
ance by directly highlighting relevant GUI elements (sece
6.2.2). Recent NLP advancements in speech processing and syn-
thesis [68, 94], as well as the increasing ability of multimodal Al
models to visually understand and operate software GUIs [50, 71],
provide promising foundations for future research to explore such
multimodal conversational support agents further.

Additionally, by capturing and responding to user behavior, ver-
balizations, and (screen) context over time, (B4) agents can proac-
tively provide reminders, hinting at inconsistencies and sug-
gestions for metacognitive support, tool operation, and de-
sign task considerations (see 6.2.2, 6.1.5). With multimodal LLM’s
increasing context windows, such contextual longitudinal support
seems to become increasingly feasible.

Lastly, instead of support agents always directly verbalizing
their messages, future support systems could instead (B5) visually
signal available agent feedback for users to engage in if and
when desired, which could reduce task interruptions (see 6.2.3).

7.3 Limitations

We highlight the following limitations: The study followed an ex-
ploratory prototyping approach [105] that enabled us to compare
the different agents’ metacognitive strategies while allowing flex-
ibility in how support was delivered (e.g., message timing and
phrasing). As a result, our design insights are partially shaped by
the individual wizards (the first author and four external experts),
and repeating the study with different wizards may yield slightly
different outcomes. Furthermore, to analyze the impact of agents
on the design process, we used video interaction analysis to iden-
tify moments when participants visibly considered new, relevant
aspects in response to agent messages. While this yielded valuable
findings, future work could incorporate additional user-agent in-
teraction dynamics to further surface complementary insights. In
terms of population, our participants represent only a subset of
engineering designers. While all participants had relevant train-
ing in design and experience with 3D CAD software, many had
limited industry exposure. To address this imbalance, we included
five professionals with more extensive industry experience. Most of
these professional users were part of the expert-facilitated agents,
which might have biased the results. However, we disregarded this
potential bias since the observed behaviors were similar across all
supported groups. Furthermore, as the participants in our study
were self-selected, they were likely interested in or receptive to

12This is also indicated by the comparable quality of outcomes across the different
agent-supported groups.
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GenAl systems. This openness to Al-supported work may have
influenced some of our findings. Additionally, although we aimed
to ensure the design tasks felt realistic, participants knew they
were part of a research study and that their designs wouldn’t be
produced. They might have invested more time learning the tool
and thinking through the problem to create practical designs in a
real-world setting.

8 Conclusion

While GenAl tools promise to enhance design processes, many
professionals struggle to work effectively with Al Key challenges
include specifying all design criteria upfront (intent formulation)
and reduced cognitive engagement due to cognitive offloading,
which can limit problem exploration and outcome evaluation. To
address this, we explored metacognitive support agents in a Wizard
of Oz user study. Our findings show that users with agent support
developed more viable designs, though outcomes varied depending
on support strategy. While designers recognized the benefits of
such assistance, we also uncovered trade-offs and differing user
preferences. Based on these results, we highlight opportunities and
trade-offs of metacognitive support agents and implications for Al-
based design tools. While this work explores metacognitive support
agents for GenAl-assisted mechanical part creation, the findings
and design considerations offer promising avenues for research
in other Al-assisted workflows and insights for developing new
support techniques for Al-based design applications.
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A Additional Materials

Table 4: Overview of study participants.

MechDes Indus. CAD

ID Agent Age Role Exp. Exp. Exp. FEA = DEM
Group Prof. Prof.
Years Years  Years
B1  No Support 22 Student, MA Mechanical Engineering  3-5 0 2-4 5 2
B2  No Support 28  Student, PhD Mechanical Engineering 3-5 1-2 5+ 6 2
B3 No Support 27  Researcher, Mechanical Engineering 6-10 0 5+ 7 5
B4 No Support 23 Student, MA Mechanical Engineering  3-5 3-5 2-4 7 5
B5  No Support 39  Researcher, Mechanical Engineering 3-5 0 5+ 1 1
S1  SocratAls 26  Student, BS Mechanical Engineering 6-10 0 5+ 4 1
S2  SocratAls 23 Student, MS Mechanical Engineering  3-5 0 2-4 5 5
S3  SocratAls 22 Student, MS Mechanical Engineering ~ 1-2 1-2 2-4 4 1
S4  SocratAls 26  Student, PhD Mechanical Engineering 6-10 1-2 5+ 1 5
S5  SocratAls 20  Student, BA Mechanical Engineering  3-5 0 2-4 4 6
H1 Hephaistus 30  Student, PhD Mechanical Engineering 3-5 3-5 5+ 4 4
H2 Hephaistus 42 Student, PhD Mechanical Engineering 6-10 6-10 5+ 4 1
H3 Hephaistus 22 Student, BA Mechanical Engineering = 1-2 1-2 2-4 3 2
H4 Hephaistus 26  Mechanical Engineer 3-5 3-5 5+ 2 2
H5 Hephaistus 21  Student, BA Mechanical Engineering ~ 1-2 1-2 2-4 3 5
E1  Expert-Freeform 38  Mechanical Engineer 10+ 10+ 5+ 7 7
E2  Expert-Freeform 26  Mechanical Engineer 1-2 3-5 5+ 4 6
E3  Expert-Freeform 29  Mechanical Designer 10+ 3-5 5+ 5 7
E4 Expert-Freeform 29  Mechanical Engineer 6-10 6-10 5+ 5 5
E5 Expert-Freeform 23  Student, MS Mechanical Engineering ~ 3-5 0 5+ 2 5

Table 5: Overview of demographics of Autodesk Fusion360 Generative Design experts who acted as wizards in the Expert-
Freeform condition. Fusion360 Generative Design software proficiency was self-rated on a 1-7 scale.

F360 F360

ID Age Role MechDes GenDes GenDes Pz?lred
Exp. Years . . with
Prof. Training Exp.
Expert1 31 Senior Research Engineer 3-5 6/7 Trained customers, students, colleagues E2, E5
Expert2 35 Sr. Research & Design Engineer 6 — 10 77 Taught lectures, trained colleagues E1
Expert3 47 Principal Research Engineer 15+ 717 Trained customer support teams E4
Expert4 27 Research and Design Engineer 3 -5 6/7 Trained customers and colleagues E3
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Figure 7: Timeline plots visualizing participant and agent interactions throughout the design task; timelines are divided into
lanes, each showing (in)correct GenAl input specifications (diamond shapes) for (1) forces, (2) constraints, (3) bolt and, (4)
dampener clearances, (5) bounding box (from top to bottom); black and orange vertical lines represent exchanged agent and
user messages with purple and black triangles indicating an observable impact on the design process.

A.1 Wizard Guidelines

The agents SocratAls and HephAlstus were facilitated by the first author, with experience in mechanical engineering, Fusion360, and
Generative Design. In some sessions, a second research team member with experience in mechanical engineering and Generative Design
was co-present to provide additional verbal support for the main wizard.

A.1.1 Guidelines for the SocratAls and HephAlstus wizard.
The wizard of SocratAls and HephAlstus followed these general guidelines:

1) Follow the designer’s verbalizations and screen actions and pay close attention to the task-specific design steps and challenges as
outlined in Section 3, such as specifying the bracket’s load cases (forces and structural constraints), modeling appropriate geometry
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for keeping bolts and dampeners free of material (obstacle geometry), defining DFM parameters such as materials and manufacturing
options, and also to support users in evaluating the design previews and generated outcomes.

2) Pay close attention to inconsistencies between the requirements stated in the design brief and the input parameters set by the designer.
Such requirements could be explicit (e.g., the force the bracket needs to hold) or implicit features, such as bolt clearances, which were
not explicitly mentioned in the design brief.

3) Never directly tell the participant what to do, but rather provide supportive questions, hints, or suggestions (depending on the enacted
agent type).

4) You are free to send messages whenever and how often you consider it helpful to the designer. However, pay special attention to
moments in which designers transition between design sub-tasks (such as from specifying obstacle geometry to specifying loads), as
well as when designers show hesitation or use hedging expressions (e.g., ‘T am unsure if...”).

5) You are free to formulate the messages in a way you consider to be most helpful, while adhering to the agent’s support strategy (e.g.,
only asking questions).

A.1.2  Guidelines for the Expert-Freeform wizards.

The Expert-Freeform wizards (external experts not part of the research team) received fewer instructions since we wanted to observe their
natural support behavior. However, experts were told not to directly tell the participant what to do, but rather to help them work on the
design task and with the GenAlI system.

A.1.3  SocratAls Agent Introduction .

SocratAIs: Hey! I am a voice agent here to support you during the design task. I can hear what you are
saying, and I can see your screen and follow along with you while you work on the task. From
time to time, I will ask you questions that are supposed to help you think through the design
task. You can also ask me questions at any time.

A.1.4 HephAlstus.

Agent introduction:

HephAIstus : Hey! I am a voice agent here to support you during the design task. I can hear what you are
saying, and I can see your screen and follow along with you while you work on the task. Feel
free to ask me any questions, and I’11 do my best to provide you with answers. From time to time,
I’11 also chime in with tips and guidance to help you along the way.

Project Planning Activity:
HephAlIstus provided metacognitive support by suggesting the user engage in a project planning activity by sharing a pre-generated text
document outlining critical project-relevant aspects with the user:

HephAIstus : Hey! I noticed you are working on designing a ship engine mounting bracket and that you are planning
to use Autodesk Fusion 360 Generative Design to explore different materials and manufacturing
options. Before you start working on the task, I suggest having a planning session together to
help you walk through the steps and design considerations in designing the bracket. What do you
think?

(waiting for confirmation from user)

HephAIstus : I created a shared doc with a high-level breakdown of the steps and design considerations to be

discussed. You can find the link in the chat.
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Planning Sheet Document:

1) Project Scope and Requirements

Define the objectives of the bracket design.

Understand the operational conditions of the ship engine.

Identify load types (static, dynamic, thermal) and magnitudes.

Clarify space constraints and installation considerations.

2) Material Selection
e Discuss different material options (metal alloys, composites, etc.).
o Consider material properties such as strength, weight, corrosion resistance, and cost.
o Review the material performance under extreme marine conditions.

3) Manufacturing Method
e Determine feasible manufacturing methods (casting, machining, additive manufacturing, etc.).
o Evaluate the pros and cons of each method concerning the design objectives.
e Discuss generative design constraints for each manufacturing process.

4) Generative Design Parameters

o Set up load cases and boundary conditions in Fusion 360.
e Define the design space and apply necessary constraints and conditions.
e Choose the resolution of the generative design mesh.

5) Design Constraints and Criteria

e Set criteria for minimum safety factors.

o Define requirements for vibration dampening.

o Consider access for maintenance and installation.
6) Simulation and Analysis

e Plan for simulations to predict performance under various loads.
o Analyze stress distribution, deformation, and fatigue life.
e Review thermal and fluid flow analysis if necessary.

7) Optimization Objectives
o Establish the optimization goals, such as weight reduction, strength optimization, cost efficiency, etc.
e Discuss trade-offs between different optimization objectives.

8) Compliance and Standards

o Ensure the design meets marine industry standards and regulatory compliance.
e Consider classification society requirements and certifications.

9) Integration with Existing Systems

o Discuss how the bracket will integrate with the ship's engine and surrounding structures.
e Plan for interfaces with other systems and parts.

10) Lifecycle Considerations

o Consider the lifecycle impacts, such as ease of manufacture, sustainability, recyclability, and end-of-life disposal.
e Maintenance.
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Free-body Diagram Sketching Activity:
The agent can suggest that the designer sketch out load case-relevant forces and constraints as a free-body diagram by sharing a link to a 2D
drawing canvas containing the side and top view of the bracket as a starting point:

HephAIstus : Can you walk me through your load cases and constraints by sketching a free-body diagram? I
shared a link to a board for you to sketch on in the chat (see Fig. 8).

# -« Engine Bracket Fres Bady Diagram (1] Page 0 80 6
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Figure 8: Screenshot of the sketching board HephAlIstus sent to users (with scribbles from H3 on it).

A.1.5 Expert-Freeform Agent Introduction.

Expert Agent: Hey! I am a voice agent here to support you during the design task. I can hear what you are
saying, and I can see your screen and follow along with you while you work on the task. Feel
free to ask me any questions, and I’11 do my best to provide you with answers. From time to time,
I’11 also chime in with tips and guidance to help you along the way.
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Table 6: Interview protocol with questions of the semi-structured post-task interview.

Nr Question

General Feedback on task and thinking aloud

Q1 Did you encounter any technical difficulties during the design session(s) that limited your
ability to work on the task?

Q2 How challenging was the design task of designing an engine bracket for you in general?

Q3 How did it feel to think aloud during the task? Do you think that thinking aloud impacted your
ability to complete the task in any way?

Feedback on working with the Generative Design feature

Q4 Could you tell me what it was like to work with the Fusion 360 Generative Design feature in
general?

Q5 Are you satisfied with the final design in general? How closely does it match the design brief?

Q6 Did you encounter any challenges in designing the engine bracket using the generative design
feature?

Q7 Could you imagine using this tool in the future?
Q8 How much do you trust the results from the design tool?
Feedback on Support Agent
Q9 Could you tell me what it was like to work with the design support agent in general?
Q10 Do you remember situations in which you found the agent's support helpful? In which not?
Q11 What would you want the design support agent to do more of?
Q12 What would you want the design support agent to do differently?
Q13 Would you use a tool like the design support agent in your work? Why or why not?
Q14 How did you like the frequency of messages?
Q15 How did you like the planning doc and sketching board?
Q16 In which phases did you find the support more or less helpful?

Q17 How useful did you find the questions that the agent asked you? Do you remember specific
questions that you found helpful or unhelpful? Please explain.

Q18 Is there anything else you would like to share with us, or do you think we should know about?
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